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ABSTRACT

KEYWORDS: Lensless Imaging, High speed video reconstruction, High speed

motion classification, 3D Lensless Imaging, Fourier inversion,

Computational Photography, Point Spread Function

Lensless Imaging has recently gained momentum since it has emerged as an attractive

solution for ultra-compact inexpensive imaging. Since the lensless measurements have

global multiplexing, lensless cameras can be leveraged for compressive video sensing to

achieve a higher spatio-temporal resolution than possible with a lens-based camera. A

high frame-rate video can be encoded in a single capture using a rolling shuttter CMOS

sensor. However the resuting reconstruction problem is highly ill-posed and traditional

methods often require hand crafted image priors and highly sparse scenes and long

iterations resulting in higher inference time. In this work we propose an end-to-end

Deep network for video reconstruction using single rolling shutter lensless captures.

Our approach provides 10x frame rate increase, better perceptual quality than traditional

methods in a much lesser inference time. We compare our approach for two traditional

methods and evaluate its performance on a simulated sparse dataset using Phlatcam.

Highspeed motion recognition is imperative for various applications like AR/VR,

combat elements, motion tracking devices etc requiring high bandwidth where tradi-

tional camera fails to capture high speed motion. Since lensless cameras provide global

multiplexing, we can leverage the compressive sensing capabilities of rolling shutter

lensless cameras for this purpose effectively. In this work, we propose an end-to-end

trained CNN based network that can classify activity from a single rolling shutter lens-

less capture. We also compare our model with the best case classifier, i.e a traditional

lens-based camera having higher bandwidth.

Lensless cameras encode depth information in their measurements for a certain

depth range. Previous works have shown that this encoded depth can be used to perform

3D reconstruction of close-range scenes. However, these traditional approaches for 3D

reconstructions are typically iterative and optimization based that require strong hand-
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crafted priors and hundreds of iterations to reconstruct. Moreover, the reconstructions

suffer from low-resolution, noise and artifacts. In this work, we propose an end-to-

end trainable feed-forward deep network FlatNet3D - that can estimate both depth and

intensity directly from a single lensless capture. Our algorithm is fast, efficient and

we demonstrate the high-quality results validated using both simulated and real scenes

captured by PhlatCam. We also show the effectiveness of our model on one of the

important application of our framework, medical endoscopy.
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CHAPTER 1

Introduction

Figure 1.1: Lensless Camera vs Lens Based cameras Lensless cameras greatly facili-
tate miniaturization of cameras since the form factor is no longer limited by
a lens. This makes low cost fabrication possible and so the camera can even
be made physically flexible.

It is a well known fact that the lens accounts for more than 90% of the camera’s

weight, volume and cost. Even though there have been advancements in miniaturising

lenses and the overall camera design, the fundamental laws of Physics(like the diffrac-

tion laws) impose an upper limit to the size, resolution, form factor etc that hinders

further miniaturisation. This physical limit makes the lens-based cameras unsuitable

for applications where form factor, size and cost are the primary constraints such as

micro robotics, pill-endoscopy, mini-drones, AR/VR, wearables.

Over the last decade, lensless imaging systems have emerged as a possible solution

for ultra thin, light weight and cost effective imaging. The basic idea common to all

lensless frameworks is to replace the focusing element, the lens with a multiplexing

element, typically an optical mask that provides cues for reconstructing the original

scene using a computational algorithm. Moreover, lensless design permits an inex-

pensive fabricaton method compatible with the conventional pcb based semiconductor

fabrication technology allowing it to exploit its scaling, compatibility, cost advantages

and flexibility.



Figure 1.2: Lensless Camera ApplicationsMask based Lensless cameras find applica-
tions in IoT devices, medical endoscopy, AR/VR etc where form factor is a
major constraint.

Traditional high-speed video cameras are difficult and expensive to fabricate due to

the the limited camera bandwidth. Most CMOS optical sensors are low-cost, easy to

fabricate and have a rolling shutter measurement system. These rolling shutter mea-

surements encode some motion information however it fails to capture motion in other

directions as well as the presence of objects depending on their trajectories with respect

to the camera. This makes recovering the original motion impossible. This problem can

be circumvented by using global multiplexing of scene points in the measurement. In

this work, we refer rolling shutter lensless measurement as a single measurement and a

rolling shutter lensless video as the video of measurements that is collected from a low

fps lensless rolling shutter camera.

Due to absence of a focusing element, the lensless measurements have high global

multiplexing which means that a pixel can contain information from many scene points

resulting in a measurement that bears no resemblance to the original scene. Designing

recovery algorithms, even for 2D scenes is difficult, primarily because of the system’s

poor conditioning, large PSF and extreme multiplexing although recent works by [1, 2,

3, 4] have shown that one can estimate the 2D scene accurately using strong data-driven

priors. This global multiplexing provides an excellent opportunity for reconstructing

high-speed videos from low frame-rate rolling shutter lensless videos.

Depth estimation from images is a classic vision problem that has its applications in

computer aided diagnosis, robotics, and autonomous systems with many of these sys-

tems having strict form-factor and weight constraints. Using existing depth estimation

methods like time-of-flight sensors, structured-light or stereo cameras are not feasible,

since these systems have a larger form-factor and are heavier by design. To overcome
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these challenges, the development of miniature light-weight 3D sensing cameras be-

comes essential. It has been shown in [5, 6, 7] that the lensless measurements encode

depth information within a certain depth range. This is because the PSFs scale in size

with the depth of the point source. Thus a single lensless measurement is actually a

compressed and multiplexed representation of a 3D scene. Therefore, to reconstruct

a 3d scene, one needs to solve a highly underconstrained inverse problem on top of

the challenges already described for 2D scene reconstructions. [5, 6, 7] solve it using

slow iterative methods and strong hand crafted priors which work only for highly sparse

scenes and fail to generalise otherwise. [8] uses an alternating optimization approach to

solve for both intensity and absolute depth from a single lensless measurement. How-

ever, they have only shown results for lensless models with seperable masks which are

known to have poor system characteristics.

