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ABSTRACT

KEYWORDS: Grid-to-Vehicle (G2V), Intelligent charging, Plug-In Electric Ve-

hicle (PEV), Priority Charging, Priority Premium, Vehicle-to-Grid

(V2G)

Energy storage is the key to allow for integration of clean energy in power girds. We

study two forms of energy storage devices in this thesis.

In the first part we propose an intelligent charging scheduling problem for an Elec-

tric Vehicle (EV) aggregator considering vehicle-to-grid (V2G) and grid-to-vehicle (G2V)

capabilities with an objective to minimize the total charging cost. Since electricity price

at the charging node may be subject to uncertainties, Information Gap Decision The-

ory (IGDT) is proposed in this paper to handle uncertainties in the price. The original

intelligent charging scheduling problem is non-linear. We proposes a modified Mixed

Integer Linear Programming (MILP) based reformulation and solves with CPLEX us-

ing GAMS as an aggregator.

In the second part we propose a stochastic resource investment planning model for

Microgrids. The paper considers that the microgrid in study has a local load, renewable

generation, energy storage unit and a link to the main grid. The microgrids cannot

influence the market prices and is modeled as a price taker. The operational objectives

of the microgrid is to schedule its assests in order to serve the load in such a way so

as to minimize the cost of operation. The operational aspect of microgrids is modeled

as a Linear program (LP). We then continue to use this LP operational model and find

an optimal investment strategy for microgrid in a new stochastic LP model where the

objective is to minimize the sum of investment and expected operational cost. The

assets considered for investment include energy storage units. The proposed stochastic

LP model is tested on a Microgrid test system and simulated on GAMS.
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NOTATION

Chapter - Electric Vehicle Aggregator

UV _Gij Energy transferred from jth vehicle to grid in ith time slot,kWh
UG_V ij Energy transferred from grid to jth vehicle in ith time slot,kWh
T Number of Time Slots in a day

N No of cars available for charging in Parking

ηj Efficiency of jth PEV battery and converter(same for charging and discharging)

πj Price of one unit electricity in ith time slot,Rs/kWh
Pij 1 if in ith time slot jth EV is present in parking for charging , 0 otherwise

BatConstj Battery constant for jth EV’s Battery

Pmax Maximum power rating of each charging station,kW
µij System’s Priority of jth EV at starting of timeslot i

dij Duration for which jth EV will remain in parking station at the start of timeslot i,Hr
maxload Maximum load which can be connected to grid from parking station,kWh
Wj Weight given by user for charging his/her vehicle at high priority

M A very large number say 10000 for NLP to MILP conversion using Big-M method

bij Binary variable which decides whether V-G or G-V operation takes place

BEij Energy contained in the jth EV’s Battery at end of timeslot i,kWh
BEijopt Optimal battery energy should be stored in battery

BEijmax Maximum battery energy which can be stored in a battery

BEijmin Minimum battery energy which can be stored in a battery

crj Charging rate of jth vehicle in terms of fraction it can charge w.r.t new battery

ps Probability of event s

D Difference between Cost of charging with priority and without priority among PEVs

viii



Chapter - Microgrid

t Time intervals

z Stochastic Scenarios

T Set of Time intervals

Z Set ofStochastic Scenarios

gt Generation purchased from main grid in time interval t
dt Power discharge from energy storage unit in time interval t
ct Power charging into energy storage unit in time interval t
st State-of-charge in energy storage unit in time interval t
D The maximum charge and discharge rate of the installed energy storage unit (kW)

S Upper limit of installed state-of-charge in energy storage asset (kWh)

Ip Marginal rate of expanding the charge/discharge rate of energy storage asset (Rs/kW )

Ie Marginal rate of expanding the storage capacity of energy storage asset (Rs/kWh)

| · | Cardinality of the set

I(·) Conditional set index operator

Rt Local wind power generation in time interval t (kW)

Lt Local microgrid load in time interval t (kW)

S Lower limit of state-of-charge in energy storage asset (kWh)

S Minimum required state-of-charge level at the end of operational dispatch (kWh)

S0 State-of-charge level at the beginning of operational dispatch (kWh)

Ft Locational marginal price for buying electrcity from main grid at time interval t
ηc, ηd Charging and discharging efficiencies of energy storage asset
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CHAPTER 1

