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ABSTRACT

KEYWORDS: Rolling-shutter motion blur, motion density function, blind deblur-

ring, efficient filter flow.

Today we see the world by eyes of technology i.e. camera. But a lot of images as

they are affected by motion blur and rolling-shutter(RS) distortion. Today, most

of the imaging devices like mobile phone, drone etc. are equipped with CMOS

based sensors, which consume less power while delivering fast-high performance

and advanced features. The RS distortion is a frequent knock on CMOS sensors.

It occurs while shooting video, trying to capture a fast-moving subject or moving

the camera while shooting. Unlike Global-shutter, in CCD where all the pixel

is exposed at the same time, in CMOS each row of RS sensor array is exposed

sequentially one-after-other, same as reading book reading a book(line by line).

In this work I have implemented a model for rolling-shutter blind motion del-

blurring (using single blurred image) that was proposed by R. et al. (2017). This

project reduces computational cost, need for precise sensor information and in-

ability to deal with wide angle systems and irregular camera trajectory.

This project investigates the removal of spatially-variant blur from photographs

degraded by rolling-shutter as well as motion blur, and the removal of large oc-

cluding objects from photographs of popular places. These problems are exam-

ined in the case where the photographs are taken with standard consumer cameras

with CMOS sensor, and don’t have any particular information about the scene be-
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ing photographed. However, It is shown that blur from camera shake is in general

mostly due to the 3D motion of the camera, resulting in a rolling-shutter and mo-

tion blur that can be significantly non-uniform across the image. We model this

blur using a weighted set of camera poses, which induce homographies on the im-

age being captured. The blur in a particular image row(as image is captured row

by row) is parameterized by the set of weights, which provides a compact global

descriptor for the blur, analogous to a convolution kernel. In order to reduce the

computational cost of our homography-based model, an efficient filter flow(EFF)

was introduced based approximation on local-uniformity of the blur.
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CHAPTER 1

INTRODUCTION

With the explosion of digital photography in recent years, many of us take large

numbers of digital photos with digital cameras or camera-phones and most of

these cameras are equipped with CMOS camera because it consume less power

while delivering fast-high performance and advanced features. When we review

our photos later however, there is sometimes a divergence between what we re-

member seeing at the time, and what our cameras recorded. This disparity can

perhaps be explained by the old adage that we see with our brains, not with our

eyes. Whether our photos contain a luridly-dressed tourist that our brain had fil-

tered out at the time, or our photos appear blurry due to camera shake that causes

rolling-shutter(RS) distortion and motion blur(MB), it is not uncommon that the

photos we find ourselves with do not capture what we wanted to record.

Avoiding motion during capture is not always possible. Hand shakes during

hand-held camera capture, mounting cameras on a mobile platform, etc. are some

instances where camera motion cannot be avoided. So, it becomes necessary to

rectify images from rolling shutter distortions. Single image RS rectification how-

ever is a challenging task because RS motion-affected image itself might look cor-

rect unless prior properties of the scene are known. A straight line in the scene

may look curved in the image due to the RS motion, but that does not make the

image unnatural in the sense that the recorded curve in the image could in fact

correspond to an actual curve in the scene. Hence, it is only logical to learn the

naturalness or unnaturalness of specific scene classes such as urban scene, indoor



scene, and human faces, as against commenting on the absolute nature of any type

of image.

In this project, I implemented models and methods, aimed at "restoring" pho-

tographs to bring them closer to the images we hoped to record at the time of

their taking, that was proposed by R. et al. (2017). For many people, existing

photos capture important and fleeting moments that it may be impossible to re-

capture. As opposed to proposing new hardware or methods for taking future

photographs, we are predominantly concerned with handling images that have al-

ready been captured. By using accurate models of the image formation process,

and incorporating strong prior information on the images we would like to recover,

we endeavor to make software post-processing the "brain" to the digital "eyes" of

our cameras. Specifically, our objective is to automatically restore photographs,

when these photographs contains unwanted occluders , or when they are blurry

due to RSMB. Besides the emotional motivation for improving peoples’ photos

more concert motivations for these tasks might be that need to recover visual in-

formation from blurry image along with camera trajectory and blur kernel.