Keeping this in mind, We propose an end-to-end feed forward convolutional neural

network for single shot reconstruction of the all-in-focus image and the depth map from

a single Lensless measurement. We refer this network as FlatNet3D which combines

an efficient implementation of a Fourier based inversion stage followed by a robust

fully convolutional network for reconstructing the all in focus image and a depth map.

We then evaluate its reconstruction performance over a well known simulated dataset

over various noise levels. To verify the robustness of FlatNet3D, we perform exten-

sive experiments over real scenes captured by PhlatCam[7]. Finally to demonstrate an

application, we finetune our model over a simulated RGB-D endoscopy dataset.

In summary, this work has the following key contributions:

• To propose an end to end three stage feed forward fully convolutional network
for reconstructing rgb frames from a single rolling-shutter lensless measurement
with a physics based inversion stage.

• To quantitatively evaluate its performance over simulated images.

• To propose an end to end three stage feed forward fully convolutional network
for motion recognition from single rolling-shutter measurements and to compare
its performance with a natural image classifier.

• To propose an end to end two stage feed forward fully convolutional network for
reconstructing depth map and rgb image from a single lensless measurement with
an efficient physics based implementation of the learnable inversion stage.

• To quantatively evaluate its performance on a simulated dataset over various lev-
els of noise.
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• To evaluate its performance qualitatively on actual scenes captured by a lensless
camera.

• To demonstrate the utility of our model in endoscopy scene reconstructions.

4



CHAPTER 2

Background and Problem Statement

2.1 The Point Spread Function

Optical masks can be of various types like an amplitude mask, a phase mask or a diffuser

mask based on diffraction. The treatment of those masks is howeevr very similar as far

as the camera forward model is concerned. Suppose we place a coherent collimated

point light source at a distance z from the camera’s aperture on the camera’s axis. The

sensor recording reveals a mask pattern formed that we denote as the Point Spread

Function(PSF) H(z). It can be shown using Fourier optical analysis and the paraxial

approximation that the PSF is shift invariant. We also implicitly assume that a scene

consists of various incoherent distant scene points which renders the system linear. It

should be noted that this linearity is valid only if all the scene points are in the same

depth plane. as z varies, this PSF H(z) varies with z, for example as z decreases, the

light source is nearer to the mask and hence the PSF obtained is a scaled up version of

H(∞). The depth dependence of the PSF can be denoted as:

Hz(x, y) = H∞(
x

1 + d/z
,

y

1 + d/z
), (2.1)

((a)) Phlatcam A ((b)) Phlatcam B

Figure 2.1: PSF variations of Phlatcam



where x,y are the x and y coordinates of scene doints, z is the depth, H∞ is the PSF

when the light source is placed at the optical infinity which we will be referring to as the

"PSF at infinity" in this work here on. d is the mask-sensor distance which is typically

kept small in case of lensless cameras. We can see that as z becomes larger and larger,

the PSF converges to the PSF as infinity, since the pixel pitch of the camera is finite,

this convergence happens at a finite depth zmax.This imposes a physical limitation over

the depth based multiplexing of PSFs beyond this zmax. For Phlatcam[7], this zmax is

equal to 20cm and hence H20cm = H∞.

2.2 The 2D Forward Model

Figure 2.2: 2D Lensless measurements: As we see, the measurement bears no resem-
blance to the actual scene and lacks local features due to which, we cannot
use learning based methods directly. As we shall see later, this motivates
the use of a Fourier based inversion stage.

In this section, we will formulate the camera forward model which is the function

that maps a scene to a measurement. The forward model can be mainly categorised as

separable and non-separable. Since Phlatcam [7] uses a non-separable mask we shall

stick to the non-separable forward models only in this work.

Firstly let us consider a 2D scene x placed at a depth z, the camera forward model

is a linear system that can be formulated as:

y = Φzx+ n (2.2)

where y is the measurement, n is the additive noise, and ϕ is a generalized linear trans-

formation. In general this Φ has a large memory footprint and this transformation re-
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quires a large computation capacity. Reconstructing a scene with O(N2) scene points

requires a Φ of the order O(N4). Due to its computational complexity, the forward

model of Phlatcam cannot be simulated easily unlike its separable counterparts.

By adding an aperture over the lensless mask and by exploiting the Linear shift in-

variant property of PSF it was shown by [7, 6] that the camera forward model can be

written as a convolution in the space domain or equivalently an elementwise multipli-

cation in the Fourier domain.

Y = Hz ∗X +N (2.3)

Where Hz is the PSF and ϕz is the circulant matrix of Hz. If the sensor is not large

enough compared to the PSF and the FoV, the measurement can overshoot the sensor

and the measurement is hence a cropped version of the measurement.

Y = C(Hz ∗X) +N (2.4)

where C is the sensor cropping operation and it causes the system to be non circulant. In

Phlatcam however the sensor size is designed to be big enough and hence we will ignore

the effects of cropping. This model can be simulated with much lower computation

complexity using fourier multiplication and FFT algorithm [9] O(N2logN). Consider

a scene placed at a depth greater than or equal to zmax or equivalently the camera’s

optical infinity. Since we assume that all objects are placed at optical infinity this scene

is equivalent to a 2D scene as far as the camera’s forward model is concered since H

for these depths is equal to H∞. This is similar to [10] except that there is no cropping

and the PSF is changed.

