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ABSTRACT

KEYWORDS: Grid-to-Vehicle (G2V), Intelligent charging, Plug-In Electric Ve-
hicle (PEV), Priority Charging, Priority Premium, Vehicle-to-Grid
(V2G)

Energy storage is the key to allow for integration of clean energy in power girds. We

study two forms of energy storage devices in this thesis.

In the first part we propose an intelligent charging scheduling problem for an Elec-
tric Vehicle (EV) aggregator considering vehicle-to-grid (V2G) and grid-to-vehicle (G2V)
capabilities with an objective to minimize the total charging cost. Since electricity price
at the charging node may be subject to uncertainties, Information Gap Decision The-
ory (IGDT) is proposed in this paper to handle uncertainties in the price. The original
intelligent charging scheduling problem is non-linear. We proposes a modified Mixed
Integer Linear Programming (MILP) based reformulation and solves with CPLEX us-

ing GAMS as an aggregator.

In the second part we propose a stochastic resource investment planning model for
Microgrids. The paper considers that the microgrid in study has a local load, renewable
generation, energy storage unit and a link to the main grid. The microgrids cannot
influence the market prices and is modeled as a price taker. The operational objectives
of the microgrid is to schedule its assests in order to serve the load in such a way so
as to minimize the cost of operation. The operational aspect of microgrids is modeled
as a Linear program (LP). We then continue to use this LP operational model and find
an optimal investment strategy for microgrid in a new stochastic LP model where the
objective is to minimize the sum of investment and expected operational cost. The
assets considered for investment include energy storage units. The proposed stochastic

LP model is tested on a Microgrid test system and simulated on GAMS.
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CHAPTER 1

INTRODUCTION

Energy Storage is meant by the method of changing the electrical energy that is derived
from an electrical power grid network into a stored configuration that can be reverted
back into required electrical energy when required. The first works on this can be seen
of the storage devices of the 20th century, where electrical stations were shut down,
with lead-acid storage devices that supplied to the residual loads on the direct current
networks.The unpredictable nature of load profiles of renewable energy and constant
pressure of the green house gases has led to change in the production and distribution
of electrical energy. Thus,the evolution of energy storage devices has the potential
to reduce these pressures in today’s energy scenario. The Energy Storage will be an
integral part of ever changing demand scenario, thus the mere increase in the supply
of renewable energy by allowing renewable energy to be delivered during peak times
when it is most required and deliver stored energy when the renewable energy is not

efficient will lead to restoration of the demand-supply chain.

The upward swing in production and supply of increasing amount of renewable
energy into transmission and distribution grids and the rapid increase in the rooftop
solar photo-voltaic installations in households gives a picture of how the energy storage
devices are helping in un-tapping of a new market in renewable energy and enabling
new opportunity.This trend is expected to overflow into the electricity transmission and
distribution arena in the form of Grid-Scale Battery Storage; in the pursuit of greater
flexibility, control and utilization of electrical power. The introduction and application
of cost effective grid-scale battery storage will be a game-changer for the distribution

and control of electrical energy[1].

In general there are two main categories of The energy storage devices can be
broadly classified into 2 categories. The electrical energy storage devices such as batter-
ies, Superconducting Magnetic Energy Storage (SMES) and capacitors can be counted
in the first category,where as the non-electrical energy storage devices that convert other

energy forms such as thermal and kinetic energy into electrical energy such as fly-



wheels, pumped air and pumped hydro storage systems can be counted in the second

category|[2].

Utilities still face a lot of technical glitches,despite numerous development work
in the field of renewable energy generation,with the key being intermittent supply of
energy. The introduction of energy storage devices and their usage will provide more

value to renewable energy and power system operators.

Key concept requirements are as follows:
a) To check and prove that efficacy of all storage devices in meeting grid standards in
terms of reliability,safety and quality.
b) To prove that grid support can me met when required with increased focus on energy
storage devices.
c¢) To have sense of profitability in theCommercial sense to deploy energy storage de-
vices, drivers, applications and challenges
d) Framing of the regulatory body to give the rights of owner, operator and maintainer

along with various storage devices and tariff structures.

A brief brief classification of energy storage systems is as follows:
1.Electrical Energy Storage : (i) Use of Electrostatic nature (Capacitors, Supercapac-
itors); (i1) Use of Magnetic/Current energy (SMES).
2.Mechanical Energy Storage : (i) Use of Kinetic energy (Flywheels); (ii) Use of Po-
tential energy (PHES).
3.Electrochemical Energy Storage: (i) Use of Electrochemical energy (conventional
batteries such as Lead-acid, Nickel Metal hydride, Lithium ion and flow-cell batter-
ies like Vanadium Redox and Zinc Bromine); (ii) Use of Chemical energy (Fuel cells,
Molten-Carbonate fuel cells (MCFCs) and Metal-Air batteries).
4. Thermal Energy Storage : (i) Use of Low temperature energy (Aquiferous cold stor-
age, Cryogenic storage); (i1) High temperature storage (Sensible heat systems like Hot
water Accumulators, Graphite, Hot Rocks and Latent heat systems like Phase change

materials).

The figure 1.1gives the basic classification in a nut shell indicating various groups

and their categories.



Energy Storage Technologies
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Figure 1.2: Application of Energy Storage Technologies




1.1 Energy Storage System Comparison

A comparison between the various Energy Storage devices and technologies is shown in
the table where the grouping has been categorised in terms of Energy Efficiency,Power
Density,Energy Density,Energy Installation Cost,Life Time (cycles),Deployment Time

and Applications is enumerated in the table above as per fig 1.2.

1.2 Range of requirement of storage devices

Over the last two decades,with an increase in the variety of drive types, along with the
increasing volume of their application in various spheres, the problem arises of choos-
ing a particular type of storage device [3].

Broadly the whole range of requirements for storage devices can be divided into two
groups:

a) On the basis of using the storage device in a particular way.

b) on the basis of its energy characteristics.

Here, The requirements of the second group refer to the storage of any types and actu-
ally determine the expediency of using a particular drive in each specific case. First of
all, these are indicators such as efficiency of storage and efficiency of discharge.

When choosing a drive, these indicators are crucial since, because they affect the mag-
nitude of the overall effect of the application of the drive. The use of the drive becomes
ineffective if during the process of charging and storage some significant part of the
energy is lost due to the drive’s non-perfection (selfdischarge, friction), i.e. there is a

connection with the time of energy storage.

1.3 Electrochemical Energy Storage and their Energy
Density

Electrochemical batteries consists of mainly three constituentiAZs positive electrode
(cathode), negative electrode (anode), and electrolyte (solid/liquid). In batteries the
electrodes are immersed in electrolyte in which ions exchange during charging convert-

ing the electrical energy into chemical, and during discharging this chemical energy is

4



converted back into electrical with the help of moving ions.

Different types of electrochemical storage system are listed below:

1. Lead-Acid battery

2. Lithium-ion battery

3. Vanadium-Redox flow

4. Hydrogen Fuel cell

The voltage rating of these storage devices should not exceed more than 2V, hence num-
ber of modules are connected in series and parallel combinations to increase the rating.
Batteries have been using from earlier days, Lead-acid battery is invented in 1859,
Nickel AAScadmium in 1950s, SodiumSulphur is accepted in mid 1990s, Lithium-ion
is commonly used nowadays because of its high energy density, long life cycle values
and high power density which is applicable for large storage. Fig. 1.3 shows increase
in energy densities of various batteries. According to the variance in the characteris-
tics and battery working, they are used for different applications. Batteries having very
high response rate, and some particular batteries respond within 20 milliseconds for

load change.