1.1 Problem Statement

The types of image degradation considered in this work lead to inherently ill-

posed image restoration problems. Starting from only a degraded image(i.e.,

rolling shutter and motion blur), we wish to recover a good image of the same

scene with underlying camera motion. If there is a loss of information, or we have

more unknowns than observations, there may be a large family of valid solutions,

which we must somehow choose amongst when producing the "restored" image.

This is the case in the problem discussed here. For deblurring images, where the
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blur is unknown, we must estimate both the parameters describing the blur and the

sharp image. Since the sharp image has the same number of pixels as the blurry

image, we evidently have more unknowns than observations. When we wish to

remove occluders from photographs, the recorded image contains no information

about what is behind the occluder; it could be concealing a building, a tree, a patch

of grass, or a group of people. Making the right choice and producing visually-

pleasing results requires good models of the image formation process, and equally

importantly, good prior information about the unknowns.

1.2 Thesis outline

This thesis will explore solutions to two problems - 1) Using a blur image and

dataset of Sharpe image, face recognition and finding best match from dataset

2) single image rolling shutter motion blur correction. This thesis is organized as

follows: The second chapter presents the recent works done in the field and related

terminology. The third chapter presents the face recognition and matching using

Siamese neural networks model that is trained for a a single image. The fourth

chapter addresses the motion blur model and rolling-shutter motion blur model.

1.3 Summary of contributions

The following is the summary of the contributions of this thesis:

• In Chapter ??, we present a novel Siamese neural networks architecture for
face recognition and face matching using a blured image and clear image.
Instead of providing a lots of images for training I have given single sharpe
image of person and and blurred image of same person.
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• In Chapter ??, I have shown comparison of my implementation with R.
et al. (2017) and Whyte et al. (2012).
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CHAPTER 2

BACKGROUND AND RELATED WORK

Today with explosion of digital photography, use of digital camera is increased.

To make camera energy-efficient, high performance and advance feature, most of

imaging device are equipped with CMOS sensors. CMOS camera uses rolling-

shutter, where CCD camera uses global-shutter. Rolling shutter is a method of

image capture in which a still picture (in a still camera) or each frame of a video (in

a video camera) is captured not by taking a snapshot of the entire scene at a single

instant in time but rather by scanning across the scene rapidly, either vertically or

horizontally. In other words, not all parts of the image of the scene are recorded at

exactly the same instant. (Though, during playback, the entire image of the scene

is displayed at once, as if it represents a single instant in time.) This produces

predictable distortions of fast-moving objects or rapid flashes of light. This is in

contrast with "global shutter" in which the entire frame is captured at the same

instant.

The "rolling shutter" can be either mechanical or electronic. The advantage

of this method is that the image sensor can continue to gather photons during the

acquisition process, thus effectively increasing sensitivity. It is found on many

digital still and video cameras using CMOS sensors. The effect is most noticeable

when imaging extreme conditions of motion or the fast flashing of light. While

some CMOS sensors use a global shutter, the majority found in the consumer

market use a rolling shutter.

CCDs (charge-coupled devices) are alternatives to CMOS sensors, which are

generally more sensitive and more expensive. CCD-based cameras often use



global shutters, which take a snapshot representing a single instant in time and

therefore do not suffer from the motion artifacts caused by rolling shutters,as

shown in Fig. 2.1.

Figure 2.1: Working of rolling-shutter(left side) and global shutter(right side),
where te) is exposer time and tr) is read-out time.

2.1 Distortion effects of Rolling Shutter

2.1.1 Rolling shutters can cause such effects as :

Wobble This phenomenon (also known as the jello effect) appears when the

camera is vibrating, in situations such as hand-held shots at telephoto settings, or

when shooting from a moving vehicle. The rolling shutter causes the image to

wobble unnaturally.