2.3 The Rolling Shutter Forward Model

The above forward model describes a camera with global shutter or a rolling shutter

camera with a scene with no motion (or conditions in which a rolling shutter camera

works exactly like a global shutter). The camera’s shutter function is the temporal

variation of the exposure window in the sensor. A typical rolling shutter exposes a row

of pixels for Te seconds (exposure time) and the next row is exposed after Tl seconds
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Figure 2.3: The Camera Rolling Shutter Temporal variation of a typical rolling shut-
ter. Orange denotes a read operation, grey denotes currently exposing.

(line time). This shutter function can be represented in discrete time using the shutter

Figure 2.4: Rolling Shutter Lensless Visualisation: Vertical motion Here we show
an example of the rolling shutter lensless pipeline using Phlatcam and a
simple scene. the scene irradiance is zero except in the 20th,50th and 70th
(coloured correspondingly) time sample to represent motion in the direction
of the shutter. We can clearly discern the order in which the blobs appear
exactly by using the rolling shutter measurement since the pixel values are
related to the temporal variation of the shutter but we cannot do the same
for the global shutter measurement.
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mask S[n;x, y] where n is the nth read time or the nth row read. For most shutter

functions, S is constant along the row hence we can denote it as S[n; y]. Ignoring

the effects of PSF scaling or alternatively considering a scene placed beyond zmax or

alternatively considering a 2D scene, the resulting measurement can be formulated as:

y =
N∑

n=1

S[n; y].(h(x, y) ∗ v(x, y, n)) +N (2.5)

align where h is the lensless mask, v(x, y, n) is the scene point at the nth time sample

and N denotes the number of frames that is a function of Te, Ti and the shutter function

parameters.

Figure 2.5: Rolling Shutter Lensless Visualisation: Horizontal motion Here we
show an example of the rolling shutter lensless pipeline using Phlatcam and
a differnet scene. the scene irradiance is zero except in the 20th and 50th
(coloured correspondingly) time sample and the motion is in a perpendicu-
lar direction to the shutter.
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Figure 2.6: 3D Lensless PSFs An extremely simplified scene for Visualization. The
PSF pattern at 1cm(magenta) is a scaled up version of the PSF pattern at
20cm(yellow). This difference helps us distinguish the depth of the two
points. Actual scenes are much more complex and finding depth becomes
non trivial.

2.4 The 3D Forward Model

The PSF scales in the x and y dimensions with depth as 2.1. The measurement can be

written as:

y =

∫
z

V (z) ∗H(z) +N (2.6)

where H(z) is the on axis PSF calibrated at a depth z and V (z) is the set of scene

points at a depth z. In other words, V (z) is the collection of irradiance values of all

scene points exactly at a depth z and 0 otherwise. In our study, we discretize depth into

discrete depth planes parallel to each other. For this case, 2.6 reduces to [7]:

y =
∑
k

V (k) ∗H(k) +N (2.7)

where k is the kth depth plane.

2.5 Summary of Assumptions

• 2D Forward model: The depth is taken to be greater than zmax or the scene is
assumed to be 2D to ignore the depth scaling of PSF. The scene is assumed to be
static such that the rolling shutter is processed as global shutter.
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• Rolling shutter Forward model: The depth is taken to be greater than zmax or
the scene is assumed to be 2D to ignore the depth scaling of PSF. The scene is
assumed to be dynamic.

• 3D Forward model: The depth scaling of PSF is taken into consideration. The
scene is assumed to be static such that the rolling shutter is processed as global
shutter.

• The sensor is large enough to ignore cropping effects.

• The PSF is shift invariant.
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CHAPTER 3

Related work

3.1 Mask Based Lensless Imaging

Ultra-thin mask-based lensless cameras replace the lens of a traditional lens-based sys-

tem with an optical mask typically placed close to the sensor. FlatCam[11] uses a

separable amplitude mask placed approximately a millimetre from the sensor that was

used to show 2D imaging and 3D volume reconstruction in [5]. DiffuserCam[6] used

a random off-the-shelf diffuser as a mask placed 10 millimetres from the sensor. The

authors demonstrated 3D imaging ability using this prototype. More recently, its ability

to do high speed imaging[10] has also been demonstrated. PhlatCam[7] was recently

proposed and uses a designed phase-mask with specific properties that make solving

the inverse problem easier. The authors demonstrated its ability to do both 2D and 3D

imaging. As mentioned previously we will be using the same forward model and PSFs

as [7].

3.2 Learning for Lensless Imaging

Recently many learning based algorithms have been proposed for various types of lens-

less scene reconstructions. [1] proposed a feed forward deep network that performed

photorealistic 2D scene reconstructions from separable mask FlatCam measurements

utilizing a learnable fourier based inversion. [2] proposed an unrolled deep network

for performing 2D image reconstructions from DiffuserCam measurements. Recently,

[3] proposed FlatNet that was shown to perform 2D intensity reconstructions for any

general lensless system, for both separable and non-seperable masks. [4] proposed a

deep image prior based unsupervised method for lensless reconstructions.



3.3 High Speed Lensless Imaging

Traditionally, videos that are captured by sampling the entire grid of pixels for each

frame are compressed by exploiting spatial and temporal redundancies. Compressive

video sensing aims to exploit these redundancies during the capture itself. This can be

used to overcome the chip bandwidth limit that constrains conventional cameras. the

Rolling shutter Lensless system is essentially a low cost system for compressive sens-

ing where the PSF provides global spatial multiplexing and the CMOS rolling shutter

function provides a natural temporal encoding that is essential for compressive sensing.

[10] uses an iterative algorithm FISTA to recover 140 frames from a single DiffuserCam

capture. However FISTA requires highly compressible and sparse scenes to work well.

