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ABSTRACT

KEYWORDS: Structure-from-Motion; 3D Endoscopy; Photometric Stereo; Un-
supervised Learning; Monocular depth estimation; Photometric

Stereo Endoscopic dataset

Endoscopic images provide information about the internal organs, such as those of the
gastrointestinal tract. When it comes to detecting lesions and polyps, the topograph-
ical variation of the lesion as compared to its surroundings is more pronounced than
the colour variation. Therefore, obtaining the three-dimensional information like pixel-
wise depth and surface normals of endoscopic scenes can improve the detection and
classification of lesions as cancerous or benign and also help in minimally invasive
surgery. This project explores approaches based on Structure-from-Motion (SfM) and
Photometric stereo for obtaining pixel-wise depth maps. We have used both traditional
feature extraction and matching techniques and learning-based techniques. An end-to-
end unsupervised learning method for joint estimation of depth and pose is also demon-
strated. Following this, conventional and near-field photometric stereo methods have
been tested. A major contribution of this project is the creation of a synthetic dataset
using the Unity3D environment. It is a dataset of endoscopic scenes captured using
rendered organs with variable illumination conditions. The details of the data genera-
tion pipeline are elucidated in this thesis. To our knowledge, this is the first large-scale
photometric stereo dataset for endoscopic images. This dataset is used to train a fast,
lightweight, near-field photometric stereo model to predict the surface normal maps and
depth maps of endoscopic images. A detailed explanation of the lab setup that will be
used for capturing photometric stereo images of ex-vivo tissues is also provided in this

thesis.
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CHAPTER 1

Introduction

Cancer of the gastrointestinal (GI) tract affect more than 28 million people every year
and this type of cancer represents about 26% of the worldwide cancer incidence and
35% of all deaths related to cancer [1]. The most effective and simple way to screen
such cancers is by direct visual inspection (DVI). Many lesions that occur on the gas-
trointestinal tract that are clinically significant have very unique surface topographies.
This topographical contract is even more pronounced that the variation in the coloura-
tion of these lesions as compared to their surroundings [2]. Such lesions, although
difficult to diagnose using the conventional colour images, can protrude significantly

into the surrounding tissue.

For analysis using conventional endoscopy, the colour variation of the tissues is
the main source of contrast. In fact, the lighting strategies of an endoscope camera
minimize the topographical contract. Conventional methods that rely only on colour
variations are estimated to miss one out of every four lesions [3]. When the topograph-
ical features are pronounced, modifying the imaging hardware so that we can obtain
both conventional colour images and the topography of the surface can greatly improve

the detection and accuracy of classification of the lesions as cancerous or benign.

In addition to cancer diagnosis, the recovery of the three-dimensional structure of
the organs and tissues viewed in endoscopic images is a very important computer vision
task in minimally invasive surgery. A general solution to this problem has several appli-
cations such as enhanced intra-operative surgical guidance, novel-view synthesis, depth
perception, 3D motion estimation and improving pre-operative/intra-operative data reg-

istration [4]].

With these goals in mind, this project aims to produce three-dimensional informa-
tion of the scenes captured by an endoscopic camera. This is achieved by producing
the pixel-wise depth map for the endoscopic images of internal organs, which provides
information about the internal structure and can then be used to detect lesions and tu-

mours. The methods that have been implemented can divided into two broad topics:



Structure from Motion (SFM) and Photometric Stereo. Structure-from-Motion can be
used to produce a sparse point cloud; from which dense depth information can be ob-
tained by stereo methods like plane sweep stereo. Photometric stereo can be used to

produce dense depth and surface normal maps.

Figure 1.1: Obtaining pixel-wise depth from a colour image

Figure 1.2: Improved visibility of lesions on using topographical information

Figure 1.3: Detection of metastatic melanoma

Figure[I.T|shows the aim of the project, which is to produce pixel-wise depth maps.
In Figure [I.2] the lesions which are not distinctly visible in the colour image, can be
seen clearly after obtaining the 3D model from the surface normals. Figure[I.3]shows
the detection of a metastatic melanoma which is once again very distinctly visible in

the surface normal map and 3D rendered model.

The first method that I tried was COLMAP which is an improved version of the

conventional structure from motion approach. This was followed by learning-based
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methods for feature detection and matching, followed by dense depth map reconstruc-
tion. An end-to-end deep learning-based approach to jointly predict depth and relative
pose was also used. Due to unavailability of ground truth depth for endoscopic images,

[ used an unsupervised training approach.

The second approach is based on Photometric Stereo. Both conventional and learning-
based methods have been tested. Since there are no existing labelled photometric stereo
datasets for endoscopic images, such a dataset has been rendered using Unity. A de-
tailed description of the rendering method can be found in the appendix. Using this
dataset, a light-weight, near-field photometric stereo deep learning model has been
trained and the results have been shown in this thesis. The camera and lights setup used
in the simulation mimic a prototype endoscope developed in our lab, (i.e. the Compu-
tational Imaging Laboratory, IIT Madras) the details of which are also explained in this

thesis.






CHAPTER 2

Correspondence-based methods: Structure from Motion

2.1 Overview of SfTM

Structure from Motion is the method of reconstructing the 3D structure of a scene from
images of the scene taken from multiple viewpoints. The method predicts the camera
poses and the sparse point cloud of feature points. The first step is correspondence
matching between the input images in which the projections of the same points in the
overlapping parts of images are identified. For each image I;, SfM detects a feature set
of local features at location x; and, represented by the feature descriptor f;. Feature
descriptors could be of multiple types, in this thesis, SIFT feature descriptors and Su-
perPoint [5] feature descriptors have been used. SuperPoint feature descriptors involve

a learning-based feature extraction approach.