INTRODUCTION

Energy Storage is meant by the method of changing the electrical energy that is derived

from an electrical power grid network into a stored configuration that can be reverted

back into required electrical energy when required. The first works on this can be seen

of the storage devices of the 20th century, where electrical stations were shut down,

with lead-acid storage devices that supplied to the residual loads on the direct current

networks.The unpredictable nature of load profiles of renewable energy and constant

pressure of the green house gases has led to change in the production and distribution

of electrical energy. Thus,the evolution of energy storage devices has the potential

to reduce these pressures in today’s energy scenario. The Energy Storage will be an

integral part of ever changing demand scenario, thus the mere increase in the supply

of renewable energy by allowing renewable energy to be delivered during peak times

when it is most required and deliver stored energy when the renewable energy is not

efficient will lead to restoration of the demand-supply chain.

The upward swing in production and supply of increasing amount of renewable

energy into transmission and distribution grids and the rapid increase in the rooftop

solar photo-voltaic installations in households gives a picture of how the energy storage

devices are helping in un-tapping of a new market in renewable energy and enabling

new opportunity.This trend is expected to overflow into the electricity transmission and

distribution arena in the form of Grid-Scale Battery Storage; in the pursuit of greater

flexibility, control and utilization of electrical power. The introduction and application

of cost effective grid-scale battery storage will be a game-changer for the distribution

and control of electrical energy[1].

In general there are two main categories of The energy storage devices can be

broadly classified into 2 categories. The electrical energy storage devices such as batter-

ies, Superconducting Magnetic Energy Storage (SMES) and capacitors can be counted

in the first category,where as the non-electrical energy storage devices that convert other

energy forms such as thermal and kinetic energy into electrical energy such as fly-



wheels, pumped air and pumped hydro storage systems can be counted in the second

category[2].

Utilities still face a lot of technical glitches,despite numerous development work

in the field of renewable energy generation,with the key being intermittent supply of

energy. The introduction of energy storage devices and their usage will provide more

value to renewable energy and power system operators.

Key concept requirements are as follows:

a) To check and prove that efficacy of all storage devices in meeting grid standards in

terms of reliability,safety and quality.

b) To prove that grid support can me met when required with increased focus on energy

storage devices.

c) To have sense of profitability in theCommercial sense to deploy energy storage de-

vices, drivers, applications and challenges

d) Framing of the regulatory body to give the rights of owner, operator and maintainer

along with various storage devices and tariff structures.

A brief brief classification of energy storage systems is as follows:

1.Electrical Energy Storage : (i) Use of Electrostatic nature (Capacitors, Supercapac-

itors); (ii) Use of Magnetic/Current energy (SMES).

2.Mechanical Energy Storage : (i) Use of Kinetic energy (Flywheels); (ii) Use of Po-

tential energy (PHES).

3.Electrochemical Energy Storage: (i) Use of Electrochemical energy (conventional

batteries such as Lead-acid, Nickel Metal hydride, Lithium ion and flow-cell batter-

ies like Vanadium Redox and Zinc Bromine); (ii) Use of Chemical energy (Fuel cells,

Molten-Carbonate fuel cells (MCFCs) and Metal-Air batteries).

4.Thermal Energy Storage : (i) Use of Low temperature energy (Aquiferous cold stor-

age, Cryogenic storage); (ii) High temperature storage (Sensible heat systems like Hot

water Accumulators, Graphite, Hot Rocks and Latent heat systems like Phase change

materials).

The figure 1.1gives the basic classification in a nut shell indicating various groups

and their categories.
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Figure 1.1: Different Methods of Energy Storage

Figure 1.2: Application of Energy Storage Technologies
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1.1 Energy Storage System Comparison

A comparison between the various Energy Storage devices and technologies is shown in

the table where the grouping has been categorised in terms of Energy Efficiency,Power

Density,Energy Density,Energy Installation Cost,Life Time (cycles),Deployment Time

and Applications is enumerated in the table above as per fig 1.2.

1.2 Range of requirement of storage devices

Over the last two decades,with an increase in the variety of drive types, along with the

increasing volume of their application in various spheres, the problem arises of choos-

ing a particular type of storage device [3].