Lithium lon
110—-140 Wh/kg
-,
e _]
b=t
w Nickel-Metal mdnde
o 50-75 Wh/kg
s 7
8- = Nickel-Cadmium
» 35-60 Wh/kg
Nickel-lron
— Lead-Acid 3040 thkg
4 2545 Wh'kg
1860 1910 1960 2010 -

Figure 1.3: Increase in the Energy Density of Batteries



CHAPTER 2

Motivation and Literature survey

In recent years,the Energy storage devices has an increasingly important role to play in
the electrical grid . This is because of the applications requiring quite a large amount of
power or voltage for a short period of time. Energy storage devices have the capability
of being used as independent power sources. To match the electricity supply to the load
demand ,the ability to store energy at off peak times then re-apply that energy to the
system when required without the need for further generation is highly desirable and is
being made possible through the energy storage devices. Recent state-of-the art surveys
[4, 5] have observed that commercially viable integration of energy storage assets in the

grid has been popular in form of:

. Electric Vehicles

2. Microgrids Storage Assets

Recently due to the reduction in costs associated with energy storage devices, these

distributed energy storage sources are being introduced in the grid.

2.0.1 Electric Vehicles

The increasing content of carbon dioxide in atmosphere have alarmed to reduce the pro-
duction and use of fossil fuels in order to check climate changes [6]. From the statistics
of the United States Environmental protection Agency(EPA), the transportation sector
alone contributes around 28% of the total U.S. greenhouse gas emissions by economic
sectors in 2016 [7]. With these trends of increasing uses of fossil fuels, many countries
across the globe have put forward their own national-level policies and plans [8] to cater
for carbon emissions. Now with advancement in technology and as an alternative to the
age-old fossil fuel based transport system, the electrification of the transport system
is a major breakthrough to control the carbon emission. The PEVSs, in particular, has

gained ground over last few years and the Indian government has an ambitious target



for achieving a fleet of seven million EVs [9] by year 2020. Thus, the above figures give
an appropriate view of the vast spreading of the new technology and its implementation

on a large scale.

The demand for Plug-in Electric Vehicles (PEVs) have increased drastically [10],
[11] as they can reduce CO2 emissions and because of their higher fuel economy.
Hence PHEVs have the potential to shift energy requirement from fossil fuels to elec-
tricity in personal transportation [12]. The atmospheric pollution can hence be reduced,
alleviating climatic threats caused by oil extraction and combustion. In addition to
that PHEVS/PEVs have the potential of exchanging power with the grid for reducing
peak power demand and to provide ancillary services [13]. PHEVs can be a distributed
source of energy for scheduled charging in networked Microgrids [14]. The PEV charg-
ing will be uncoordinated and this random charging will lead to increased load demand
during peak times. This may lead to failure of the grid, if suitable smart charging
techniques are not kept in place. Due to the LV distribution system, the PEVs can po-
tentially overload the distribution transformers and distribution lines during charging.
However, as a stationary PEV can act like a battery and with smart charging techniques,
can be used to store and provide electricity during peak demand hours, large-scale use
of PEVs can supplement grid power by the V2G operation. While smart charging tech-
niques can help in curbing peak loads due to PEV charging. The widespread popularity
of EVs with the advent of Tesla and Honda EVs, has given rise to a new player in the
retail electricity markets called as Aggregator. An aggregator is a player that provides
cheap charging services to the EVs in the region and tries to make profit due to the price
volatility. Such aggregators can also help in reducing the peak demand and employ the
intelligent charging scheduling techniques to achieve their profits while satisfying their

EV consumers.

With the advancement of time, recently the charging strategies, both G2V and V2G
is being used as per the requisite need of the user.However,different charging strate-
gies suggested in various literature’s shows reduction in impacts of PEVs on the given
power system|[15], [16].Even various charging strategies have been formulated that uses
either of the two G2V or V2G mode [17],[18] that studies the impact of PEVs and their
penetration levels in determining power losses and voltage security of the distribution
system under study. The biggest drawback of the above methodologies is that they use

either of the two methods as discussed. Later different models of charging strategies



using both V2G and G2V modes in a single window operation to optimize the load

scheduling over the given frame of time and resources.

Computational Intelligence Techniques in Electric Vehicles

Plug in Electric Vehicles are an integral part of the future smart grid [19]. Electric vehi-
cles (EV) are gaining popularity due to their low emission and low noise aspects [20].
The widespread penetration of EV will bring in extra burden on the electric grid. A
level 2 standard EV load [21], will be almost twenty times the load of a typical North
American home [22]. The impact of EVs will be even higher when there is an aggre-
gator involved and proper charging strategies should be developed for a smart grid with
high penetration of EVs. A lot of computational intelligence techniques have been im-
plemented to realized the proper charging and planning of charging stations in smart
grid. Deciding the charging station location is an important planning problem in smart
grid planning. GA was employed by authors in [23] to minimize the active and indi-
rect losses to find the optimal location and sizing of EV charging station. In practical
situations the site locations is effected by social, economic and environmental factors.
A multi-criteria decision making (MCDM) is generally employed for such problems.
Such a MCDM was solved with NSGA-II based techniques in [24] for optimal sizing
and siting of charging stations. The authors in [24] only considered two technical fac-
tors: active losses and total voltage deviation to study the siting and sizing of charging
stations. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is
a compensatory aggregation MCDM techniques which has been employed with fuzzy
techniques in [25]. [25] employed fuzzy system to consider some factors that cannot
be incorporated in the MCDM technique and to reflect the ambiguity and vagueness,
a fuzzy TOPSIS method was employed to select the optimal charging station site from
all the alternatives. Five different criterion were studied which included aspects based
on environment, economy, society, electric power system and transportation system. In
a completely different school of thoughts [26] employed GA to minimize the number
of trips lost by EV drivers, thus increasing the electric miles traveled by vehicles by
optimally siting the public charging stations. The paper concluded that level 1 charging
stations, with their small budget could cover the entire road network optimally to reduce

the number of trips being lost on pubic charging stations. [27] proposed a cost benefit



analysis using a modified DE algorithm for proper sizing and siting of the EV charging
stations to reduce the distribution system reinforcement cost. The Life cycle cost was
considered for the cost-benefit analysis, and it was seen that for a distribution system:
public battery swapping stations were better than charging stations. Focusing only on
the design aspect of EVs, [28] proposed a neural network based energy management
system for hybrid EVs. The work shows a 28.7% efficiency improvement in terms of
km/kWh with proposed neural networks and no regenerative energy source. In the op-
erational aspect of EV charging stations, the charging strategy is an important aspect.
The authors in [29] proposed two smart charging strategies with objectives to minimize
the total daily cost and peak-to-average ratio. Both the proposed charging strategies

were implemented using GA.