Next, the method identifies images that view the same portion of the scene using the
features detected in the feature description step as an appearance descriptor of the im-
ages. The feature descriptors can be compared using various conventional approaches
like nearest neighbor matching or by using a learning-based method known as Super-
Glue [6]. The expected output is a set of potentially overlapping image pairs and their
associated feature correspondences. The matches between image pairs are geometri-
cally verified by trying to estimate a transformation that maps features between images
using projective geometry. If a valid transformation maps a sufficient number of fea-
tures between the images, then they are said to be geometrically verified. Due to the
presence of outliers in the feature descriptors, estimation techniques robust to outliers,

such as RANSAC [7] are used.

The next step is the 3D reconstruction. A suitable pair is selected for the initial
two-view reconstruction. New images are added to the existing model by solving the
Perspective-n-Point problem using feature correspondences to triangulated points in al-
ready registered images (correspondences between 2D and 3D features). Every new

image that is added to the model either observes already existing 3D points or increases



the scene coverage by adding more 3D points by triangulation. This crucial step in-
creases the stability of the model through redundancy and it also gives more 2D-3D

correspondences so that more images can be added into the model.

The uncertainties in the camera poses propagate to the triangulated points and the
uncertainties in the triangulated points propagate to the camera poses.Therefore, there
is a final bundle adjustment step which is a non-linear refinement of the camera poses

and the triangulated point positions that minimizes the reprojection error.

2.2 Contributions of COLMAP

COLMAP [8]] is a general-purpose Structure-from-Motion pipeline that improves over

the conventional SfM method in several ways, as follows:

Figure 2.1: Incremental SfM pipeline (COLMAP)

* Next Best View Selection: At each step of the reconstruction, choosing the best
view is important as it determines the accuracy of the rest of the reconstruction
process. For each of the candidate views, COLMAP keep track of the feature
points in the image that correspond to the already triangulated 3D points. The
view from which the highest number of triangulated points are visible and in
which these points are more uniformly distributed is chosen as the “next best
view”.

* Robust and Efficient Triangulation: COLMAP leverages transitivity and es-
tablishes correspondences between images with larger baselines.This improves
image registration and subsequent triangulation accuracy.

* Bundle Adjustment: Local bundle adjustment is performed on the set of the
most connected images after each image registration to refine the estimated cam-
era poses and triangulated point positions.

* A more efficient BA parameterization for dense photo collections using redundant
view mining.

* Scene Graph Augmentation: COLMAP uses a multi-model geometric verifica-
tion strategy to augment the scene graph with the appropriate geometric relation.

The incremental SfM pipeline used in COLMAP is show in the Figure

6



2.3 Experiments using COLMAP

This section shows the results of using the improved version of the conventional StM
method, i.e. COLMAP followed by multi-view stereo for dense depth map estimation.
The original data is in the form of videos captured by an endoscope using phantom or-
gans. Using the MATLAB camera calibration toolbox, the parameters of the endoscope
camera were determined. The video was then split into frames. Since the video involves
both rotation and translation motion of the endoscope, successive frames can be viewed

as images of a scene with overlap, captured from different camera poses.

The radial distortion is corrected using the estimated camera parameters. This is
followed by the COLMAP pipeline, which includes feature extraction, feature match-

ing and multi-view stereo for dense point cloud estimation. This pipeline is shown in

Figure [2.2]

Figure 2.2: Depth Estimation Pipeline

On using the SIFT [9] algorithm for feature extraction, followed by the pipeline
shown above, the results shown in Figure [2.3| were obtained. The first image shows
the input colour image, and the second and third images are the predicted depth maps
using geometric and photometric priors, respectively. The depth maps show multiple
artefacts, and they are very noisy. This happens because endoscopic images have very
few features in them. If the number of features detected by SIFT is very low, then the
point cloud generated by the SfM pipeline is very sparse. This results in an inferior

quality depth map. Since the conventional feature extraction method did not perform

7



well, a learning-based feature extraction method SuperPoint [5] and a learning-based
feature matching method [6]] were used. The following sub-sections elaborate on these

two methods.

Figure 2.3: Depth map reconstructed by COLMAP

2.4 SuperPoint: Self-Supervised Interest Point Detec-

tion and Description

SuperPoint [5] is a self-supervised deep learning method for feature extraction. It is a
fully convolutional deep neural network trained to detect interest points and compute
their accompanying descriptors. The method comprises of three main steps that are
shown in Figure [2.4] First, in the Interest point pre-training step, a labelled synthetic
dataset is used to train a base feature detector. This synthetic dataset has geometric
shapes with unambiguous corner points, which are used to train the base detector. In
the second step, interest point self-labelling, a homographic adaptation pipeline is used
to warp each image, and the trained base detector is used to detect the features in each
of these warped images. The warping needed to transform the original image into any
of the warped images is known. The interest points detected in this step become the

pseudo-ground truth interest points.

Figure 2.4: SuperPoint self-supervised training method



In the final joint training step, we take a pair of images where the relative warping
is known and use the SuperPoint network to detect the interest point locations and de-
scriptors. In this step, we get two outputs for each image. The interest point locations
constitute one output, and the interest point loss can be calculated using the pseudo
ground truth from the previous step. Using the descriptors, the interest points in the im-
age pair can be matched. Since the warping is known, the ground truth matches are also
known, and the feature descriptor loss can also be calculated. The sum of the interest

point loss and descriptor loss can be minimised to train the SuperPoint network.