Broadly the whole range of requirements for storage devices can be divided into two

groups:

a) On the basis of using the storage device in a particular way.

b) on the basis of its energy characteristics.

Here,The requirements of the second group refer to the storage of any types and actu-

ally determine the expediency of using a particular drive in each specific case. First of

all, these are indicators such as efficiency of storage and efficiency of discharge.

When choosing a drive, these indicators are crucial since, because they affect the mag-

nitude of the overall effect of the application of the drive. The use of the drive becomes

ineffective if during the process of charging and storage some significant part of the

energy is lost due to the drive’s non-perfection (selfdischarge, friction), i.e. there is a

connection with the time of energy storage.

1.3 Electrochemical Energy Storage and their Energy

Density

Electrochemical batteries consists of mainly three constituentâĂŹs positive electrode

(cathode), negative electrode (anode), and electrolyte (solid/liquid). In batteries the

electrodes are immersed in electrolyte in which ions exchange during charging convert-

ing the electrical energy into chemical, and during discharging this chemical energy is

4



converted back into electrical with the help of moving ions.

Different types of electrochemical storage system are listed below:

1. Lead-Acid battery

2. Lithium-ion battery

3. Vanadium-Redox flow

4. Hydrogen Fuel cell

The voltage rating of these storage devices should not exceed more than 2V, hence num-

ber of modules are connected in series and parallel combinations to increase the rating.

Batteries have been using from earlier days, Lead-acid battery is invented in 1859,

Nickel âĂŞcadmium in 1950s, SodiumSulphur is accepted in mid 1990s, Lithium-ion

is commonly used nowadays because of its high energy density, long life cycle values

and high power density which is applicable for large storage. Fig. 1.3 shows increase

in energy densities of various batteries. According to the variance in the characteris-

tics and battery working, they are used for different applications. Batteries having very

high response rate, and some particular batteries respond within 20 milliseconds for

load change.

Figure 1.3: Increase in the Energy Density of Batteries
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Figure 3.1: Schematic of charging process

3.2 Intelligent Charging Schedule (ICS)

The dynamic pricing in the electricity grids will encourage the aggregator to charge

(G2V) the available PEVs at low tariff slots and discharge (V2G) the available PEVs at

high tariff slots. It is well studied that this type of intelligent charging can lead to lower

cost of charging by optimal scheduling the PEV charging [64].

As shown in Figure 3.1, assume that there are two identical PEVs which are to be

charged in a parking station. The time of arrival, the time for which they remain parked

in the charging station and the battery energy on arrival is considered different for both.

Considering Time-of-Use (ToU) pricing to analyze the impacts of unscheduled PEV

charging on the aggregator is analyzed.

Two PEVs are named as PEV1 & PEV2. Two scenarios are considered:

1. First Scenario: PEV charges without scheduling (no V2G).

2. Second Scenario: PEV charges with the V2G and G2V operation

15



3.2.1 First Scenario

Suppose the PEV1 arrives at T1 with 60% of battery energy remaining and stays in

the parking slot till T2 & PEV2 arrives at T1 with 40% of battery energy remaining

and stays till T2. Charging rate is 10% of Battery energy /Time slot. The prices of

electricity are [T1: 100, T2:10]. In scenario 1, the vehicles start charging immediately

after arrival. Hence by the end of T2, PEV1 is at 80% charge and PEV2 is at 60%

charge.

Table 3.1: Battery energy change of PEV1

Time Slot Operation Battery status cost

T1 G2V 60% to 70% 100

T2 G2V 70% to 80% 10

Table 3.2: Battery energy change of PEV2

Time Slot Operation Battery status cost

T1 G2V 40% to 50% 100

T2 G2V 50% to 60% 10

Cost for charging PEV1=110 & for PEV2=110, so Total cost =220.

3.2.2 Second Scenario

In this scenario all conditions are same as the first scenario except the V2G operation

takes place when the 50% battery energy status is achieved. So at the end of time slot

T2, PEV1 & PEV2 both are charged to 60%.

Table 3.3: Battery energy change of PEV1

Time Slot Operation Battery status cost

T1 V2G 60% to 50% -100

T2 G2V 50% to 60% 10

Table 3.4: Battery energy change of PEV2

Time Slot Operation Battery status cost

T1 G2V 40% to 50% 100

T2 G2V 50% to 60% 10

Cost for charging PEV1=-90 & for PEV2=110, so Total cost =20.