Skew The image bends diagonally in one direction or another as the camera

or subject moves from one side to another, exposing different parts of the image

at different times. Skew is a minor manifestation of the wobble phenomenon
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Figure 2.2: Wobble effect caused by object or camera motion.

described above.

Spatial aliasing . Vertically adjacent pixels are sampled in violation of the sam-

pling theorem, when the camera or object motion is too rapid. One example of

this is imaging of a quickly rotating propeller. The smear of each blade is caused

by the propeller rotating at the same or near the same speed that the frame is read

by the camera. Viewed perpendicular to a fan spinning clockwise, the blades on

the left side appear thinner than usual while the blades on the right side appear

thicker, and can even appear as if they aren’t connected at the center.

Temporal aliasing , including Partial Exposure. If a camera flash goes on for

only part of the time of the exposure, the illumination of the flash may only be

present for some rows of pixels in a given frame. For example, the top 1/3 of

the picture may be brightly lit by a flash, while the bottom 2/3 of the picture

is dark and unlit, as the flash was off by the time that part of the CMOS was

sequenced. The difference between the two distinct parts of the frame can look

odd. Similar problems can arise with fluorescent lighting, strobe effects, lightning,

or any extreme situation where very fast motion or very fast bursts of light are seen
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in the time between when the CMOS chip sequentially records a frame.

The effects of a rolling shutter can prove difficult for visual effects filming.

The process of match moving establishes perspective in a scene based on a single

point in time, however this is difficult with a rolling shutter that provides multiple

points in time within the same frame. Final results depend on the readout speed

of the sensor and the nature of the scene being filmed; as a rule of thumb, higher

end cinema cameras will have faster readout speeds and therefore milder rolling

shutter artifacts than low end cameras.

Images and video that suffer from rolling shutter distortion can be improved

by algorithms that do rolling shutter rectification, or rolling shutter compensation.

How to do this is an active area of research.

2.2 Basic Defination & terminology

2.2.1 Efficient Filter Flow

An idea key to EFF framework was introduced by Stockham, who presented the

overlap-add (OLA) method for fast convolution and correlation. TO increase com-

putation efficiency and to reduce memory requirement EFF is used.computing

each element of P is essentially equivalent to performing a sub-pixel interpolation,

which is computationally expensive.Spaitally varing blur can be approximated as

locally uniform.

Divide image into patches, considering these have spatially invariant blur,

make computation easy.One weakness of considering separate filter per patch is

that in regions with little texture or strong edges, it may not be possible to estimate
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a good kernel. The usual (overlap-add)OLA method chops the image into over-

lapping patches, damps the borders of each patch with some windowing function,

convolves each patch with the same filter, and then adds the transformed patches

to obtain the output image. If each patch is processed with its own filter we get a

space-variant linear filter.

2.2.2 Gradient of image

We found that strong edges do not always profit kernel estimation, but instead

under certain circumstance degrade it. This finding leads to a new metric to mea-

sure the usefulness of image edges in motion deblurring and a gradient selection

process to mitigate their possible adverse effect.

Image derivatives help to reduce ringing artifacts by putting weight on the

edges. Secondly, it lowers the condition number of the optimization problem and

hence leads to faster convergence .

2.2.3 Conditional Number

It is used to measure how sensitive a function is to changes or errors in the input,

and how much error in the output results from an error in the input. A system is

said to be singular if the condition number is infinite, and ill-conditioned if it is too

large. For example, the condition number associated with the linear equation Ax

= b gives a bound on how inaccurate the solution x will be after approximation.
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2.2.4 35 mm focal length

This means that when you shoot at this focal length you are giving your viewers

a vantage point similar to if they were on the scene. The bottom line is that the

standard fields of view from 35mm cameras can be duplicated by digital cameras

with their smaller sensors and lenses by using wider focal length lenses.If you

wanted to know the 35mm equivalent of a 50mm lens used on a digital camera with

an APS-C size image sensor, you would just multiply the 50mm focal length by

1.5. (50mm X 1.5 = 75mm) So, in this example, the 35mm focal length equivalent

for the 50mm lens would be 75mm. A standard 35mm film image is 36mm wide :

so to convert focal length into pixel 35mm_focal_length x image width / 36.