Figure 2.5: SuperPoint network architecture

2.5 SuperGlue: Learning Feature Matching With Graph

Neural Networks

SuperGlue[6] is a neural network that matches two sets of local features by finding
feature correspondences and rejecting non-matchable points. The SuperGlue network
is made up of two main components: an Attentional Graph Neural Network and an

Optimal Matching Layer.

The Attentional Graph Neural Network increases the distinctiveness of keypoints by
integrating contextual cues such as spatial and visual relationship with other co-visible
keypoints. A keypoint encoder maps keypoint positions and their visual descriptors

into a single vector. The attention mechanism is used to relate the keypoints with their

9



surrounding contextual cues. Attentional aggregation builds a dynamic graph between
key-points. Self-attention can attend anywhere in the same image, and is thus not re-
stricted to nearby locations. Cross-attention attends to locations in the other image,

such as potential matches that have a similar appearance.

The optimal matching layer creates an M by N score matrix and then finds the
optimal partial assignment using the Sinkhorn algorithm. As in the standard graph
matching formulation, the partial assignment can be obtained by computing a score
matrix for all possible matches and maximizing the total score. This is equivalent to

solving a linear assignment problem. The SuperGlue network architecture is shown in

Figure 2.6

Attentional Graph Neural Network Optimal Matching Layer
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Figure 2.6: SuperGlue network architecture

2.6 Experiments using SuperPoint features and Super-

Glue matching algorithm

This section shows the results obtained on using the SuperPoint network for feature
extraction. For feature matching, the nearest neighbour matching and the SuperGlue
methods have been contrasted. The rest of the pipeline following the feature matching

step is the same as shown in Figure 2.2]

10



Figure 2.7: Using SuperPoint features and nearest-neighbour matching (endoscopic im-
ages)

Figure 2.8: Using SuperPoint features and SuperGlue for matching (endoscopic im-
ages)

Figure shows the result obtained on using SuperPoint for feature extraction and

the nearest neighbour matching algorithm. Figure [2.8| shows the result obtained on

11



using SuperPoint for feature extraction and the SuperGlue network for matching. It is
observed that the depth maps are still very noisy. Using SuperGlue for matching results

in even poorer quality depth maps as compared to the nearest neighbour approach.

Figure 2.9: Using SuperPoint features and nearest-neighbour matching

Figure 2.10: Using SuperPoint features and SuperGlue for matching

The above methods were tested on some natural images, and the results are shown
in Figure 2.9 and [2.10] Since these methods are working well for natural images, it
indicates that the poor performance can be attributed to the fact that the SuperPoint and

SuperGlue neural networks were not trained on endoscopic images.

The above experiments on endoscopic images were repeated multiple times, and
it was observed that the number of SuperPoint features detected and the number of
matches found by the SuperGlue network are identical across runs, but the results (depth
maps) vary a lot. This variation is because the number of features detected is very
low. The number of high confidence matches detected by SuperGlue is also quite low.
These issues arise because the models have not been trained on endoscopic images. The
smooth and texture-less nature of the endoscopic images also causes feature extraction
methods to fail. In order to overcome the dependence on the feature detection and
matching steps, given that the texture is very less, the next approach is to use deep

learning methods for Structure from Motion.

12



CHAPTER 3

Unsupervised Learning Approach

3.1 Introduction

In the previous chapter, I presented the results using a conventional approach to Structure-
from-Motion. Deep learning-based methods, namely SuperPoint and SuperGlue, were
used for feature extraction and matching, but there was little improvement. This is be-
cause these methods still depend on the detection and matching of features. However,
an endoscopic image is largely texture-less and does not have very distinct features. In
order to overcome the dependence on the feature detection and matching steps, given
that the texture is very less, the next approach is to use deep learning methods for Struc-

ture from Motion.

It is very difficult to get real-world endoscopic images due to the various constraints
involved in recording and using medical data. Moreover, obtaining the depth informa-
tion for each pixel is a huge challenge. In the absence of ground truth depth, it is not
possible to train a supervised learning algorithm to predict depth. In order to overcome
this problem of paucity of data, we can use a simulated dataset in environments like
Unity or Blender. In such simulation software, it is possible to control the camera pa-
rameters, the motion of the camera inside the organs, capture scene information like
absolute depth for every pixel etc. In this chapter, we explore the EndoSLAM dataset
[1], which contains real-world and simulated endoscopic images. For the simulated

images, we also have ground-truth depth information.

In the absence of ground-truth depth information for real-world endoscopic images,
unsupervised learning methods can be used to train a neural network to predict scene
depth. This chapter also presents EndoSfM-Learner[1], an unsupervised monocular
depth and pose estimation method which combines the idea of residual networks with
a spatial attention model which directs the network to focus on distinctive and highly-

textured regions of endoscopic images.



3.2 Self-supervised Monocular Depth Estimation

Per-pixel ground-truth depth is very difficult to obtain at a large scale to train a neural
network [10]. Self-supervised learning is a promising approach to training depth esti-
mation neural networks in order to overcome this limitation. In conventional methods
like SfM or multi-view stereo, a minimum of two views are needed for triangulation. In
monocular depth estimation, the aim is to be able to obtain a dense depth image from
a single colour image. The results obtained on using the Monodepth2 [[10] network on
endoscopic images are shown in Figure The model is trained on the EndoSLAM
dataset. Therefore the results for endoscopic images are poor. However, we can see that
the regions with higher depth appear darker and the regions closer to the camera have a

lighter colour.