2.0.2 Distribution System Networks

With the introduction of technologies like EVs, DSM, Distributed energy resources, etc,
the distribution system network is bound to be under stress and proper reinforcements
and planning is needed. A multi-stage distribution system planning problem was ad-
dressed in [30] with the objective to minimize the total investment and operation cost.
Considering the operational aspect of the Distribution network [31], implemented PSO
to minimize the active losses by optimal sizing and siting the Distributed generators
in the network. [32] is one of the very few studies that include reliability index maxi-
mization as an objective, in the multi-objective optimization framework of distribution
system with fixed load. Some of the works in multi-objective optimization consider
the fitness function as a linear combination of various objectives [30]. [32] is one of
the works that does an accurate simultaneous multi-objective optimization in the distri-
bution system to obtain a non-dominant solution set. Studies [30], [32] cannot handle
the uncertainty in future loads. Some studies have used fuzzy variables to represent
an uncertain load level [33]. To overcome these limitations, [34] in 2004 proposed a
possibilistic model based on fuzzy theory to solve a multi-objective distribution sys-
tem planning problem to determine optimal location and size of future feeders. Power
demand was modeled as a fuzzy variable to account for uncertainty and the problem
was solved by Tabu search method. Continuing the representation of uncertain load

with fuzzy numbers, in 2011 [35] proposed a fuzzy tool to evaluate the effect of DG



operation and investment by DG owners on active losses and load delivery. The fuzzy
trapezoidal number represents the uncertain parameters like load, DG installation, and
operation. [36] used Monte-Carlo simulation model to analyze the effect of uncertain
parameters in solving a multi-objective DG planning problem in 2011. The various
uncertainties included wind source risk, market price change, and load uncertainty. A
Weibull PDF was used to model the wind turbine generation, and a normal distribution
PDF was used to model the uncertainty in load and the uncertainty in market price. The
same authors in [37] proposed a hybrid possibilistic-probabilistic method for evaluat-
ing the effect of uncertainties on the active power losses. The wind turbine generation
was modeled as a Weibull PDF, while a membership function modeled DG generation
pattern and load. The aforementioned work was extended in 2012, and [38] proposed a
hybrid possibilistic-probabilistic method for evaluating the effect of uncertainties due to
investment model of DG owners and operation of renewable energy sources. This paper
considered the investment pattern of generation owners into account for the assessment
of distribution network. The installed capacity of each DG unit was modeled as a fuzzy
number. The authors in [39] proposed a fuzzy based multi-agent system for distributed
energy management in smart grids. This paper proposed an adaptive fuzzy system
designed to impart a decision making capability in agents when there is uncertainty in-
volved with renewable sources and load. The model was tested on Hybrid renewable
energy system (HRES) which had two solar panels, one energy storage unit, one diesel
generator, DC/AC loads and one wind turbine. [40] proposed bio-inspired algorithms:
GA, PSO, Artificial immune system (AIS) algorithm and VAccine-AIS algorithm for
optimizing the operation of a distribution network by simultaneous dispatching and
network reconfiguration. The results showed that simultaneous reconfiguration and dis-

patching of resources could lead to lower operating cost of distribution system.

2.0.3 Microgrids

Modern power systems are moving towards decentralized generation and has led to
widespread developments of Smart Grids. US Department of Energy [41], defines smart
grid as a consumer friendly, hack proof, self-healing, attack resistant grid with energy
storage and renewable energy source integration options. Literature surveys [4, 5] show

that microgrids are an integral part for realizing the futuristic Smart Grids. Various
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microgrids studies have considered presence of local load, local generation, energy

storage and renewable energy sources [42, 43].

Microgrid (MG) can be ascertained as a single controlled unit in a power system
scenario that can be operated as a single aggregated load. The unit can be described
to be made up of generators, energy storage, load controller and power electronic in-
terfaces like inverters. The Microgrid has two critical components a static switch and
micro source, which consists of generator, storage and an inverter [44]. Automatic trip-
ping of the interconnected generators of a power system are laid down as per the IEEE
1547 standard. However a MG islands itself whenever an IEEE 1547 power quality
event occur. After the tripping event is removed the MG reconnects itself to the power

system. Fig. 2.1 shows the layout of a typical microgrid.
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O 0

POINT OF COMMON COUPLING CIRCUIT BREAKER

Figure 2.1: Layout of typical Microgrid

As mentioned before, lucrative from a technical point-of-view due to fast ramp-up
and ramp-down rates; the energy storage investments have suffered due to their high
costs until now. However, the investors who procure and utilize the energy storage
devices: both in form of Electric Vehicles and local storage assets in Microgrids, have
to manage the operation with arbitrage to cut down on operation cost associated and

make more economic sense in the investment.
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2.0.4 Literature Survey

This shall be the focus of our thesis, where we discuss smart arbitrage tools for Electric
vehicle aggregator and arbitrage influenced storage sizing in Microgrids. We look at

two important questions:

1. Risk Constrained operation of an PHEV aggregator to maximize its profits

2. Arbitrage influenced investment decisions for Microgrid owners

Uncertainty handling for Electric Vehicle aggregatorusing IGDT

PEVs do suffer from a lot of uncertainties, in terms of energy consumption rates and
emission rates, as these are specific to vehicle technologies, uncertainties in cost, dif-
ferent driving patterns, and charging behaviour.The price uncertainties are catered in
[45][46].Monte Carlo technique for handling various uncertainties[47] is used for get-
ting the optimal solution. However, to implement the Monte Carlo technique for han-
dling the price uncertainties will require prerequisite Probability Distribution Function
(PDF), which is commonly estimated from the historical data of the uncertain prices that
evolves with the dynamic market. It is always not feasible to obtain the historical data
at all the distribution nodes where the aggregator installs the charging facility. Monte
Carlo simulation is therefore not a feasible technique for such aggregators. Survey
paper [5] suggests Information-Gap Decision Theory(IGDT) as a possible uncertainty

handling technique for uncertain parameters with unknown PDFs.

Stochastic resource investment for Microgrids

One of the major challenges in widespread developments of microgrids has been its
high investment costs [43]. This is evident from [43] which mentions that there is a
plethora of studies on microgrid operations, but little works has focused on extending
it to a resource planning problem. [43] presents a bender’s decomposition approach to
microgird investment planning problem. Rahbar et. al in [42, 48, 49, 50] provide a
very complete and robust operational model for microgrids operartion in presence of

renewable energy sources and energy storage assets.

Literature is filled with wide variety of optimization techniques that have been pro-
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posed to solve the microgrid optimization and planning problems. Authors in [4, 5] re-
view and observe that majority of optimization problems for microgrids can be widely

classified into two categories:

1. Classical Optimization techniques [43, 51, 52,42, 48, 49, 50]
2. Meta heuristic techniques [53, 54, 55, 56, 57, 58, 59, 60]

Meta-heursitc methods are more suitable for non-convex and NP hard problems
[61]. Authors in [62] point out the suitability of classical solution techniques over
meta-heursistc techniques for planning problems that can be convexified. Due to this,
we put our efforts to linearize the non-linear operational problem for microgrids and

solve the resource investment problem with a classical optimization solver

2.1 Thesis Structure

The rest of the thesis is developed in the following order:

Chapter 3: Uncertanty handling for EV aggregator
Chapter 4: Stochastic Microgrid Investment planning
Chapter 5: Solution Methodology

Chapter 6: Conclusion and Future scope.
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CHAPTER 3

UNCERTANITY HANDLING FOR ELECTRIC
VEHICLE AGGREGATOR USING IGDT

The commonly known Electric Vehicles,Plug-in hybrid electric vehicles (PHEVs) have
the potential to curb the emission as compared to the fossil fuel and comes at a more
cheaper price,thus resulting in reduction of the cost of transportation [63]. The other
unique advantage in favour of the PHEVs is their capability to integrate the onboard
energy storage units with the power grid which can improve the efficiency and increase
the reliability of the power grid. The demand for Plug-in Electric Vehicles (PEVs) have
increased drastically [10], [11] as they can reduce CO2 emissions and because of their
higher fuel economy. Hence PHEVs have the potential to shift energy requirement from

fossil fuels to electricity in personal transportation [12].