16



As compared to the first scenario it can be observed that there is a significant re-

duction in charging cost without compromising the optimal charge level of PEVs and

PEV1 makes a profit on its schedule.

3.3 Information Gap Decision Theory (IGDT)

The information gap decision theory (IGDT) can be effectively used for considering un-

certainties, especially if sufficient statistics is not obtained from the uncertainties input

parameters [65]. IGDT is effective and it is robust even in the presence of prediction

errors. IGDT can be successfully applied to various applications such as:

1. Power purchases in distribution networks

2. scheduling of GenCos considering Risk-constrains

3. Calculating Optimal bidding strategy for generating station

An IGDT based model [66] is effectively used for incorporating variability in wind

power generation, load pattern changes and in heating loads. IGDT framework can be

mathematically formulated as follows:

minxf(x, ψ) (3.1)

Hi(x, ψ) ≤ 0, i ∈ Γ (3.2)

Where,

Γ= represents all constraints.

ψ = Set of all uncertain parameters.

For present paper formulation for energy management based on IGDT is done as

below

maxxl̂ (3.3)

17



Hi(x, ψ) ≤ 0, i ∈ Γ (3.4)

l̂ = maxl(f(x, ψ))− Λc ≤ 0 (3.5)

ψ ∈ U(ψ̄, l) = {ψ : |
ψ − ψ̄

ψ̄
|} ≤ l (3.6)

Where,

Λc = Objective function’s critical value for a given value of X

ψ̄ = Forecasted value of ψ.

l = Unknown radius of uncertainty

IGDT re-optimizes a problem in such a way that the objective function can suffer a

deterioration but does not touch or cross the limit Λc while optimizer tries to maximize

the extend to which the uncertainty can occur given by l . In some of the literature it

can be reformulated as maximization over l when l̂ is under a limiting constraint [65].

This paper follows the reformulated version of IGDT as described in [65] section C

(Robustness of IGDT).

3.4 Disjunctive Inequalities

This section gives a brief idea on the linearization technique used to linearize the bilin-

iear terms in the optimization formulation. Disjunctive inequalities are used to represent

a feasible region when the region is separated into islands. In such cases it is possible to

write the feasible region in sets of equality and inequalities joined with an OR symbol

(logical OR). A Disjunctive inequality representation of x.y = 0 when y is a binary

variable would be {x = 0, y = 0} ∨ {y = 1, x ∈ R+}. This disjunctive inequality has

an equivalent representation: 0 ≤ x ≤ M.(1 − y) ∧ 0 ≤ x ≤ M.(y) where M is a big

positive constant. This is popularly known as big-M reformulation. It is possible to re-

formulate a variety of disjunctive inequalities by introducing a new or using an existing

binary variable.

18



3.5 Problem Formulation

This section discusses a general intelligent charging problem formulation from EV ag-

gregator’s perspective.

min.

T∑

i=1

N∑

j=1

(
UG_V ij

ηj
− ηj.UV _Gij).Pij .π(i) (3.7)

subject to:

UG_V ij

ηj
− ηj.UV _Gij ≤ Pmax.

24

T
.crj ∀i, j (3.8)

N∑

j=1

(
UG_V ij

ηj
− ηj.UV _Gij) ≤ maxload ∀i (3.9)

BEi,j = BEi−1,j + UG_V ij − UV _Gij ∀i, j (3.10)

BEjopt ≤ BEi,j ≤ BEjmax ∀i, j (3.11)

UG_V ij × UV _Gij = 0 ∀i, j (3.12)

UG_V ij, UV _Gij, BEi,j ≥ 0 ∀i, j (3.13)

where j is the index for PEVs, i is the index for time intervals, T represents total time

intervals, N is the aggregation of all PEVs, (
UG_V ij

ηj
− ηj.UV _Gij) is the sum of energy

bought from grid during the given interval of time i for jth PEV. UG_V ij is the energy

transferred from grid to jth PEV in ith time slot. ηj.UV _Gij is the energy transferred

from jth PEV in ith time interval, ηj is the battery efficiency for car j, πi is the electricity

cost at time interval i, Pij represents the element of a presence matrix and is 1 when

the EV is present at the charging station, BEij is the energy stored in battery for jth