Figure 3.1: Pixel-wise depth predicted by Monodepth2 network

3.3 Endo-SfMLearner

Endo-SfMLearner [[1] is a spatial attention-based monocular depth and pose estimation

neural network. This network applies spatial attention modules to residual networks,

14



which helps the network focus on distinguishable regions with a lot of texture. En-
doscopy images have some specific problems like frequently changing lighting condi-
tions (which stems from the shallow depth of field), scale inconsistency between con-
secutive frames, organ tissues exhibiting non-Lambertian reflectance properties which
reflect light non-diffusely etc. The proposed approach makes use of a brightness-aware
photometric loss which improves the robustness to rapid illumination changes from one

frame to the next that are commonly seen in endoscopic videos.

3.3.1 Working of the network:

EndoSfM Learner jointly trains a depth estimation network and a pose estimation net-
work from an unlabelled endoscopic dataset. The depth estimation network is called
DispNet and the pose estimation network is called Attention PoseNet. The depth esti-
mation network predicts depth from a single image, and the Attention PoseNet predicts

the relative pose between two frames.

On considering two images /; and I;,, the DispNet predicts the depth for the two
images, D; and D, ; respectively. [; and [, are concatenated and given as input to
the Attention PoseNet, which predicts the relative pose. Using this relative pose, the
depth map D; is warped to the frame of image /;, to get the warped depth D;_,. The
geometric consistencies loss is computed between D; ; and D;,,. The inconsistency
between the projected depth map D;, and the estimated depth map D, is minimized

to jointly train DispNet and Attention PoseNet. This is illustrated in the Figure 3.2

Figure 3.2: Working of the Endo-SfMLearner network
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3.3.2 Training objective and Loss function

There are three loss functions used to train the network. They are brightness-aware
photometric loss, smoothness loss, and geometry consistency loss. The method uses an
affine brightness transformation between successive frames to overcome problems that
arise due to the brightness constancy assumption. First of all, the new reference image,
I;, is synthesised via interpolating /; ;. The difference stemming from the illumination
changes between consecutive frames might mislead the network. We propose to equate
the brightness conditions between these two images as a robust way of supervising the

training phase.

Changing the distance between the organ tissue and the camera leads to scale in-
consistency between consecutive frames. This issue is solved by including geometric
consistency loss. It confirms that D; provides the same scene under the transformation

of D; by predicted relative poses F; ;1.

The overall objective of the method is to minimize the weighted sum of the brightness-

M

aware photometric loss Ly, ,

smoothness loss L and geometry consistency loss Lge as
follows:

L=aLy + BL,+vLac

Figure 3.3: Endo-StMLearner network architecture
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3.3.3 Endo-SfMLearner spatial attention block (ESAB)

The intuition behind the ESAB module in encoder layers is to guide the pose estimation
network (Attention PoseNet) by emphasising texture details and depth differences of
pixels. Spatial attention selects a specific region of the input image, and features in

those regions are processed by the attention block.

3.4 EndoSLAM dataset

The EndoSLAM [1]] dataset is a dedicated endoscopic dataset designed for the devel-
opment of pose estimation and dense 3D map reconstruction methods. This dataset is
recorded using multiple endoscope cameras and ex-vivo porcine gastrointestinal organs
belonging to different animals. The real-world images, however, do not have pixel-wise

ground-truth depth information.

In addition to the experimentally collected real-world data, the EndoSLAM dataset
includes synthetically generated data using a 3D simulation environment Unity. This
synthetic dataset has ground-truth information for pixel-wise depth and also for the
camera poses. This dataset can be used for domain adaptation and transfer learning.
Since deep neural networks need a large amount of data for training, a large amount
of synthetically generated endoscopic images can be used to train the models and then
these models can be used to perform the depth map estimation task on real-world endo-
scopic images. Research in recent years has shown that large amounts of synthetic data
can improve the performance of learning-based vision algorithms and can ameliorate

the difficulty and expense of obtaining real data in a variety of contexts.

3.5 Experiments

3.5.1 Depth Estimation:

The Endo-SfMLearner was trained on a dataset that consists of the OlympusCam im-
ages (from the EndoSLAM dataset) and the images collected using our endoscope and

phantom models at the HTIC lab. The original images are radially distorted and they
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need to be rectified using the radial distortion parameters. The successive frames have
very less variation. In order to increase the amount of variation between the successive
frames, the frames are sampled and every fifth frame is selected. The images are then
arranged into sequences of length 3. There are a total of 890 sequences, of which the
training and validation split is done in the ratio: 90% training data and 10% validation
data. The shape of the images is (1080 x 1350 x 3). The training is done on a GPU.
The network is trained for 40 epochs with randomly shuffled batches and each sequence
contains 3 consecutive images, optimize by ADAM with an initial learning rate 0.0001
and validate after each epoch. While testing the model, a single image is sufficient to

predict the depth map. The results are shown in Figure [3.4]

Figure 3.4: EndoSLAM Depth Predictions for model trained on real data
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Figure 3.5: EndoSLAM Depth Predictions for model trained on real data
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Then, the Endo-SfMLearner was trained on the synthetic EndoSLAM dataset. The
dataset contains endoscopic images of a colon, stomach and small intestine. There are
1257 small intestine images, 900 colon images and 300 stomach images. The original
images are radially distorted and they need to be rectified using the radial distortion

parameters. The images are then arranged into sequences of length 3.