3.1 Problem Definition

Here,we are trying to find the solution to a three-fold problem:

e a) Intelligent charging scheduling technique aimed at minimizing the total charg-
ing cost for electric vehicle aggregator with both V2G and G2V power flows.

e b) Using IGDT for the handling the price uncertainties in the charging scheduling
problem.

e ¢) Reformulation of a non-linear problem into Mixed Integer Linear Problem for
optimal solution

This chapter is organized with the following sections: Intelligent Charging Sched-
ule,IGDT,Disjunctive Inequalities,Problem Formulation,Test System, Simulation Re-

sult and finally the Conclusion is covered in the end section.
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Figure 3.1: Schematic of charging process

3.2 Intelligent Charging Schedule (ICS)

The dynamic pricing in the electricity grids will encourage the aggregator to charge
(G2V) the available PEVs at low tariff slots and discharge (V2G) the available PEVs at
high tariff slots. It is well studied that this type of intelligent charging can lead to lower

cost of charging by optimal scheduling the PEV charging [64].

As shown in Figure 3.1, assume that there are two identical PEVs which are to be
charged in a parking station. The time of arrival, the time for which they remain parked
in the charging station and the battery energy on arrival is considered different for both.
Considering Time-of-Use (ToU) pricing to analyze the impacts of unscheduled PEV

charging on the aggregator is analyzed.
Two PEVs are named as PEV1 & PEV2. Two scenarios are considered:

1. First Scenario: PEV charges without scheduling (no V2G).

2. Second Scenario: PEV charges with the V2G and G2V operation

15



3.2.1 First Scenario

Suppose the PEV1 arrives at T1 with 60% of battery energy remaining and stays in
the parking slot till T2 & PEV2 arrives at T1 with 40% of battery energy remaining
and stays till T2. Charging rate is 10% of Battery energy /Time slot. The prices of
electricity are [T1: 100, T2:10]. In scenario 1, the vehicles start charging immediately
after arrival. Hence by the end of T2, PEV1 is at 80% charge and PEV2 is at 60%

charge.

Table 3.1: Battery energy change of PEV1

Time Slot || Operation || Battery status || cost
T1 G2V 60% to 70% || 100
T2 G2v 70% to 80% 10

Table 3.2: Battery energy change of PEV2

Time Slot || Operation || Battery status || cost
T1 G2V 40% to 50% | 100
T2 G2v 50% to 60% 10

Cost for charging PEV1=110 & for PEV2=110, so Total cost =220.

3.2.2 Second Scenario

In this scenario all conditions are same as the first scenario except the V2G operation
takes place when the 50% battery energy status is achieved. So at the end of time slot

T2, PEV1 & PEV2 both are charged to 60%.

Table 3.3: Battery energy change of PEV1

Time Slot || Operation || Battery status || cost
T1 V2G 60% to 50% || -100
T2 G2V 50% to 60% 10

Table 3.4: Battery energy change of PEV2

Time Slot || Operation || Battery status || cost
T1 G2V 40% to 50% || 100
T2 G2V 50% to 60% 10

16

Cost for charging PEV1=-90 & for PEV2=110, so Total cost =20.




As compared to the first scenario it can be observed that there is a significant re-
duction in charging cost without compromising the optimal charge level of PEVs and

PEV1 makes a profit on its schedule.

3.3 Information Gap Decision Theory (IGDT)

The information gap decision theory (IGDT) can be effectively used for considering un-
certainties, especially if sufficient statistics is not obtained from the uncertainties input
parameters [65]. IGDT is effective and it is robust even in the presence of prediction

errors. IGDT can be successfully applied to various applications such as:

1. Power purchases in distribution networks
2. scheduling of GenCos considering Risk-constrains

3. Calculating Optimal bidding strategy for generating station

An IGDT based model [66] is effectively used for incorporating variability in wind
power generation, load pattern changes and in heating loads. IGDT framework can be

mathematically formulated as follows:

ming f(x, 1) (3.1

Hi(z,9) <0,ieT (3.2)

Where,
I'=represents all constraints.
1 = Set of all uncertain parameters.

For present paper formulation for energy management based on IGDT is done as

below

~

maz,l 3.3)
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Hi(w,$) <0,i €T (3.4)

I = max,(f(z,0)) — Ae <0 (3.5)

YeUW,l)={y: |—|} <l (3.6)

Where,
A. = Objective function’s critical value for a given value of X
1) = Forecasted value of 1.

1 = Unknown radius of uncertainty

IGDT re-optimizes a problem in such a way that the objective function can suffer a
deterioration but does not touch or cross the limit A, while optimizer tries to maximize
the extend to which the uncertainty can occur given by [ . In some of the literature it
can be reformulated as maximization over [ when [ is under a limiting constraint [65].
This paper follows the reformulated version of IGDT as described in [65] section C

(Robustness of IGDT).

3.4 Disjunctive Inequalities

This section gives a brief idea on the linearization technique used to linearize the bilin-
iear terms in the optimization formulation. Disjunctive inequalities are used to represent
a feasible region when the region is separated into islands. In such cases it is possible to
write the feasible region in sets of equality and inequalities joined with an OR symbol
(logical OR). A Disjunctive inequality representation of z.y = 0 when y is a binary
variable would be {z = 0,y = 0} V {y = 1,2 € R"}. This disjunctive inequality has
an equivalent representation: 0 < z < M.(1 —y) A0 < x < M.(y) where M is a big
positive constant. This is popularly known as big-M reformulation. It is possible to re-
formulate a variety of disjunctive inequalities by introducing a new or using an existing

binary variable.
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3.5 Problem Formulation

This section discusses a general intelligent charging problem formulation from EV ag-

gregator’s perspective.