2.3 Recent works

A large body of literature is devoted to estimation of image degradations. A full

review of all the literature is outside the scope of this thesis. Instead we will dis-

cuss the relevant prior work that relates directly to: estimation of blur, segmenting

dynamic objects from 3D scenes and Rolling Shutter Rectification.

Blur Estimation Estimating blur kernels in images is a very ill-posed prob-

lem. So, different assumptions on blur kernels and natural images have been

incorporated. Fergus et al. (2006) exploit the knowledge that the gradient his-

togram of natural images exhibits a heavy-tailed profile and that blur kernels due

to camera shake have a sparse support. Chakrabarti et al. (2010) estimates mo-

tion blur based on blur spectrum analysis of image patch in Fourier transform

space. Levin (2007) predicts motion blur kernel using natural image statistics.

Couzinie-Devy et al. (2013) learns a regression function to predict motion blur
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kernel based on some hand-crafted features. The current state-of-the-art rolling-

shutter and morion blur,blind deblurring Su and Heidrich (2015) eliminates prob-

lem of device-specific constrains of and estimates times tamped ego-motion solely

from image intensities. However, the method is limited to parametric ego-motion

derived specifically for hand-held blur.

Different to these methods, R. et al. (2017) have preseted a method that can

handle narow-angle as well as wide angle system. This method also computation-

ally effective, can be sused for CCD motion blur as well as rolling shutter motion

blur.
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CHAPTER 3

ROLLING SHUTTER & MOTION BLUR

MODELING

3.1 Motion Blur

3.1.1 Introduction

A common problem faced while capturing photographs is the occurrence of mo-

tion blur due to camera shake. The extent of blurring at a point in an image varies

according to the camera motion as well as the depth value resulting in space-

variant blur. Recovering the clean image from known camera motion i.e. blur

kernel is called non-blind deblurring, while of both the clean image and under-

lying camera motion from a single motion blurred image is called blind motion

deblurring.

3.1.2 Motion blur model

As the problems discussed in this thesis, we begin with a general forward model of

image degradation. There are four important components in the image degradation

process:

• The (observed) degraded image g which is the image output by the camera’s
sensor.



• The (latent) sharp image f : This is the underlying, ideal, sharp image of the
scene, which we would like to recover.

• The degradation operator(also known as blur kernel) h that acts on f, and
which describes how light from the sharp image f is distributed in the ob-
served image g. Depending on the situation,h may be known in advance
(e.g. from optical properties of the camera) or maybe unknown (e.g. arbi-
trary camera motion during camera shake).

• The random noise n that perturbs the recorded image after the sharp image
has been degraded by h.

So, traditionally a blurry image can be modeled as combination of noisy im-

age(n) and clear image(f ) convolved with kernel(h). Mathematically can be rep-

resented as follow:

g = f ∗ h+ n (3.1)

And in case of non-blind deblurring model can be given as Fig. 3.1.

Figure 3.1: Perceptron model

As proposed in Whyte et al. (2012), a blurry image or video frame g can be

modeled as weighted sum of images observed over a number of camera poses

during exposer time. We assume form now that the only significant motion of

the camera is a rotation about its optical center, and that the scene being pho-

tographed static. As in most cases of camera shake, the rotation of the camera
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during exposure has a significantly larger effect than its translation Levin et al.

(2009): Typical consumer cameras have a field of view of about 50°, and rotating

the camera by only a small angle during exposure e.g. 1° = 1
50
∗ 50° cause an

image blur whose size in the image approximately follows the same proportion,

i.e., a 20 pixel blur on a 1000 pixel-wide image. Translation of the camera, on

the other hand, will cause a blur whose size is inversely proportional to the depth

of the scene, and reaching the same 20 pixel blur for an object at a depth of 2m

would require translating the camera by about 4cm. The rotation of 1°represents

significantly smaller motion of the camera and, in most cases, camera rotation can

be assumed to be the only significant source of camera shake blur.