EV at ith time interval, Pmax is the maximum power rating for each charging station,

BEjmax is the maximum capacity of energy stored in the battery for PEV j, BEjopt is

the minimum energy level that should be maintained in battery of j th PEV at all times,

crj is a constant factor representing charging rate as fraction of power it can charge,

of the peak power rating of charging station and maxload is the maximum load which

can be connected to grid from parking station. (2) and (3) are charging rate constraints

on PEV and charging station respectively, (4) links battery energy levels with temporal

energy flows, (5) gives the upper and lower limit for battery energy levels, and (6) is to

19



ensure that charging and discharging does not happen simultaneously for any PEV at

the same time interval. The objective (1) minimizes the aggregate cost of charging and

discharging energy for the study duration.

The formulation explained above is non-linear due to (6). The non-linear problem

can be linearized using binary variables using disjunctive inequalities as explained be-

low: (6) can be replaced by:

0 ≤ UG_V ij ≤M.(1− bij).Pij (3.14)

0 ≤ UV _Gij ≤M.(bij).Pij (3.15)

where, M is a big positive constant, bij is a binary variable.

The above MILP formulation does not consider any uncertainty in the nodal price

for the aggregator. To accommodate the uncertainty in price, Information Gap Deci-

sion Theory is proposed here. The aggregator optimization problem is reformulated to

account for the price uncertainty in an interval as follows:

max. α (3.16)

subject to:

obj =
T∑

i=1

N∑

j=1

(
UG_V ij

ηj
− ηj.UV _Gij).Pij.(π(i)± α) (3.17)

TPi,j = (
UG_V ij

ηj
− ηj.UV _Gij)∀i, j (3.18)

obj ≤ objb + (β.objb) (3.19)

UG_V ij

ηj
− ηj.UV _Gij ≤ Pmax.

24

T
.crj ∀i, j (3.20)

N∑

j=1

(
UG_V ij

ηj
− ηj.UV _Gij) ≤ maxload ∀i (3.21)

BEi,j = BEi−1,j + UG_V ij − UV _Gij ∀i, j (3.22)

BEjopt ≤ BEi,j ≤ BEjmax ∀i, j (3.23)

0 ≤ UG_V ij ≤M.(1− bij).Pij ∀i, j (3.24)
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0 ≤ UV _Gij ≤M.(bij).Pij ∀i, j (3.25)

UG_V ij, UV _Gij, BEi,j ≥ 0 ∀i, j (3.26)

where, α is the degree of uncertainty in price parameter, objb is the optimized cost

obtained from the base optimization problem discussed in (1) without any uncertainty

(on average forecasted prices), and β is the budget of uncertainty or the maximum

percentage allowed deviation from the objb. We see that equation (11) again makes the

problem nonlinear. We can linearize (11) as follows:

α =
∑

s∈S

αs.K (3.27)

obj =
T∑

i=1

N∑

j=1

(TPi,j).Pij.(π(i))± (
∑

s∈S

K.zi,j,s.Pij) (3.28)

−M.αs ≤ zzi,j,s ≤M.αs (3.29)

TPi,j −M.(1− αs) ≤ zzi,j,s ≤ TPi,j +M.(1− αs) (3.30)

where αs is the binary variable used to discretize the variable α into S segments

with index s. ± sign is used to denote that the uncertainty in price will be added when

the aggregator is drawing overall power from the grid in the base case and vice versa to

get the worst case scenario. K is the step size of discretization of variable α.