Even for 2D image recovery from PhlatCam and DiffuserCam measurements, FISTA

fails to generalise on complex scenes and hence learning based algorithms were devel-

oped for reconstruction of 2D scenes(specified in the section above). The only learning

based algorithm existing in literature for lensless reconstruction was proposed by [4].

This algorithm utilizes an unsupervised deep image prior to reconstruct frames from a

DiffuserCam measurement. The algorithm requires about 60,000 iterations per image

during inference time which requires several hours on a typical GPU. The results are

also over smoothened and lack temporal consistency. Our work proposes a Feed For-

ward Network to reconstruct frames from a single measurement that aims with higher

perceptual quality in a fraction of a second. Further we extend our framework for high

speed motion recognition from a single rolling shutter measurement using a similar feed

forward approach.

3.4 Motion Recognition

Object video recognition has many interesting applications in fields like surveillance,

gaming and assisted living environments. Many approaches exit in literature for video

classification tasks and motion recognition, however due to the limited bandwidth of tra-

ditional lensed cameras, highspeed motion cannot be discerned. As a solution to this,

the rolling shutter measurements can yield motion information with the same disad-

vantages of shutter and focusing action of lenses. However The global multiplexing of
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lensless images opens up a new possibility of accurate motion recognition from rolling-

shutter lensless measurement. In this work, we propose an end-to-end framework for

predicting human motion classes using simulated rolling shutter lensless measurements.

Further we also compare it with a corresponding high speed lensed camera aka the "best

case classifier" using a well known comprehensive dataset [12].

3.5 3D Lensless Imaging

There are no deep learning approaches for 3D scene estimation from single-shot lensless

captures. Moreover, extending the 2D methods for 3D is not trivial and a naive exten-

sion can lead to significant blow-up in memory requirement and parameter count.[6, 7]

performed 3D voxel reconstructions from 2D lensless measurement using strong scene

priors with iterative optimization routines like FISTA and ADMM. The authors in [8]

proposed a joint intensity and depth reconstruction framework using an alternating op-

timization algorithm. However, this approach was only shown for a separable model

and extending it to non-separable model is non-trivial since memory required quickly

blows up. The above works rely on strong hand-crafted priors, traditional optimization

routines and are iterative in nature. In contrast, our proposed approach is based on a

feed-forward neural network that learns the priors from the data itself and is extremely

fast. [13, 14] use programmable masks and multiple measurements for 3D estimation

from thicker form-factor lensless cameras. We show 3D imaging capabilities of lensless

cameras for a single passive mask with an ultra-thin geometry which is a much more

challenging problem.
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CHAPTER 4

Proposed Method

4.1 Highspeed video reconstruction from single rolling

shutter lensless captures

Our framework comprises of three parts, the MeasNet, the fourier based trainable in-

version layer and a CNN based reconstruction block called the EnhanceNet.

Figure 4.1: Highspeed Reconstruction framework Our proposed network first maps
the measurement slivers into an intermediate measurement stack. The mea-
surement stack is then deconvolved and passed through a convnet for per-
ceptual enhancement of video.

4.1.1 MeasNet

Since we only have access to a single rolling shutter measurement, we need to recover

frame-specific information for a given timestep and shared information regarding the

entire video. We achieve this by multiplying the rolling shutter measurement with the

shutter function or equivalently selecting the exposing rows for a particular time step.

We refer to these as the measurement-slivers. The aim is to reconstruct the lensless

measurement corresponding to each frame which we refer to as the intermediate mea-

surements. The intermediate measurements form a video of lensless images wherein

each image is the 2D global shutter measurement corresponding to each scene frame.



Due to its capabilities in image reconstruction, we employ a Unet[15, 16] to achieve

this extrapolation. MeasNet allows us to bypass the need for a RNN which requires

huge amounts of memory and computation power, especially for high frame rates.

4.1.2 Trainable Inversion

We base our Trainable inversion layer on [3]. Th inversion layer performs the following

operation individually for each frame:

Ŝ = F−1(F(W )⊙F(Y )). (4.1)

where Y is the intermediate measurement predicted by MeasNet, Ŝ is the deconvolved

Image, F and F−1 are the DFT and the inverse DFT respectively, ⊙ is the Hadamard

product or the element-wise product and W is a trainable filter initialized by the well-

known Wiener filter: F−1( H∗

γ+|H|2 ) where γ is a regularization constant.

4.1.3 EnhanceNet

Since the intermediate outputs can have errors and since the Fourier deconvolution is

extremely sensitive to such differences, the deconvolved outputs are passed through a

perceptual enhancement stage based on a Unet[15, 16]. This Unet is used to map the

intermediate deconvolved outputs to perceptually enhanced video frames.

4.1.4 Loss Function

MSE Loss:The Mean Squared error is used to measure distortion between the ground

truth and the estimated intensity image. Given the ground truth image Itrue and the

estimated image Iest, this is given as:

LMSE = ∥Mgt − Ipred∥22 =
N∑

n=0

(Itrue,n − Iest,n)
2. (4.2)

If Mgt and Mpred are the ground truth and predicted intermediate measurements then:

LMSE−meas = ∥Mgt −Mpred∥22 (4.3)
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If Igt and Ipred are the ground truth and predicted frames then:

LMSE−img = ∥Igt − Ipred∥22 (4.4)

Perceptual loss: we use perceptual loss introduced by Johnson et al [17]. We use a pre-

trained VGG-16 [18] model to extract feature-maps between the second convolution

and second max pool layer and between the third convolution layer and fourth max

pool layer. Suppose these activations are denoted as ψ22 and ψ34, then

Lpercept = ∥ψ22(Igt)− ψ22(Ipred)∥22 + ∥ψ34(Igt)− ψ34(Ipred)∥22 (4.5)

Total loss: The total loss is given by a weighted sum of the MSE and perceptual losses

as

Ltotal = λperceptLpercept + λimageLMSE−img + λmeasLMSE−meas (4.6)

where λpercept, λimage and λmeas are the weighting constants.