Under the pinhole model of a camera, all views seen by the camera are projec-

tively equivalent, excluding boundary effects. This means that the image at one

camera orientation is related to the image at any other by a 2D projective transfor-

mation, or homography. For an uncalibrated camera, this is a general 8-parameter

homography, but in the case of a camera with known internal parameters, the ho-

mography H is parameterized by the 3×3 rotation matrix R describing the rotation

of the camera Hartley and Zisserman (2004).

H = KRK−1 (3.2)

where K is the camera’s internal calibration matrix.

The matrix R requires only 3 parameters, and we adopt here the "angle-axis"

representation, in which a rotation is described by the angle θ moved about an

axis a (a unit-norm 3-vector), summarized by the vector θ = θa = (θx, θy, θz). We

fix our 3D coordinate frame to have its origin at the camera’s optical center, with

the XY -plane aligned with the camera sensor’s coordinate frame and the Z-axis

14



parallel to the camera’s optical axis. R is given by the matrix exponential.

[
θ
]
X

=


0 −θZ θY

θZ 0 −θX
−θY θX 0

 (3.3)

Having defined the type of image transformation we expect, we now assume

that when the shutter of the camera opens, there is a sharp image f : R2 → R

of a static scene that we would like to capture. The camera’s sensor accumulates

photons while the shutter is open, and outputs an observed image g : R2 → R. In

the ideal case, each point on the sensor would see a single scene point throughout

the exposure, giving us a sharp image. However if, while the shutter is open, the

camera undergoes a sequence of rotations, parametrized by θ(t), each ray from

the static scene will trace a sequence of points on the image. For each point x in

the observed blurred image we can trace the record of rays x’(t)

x′(t) ∼ Htx (3.4)

where Ht is the homography induced by the rotation θ(t), and ∼ denotes equality

up to scale. The observed image g is thus the integral over the exposure time T of

all the projectively- transformed versions of f , plus some observation noise ε:

g(x) =

∫ T

0

f(Htx)dt+ ε (3.5)

where, with a slight abuse of notation,Htx denotes inhomogeneous coordi-

nates of a point in f.

In general, a single blurry image has no temporal information associated with
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it, so it is convenient to replace the temporal integral in (3.5) by a weighted integral

over the set of all possible rotations Γ

g(x) =

∫
Γ

f(Hθx)ωθdt+ ε (3.6)

where the weight function ω(θ) corresponds to the time the camera spends at the

orientation

3.2 RSMB Model

Although motion blur and rolling shutter deformations are closely coupled arti-

facts(as both are cause by relative motion of camera and object) in images taken

with CMOS imaging sensors, the two phenomena have so far mostly been treated

separately, with deblurring algorithms being unable to handle rolling shutter wob-

ble, and rolling shutter algorithms being incapable of dealing with motion blur.

In this section, we have discussed the generative model for RSMB. As mentioned

earlier, the entire image in CCD imaging sensor experiences same ego motion,

so motion blurred image B εRM×N is generated by integrating the images seen by

the camera along its trajectory during the exposure duration [0, te] Su and Heidrich

(2015). It is given by following equation:

B =
1

te

∫ te

0

LP(t)dt (3.7)

where P(t) represents the general 6D camera pose at time instant t0, LP(t) is the

latent image L transformed according to pose P(t), and te is shutter speed. As

we have already discussed, each RS sensor-row experience different ego-motion

due to staggered exposure window (Fig. 2.1). Unlike CCD, here we cannot as-
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sociate a global warp for the entire latent image L, but need to consider each

row separately. Image row Bi (where i indicate ith row) of an RS blurred image

B = [BT
1 BT

2 . . .B
T
M ]T is given by:

B =
1

te

∫ (i−1).tr+te

(i−1).tr

LP(t)
i dt : i ε {1, 2, . . . ,M} (3.8)

where LP(t)
i is the ith row of the transformed image LP(t), te is the shutter speed

or row-exposure time in CMOS camera, and tr is the inter row delay(time gap

between starting time of current row and last row). All the current RS deblurring

methods use a discretized form of Eq. 3.8 as the forward model, and we refer to

this as temporal model. By considering weighted integration of the transformed

image-row over camera pose Eq. 3.8 can be written as following:

B =

∫
P
ω′p.(p)LP

i dp : i ε {1, 2, . . . ,M} (3.9)

where P is the pose-space and ω′p is the weight corresponding to the trans-

formed row LP0 . Unlike existing RS deblurring works, the second model is also

employed by R. et al. (2017) and by discretization the pose-space in Eq. 3.9, new

equation can be written as follow:

B =
∑
p ε P

ω′p.(p)LP
i dp : i ε {1, 2, . . . ,M} (3.10)

here discretization step-size is taken such that there is less than one pixel displace-

ment between two adjacent poses. Where P is the discretized pose-space P, and

the discrete weight ωi(p0) is the summation of all the continuous-weight ω′i(p) for

all p that lie int the half step-size neighborhood of pose ω′i(p) . We identify the

weights ωi(p) as the motion density function (MDF), as in (Gupta et al., 2010)
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3.3 RS Deblurring Computational Approach

In this section we are going to discuss formulation of maximum a posteriori

(MAP) framework for latent image and kernel estimation, EEF for rolling-shutter

blur, optimization for ego-motion estimation, latent image estimation etc.

3.3.1 RS Deblurring

For estimation of both the latent image and the block-MDFs, R. et al. (2017)

formulate a maximum a posteriori (MAP) framework. In this section,new prior for

MDF to enable RS motion is introduced. A direct MAP framework for unknown

θ = {L,wi : 1 6 i 6 nb} is given as

θ̂ = min
θ

nb∑
i=1

‖Bi −
∑
p ε P

ωi(P).Lp
i ‖2 + λ1‖∇L‖1 + λ2

∑
−i = 1nb‖Wi]‖1

(3.11)

where wi is the vector containing weights ωi(P) for poses p ε P and ∇L is

the gradient of L. Here assumption is made that is the optimal block-size rb is

known(size of rb is such that any block of contiguous rows with size less than

or equal to rb will have substantial camera-pose overlap). The first term in the

objective is data fidelity that enforces forward blur model of Eq. 3.10. To reduce

ill-posedness, R. et al. (2017) to enforce a sparsity prior on the image-gradient

as explained in 2.2.2 and used in Whyte et al. (2012). A sparsity prior is also

imposed on the MDF weights since a camera can transit over only few poses in

P during exposure. In the literature on CCD deblurring (i.e., nb = 1) it is well-

known that the objective in Eq. 3.11 is biconvex, i.e., it is individually convex with
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respect to the latent image and MDF, but non-convex overall and convergence to

a local minima is ensured with alternative minimization of MDF and latent image

Whyte et al. (2012). However, RS sensors introduce a different challenge if Eq

3.11 is directly considered.

For an RS blured image, multiple solutions are possible for the latent image-MDF

pair in each individual image block. They satsfy the forward model in Eq 3.10 and

consistent with the image and MDF prior in Eq 3.11, as information regarding

direction has lost.

3.3.2 Model and Optimization

State-of-the-art CCD-BMD methods (Whyte et al. (2012), Xu et al. (2013), Cho

and Lee (2009)) work by alternative minimization (AM) of MDF and latent im-

age over a number of iterations in a scale-space manner, i.e., AM proceeds from

coarse to fine image-scale(i.e., image size is changed in every step) in order to

handle large blurs. This requires generation of blur numerous times. Efficiency of

the blur-ring process is a major factor that governs computational efficiency of a

method. In this section, firstly pose-space model and how it allows for an efficient

process for RS blurring (analogous to CCD-EFF (Hirsch et al. (2011) Hirsch et al.

(2010))) is discussed.