There are a total of 1440 sequences, of which the training and validation split is done
in the ratio: 90% training data and 10% validation data. The shape of the images is (320
x 320 x 3). The training is done on a GPU. The network is trained for 100 epochs with
randomly shuffled batches and each sequence contains 3 consecutive images, optimize
by ADAM with an initial learning rate 0.0001 and validate after each epoch. It took
15 hours 43 minutes to train the model. While testing the model, a single image is

sufficient to predict the depth map. The results are shown in Figure [3.6|and Figure

Figure 3.6: EndoSLAM Depth Predictions for model trained on simulated data
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Figure 3.7: EndoSLAM Depth Predictions for model trained on simulated data
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Figure 3.8: Training and Validation Loss vs Epoch for Endo-SfMLearner

3.5.2 Pose Estimation:

The Attention PoseNet estimated relative pose of the second frame with respect to the

first frame. In this section, the pose estimation results are shown. Since the Endo-
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StMLearner training involves a joint training of both the depth and pose estimation
network, no separate training is needed for pose estimation. We find the relative pose of
each frame with respect to the previous frame. Let the Two camera positions at adjacent

time instants £ — 1 and k be related by the transformation 7} j_:

where Ry, 1s the rotation matrix and ¢, ;_; 1is the translation vector. The current
pose C,, can be computed from the pose of the previous frame C),_; and the transfor-
mation as follows:

Cn - n—lTn,n—l
Likewise, we can also write:

Cn—l - Cn—2Tn—1,n—2

On combining the above equations, we get:

On - n—ZTn—l,n—QTn,n—l

On continuing this, till Cyy, pose of the n'* frame with respect to the first frame, i.e.,
the absolute pose can be calculated. This is a naive method to obtain the absolute pose
estimate from the relative poses. We can improve the estimates using Pose-Graph opti-
mization [[11]. The camera poses can be represented as a pose graph, which is a graph
where the camera poses form the nodes and the transformations (like 7}, ;1) between
the camera poses form the edges between nodes. Any additional transformation i.e.
relative pose estimate can be added as a constraint to the optimization by adding it as an
edge between the corresponding node frames. Let e;; be the edge constraints between

nodes 7 and j. The cost function is:

>_lle =T, Gl
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Pose-Graph optimization aims to find the pose estimates that minimize this cost

function.

In order to plot and compare the ground truth poses and the estimated poses it is
important that both trajectories are transformed to the same scale. This is achieved
using least squares estimation (Umeyama alignment) [[12]]. After this alignment the
ground-truth trajectory and the estimated trajectory for the first 150 frames of the small
intestine trajectory are plotted in Figure The full trajectory for 1257 frames of the

small intestine trajectory are plotted in Figure [3.10]

Figure 3.9: Estimated trajectory and ground-truth trajectory for first 150 frames of the
Small Intestine dataset
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Figure 3.10: Estimated trajectory and ground-truth trajectory for the Small Intestine
dataset

3.5.3 Error metrics

Table [3.1] shows the error metrics for the pose estimation. Absolute trajectory error
(ATE) is the average deviation from the ground-truth trajectory per frame. It is calcu-
lated by taking the entire trajectory into consideration. It is the RMSE of the Euclidean

distance between the predicted positions in the trajectory and the ground-truth.

RPE stands for relative pose error and it measure the error in the relative pose of two
nearby frames. It compares the reconstructed relative transformation between nearby
poses with the ground-truth transformation. It has two components, one is the error in
the estimate of the relative rotation between the frames and the other is the error in the
estimate of the relative translation. The RPE is computed for all pairs of frames in the

trajectory and then the average value is considered.
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Small Intestine Colon Stomach
ATE (m): 0.01607 0.02153  0.0367
RPE (m): 0.00174 0.00219 0.00152
RPE (deg): 0.48175 0.34216  0.5992

Table 3.1: Error metrics for pose estimation using EndoSLAM dataset (For the first 150
frames of each organ’s trajectory)

Small Intestine Colon Stomach
ATE (m): 0.09324 0.08246  0.05591
RPE (m): 0.00196 0.0034  0.00187
RPE (deg): 0.37441 0.37001 0.48471

Table 3.2: Error metrics for pose estimation using EndoSLAM dataset (Full trajectory)

3.5.4 Summary

In this section, the EndoSLAM dataset and the Endo-SfMLearner network for depth
and pose estimation were introduced. From the results obtained for both the real-world
dataset and the synthetic dataset, it is clear that the estimates are qualitatively better
than the conventional method used in the previous chapter. Further improvement is
possible with increase in size of the dataset by using more organ trajectories or through
data augmentation. The unsupervised training approach helps us overcome the chal-
lenge of obtaining pixel-wise depth information for endoscopic images. However, these
methods are still dependent on the features in the image and will work well only for
highly-textured images. This is clear from the attention mechanism used for the pose
estimation network which dictates the network to focus on highly distinguishable and
textured regions. However, endoscopic images are by nature very smooth and devoid
of texture and the number of distinctive features is too low for a correspondence-based

method to work.
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CHAPTER 4

Photometric Stereo Endoscopy

4.1 Introduction

Photometric stereo [13] is a computer vision technique to estimate the surface normals
of a scene from multiple images of the same scene captured under different lighting con-
ditions. The scene and the camera have to remain fixed while the images are captured.

Photometric stereo has significant advantages over Structure-from-Motion:

* Photometric Stereo produces dense depth maps and surface normal maps as the
values can be computed at every pixel, but in SfM only the feature points are
triangulated.

* Photometric Stereo does not need feature detection and matching, so it can work
well for endoscopic images which have limited texture.

* Structure-from-Motion also requires very strong assumptions on surface motion
(e.g. rigid or periodic motion), and requires sufficient motion baseline.

* Photometric Stereo can compute 3D information from just a single colour image

[4].