T N
: U i :
min. Y Y (= — Uy i) Pyom(i) (3.7)
i=1 j=1
subject to:
Ug vi 24 o
ﬂ — 1. UV _Glij S Pmax €Ty VZ,j (38)
Ny T
N U s
Z( GVij _ n;.Uy_qij) < maxload Vi (3.9
=1
BE;; = BE; 1+ Ug_vij — Uv_cij Vi, ] (3.10)
BEjop < BE; j < BEjpaz Vi, j (3.11)
Ug_Vij X UV_Gij =0 VZ,] (3.12)
UG_ViijV_GiijE > 0V ] (313)

where 7 is the index for PEVs, ¢ is the index for time intervals, T represents total time

intervals, N is the aggregation of all PEVs, (—UG Vij

n;.-Uv_cij) is the sum of energy
bought from grid during the given interval of time ¢ for jth PEV. Ug v;; is the energy
transferred from grid to jth PEV in ith time slot. 7;.Uy ¢;; is the energy transferred
from jth PEV in ith time interval, 7); is the battery efficiency for car j, 7; is the electricity
cost at time interval ¢, P;; represents the element of a presence matrix and is 1 when
the EV is present at the charging station, BF;; is the energy stored in battery for jth
EV at ith time interval, P,,,, is the maximum power rating for each charging station,
BEj,,4. 1s the maximum capacity of energy stored in the battery for PEV j, BEj, is
the minimum energy level that should be maintained in battery of j * PEV at all times,
cr; is a constant factor representing charging rate as fraction of power it can charge,
of the peak power rating of charging station and maxload is the maximum load which
can be connected to grid from parking station. (2) and (3) are charging rate constraints
on PEV and charging station respectively, (4) links battery energy levels with temporal

energy flows, (5) gives the upper and lower limit for battery energy levels, and (6) is to
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ensure that charging and discharging does not happen simultaneously for any PEV at
the same time interval. The objective (1) minimizes the aggregate cost of charging and

discharging energy for the study duration.

The formulation explained above is non-linear due to (6). The non-linear problem
can be linearized using binary variables using disjunctive inequalities as explained be-

low: (6) can be replaced by:

0< Ug yi; < M.(1—by).Py (3.14)

0 < Uy gij < M.(b;;).Py (3.15)

where, M 1is a big positive constant, b;; is a binary variable.

The above MILP formulation does not consider any uncertainty in the nodal price
for the aggregator. To accommodate the uncertainty in price, Information Gap Deci-
sion Theory is proposed here. The aggregator optimization problem is reformulated to

account for the price uncertainty in an interval as follows:

mazx. o (3.16)
subject to:
TN o
. G_Vij .
obj = Z Z (% —1;.Uv _gij).Pij.(7(1) £ a) (3.17)
i=1 j=1 J
Uc_vij o
TP, =( P n;-Uv_cij)Vi, j (3.18)
j
obj < objy, + (.0bjy) (3.19)
Ug vij 24 -
SVI Uy i < Poaa- —=-cr; Vi, j (3.20)
) T
N U s
Z (ﬂ —1;.Uy_qij) < mazload Vi (3.21)
=1
BE;;=BE; 1+ Uqg_vij — Uy _gij Vi, j (3.22)
BEjopt < BE; j < BEj42 Vi, ] (3.23)
0 < Ug vij < M.(1—by;).P; Vi, j (3.24)
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0 < Uy gij < M.(bi).Py Vi, j (3.25)

Ucvij, Uv_qij, BE; j; > 0V, j (3.26)

where, « is the degree of uncertainty in price parameter, obj, is the optimized cost
obtained from the base optimization problem discussed in (1) without any uncertainty
(on average forecasted prices), and [ is the budget of uncertainty or the maximum
percentage allowed deviation from the obj,. We see that equation (11) again makes the

problem nonlinear. We can linearize (11) as follows:

o= Z&S.K (3.27)
seS
T N
obj =Y > (TP;).Py.(n(i)) £ (O K.z15..Py) (3.28)
i=1 j=1 seS
—M.os < 2255 < M.y (3.29)
TP — M.(1—a,) < 2z, < TP; + M.(1 — ay) (3.30)

where a; is the binary variable used to discretize the variable o into S segments
with index s. =+ sign is used to denote that the uncertainty in price will be added when
the aggregator is drawing overall power from the grid in the base case and vice versa to

get the worst case scenario. K is the step size of discretization of variable a.

3.6 System Data

In this paper an aggregator with 5 EVs is considered. The presence of different EVs

due to their driving pattern is known and shown in Presence matrix here:
The average forecasted electricity prices at the aggregator node is given as follows:

The upper and lower limits of battery energy levels is set to 13.5 Kw and 6 Kw

respectively.
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Table 3.5: Presence Matrix

Time slots || N1 || N2 || N3 || N4 || N5
1 1 1 1 1 1
2 1 1 1 1 1
3 0 1 1 1 0
4 0 0 1 1 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 0
8 1 0 1 0 1

Table 3.6: Electricity Prices in Dynamic Day-Ahead Market

Time Slot || Price (Euros/kWh)
1 0.03667
0.03746
0.05695
0.05736
0.04758
0.04834
0.05494
0.03908

0| | NN W

3.7 Results and Observations

Table 3.7: Aggregator profit (Yearly)

Test Profit per year (Euros)
IGDT 50.74
Base Case 93.805

The figures show the V2G and G2V charging schedules for each EV in the aggre-
gator parking station throughout the day. The spider diagrams (figure 5,6) show the

battery energy levels of each EV throughout the day.

Table 3.7 shows the profit that the aggregator would make in a year (estimated with
a projection) in case of IGDT based uncertainty handling vs the absolute forecast based
intelligent charging. It can be seen that the IGDT based uncertainty handling causes the
profit to be considerably lower but this case has accounted for the uncertainties in the
prices throughout the day. This shows that with the IGDT based charging scheduling
the profit per year would be atleast 50.74euros or more with for certain interval of
uncertainty which is represented by « in the formulation. There is a cost associated

with the price fluctuations and a price associated for the value of true prices in future.

22



2000 -

7.000

5.000

5.000 ~

i
s
=

Uy 6 in kWh

1
8
a

2.000 +

1.000 -

0.000 -

8.000

F.000

6.000 -

:

=
=
a

Ug v in kWh

o
2
a

2.000

1.000

0.000 -

11

T2 13 T4 15 Th T7

Time Slot

Figure 3.2: V2G Schedules for all PHEVs- Base Case

T8

T2 T3 T4 Ta TG T

Time Slot

Figure 3.3: G2V Schedules for all PHEVs- Base Case

23

N1
H N2
W N3
H N4
B N5

N1
N2
WN3
m N4
m N5



Uy, gin kWh

2.500

2.000
1500
ENL
N2
mN3
L g
m N5
0.500 -
0.000
T1 T2 T3 T4 TS T6 T7 T8
Time Slot
Figure 3.4: V2G Schedules for all PHEVs- IGDT
T = .
——nN1
—-—N2
0 S e N3
Pl
N5
T6 . i . My

15
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Figure 3.6: Battery Energy Levels- IGDT

The cost associated with price fluctuations is the difference between the IGDT objective
value and Base case objective value with average prices. The cost associated with true
prices in future is the difference between the objective values of the function when true
future prices are known and the objective value of the IGDT schedule with true prices.
In case the price fluctuations vary in a small interval, these differences would be very
low. In such scenarios an average forecast is enough to solve the problem. In cases
when the price fluctuations can vary in a large interval, it becomes necessary to handle

this uncertainty with IGDT.
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CHAPTER 4

STOCHASTIC RESOURCE INVESTMENT FOR
MICROGRID

In the scenario of today,the implementation of microgrid systems have many advan-
tages both from the user and from the electric utility point of view.If we see from the
user view, microgrid is connected to the grid, it can improve network quality, reduce
emissions and can reduce the cost to be incurred by the user. whereas.the utility sees
it as an opportunity where implementation of distributed generation systems with the
ability microgrid can reduce the power flow on transmission and distribution lines, so
as to reduce losses and reduce costs for additional power. Moreover microgrid can also
reduce the load on the network by eliminating the impasse in meeting electricity needs

and help repair network in case of errors[67].