Efficient Filter Flow for RS blur

Here approximation is made that motion blur in individual small image patches is

space invariant convolution with different blur kernels. It is represented as:

B =
R∑
k=1

C†k.{a
(k,b(k)) ∗ ((Ck.L))} (3.12)
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where R is the total number of overlapping patches in latent image L, b(k) is a

function which gives the index of the block to which the major portion of the kth

patch belongs(i.e., b(k) ε {1, 2, . . .nb }), Ck.L is a linear operation which extracts

the kth patch fromL and C†k inserts the patch back to its original position with a

windowing operation. a(k,b(k) represents the blur kernel which when convolved

with the kth latent image-patch creates blurred patch. Considering b(k) as j, we

can write

a(k,b(k)) =
∑

k=1p ε P

ωj(p).δk(P) (3.13)

where δk(P) is a shifted impulse obtained by transforming with pose p an

impluse center at the kth patch-center. Intuitively, the blur kernel at patch k due to

an arbitrary MDF is the superposition of the δk(P)s generated by it. Since δk(P) is

independent of the latent image and the MDF, it needs to be computed only once,

and be subsequently used to create the blur kernel in patch k for any image. Thus,

given a latent image L and MDF of each block, our blurring process first computes

kernels in R patch-centres using the precomputed δk(P) Eq. 3.13, convolves them

with their corresponding latent-image patches and combines them to form the RS

blurred image Eq. 3.12. We carry out convolution using the efficient FFT. Note

that the CCD-EFF is a special case of Eq 3.12. under identical MDFs (wi = w∀i)

or the single block case (nb = 1).

Ego-Motion Estimation

The objective of this step is to estimate the ego-motion at iteration d+ 1(i.e.,wd + 1)

given the latent image estimate at iteration d(i.e.,L(d)) We frame our MDF ob-

jective function in the gradient domain for faster convergence and to reduce ill-
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conditionness (Hirsch et al. (2011), Whyte et al. (2012), Xu et al. (2013)). We

give it as

wd+1 = arg min
w
‖Fw − ∇ B‖2

2 + α‖Gw‖2
2 + β‖w‖1 (3.14)

where the information of the gradient of L(d) is embedded in blur matrix F,

∇B is the gradient o B, and ‖Gw‖2‖ is the perior we introduced for RS blur. We

further simplify the objective in Eq. 3.14 by separating out the sparsity prior as a

constraint and taking the derivative. This yields

wd+1 = arg min
w
‖(FTF + αGTG)w − Ft∇B‖2

2 (3.15)

Suppose a blurred image of size M × N and nb number of MDFs f length

l (i.e., block size rb = M/nb). Then the dense matrix F in Eq. 3.15 is nb

times larger compared to the CCD case. This escalates the memory requirement

and computational cost for RS deblurring; i.e., a naive approach to create FTB

(with size nb.l × nb.l) is to form a large matrix F of size MN × nb.l (where

MN >> nb) and perform large-matrix multiplication. We avoid this problem by

leveraging the block-diagonal structure of F, and thus for FTF , that is specific for

RS blur. The jth column of the jth block-matrix FiofF (of size rbN × l) is formed

by transforming ∇L(d) with the pose of ωi(j), and vectorizing its ith block. For

this, we employ the RS-EFF. Since each Fi can be generated independently, we

bypass creating F , and instead directly arrive at the block-diagonal matrix FTF

one diagonal-block at a time, with the jth block as FTj Fj . A similar operation

is also done for FT∇B. Since G is sparse, GTG in Eq. 3.15 can be computed

efficiently Yuster and Zwick (2005)
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Latent Image Estimation

Given the ego-motion at iteration d + 1(i.e.,wd + 1), this step estimates the

latent image L(d + 1) Since ego-motion estimation is based on image gradients

(Eq. 3.15), only only the latent-image gradient information needs to be correctly

estimated, as pointed out in Hirsch et al. (2011), Whyte et al. (2012),Cho and Lee

(2009). This eliminates the use of computationally expensive image priors in the

alternative minimization step. We obtain the latent image by inverting the forward

blurring process in Eq. 3.12, i.e.,

L(d+ 1) = arg min
w

R∑
k=1

C†k.F
−1

(
1

F(a(k,b(k)))
� F(Ck.B)