Figure 4.1: Conventional Photometric Stereo Example



4.2 Limitations of Conventional Photometric Stereo

In conventional photometric stereo, we assume a far-light scenario, i.e. the light source
is at a large distance from the scene. Therefore, we can make the simplifying assump-
tion that the all the scene points receive light from the same direction and of the same
intensity, as the depth variation within the scene is much smaller compared to the dis-
tance of the light from the scene. In the endoscopy setting, especially for in-vivo exper-
imentation, the endoscopy probe (which has the light sources) is near to the scene being
studied. Therefore, the far-light assumption does not hold. Another constraint in the en-
doscopy setting, due to size limitations, the photometric stereo setup cannot have large
angular variations in the illumination directions because that results in a large spatial

extent.

There is another constraint specific to endoscopic images. Since the diameter of the
probe is limited by the diameter of the body’s internal organs such as the small intestine,
the separation between the light sources on the endoscope probe head is very low. The
number of light sources is also limited due to less space available on the head of the
endoscope probe. With fewer light sources, the quality of the reconstructions suffer.
This effect can be observed on comparing Figure #.6|and Figure When we use just
3 light sources, the albedo is visibly dimmer and the surface normal estimates have a
more greenish hue even on the front surface of the rabbit which should actually be more

bluish.

4.3 Calibration Method

Figure 4.2: Light Direction Calibration
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4.3.1 Theory

In this section, the method used for calibration of the light directions is explained. Fig-
ure shows the surface of a sphere. L is the light source direction, NV is the surface
normal, R is the reflection vector. A highly specular object such as a chrome ball is
used for calibration. First the centre and radius (r) of the chrome ball are determined
using the MATLAB imfindcircles function. Let this be (z.,y.). Next the specular re-
gion can be detected by selecting the pixels with intensity value greater than 0.9 times
the maximum intensity value of the image. In photometric stereo, at a time, only one
light source is switched on, therefore, there will be only specular highlight region on
the sphere. The centre of this highlight can be calculated by taking a weighted average
of the pixel coordinates in the highlight region, weighted by the pixel intensity values.
Let the highlight centre be (xp,yp). The reflection vector R for a specular highlight
is the vector pointing perpendicularly out of the plane. Therefore, R is (0,0, —1). To

calculate the surface normal vector N (n,,n,,n.) :

Th — T¢

Ny
r

:yh_yc
T

n,=4/1—n2—n?

The light source direction for each image can be computed using the formula:

Ty

L=2(N.R)IN — R

4.3.2 Lab Setup for Calibration and Data Collection

In order to test out the calibration method and to capture photometric stereo images of
a few objects, the setup shown in Figure |4.3| was used. The setup uses 24 LEDs placed
on a circular ring around the camera (Figure @4.4). Each LED is switched on, one at a

time, and 24 images of the object are captured with the object and camera kept fixed.
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Figure 4.3: Lab Setup for Calibration and Data Capture

Figure 4.4: Ring of 24 LEDs around the camera
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4.4 Conventional Photometric Stereo

4.4.1 Theory

Let I be the image in the form of a matrix. Let L represent the light source direction
for this image. Let n represent the surface normals and let £ represent the albedo. Then

we can write:

I =k(Ln)

We can set this up as an optimization problem as shown:

n%in |1 — k(L.n)|?

On solving we get:

kn = (L"L)'L*I

The magnitude of the LHS should give the albedo since the surface normals are unit

vectors.

4.4.2 Experiments

Figure 4.5 shows 3 out of the 24 images collected using a specular ball with with lab
setup shown in Figure.3] On using all these 24 images in the conventional photometric
stereo method explained above, the surface normal and albedo are obtained as shown
in Figure 4.6l When we use only 3 images, the results are shown in Figure It is
very clear that the performance of photometric stereo improves when a larger number
of light sources are used. When we use just 3 light sources, the albedo is visibly dimmer
and the surface normal estimates have a more greenish hue even on the front surface of

the rabbit which should actually be more bluish.
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Figure 4.5: 3 out of 24 calibration images of the specular ball

Figure 4.6: Photometric Stereo results on using all 24 images

Figure 4.7: Photometric Stereo results on using only 3 images

Figure [4.8] shows 3 out of the 24 images collected using a rabbit object having a
Lambertian surface reflectance with with lab setup shown in Figure #.3] On using all
these 24 images in the conventional photometric stereo method explained above, the
surface normal and albedo are obtained as shown in Figure #.9 When we use only 3
images, the results are shown in Figure 4.10} It is very clear that the performance of
photometric stereo improves when a larger number of light sources are used. When we

use just 3 light sources, the albedo is visibly dimmer and the surface normal estimates

32



have a more greenish hue even on the front surface of the rabbit which should actually

be more bluish.

Figure 4.8: 3 out of 24 images of the rabbit (Lambertian surface)

Figure 4.9: Photometric Stereo results on using all 24 images

Figure 4.10: Photometric Stereo results on using only 3 images

Using the Unity3D [14] software, some simulated photometric stereo images of a
specular ball and the inside of a colon were obtained. In this case photometric stereo

is done using only three images of each scene. This limitation arises from the need to
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create a camera and light setup that can mimic an endoscope probe. A detailed expla-
nation of the data collection method, the camera parameters, the light arrangements in

the rendering environment etc. is given in Chapter [5

Figure[.11|shows the images of a specular ball rendered using Unity3D. Figure .13
shows the images of a endoscopic scene rendered using Unity3D. The surface normal

images and the albedos are shown in Figure #.12]and Figure 4.14]respectively.