4.2 Motion recognition from single rolling shutter lens-

less captures

We base the framework for motion recognition from rolling shutter lensless captures on

our approach for image reconstruction. This network has a MeasNet and a Trainable

inversion exactly as the ones above that are used to produce the intermediate RGB

outputs.

4.2.1 ClassificationNet

Instead of passing the intermediate RGB outputs to the EnhanceNet for perceptual en-

hancement, we directly pass them to a CNN based feed-forward classification network.

This also reduces the overall model complexity introduced by the bulky Unet of the En-

hanceNet. This network can be a 2D or a 3D CNN or a special network like Resnet-18.

The output of this network is a probability vector (after applying the softmax activation)

corresponding to 10 classes used for the Crossentropy loss and argmax predictions.
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4.2.2 Loss Function

Crossentropy loss: For the multiclass classification problem, the categorical crossen-

tropy loss is given as

LCCE = −
M∑
c=1

yo,c log(po,c) (4.7)

where yo,c is the binary indicator that the ground truth values belong to a class c and po,c

is the probability vector obtained from the softmax activation of the model output. M is

the total number of classes.

Total loss: The total loss is given by a weighted sum of the MSE and CCE loss as

Ltotal = λimageLCCE + λmeasLMSE−meas (4.8)

where λimage and λmeas are the weighting constants.

4.3 3D Reconstruction from single lensless measure-

ments

Figure 4.2: FlatNet3D. Our proposed network first maps the measurement into an in-
termediate 3D stack. A convnet then uses this stack to generate intensity
and depth estimates. Finally, the entire network is trained in an end-to-end
fashion using VGG loss on intensity images and L1 loss on depth maps.
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4.3.1 Physics-based measurement to 3D mapping

Lensless measurements, due to global multiplexing, lack local structures[3, 2]. Also,

from Equation 2.7 it can be seen that the measurement is a compressed representation

of the 3D volume. Hence, we need to map the measurement to an intermediate stage

having image-like local structures while simultaneously preserving the 3D information.

We do so by solving, for each depth plane, the following approximated regularized 2D

least squares formulation:

SE(z) = argmin
S(z)

||Y −H(z) ∗ S(z)||2F + λ(z)||P (z) ∗ S(z)||2F . (4.9)

where, ∗ represents 2D convolution, Y is the lensless measurement, H(z) is the PSF

corresponding to depth z, S(z) corresponds to scene points at depth z and P (z) is a

regularization filter. The solution to Equation 4.9 can be represented as,

SE(z) = F−1(F(Y )⊙W (z)), (4.10)

where,

W (z) =
F(H(z))∗

|F(H(z))|2 + λ(z)|F(P (z))|2
(4.11)

This SE(z) in the above equation resembles a noisy focal stack with scene points at that

particular depth z appearing sharp. Once this stack is obtained, we pass it through the

next fully convolutional volume processing stage.

Given that both Equations 4.10 and 4.11 are fully differentiable, we learn the filters

P (z) and the vector λ(z). Unlike the trainable inversion stage of FlatNet[3] as well as

the highspeed framework, the learned mapping corresponding to FlatNet3D has much

less parameters. This is because of the efficient parameterization of W (z) using Equa-

tion 4.11, where only P (z) and λ(z) are learned, which are of much lower dimensions.

4.3.2 3D stack to intensity and depth prediction

The next stage of FlatNet3D takes in SE from the previous stage and outputs the depth

and intensity predictions. Owing to its large scale success in image-to-image transla-

tion, image segmentation and depth reconstruction problems, we choose a U-Net [15]
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to learn this mapping from SE to final intensity and depth map. We have kept the kernel

size fixed at 3 × 3 and the number of filters have been gradually increased from 64 to

1024 across 5 encoder blocks and then reduced back to 64 across 4 decoder blocks.

The number of input channels of the U-Net is thrice the total number of discrete depth

planes C with each set corresponding to R,G and B channels of each image in the stack.

Since we formulate our depth estimation as a regression problem, the decoder part of

the U-Net has 4 output channels where the first three channels output the RGB intensity

estimate and the last one is used to predict the depth of the pixels. Owing to the success

of attention gates in previous works, we have used grid-attention proposed by [19] that

enables the model to “focus" on the important regions and retain only the necessary

activations.

4.3.3 Loss Function

L1 loss: We formulate the depth estimation as a regression problem for each pixel.

Given the target depth dref and the predicted depth image dpred, which is also the output

of the neural network, the L1 loss is given by the L1 norm between dref and dpred

LL1 = ||dref − dpred||1 (4.12)

VGG loss: To learn the intensity mapping, we use the VGG loss proposed in [17]

which is known to produce photorealistic images. Let ϕj denote the feature map of size

Cj ×Wj × Hj obtained by the j-th activation within the VGG19 network. The 22nd

convolutional layer in VGG model has been used as the perceptual output. We then

define the VGG loss as the Euclidean distance between the feature representations of a

reconstructed image Irec and the reference image Iref .

LV GG =
1

CjWjHj

||ϕj(Irec)− ϕj(Iref )||22 (4.13)

Total loss: The total loss used for joint training is given by a weighted sum of the

L1 and the VGG loss as

Ltotal = LV GG + αLL1 (4.14)

where α is the weighting constant.
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CHAPTER 5

Experiments and Results

5.1 Implementation Details

For Lensless Video Reconstruction, We use the labeled part of the YouTube-VOS

dataset [20]. Since the scenes are extremely complicated and have camera jitter, we

remove the background using the ground truth video labels and filter out only the salient

objects. By doing this, we are ensuring that the camera is stable and only the scene is

varying while simulating. This dataset consists of 3420 train 49 validation samples.