)
(3.16)

where, (a(k,b(k)) is generated using wd + 1 , F and F−1 are the forward and in-

verse DFT, respectively, and � is a point-wise multiplication operator that also

suppresses unbounded-values. We combine patches using Bartlett- Hann win-

dow that tapers to zero near the patch boundary. It has 70% overlap for patches

that span adjacent blocks (to eliminate the effect of sudden changes in MDFs),

and 50% for the rest. It is important to note that explicit block-wise segregation

of blurred image is employed only for MDF estimation (to create FTF in Eq.

3.15), and and not for latent im age estimation where the estimated MDFs are

utilized only to project PSFs in overlapping patches, akin to CCD-BMD Hirsch

et al. (2011), Whyte et al. (2012),Hirsch et al. (2010). From a computational

perspective, this is equiv- alent to extracting each patch of the blurred image, de-

convolving it with the corresponding blur kernel (created using Eq. 3.13 with FFT

acceleration, and combining the decon- volved patches to form the updated latent

image. For the final iteration (in the finest level), instead of FFT inversion (as in
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Eq. 3.16 we adopt Richardson-Lucy deconvolution Lucy. (1974) which considers

natural image-priors.
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CHAPTER 4

Experimental Results

4.1 Implementation Details

We implemented our algorithm in MATLAB. We empirically set 7 scales, each

with 7 conjugate gradient iterations in kernel estimation. The blurred image in

the ith scale is formed by downscaling the input image by a factor of
√

(1/2)(i−1),

where i varies form 7 to 1. Weights for gradient data terms for image pixel values.

omega = (1/2)q, where q is order of operator i.e, weight for 1st order image

derivatives will be 1/2, weight for 2nd order image derivatives will be 1/4. To

start the alternative minimization, the coarsest scale MDFs are initialized with

Kronecker delta. For ego-motion estimation, we consistently used the RS-prior

regularization (α in Eq. 3.15 ) in level i as 27i (so that the RS prior can cope

with the increasing image size). We have used regularization weights for latent

image estimation α = 0.0005, Regularization weight for kernel estimation β =

0.5. For latent image estimation, we used 6 patches along the shorter dimension

and 8 along the longer dimension, such that each image-patch is square. For

the Richardson-Lucy deconvolution, we have used 50 iteration in final step. All

results shown here are obtained using number of block 3,



(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.1: Experimental results - (a) Input RSMB distorted image (b) Output of
RL deconv with nb = 3, (c) Output of direct deconv with nb = 3 (d)
Output of RL deconv with nb = 2, (e) Output of direct deconv with nb
= 2 (f) Output of RL deconv with nb = 1, (g) Output of direct deconv
with nb = 1
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2: Experimental results - (a) Input RSMB distorted image (b) Output of
RL deconv with nb = 3, (c) Output of direct deconv with nb = 3 (d)-(i)
Crossponding patches
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(a)

(b)

(c)

Figure 4.3: Experimental results - (a) Input RSMB distorted image (b) Our output
result (c) Output from R. et al. (2017)
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(a) Scale 1, Iteration 7 (b) Scale 1, Iteration 7

(c) Scale 2, Iteration 7 (d) Scale 2, Iteration 7

(e) Scale 3, Iteration 7 (f) Scale 3, Iteration 7

(g) Scale 4, Iteration 7 (h) Scale 4, Iteration 7

(i) Scale 5, Iteration 7 (j) Scale 5, Iteration 7

Figure 4.4: Iteration-by-iteration results of the alternative minimization of block-
wise MDFs and latent image
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4.2 Conclusion

In this chapter, we have shown epremental result and effect of nb on the output

image. As we are suposed to reproduce result same as paper R. et al. (2017),

we have shown our result and result from R. et al. (2017) paper. With cahnge in

number of block, deblurred output will also change. We have noticed that after

nb=3, output remain same and with heigher computational cost also increase so

nb=3 is a best choice almost for all image.
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