Figure 4.11: Photometric stereo images of a specular ball (simulated)

Figure 4.12: Photometric Stereo results for the rendered specular ball
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Figure 4.13: Photometric stereo images of the colon (simulated)

Figure 4.14: Photometric Stereo results for the rendered colon

There is no ground truth surface normal or depth information available for these
images. Therefore, they have to qualitatively evaluated. For the non-endoscopic scenes,
such as the specular ball and the sphere, the predicted surface normals are very good and
the albedo is also predicted correctly. However, for the endoscopic scene, we see a large
number of artefacts in the surface normal image. Moreover, the portion of the scene
facing the camera, must be bluish since the colour associated with the direction out of
the plane is blue. However, the right side of the surface normal map has a reddish colour
which is an incorrect prediction. The poor performance is because we are using very
few (three) light sources. The other reason is that, for the the non-endoscopic scenes, the
object lies entirely within a small depth range so the light directions as seen by all the
points of the scene are not very different, so even the conventional photometric stereo
algorithm produces good results. However, in the case of endoscopy, the scene has a
very large depth range and the camera is very close to the scene. So the light directions

as seen by different pixels vary greatly. Therefore, the conventional photometric stereo
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method which assumes that all the pixels in the image receive light from the same

direction will not work well for endoscopic images.
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CHAPTER 5

Rendering a Photometric Stereo dataset for Endoscopic

Images

5.1 Introduction

The results in the previous chapter showed that while conventional photometric stereo
worked well for images of a specular sphere, rabbit etc., it performed poorly on endo-
scopic data. I also tested a near-field photometric stereo approach for the endoscopic
images, but the results were not good. Therefore, I decided to explore deep learning
methods for photometric stereo. Deep learning methods require large amounts of data
for training. However, no large dataset of photometric stereo images for endoscopic
scenes exists. Capturing such data in the real-world requires major modifications to the
existing endoscope, both in terms of the physical setup, such as the number of lights
surrounding the camera and also the internal software that controls the working of these
lights and image capture. As it is not possible to obtain real-world endoscopic images,
I have created a simulated photometric stereo dataset using the Unity3D environment
[14]. In this chapter, the data collection pipeline is explored in detail. The full proce-
dure for the data collection and other details are provided in the appendix (Chapter [g).
This simulated dataset can be used to train a near-field photometric stereo deep learning
model and the model can then be used to predict the 3D information given real-world

photometric stereo images.

5.2 Data Simulation

5.2.1 Rendered organs

In order to render endoscopic scenes, we first need organ models. The models of gas-

trointestinal organs, namely the stomach, small intestine and colon were obtained from



VR-Caps [15]. These models were imported into our Unity project and used as the

scenes for capturing endoscopic images.

5.2.2 Camera and Lights Setup

Since there are no endoscopes currently that are designed to capture photometric stereo
data, the real-world data for testing our deep learning model will be obtained by using
a camera-lights setup designed in our lab. This camera will be used to capture images
of ex-vivo tissues. The camera and lights setup is designed to mimic the head of the
endoscope probe, with the camera in the centre, surrounded by lights. The camera
used is a Raspberry Pi camera and we use LEDs for lights. The lights are controlled
programmatically through a Raspberry Pi board. In the Unity environment, a camera-
lights setup is created to mimic this lab setup. There is a camera in the centre (whose
properties are set to match with the Raspberry Pi camera) surrounded by four LEDs.
Each LED is switched on, one at a time and four images are captured for every scene. In
the Unity3D environment, the movement of the camera inside the organ, the switching
on and off of the LEDs, the image capture and storage are all handled through code
written in the C-sharp programming language. The setup that will be used in the lab
for collecting real-world images of ex-vivo tissue data is shown in Figure The

dimensions are shown in Figure

Figure 5.1: Lab setup using Raspberry Pi camera and LEDs
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Figure 5.2: Diagrammatic representation of the Camera + LEDs model

In Figure the big circle in the centre is for the camera. The other 4 smaller
circles are for LEDs and the square in each circle is the region from which the LED
positions are randomly sampled. The random sampling is done to make the neural
network robust to errors in the light positions in the real 3D-printed model (i.e. the

stand for holding the camera and LEDs).

5.3 Data Collection

The translation and rotation of the camera, switching on and off of the LEDs are con-
trolled by the code. At each position of the camera, the orientation of the camera is
changed 19 times. At each rotation, first we keep the LEDs at their fixed positions, then

the positions are randomly sampled from within the orange square region shown in the
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image. Since we have one fixed set of positions, and the sampling is done twice, at each
rotation, we get 12 images of the scene. The Unity Image Sequence Recorder stores
the image, and also the location and orientation of the camera, LEDs, both absolute and
relative to the camera. The Unity AOV Recorder stores the depth and the surface nor-
mals. The dataset has 5244 scenes so far. Each scene comprises of 4 images captured
with one LED switched on each time, pixel-wise depth map (both relative and absolute)

and surface normal vectors.

5.3.1 Surface Normal Preprocessing

The Unity AOV Recorder stores the surface normals in the SRGB notation. To convert

it into the RGB values that we normally use, we have to raise each pixel to the power

2.2.

_ 22
T, =T
_ 22
Y =9
_ 322
z, =b

1,g,b represent pixel intensity values in the original recorded surface normal image.
Now multiply each pixel value by 2 and subtract 1. It takes us from the 0-1 pixel
intensities to the surface normals. Surface normal values range from -1 to 1.