4.1 Problem Definition

The main contributions of this chapter can be enumerated as follow:

e 2) Recast the non-linear non-convex operational problem into a Linear program
P P prog

b) Generalize the linear program for all possible parametric inputs

c¢) Extend the operational problem into a resource investment problem

d) Show the superiority of stochastic modelling over average forecast modelling.

The rest of the sections are covered as:Microgrid Architecture,Problem Formula-
tion,Test system, Results and Discussions and finally Conclusion with future scope

covered at the end in a separate section.

4.2 Microgird Architecture

The microgrid architecture is shown in the Fig 4.1. There exists solar and wind units

as a local source of generation. The local load in microgrid has to be met always. The



MAIN GRID

Figure 4.1: Microgrids Architecture

microgrid can decide to purchase power from the Main grid in order to satisfy load
balance at all time intervals. However, in out microgrid architecture we do not allow
the microgrids to sell power to the main grid. This assumption in in line with Rahbar
et al [42]. We also see that there is an option for the microgrid owner to invest in a
storage asset. This storage asset can be utilized to play an arbitrage at operational level

to minimize the total cost of operation.

The microgrid owner in this paper shall solve an optimization problem for optimal
sizing of energy storgae assets in order to minimize the total sum of investment and

expected operation costs.

4.3 Problem Formulation

In this section we first formulate the operational model for microgrids and then extend

it to a resource investment planning model.
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4.3.1 Operational Level Dispatch Problem

In this subsection we shall discuss and concretely formulate the operational model of

the microgrid.

g I i)
Subject to :

s =8 1Z(t > 1)+ SpZ(t = 1) + nect — % VteT (4.1b)
S<a <8, VteT (4.1c)
B =8 (4.1d)
G+ R +di=ci+ L, VteT (4.1e)
dicy =0, Vt €T (4.17)
0<d, <D, VteT (4.1g)
0<e <D VteT (4.1h)
0< <G, YteT (4.11)

We note that the above set of equations (4.1) representing the operations level dispatch
problem is non-linear and non-convex due to (4.1f). However, we can drop this non-
linear equation without affecting the final solution. This is proved in Lemma 1. The

optimal solution to (4.1) does not change by dropping the constraint (4.1f)

4.3.2 Proof of Lemma 1

To begin let us assume that the optimization problem ((4.1)\(4.1f)) represent a new op-
timization problem with described by set of equations (4.1a)-(4.1e) and (4.1g)-(4.11).
We have to show that ((4.1)\(4.1f)) and (4.1) have the same solution. Let the search
space of ((4.1)\(4.1f)) and (4.1) be represented by €241\ (4.15)) and {241y respectively.
It is easy to see that ((.1)\(1.17)) 2 a.1)- This is due to the fact that imposing ex-
tra constraints shall restrict the search space. Therefore, an optimal solution to (4.1),
(4.1)* € Qy1), shall imply (4.1)* € Q1 (a15))- Let us assume that the optimal so-
lution for Qa1 a1s). ((4.1) \ (4.1f))* # (4.1)*. This discussion shall imply that,
objective{((4.1)\ (4.11))*} < objective{(4.1)*} and ((4.1)\ (4.1f))* & Q(4.1) Occurs
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at a point that violates (4.1f). This shall imply that at ((4.1) \ (4.1f))"{ I3t € T 3
e (@an@1) > 0 A dyaan@apy >0 = {3t €T 3 sy anuany < st}
This argument is due to the fact that 0 < p.,etay < 1 and (4.1b). This argument
shows that the SoC level of (4.1)* has been translated to a lower value than SoC level of
(AD\(41)))" eI €T, s, (a1)\@1n) < St 41)-VE € T't; > t. To enhance the
last argument we assume that if there exists a t; € 7" where the SoC levels in both prob-
lems were to come back to equal levels, then due to (4.1b), ((4.1)\ (4.1f))* would have
to charge more than ((4.1)*. This means at some 3t; >t 3 ¢, ((4.1)\(4.1/))* > Ch,((4.1)-
Due to load balance (4.1e), this would imply J¢; > ¢ 3 g, (wap i)y > Ge((41)%
which shall increase the cost of objective{((4.1) \ (4.1f))*} and would not be an opti-

mal strategy.

The above argument ensures that 3 € T', 3 s, (@1 < Sty a0V € T >
t. Lower limit of s; and g; is imposed in both optimization problems due to (4.1¢) and
(4.11). To maintain the load balance (4.1e) the energy storage unit shall discharge or im-
port from main grid (d; > OVg, > 0)Vi € T 3 R, < L,. Wehavenotedthat37 € 7T >
St (N1 < Sta1)-. If forsome ¢; € T' 3 t; > t in the bounded sequence of ele-
mentsin 7', R, < L, ; this shall invoke (d;, > 0V g,, > 0) for both the problems. It can
be observed that 35 > 0 3 dy, ((4.1)\(1.1/))->0 shall be infeasible due to lower bounds on
SoC levels (4.1c) and charge balance (4.1b). This shall imply that at such #,, solutions
((4.1)\ (4.1f))" and ((4.1)* shall have different strategies: d;, (41« > 0A gy, 2.1y = 0,
while di, (1)1 = 0 A Giy (e @1p))+ > 0. This shall lead to objective{((4.1) \
(4.11))"} > objective{(4.1)*} from (4.1a), which contradicts our assumption. Hence
our assumption objective{((4.1) \ (4.1f))*} < objective{(4.1)*} can never be true
and it implies objective{((4.1) \ (4.1f))*} > objective{(4.1)*}. Since Q1015 2
()(4.1). this ensures that equality holds objective{((4.1)\(4.1f))"} = objective{(4.1)"}.

Hence, the optimal solution to (4.1) does not change by dropping the constraint (4.1f)
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Due to Lemma 1, we can rewrite a new operational dispatch problem as:

i D 2
Subject to :

8¢ = 81 T(t > 1) + SeZ(t = 1) + nece — ;i; VteT (4.2b)
S<8<8 VteT (4.2c)
S| =S (4.2d)
G+ Bodde=t+ Li; MET (4.2¢)
0<d, <D VteT (4.2f)
0<e <D, VteT (4.2¢)
i€ <E Vel (4.2h)

We note that problem (4.2) can be further relaxed to an easier LP by relaxing equality
(4.2e) shall not alter the solution and make the problem feasible for wider range of
R, L. Relaxing (4.2¢) from (4.2) shall make the problem general for all ranges of
Ry, Ly.

4.3.3 Proof of Lemma 2

Let us create a scenario where (4.2) shall be infeasible and we will need to relax (4.2e).
Letdt > L; = 0,R; > D. We note that at such a ¢, load balance (4.2¢) cannot be
satisfied in any way and problem is infeasible. This enforces us to relax (4.2e) to an
inequality for a general case of load and renewable energy generation. Thus relaxing

(4.2e) to an inequality shall make the problem general for all ranges of R;, L,.