3.6 System Data

In this paper an aggregator with 5 EVs is considered. The presence of different EVs

due to their driving pattern is known and shown in Presence matrix here:

The average forecasted electricity prices at the aggregator node is given as follows:

The upper and lower limits of battery energy levels is set to 13.5 Kw and 6 Kw

respectively.
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Table 3.5: Presence Matrix

Time slots N1 N2 N3 N4 N5

1 1 1 1 1 1

2 1 1 1 1 1

3 0 1 1 1 0

4 0 0 1 1 0

5 0 0 0 0 0

6 0 0 0 0 0

7 0 0 0 0 0

8 1 0 1 0 1

Table 3.6: Electricity Prices in Dynamic Day-Ahead Market

Time Slot Price (Euros/kWh)

1 0.03667

2 0.03746

3 0.05695

4 0.05736

5 0.04758

6 0.04834

7 0.05494

8 0.03908

3.7 Results and Observations

Table 3.7: Aggregator profit (Yearly)

Test Profit per year (Euros)

IGDT 50.74

Base Case 93.805

The figures show the V2G and G2V charging schedules for each EV in the aggre-

gator parking station throughout the day. The spider diagrams (figure 5,6) show the

battery energy levels of each EV throughout the day.

Table 3.7 shows the profit that the aggregator would make in a year (estimated with

a projection) in case of IGDT based uncertainty handling vs the absolute forecast based

intelligent charging. It can be seen that the IGDT based uncertainty handling causes the

profit to be considerably lower but this case has accounted for the uncertainties in the

prices throughout the day. This shows that with the IGDT based charging scheduling

the profit per year would be atleast 50.74euros or more with for certain interval of

uncertainty which is represented by α in the formulation. There is a cost associated

with the price fluctuations and a price associated for the value of true prices in future.
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Figure 3.2: V2G Schedules for all PHEVs- Base Case

Figure 3.3: G2V Schedules for all PHEVs- Base Case
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Figure 3.4: V2G Schedules for all PHEVs- IGDT

Figure 3.5: Battery Energy Levels- Base Case
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Figure 3.6: Battery Energy Levels- IGDT

The cost associated with price fluctuations is the difference between the IGDT objective

value and Base case objective value with average prices. The cost associated with true

prices in future is the difference between the objective values of the function when true

future prices are known and the objective value of the IGDT schedule with true prices.

In case the price fluctuations vary in a small interval, these differences would be very

low. In such scenarios an average forecast is enough to solve the problem. In cases

when the price fluctuations can vary in a large interval, it becomes necessary to handle

this uncertainty with IGDT.
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CHAPTER 5

SOLUTION METHODOLOGY

Till now ,we have discussed the need for optimisation and the method to optimise the

objective function to get the desired result taking all the constraints into picture.

The first part of the thesis discusses about intelligent charging scheduling prob-

lem for an Electric Vehicle (EV) aggregator considering vehicle-to-grid (V2G) and

grid-to-vehicle (G2V) capabilities with an objective to minimize the total charging

cost.Here,the aggregator is an entity through which we are trying to reduce the cost

as an objective function. With the uncertanities dwindling with the price of electricity

price at the charging nod,the Information Gap Decision Theory (IGDT) is used to han-

dle uncertainties in the price. The original intelligent charging scheduling problem is

non-linear. We proposes a modified Mixed Integer Linear Programming (MILP) based

reformulation and solves with CPLEX using GAMS as an aggregators studying the im-

pact of priority and intelligent charging of PEV.An example also simplifies the need of

the literature survey as discussed in chapter 2.

The second part of the thesis also deals with another optimisation problem.Here, A

stochastic resource investment planning model for Microgrid was used to get the objec-

tive function achieved. This part considers that the microgrid in study has a local load,

renewable generation, energy storage unit and a link to the main grid. Here,the micro-

grid is modeled as a price taker as it cannot influence the market prices.The operational

objectives is to minimize the cost of operations by scheduling the assests of the micro-

grid.he operational aspect of microgrids is modeled as a Linear program (LP). We then

continue to use this LP operational model and find an optimal investment strategy for

microgrid in a new stochastic LP model where the objective is to minimize the sum of

investment and expected operational cost. The assets considered for investment include

energy storage units. The proposed stochastic LP model is tested on a Microgrid test

system and simulated on GAMS.

Now using all the information and assumptions described in above chapters, we will

try to solve the optimization problem and determine the premium to be levied upon









demanded.

The methodology of solving the problem and different tools used for solving the

problem are discussed in this chapter.
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conjunction with proposed strategy.This will help to utilize the solution for commercial

parking station and commercial charging stations as well.

Effect of charging -discharging cycle on the health of Batteries can be taken into ac-

count, as in real world, health and life estimation of battery are also important to ascer-

tain profitability of EVs and estimate the lost opportunity cost.
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