Since the number of frames in the dataset is less than what is required for simulating

the lensless measurements, we use SuperSlomo [21] interpolation to increase the frame-

rate by 6 times. We add Gaussian noise with a standard deviation of 5 × 10−3 to the

final measurements. For our experiments, we chose a scene size of 160 × 160 and a

measurement size of 320× 384. We set the number of measurement-slivers as 10, as a

result of which our framework provides 10 intensity frames per lensless rolling shutter

measurement. Following Antipa et al. [10], we use a dual rolling shutter. The model

is trained using Adam [22]optimizer with initial learning rate of 3 × 10−4 with cosine

annealing scheduler[23]. In our experiments, we set λMSEmeas , λMSEimg
and λpercept to

be 1, 5 and 0.1 respectively. We use both 2D [15]and 3D Unets [16] for both MeasNet

and EnhanceNet where the number of filters is gradually increased from 32 to 128 and

then decreased back to 32. NVIDIA GeForce GPUs were used for our experiments.

For Lensless Activity Recognition, we use the Something-Something dataset (Ver-

sion V2) [12]. The Something-Something dataset consists of humans interacting in

simple actions with everyday objects, and we choose the dataset for its diversity. The

train set and validation set are constructed from 28,000 and 4900 randomly sampled

videos from the dataset. For this dataset also, the number of frames in a video is lesser

than the number required by the shutter and hence we interpolate the frames to yield

videos having 4 times the frame-rate using SuperSlomo[21]. The number of classes in

this dataset is 174 and to make the classification task simpler, we use filter the same



41 easy classes and map them to the same 10 coarse classes defined in [12]. Finally,

we add Gaussian noise with a standard deviation of 5× 10−3. For our experiments, we

chose a scene size of 160×160 and a measurement size of 320×384. Following Antipa

et al. [10], we use a dual rolling shutter. We set the number of measurement-slivers as

10, as a result of which our framework provides 10 intensity frames per lensless rolling

shutter measurement. We use the 2D Dronet[24] as the ClassificationNet. In our exper-

iments, we set λMSEmeasandλCCE to be 1, and 3.0 respectively. The model is trained

using Adam [22]optimizer with initial learning rate of 3 × 10−5 with cosine annealing

scheduler[23]. NVIDIA GeForce GPUs were used for our experiments.

For the 3D Lensless reconstruction task we consider a scene depth range of upto

20cm. We capture real PSFs by placing a point source at 25 different depths between

3.6cm to 20cm from PhlatCam. Since there is no existing dataset for lensless depth and

intensity with measurements and groundtruth pairs, we utilize existing RGB-D datasets

for generating simulated measurements. Hence, we use intensity and disparity images

of a subset of the FlyingThings3D[25] dataset to generate lensless measurements using

the forward model described in Equation 2.7. We use 26066 RGB-D scenes for this

purpose(21818 for training, 3000 for validation and 1248 for testing). Given that the

FlyingThings3D dataset provides only the disparity, we first convert it to depth and

scale the depth to the above range. Using the captured PSFs, the scenes, and the depth

maps, we simulate the measurements. Finally, we add Gaussian noise to the simulated

measurement so that the measurement PSNR corresponds to 20-50dB. We then use this

simulated dataset for training and testing purpose. In our experiments, we consider

a scene size of 128 × 128. For testing on real data, we used real PhlatCam captured

with scenes placed within the above depth range in front of the camera. The Adam

optimizer[26] was used to train the network with a learning rate of 10−3. Due to the

GPU constraints, we used a batch size of 7. The weight α was varied from 0.001 to

0.002. NVIDIA Titan X GPUs were used for our experiments.
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5.2 Baselines

5.2.1 Highspeed Lensless reconstruction

We compare our proposed method with some of the traditional iterative algorithms.

Video reconstruction is achieved by solving a TV-norm regularised least squares prob-

lem:

argmin
v≥0

1

2
∥Av − b∥22 + τ∥∇x,y,zv∥1 (5.1)

where v is the scene, A is the linear operator denoting the camera forward model, b is

the lensless measurement, τ is a weighting constant and ∇x,y,zis the gradient operator.

[10] uses FISTA to solve this formulation of the problem and can recover 140 frames

from each measurement.

Monakhova et al [4] use an untrained deep network (UDN) utilize a Unet-like net-

work as an image prior. The network is optimised so that the estimated video is consis-

tent with the forward model. The network is untrained, that is it does not have a training

stage and requires a number of iterations during its test time. This testing phase is akin

to the traditional training of neural networks but it is specific to that image only and

hence the model has to be ’re-trained’ or ’iterated’ for every image. Hence, this frame-

work falls under the class of Deep-Image-Prior methods for image reconstruction.

5.2.2 Highspeed Activity recognition

To compare our approach, we take the classifying CNN and directly train it on the natu-

ral images corresponding to the input measurement-slivers provided by the something-

something dataset. This provides a ceiling performance for our model that is similar to

the baselines proposed in the dataset’s paper[12].