Lemma 2 also makes the problem well defined by allowing the uncertain data

Ry, Ly € Ly as mentioned in [68]. The general dispatch can be written as:

Minimize Fiq 4.3a
[ PR Iezl K ( )
Subject to :
d
$e =8 1Z(t > 1)+ SoZ(t = 1) + necy — ?’ VteT (4.3b)
d
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Svs L8 Vel (4.3c)

Seer| > S (4.3d)
ge+ Redde Bt L M ET (4.3¢)
0L €D YEeET (4.30)
I€a<D Vel (4.3g)
0< <G, WeT (4.3h)

(4.3) and (4.2) are equivalent.

4.3.4 Proof of Lemma 3

Let us assume that (4.3) and (4.2) are not equivalent. The only difference between the
two problems is inequality (4.3e) and (4.2e). Let us assume that at optimality of prob-
lem (4.3), strict inequality of (4.3e) is maintained at some time instant £. In such a case
the microgrid shall have to discard some of the renewable generation available. Where
as at the same time instant ¢, equality of (4.2e) ensures that the available energy is stored
in energy storage assets. This shows that at this time instant ¢, SoC level of microgrid
under (4.3e) is higher than the microgrid under (4.2e) strategy. From arguments in
Appendix 4.3.3, we can see that the strict inequality has made (4.3) suboptimal. There-
fore, our assumption is wrong and through proof by contradiction: (4.3) and (4.2) are

equivalent.

4.3.5 Resource Investment Problem

In this subsection we shall extend the operational dispatch problem to a resource in-
vestment problem where the investment in energy storage assets can be decided. The

resource investment planning problem has an abuse of notation to allow for various



scenarios of operational level problem.

Minimize {1,D+SIL.+ > p:Fi .0} (4.4a)
ge,= i 2,002 50,2.D.8 " .
Subject to :
Stz = St—1L(t > 1)+ SeZ(t = 1) + necy, — %
VteT,ze Z (4.4b)
§$<s.<8 VieT,ze€Z (4 4c)
Bl 28, Y2 €2 (4.4d)
Gizt Rt izt Lio, VEET,2€ 2 (4.4e)
0<d;, <D, VieT,ze Z (4.41)
0L e, <D, MECET 2 €% (4.4¢)
0<qg.<G, VteT,ze Z (4.4h)

4.4 Test System

We consider a Microgrid with following installed assets:

1. Local Load (500 kWh)
2. Local Renewable unit (600 kWh)

The local renewable energy unit may be composed of various renewable energy
sources like solar and wind. In our simulations we considered 400 kWh or installed
solar and 200 kWh of installed wind unit. The uncertainty in wind and solar sources are
modelled as a Weibull and beta distribution respectively [5]. The uncertainty in load is
modelled as a normal distribution [5]. The market price uncertainty was modelled based
on historical prices obtained at IEX website. Based on the various sequential scenarios
of net renewable energy output, load and market prices the upper and lower bounds of

the forecasts are shown in Fig 4.4, Fig 4.3 and Fig 4.2 respectively.

The various scenarios generated were reduced to dominant scenarios based on sce-
nario reduction technique described in [69]. The investment options available for test
microgrids was assumed to be an energy storage unit. The investment cost of energy
storage asset is calculated based on:
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Figure 4.4: Net Renewable energy Forecast Bounds

1. Power rating cost : 108 /AW

2. Energy rating cost : 100$/kW h

No budget constraints were assumed in our simulations. The proposed model was
simulated in GAMS on a computer with i7-7700K processor at 4.2GHz speed and 16
GB of RAM.

4.5 Results and Discussion

We run ths imulation in two test cases:

1. Stochastic Investment (SI)

2. Investment on average forecasts (IAF)

SI is proposed in (4.4), where as IAF refers to a model with single scenario in (4.4)
representing the average forecasts. The optimal energy storage asset specifications for
installation, opration cost, and investment cost solutions for SI and IAF are given in

Table 4.1. We see that SI allows for investment in energy storage asset of higher power
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Table 4.1: Optimal Energy storage Investments

Solution IAF ST
Power Rating (kW) 6.961 8.91
Energy Rating (W h) 9.9 9.9
Expected Operation Cost (5) | 20063.9 | 19519.3
Investment Cost ($) 1059.6% | 1079.1
Total Cost ($) 21123.5 | 20598.4

rating. This increases the Investment cost of SI over IAF, but a higher power rating
energy asset allows the microgrid to save on expected operation cost. This results in
total cost for SI being lower than that of IAF. The state of charge of the energy storage
asset in case of SI for 5 most probable scenarios are shown in Fig 4.5. The shaded
region in Fig 4.5 shows the most expected state of charge for energy storage at various
time intervals over the operational period. The usage of higher power rating is evident
from big jumps in state of charge shown in Fig 4.5. We realize that this allows microgrid

to play arbitrage over the price fluctuations and save on operational cost.

10 | ddrbri-edei i o @ .9 .
| |
| |
| |
e l '
:_j f.5 - |I A A r‘ -
- |
L
1)) | @ B
g l -
_8 5 | I|
(A | .
c |
1‘:, |
ﬁ |
a o5F | P
| J A
| ® A
0 " Laciadiaiassiad
5 10 15 20

Time intervals (hr)

Figure 4.5: State-of-charge (kWh) in energy storage assets

Our simulations show that ST is a better model for resource investment planning for
microgrid as compared to IAF. Fig 4.6 compares the power purchased from the grid
under one SI scenario operation and IAF operation. It can be seen evidently that SI
operation purchased much lower power from the grid as compared to IAF operation.

This is the reason for low expected operation cost of SI over IAF in Table 4.1.
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CHAPTER 5

SOLUTION METHODOLOGY

Till now ,we have discussed the need for optimisation and the method to optimise the

objective function to get the desired result taking all the constraints into picture.

The first part of the thesis discusses about intelligent charging scheduling prob-
lem for an Electric Vehicle (EV) aggregator considering vehicle-to-grid (V2G) and
grid-to-vehicle (G2V) capabilities with an objective to minimize the total charging
cost.Here,the aggregator is an entity through which we are trying to reduce the cost
as an objective function. With the uncertanities dwindling with the price of electricity
price at the charging nod,the Information Gap Decision Theory (IGDT) is used to han-
dle uncertainties in the price. The original intelligent charging scheduling problem is
non-linear. We proposes a modified Mixed Integer Linear Programming (MILP) based
reformulation and solves with CPLEX using GAMS as an aggregators studying the im-
pact of priority and intelligent charging of PEV.An example also simplifies the need of
the literature survey as discussed in chapter 2.

The second part of the thesis also deals with another optimisation problem.Here, A
stochastic resource investment planning model for Microgrid was used to get the objec-
tive function achieved. This part considers that the microgrid in study has a local load,
renewable generation, energy storage unit and a link to the main grid. Here,the micro-
grid is modeled as a price taker as it cannot influence the market prices.The operational
objectives is to minimize the cost of operations by scheduling the assests of the micro-
grid.he operational aspect of microgrids is modeled as a Linear program (LP). We then
continue to use this LP operational model and find an optimal investment strategy for
microgrid in a new stochastic LP model where the objective is to minimize the sum of
investment and expected operational cost. The assets considered for investment include
energy storage units. The proposed stochastic LP model is tested on a Microgrid test
system and simulated on GAMS.