5.2.3 3D Lensless reconstruction

For comparison with traditional approach, we use two different methods to obtain a 3D

volume or focal stack and use this stack to estimate depth and intensity images. The first

approach is to solve, for each depth plane, the Laplacian regularized 2D least squares
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given by:

Ŝ(z) = argmin
S(z)

||Y −H(z) ∗ S(z)||2F + λ||L ∗ S(z)||2F . (5.2)

Where Y is the measurement, ∗ represents 2D convolution, S(z) are the scene points

at depth z, H(z) is the PSF corresponding to depth z, L is a 2D Laplacian filter of size

3× 3 and λ is a constant. The solution to Equation 5.2 is given by:

Ŝ(z) = F−1(
F(H(z))∗

|F(H(z))|2 + λ|F(L)|2
⊙F(Y )). (5.3)

This is the commonly used 2D Constrained Least Squares (CLS) filter used in image

processing [27]. The second approach is to use the alternating direction method of

multipliers (ADMM) proposed in [6, 7]. The ADMM based approach treats the 3D

reconstruction problem as a regularized least-squares optimization problem:

Ŝ = argmin
S

1

2
||Y −

∑
z

H(z) ∗ S(z)||22 + λ||Ψ(S)||1 + λ1||S||1 (5.4)

Here, Ψ is the gradient operator, S is the 3D volume and Ŝ is its estimate. Rest of the

notations have the same meaning as that in Equation 5.2.

The 3D volume obtained by using the above methods may have non-zero values for

a pixel at more than one depth plane. Hence we must apply other methods on top of 3D

volume estimation to obtain the intensity image and the depth map. To obtain the same,

we have used a graph-cut [28] to minimise the following energy function formulated in

[29]

E(x) =
∑
i∈V

Ei(xi) + λ
∑

(i,j)∈E

Eij(xi, xj) (5.5)

Where E(x) is the energy of a depth labelling x, xi is the depth assigned to a pixel

i ∈ V and Ei(xi), called the unary potential of a pixel i ∈ V is a measure of defocus

and is obtained by computing exp(−|∇I(i)|2) followed by gaussian averaging over a

fixed window. Eij(xi, xj) = |xi − xj| where (i, j) ∈ E , the set of edges connecting

adjacent pixels. λ is a weighting constant between the unary and pairwise terms. The

RGB value of the pixel i in the all-in-focus image is the corresponding RGB value of

the xi-th stack.

26



We call these methods CLS+Graphcut and ADMM+Graphcut depending on the ap-

proach used to obtain the 3D volume.

We also compare against a modified version of FlatNet[3] which was originally

proposed for 2D scene estimation from lensless measurements. We modify FlatNet by

replacing its inversion stage with the learned mapping. However, this mapping now uses

only the PSF corresponding to the hyperfocal distance. We also modify the perceptual

enhancement stage of FlatNet to predict both the RGB and Depth map. We refer to this

model as FlatNet2D.

5.3 Metrics:

For quantitative evaluation, we use a combination of PSNR (in dB), SSIM and LPIPS[30]

for intensity reconstructions. While PSNR measures the signal distortion, SSIM and

LPIPS are useful for quantifying the perceptual quality of the estimates. Higher values

of PSNR and SSIM, and lower values of LPIPS indicate better estimates. For video

classification we report the top-k accuracy for k ∈ [1, 2, 5]. Top-k accuracy can be

interpreted as the fraction of times, the top-k predicted probabilities indeed belong to

those k classes and hence the top-1 accuracy is basically the conventional model accu-

racy. For depth predictions, we use Root Mean Square Error (RMSE) (in cm) for our

evaluation. We report the average metrics evaluated on the simulated test set only since

the real data doesn’t have corresponding groundtruths.

5.4 Results

5.4.1 Comparison with baselines

5.4.1.1 Highspeed video reconstruction

We compare both our proposed method using a 2D Unet and a 3D Unet for two scenes in

figures and with the traditional methods. We see that our proposed methods produces

images with much better perceptual quality and temporal consistency for complex mo-

tions than FISTA and UDN. UDN suffers from over-smoothening which is reflected in
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its high PSNR values which FISTA has points which fail to move even though the orig-

inal scene has them moving. UDN takes 4-6hrs per image, FISTA takes about 10mins

and our method takes a fraction of a second per image. Further we notice that the 2D

model works better than the 3D model, this is because that 2D model can be made

bigger without too much computational overhead and the enhancenet is initialized with

Flatnet[3].

Figure 5.1: Qualitative comparison on simulated Youtube VOS images. Our method
surpasses both the baselines in terms of perceptual quality and temporal
consistency.

5.4.1.2 Highspeed motion recognition

We compare our proposed method with the best case classification model using the

same CNN classifer but training it using simply the natural images from the dataset

without using the rolling-shutter measurements. The top-k accuracies are given in table

5.1 Additionally, we also compare them with the pre-trained 2D CNN metrics presented

as a baseline in the original paper [12]. We can see that even in best case, the accuracies

are quite low even for easy classes, this points to the extreme complexity of the problem

that is reflected in poor accuracies.
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Figure 5.2: Qualitative comparison on simulated Youtube VOS images. Our method
surpasses both the baselines in terms of perceptual quality and temporal
consistency.

Method Top-1 Top-2 Top-5
Proposed method 29.69% 46.92% 76.7%

DroNet[24] 39.13% 55.65% 82.55%
Pretrained-2D CNN [12] 45.30% 65.90% N/A

Table 5.1: Comparison with the best case classifier The accuracies here are calculated
as 100*(1 - top-k error)

5.4.1.3 Simulated 3D lensless reconstructions

We present the quantitative comparison of our approach against the baselines. Ta-

ble 5.2 reports the average metrics evaluated on the simulated test set described in

section 5.1. We can see that FlatNet3D clearly outperforms traditional optimization

based approaches like ADMM+Graphcut or CLS+Graphcut in terms of accuracy. Also,

FlatNet3D is nearly 100x faster than ADMM+Graphcut and nearly 10x faster than

CLS+Graphcut. Among the learning based approaches, FlatNet3D outperforms Flat-

Net2D because the latter isn’t able to extract the depth information accurately from a

single PSF. We provide visual results for the proposed FlatNet3D against the baselines

in Figure 5.3 for two simulated scenes. We can conclude that FlatNet3D provides bet-
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Method PSNR (in dB) SSIM LPIPS RMSE (in cm) Inference Time (in sec)
CLS+Graphcut 16.24 0.56 0.51 4.87 1.21

ADMM+Graphcut 15.94 0.63 0.32 5.26 10.26
FlatNet2D 19.86 0.65 0.30 1.92 0.011
FlatNet3D 21.91 0.79 0.14 1.42 0.013

Table 5.2: Quantitative comparison with other approaches. A comparison of the av-
erage metrics for the proposed FlatNet3D along with the baselines evaluated
on the simulated test set.

Figure 5.3: Visual comparison on simulated dataset

ter depth maps and perceptual intensity quality which is reflected by lower LPIPS and

RMSE values. The traditional approaches provide noisy intensity and depth estimates

while FlatNet2D is unable to extract sharp all-in-focus image and accurate depth map

from a single focal stack image.
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Figure 5.4: Qualitative comparison on real captures. We show real result for two
scenes. FlatNet3D provides better contrast for intensity images and cleaner
depth maps for both scenes.

5.4.1.4 Real 3D lensless reconstructions

Since real data has no ground truth, we have provided a visual comparison on real

data captured using PhlatCam[7] in Figure 5.4. Similar to results on simulated data,

FlatNet3D provides better quality intensity and depth estimates. The depth estimates

using FlatNet3D has fewer spurious regions especially for the right scene which lacks

texture. Baseline traditional methods suffer from noise for these data as well, with

ADMM+Graphcut performing better than CLS+Graphcut. As with the simulated case,

FlatNet2D is unable to extract sharp intensity image and accurate depth map from a

single focal stack image. Since dark regions can have ambiguous depth values, we

throw away the depth values corresponding to dark scene pixels in the figure 5.4 for

better visualization.

5.4.2 Ablation experiments

In this subsection, we evaluate the performance of our 3D lensless model against its

baselines for images having different noise levels. We vary the simulated measure-

ment’s PSNR from 20-50dB by varying the noise levels and observe the intensity and

depth reconstructions for all the methods. For traditional approaches, we tune the reg-

ularization parameters for the validation dataset for each noise level separately for op-

timal performance. In Figure 5.5, we have shown the average LPIPS of intensity esti-

mates and the RMSE of depth estimate for various noise levels. We can observe that

traditional approaches perform consistently worse than the learning-based approaches

both in terms of intensity and depth quality despite having carefully tuned parameters.
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Figure 5.5: Noise ablation. We vary the measurement noise and evaluate the perfor-
mance of all the methods.

5.4.3 Applications

Getting absolute depth information from endoscopic scenes is of vital importance for

medical diagnosis of tumours, polyps and carcinomas. The primary difference between

these images and the images of Flying Things 3D is that the scenes are extremely low

in texture and that the surface is usually reflective due to mucus. In this experiment

we show that low form-factor lensless cameras can allow absolute depth and intensity

imaging from endoscopic scenes from single shot captures using our above 3D recon-

struction paradigm. To do this, we simulate lensless measurements from the colon

subset of the synthetic EndoSLAM dataset[31] that provides intensity images along

with relative depth maps. We use 5000 colon samples for training and 100 samples

each from colon, small intestine and stomach for testing. First, we have undistorted the

input images using the calibration files provided by the authors. We have then scaled

the depth to a maximum of 10cm and finetuned our trained FlatNet3D on this dataset.

Figure 5.6 shows visual results for the intensity and depth maps for various scenes in

the digestive tract. Inspite of the having extremely low textures, FlatNet3D is able to

extract absolute depth information from a single measurement.
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Figure 5.6: Performance on EndoSLAM Dataset. We have finetuned FlatNet3D on
the EndoSLAM RGB-D dataset. It can be seen that FlatNet3D is able to
provide high quality depth maps despite the scenes being extremely low in
texture.
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CHAPTER 6

Conclusion and Future work

In this work we propose an end-to-end novel deep network for reconstructing video

from a single shot lensless capture. Our method produces sharper and perceptually

better videos compared to the traditional methods. It is able to reconstruct videos in

much lesser time(a fraction of a second) when compared to other methods(hours).

However our method need improvement on the temporal consistency that results

from having lesser number of slivers and a relatively smaller CNN network. Also, the

dataet used is complex but is still sparse. Further work can focus on better temporal

consistency for non-sparse scenes. Recent literature shows promise in alleviating this,

using optical flow based loss functions.

We also proposed an end-to-end feed forward network for motion recognition. The

results shed light on the extreme complexity of the problem. Our approach cannot han-

dle large motions although it shows comparable performance with the baselines. Further

work can can focus on improving the model using recurrent networks and applying it

to sparse point-based motion capture rather than dense activity recognition task.

We also proposed a novel deep network for intensity and depth estimation from

monocular lensless captures. Our method exploits the scaling of lensless PSF at close

depth ranges for this estimation and the prior in the data for doing so, leading to superior

quality intensity and depth estimates. A key component of our approach is the physics-

based learned 3D stack mapping stage, which is very efficiently parameterized leading

to less memory usage and computation.

FlatNet3D’s performance is however, limited by the lensless camera’s physical ge-

ometry constraints (zmax). Although they can be leveraged for tasks within this depth

range like monocular 3D endoscopy imaging and microscopy, it is unfit for 3D recon-

structions beyond this depth range. Future work can explore the possibility of getting

depth estimates using multiple lensless cameras, monocular cues and dynamic mask

patterns similar to [13].
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