Now using all the information and assumptions described in above chapters, we will

try to solve the optimization problem and determine the premium to be levied upon



users.The methodology used, to come up with a solution for our problem of intelli-
gent charging scheduling and for each PEV is discussed in detail in this section.A brief

description of tool and technique used for solving the problem is also discussed.

As described in Chapter 3 and 4, the problem is formulated as an optimization prob-
lem for different scenarios to minimize the objective function including the cost of
charging the PEV under the constraints which ensures that overloading of distribution
system, overcharging/undercharging of batteries and feasible operation takes place.To
solve the problem, we will use GAMS modeling system and cplex solver.As presence
matrices are stochastic, so Monte Carlo Sampling-Based Method for Stochastic Opti-
mization is used to estimate the cost of charging. A brief description on GAMS,cplex

solver & Monte Carlo simulation follows :

GAMS

GAMS(General Algebraic Modeling System) is a high-level modeling system for math-
ematical programming and optimization.Different type of optimization problems like
linear, nonlinear, and mixed-integer can be modelled and solved effectively in GAMS.
The system 1is tailored for complex, large-scale modeling applications and allows the
user to build large maintainable models that can be adapted to new situations. The sys-
tem is available for use on various computer platforms. Models are portable from one
platform to another [70]. Advantages of using GAMS are as follows [71]:

1. Access to a large set of existing solution algorithms.So the user is not constrained

to use a particular solver, and many different solvers can be tried without changing
the formulation.

2. Another important feature of GAMS is independence between model formulation
and the model data which means that GAMS allows to formulate the model with-
out direct reference to a specific data set and therefore enables to use the same
model code with different data sets or different aggregations of the same data
set.So, the model may increase dramatically in size with a new data set, but the
formulation remains the same.

3. The model representation in GAMS closely follows the way a model is written
using mathematical symbols.It helps in better understanding of model and allows
to change the code simply and safely ,without creating lots of errors.

4. GAMS is flexible with respect to both computer type and user interface ,so it can
be used on different platforms easily.



5. It can be used together with many other programs like built-in GDX-utility (GDX
stands for GAMS Data Exchange) for interfacing with Microsoft Excel. There are
many utilities developed and contributed by other GAMS modelers which can
provide interface with other software.

Because of the numerous benefits and ease of writing formulation for solving prob-
lem in GAMS, it is becoming quite popular among scientific community .In our liter-
ature survey,[72] has used GAMS to optimize the priority scores they got from fuzzy

expert system.

CPLEX Solver

CPLEX was the first linear optimizer commercially distributed by IBM,which was writ-
ten in C language. It gave operations researchers unprecedented flexibility, reliability
and performance to create novel optimization algorithms, models, and applications [73].
The Simplex algorithm, invented by George Dantzig in 1947 became the basis for the
entire field of mathematical optimization and provided the first practical method to solve
a linear programming problem. CPLEX evolved over time to embrace and become a
leader in the children categories of linear programming, such as integer programming,
mixed-integer programming and quadratic programming, too. Now it is one of the most
used solver for solving MILP problems also.For solving MILP, CPLEX uses Branch &
Cut Method [74], which is based on Branch & Bound Method, a well known algorithm
to solve MILP problem, by solving a sequence of linear relaxations to provide bounds.

Mathematically, if general MILP formulation is given by :

Z(X)=min.cx+ fy:x,ye X (5.1)

where

X=(r,y)eR} +0,1": Ax+By>b (5.2)

Then, the relaxation can be given as

Z(Px)=min.cx + fy:z,y € X (5.3)

where

X=(z,y) eRE+[0,1F: Az + By > b (5.4)
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The linear relaxation in Eq.5.4 provides a lower bound on the optimal objective
value as

Z(Px) € Z(X) (5.5)

Monte Carlo Simulation

Monte Carlo simulation is used to build models of possible results by substituting a
range of values for any parameter or variable that has inherent uncertainty. It then
calculates results over and over, each time using a different set of random values from
some probability distribution which the variable follows or is assumed to follow. Then it
produces distributions of possible outcome values.In this way, Monte Carlo simulation

provides a much more comprehensive view of what may happen.

Monte Carlo simulation provides a number of advantages over deterministic, or

single-point estimate analysis [75]:

1. Results show not only what could happen, but how likely each outcome is.

2. Because of the data a Monte Carlo simulation generates, itdAZs easy to create
graphs of different outcomes and their chances of occurrence.

3. With just a few cases, deterministic analysis makes it difficult to see which vari-
ables impact the outcome the most. In Monte Carlo simulation, itAAZs easy to
see which inputs had the biggest effect on bottom-line results.

4. In deterministic models, it’s very difficult to model different combinations of val-
ues for different inputs to see the effects of truly different scenarios. Using Monte
Carlo simulation, analysts can see exactly which inputs had which values together
when certain outcomes occurred.

5. In Monte Carlo simulation, it’s possible to model interdependent relationships
between input variables. It’s important for accuracy to represent how, in reality,
when some factors goes up, others go up or down accordingly.

The solution is found for each of the three scenarios defined in section ?? using
GAMS, for the objective function which includes priority and excludes priority. Monte
Carlo simulations are performed over uncertain presence matrices. Each presence ma-
trix is assigned some probability based on the fact that each PEV’s Arrival & Departure
follows a Normal distribution [76]. The difference is found between the estimates of
"Cost of charging with priority" & "Cost of charging without priority", and the esti-

mated difference is levied upon the PEV owners in proportion to their priority weight
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demanded.

The methodology of solving the problem and different tools used for solving the

problem are discussed in this chapter.
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CHAPTER 6

CONCLUSION & FUTURE SCOPE

6.1 Conclusion

In Chapter 3, a novel method for Intelligent charging scheduling and and price uncer-
tainty handling with IGDT proposed. The reformulation is imposed to convert Non-
Linear Programming (NLP) problem to Mixed-Integer Linear Programming (MILP)
problem. It is seen that, assuming price uncertainties the IGDT gives a pessimistic
charging and discharging schedule. The intelligent charging scheduling allows the ag-
gregator to make profits while assuring a minimum profits in case of any price fluc-
tuations in an uncertain interval. IGDT based uncertainty handling can easily comple-
ment Monte Carlo based method in handling uncertainties of other uncertain parameters

whose probability distribution is known.

Chapter 4, proposes a stochastic resource investment planning model for Micro-
grids. The paper considers that the microgrid in study has a local load, renewable
generation, energy storage unit and a link to the main grid. The microgrids cannot in-
fluence the market prices and is modeled as a price taker. The operational objectives of
the microgrid is to schedule its assests in order to serve the load in such a way so as to
minimize the cost of operation. The operational aspect of microgrids is modeled as a
Linear program (LP). The chapter then continues to use this LP operational model and
find an optimal investment strategy for microgrid in a new stochastic LP model where

the objective is to minimize the sum of investment and expected operational cost.

6.2 Future Scope

This work can be further expanded to include the cases where the number of EV become
variable or follows a distribution.Also, there are numerous techniques which don’t re-

quire distribution of random variable for estimation.Those methods can be applied in



conjunction with proposed strategy.This will help to utilize the solution for commercial
parking station and commercial charging stations as well.

Effect of charging -discharging cycle on the health of Batteries can be taken into ac-
count, as in real world, health and life estimation of battery are also important to ascer-

tain profitability of EVs and estimate the lost opportunity cost.
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