X =(x,%2)—1

Y = (g 2) — 1
Z=(z%2)—1
This (X, Y, Z) is a surface normal vector with norm = 1. We can then do a normal
mapping as follows:
X:-1to+1: Red: 0to 255
Y: -1to +1 : Green: O to 255
Z:0to-1: Blue: 128 to 255
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Unity stores the surface normals in world coordinates. Since we want the surface
normals in the camera coordinate system, we have to multiply the surface normal vec-

tors with the inverse of the 3D camera rotation matrix.

5.3.2 Getting Absolute Depth

Using Raycasting, a ray is sent from the camera centre, along the axis of the camera
into the scene. This ray hits the scene at a point which forms the centre pixel of the
final image. It is possible to record the point at which the ray strikes the scene and also
the length of the ray from the origin at the camera centre to the point at which it hits
the scene. This gives us the absolute depth of this point. The AOV Recorder stores the
relative depth values. Since we know the absolute depth of one point, we can scale the

other relative depths to get the absolute depths of the entire scene.

5.4 Examples

In Figure the images of an endoscopic scene, captured with one light switched on
at a time are shown. The simulation uses four light sources for every scene. Figure [5.4]

shows the surface normal and depth maps for the same scene.
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Figure 5.3: Images of an endoscopic scene with 4 light sources

Figure 5.4: Surface Normal and Depth maps
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Figure 5.5: Images of an endoscopic scene with 4 light sources

Figure 5.6: Surface Normal and Depth maps

Figure [5.7] and Figure [5.§| show the images, surface normals and depth maps for a

scene where the organ has some polyps/lesions on it.
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Figure 5.7: Images of an endoscopic scene with 4 light sources

Figure 5.8: Surface Normal and Depth maps
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CHAPTER 6

Deep Learning for Photometric Stereo

6.1 Introduction

In this chapter, a fast, light-weight, near-field, deep learning-based photometric stereo
[16]] approach is presented. Chapter 4| showed that both conventional and near-field
photometric stereo methods did not work well for endoscopic scenes. Therefore, in
this chapter, a learning-based solution will be presented. Due to the unavailability of
a labelled photometric stereo dataset for endoscopic images that is large enough for
training neural networks, the synthetic dataset explained in Chapter[3]is used for training

the network.

6.2 Overview

The method involved training two recursive networks, one for predicted surface normals

and the other is trained to predict pixel-wise depth maps.

The ‘per-pixel lighting’ (i.e., the relative lighting direction and attenuation factor
for each pixel in the image) is estimated analytically by upsampling the predicted depth
map from the previous step. Then, the surface normal for this scale is inferred given the
input image, ‘per-pixel lighting,” and estimated normal map from the previous scale.
Finally, the depth map is predicted conditioned on the estimated normal map and the
depth map from the previous scale. In each step of the recursion, the resolution is
increased by a factor of 2 until it reaches the input image resolution. The number of

steps in this recursion is decided by the resolution of the input image.



6.3 Experiments and Results

The pretrained model was tested with photometric stereo images captured in the lab and
the results are shown in the subsequent images. Figure [0.1] shows the 3 out of the 24
input images of the rabbit object. Figure [6.2] shows the predicted surface normal map,

depth map and the 3D structure as visualized in MeshLab [17]].

Figure 6.1: 3 out of 24 images of the rabbit (Lambertian surface)

Figure 6.2: Predictions using the pretrained model (Fast Near-Field Photometric Stereo)

Figure shows the 3 images of a sphere captured in Unity under different illumi-
nation conditions. Figure [6.4] shows the predicted surface normal map, depth map and

the 3D structure as visualized in MeshLab [17]].
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Figure 6.3: Images of the sphere (rendered in Unity) under different illumination con-
ditions

Figure 6.4: Predictions using the pretrained model (Fast Near-Field Photometric Stereo)

Figure [6.5] shows the 3 images of an endoscopic scene captured in Unity under
different illumination conditions. Figure [6.6]shows the predicted surface normal map,

depth map and the 3D structure as visualized in MeshLab [[17]].

Figure 6.5: Images of the endoscopic scene (rendered in Unity) under different illumi-
nation conditions
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Figure 6.6: Predictions using the pretrained model (Fast Near-Field Photometric Stereo)

The fast, lightweight, near-field photometric stereo model was then trained on our
synthetic which has 5244 endoscopic scenes. The training and test split is done in the
ratio 90%:10%. The estimated surface normals and pixel-wise depth for some of the

training images are shown in the subsequent figures.

Figure 6.7: Images of an endoscopic scene (rendered in Unity)
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Figure 6.8: Predictions using the model trained on our rendered dataset

Figure 6.9: Images of another endoscopic scene (rendered in Unity)
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Figure 6.10: Predictions using the model trained on our rendered dataset

In Figure[6.11] on observing the training and validation loss curves for the total loss,
mean angular error (i.e., mean of the angular error between the ground-truth and pre-
dicted surface normal vector) and the absolute depth error, we see that the training loss
reduces in each epoch, but the validation loss curve plateaus and oscillates after a few
epochs. This indicates that the model is overfitting the data. The problem of overfitting
can be solved by rendering more endoscopic scenes and by using data augmentation

techniques.
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Figure 6.11: Training and Validation curves indicating overfitting
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CHAPTER 7

Conclusion and Future work

In this thesis, we introduced the importance of developing an algorithm for obtain-
ing the 3D information from endoscopic images. Knowledge of the 3D information,
like pixel-wise depth and surface normals, helps in reconstructing three-dimensional
structures of the endoscopic scenes, which help in improving the detectability and clas-
sification accuracy of cancerous tumours/lesions in the internal organs. The recovery
of the three-dimensional structure of internal organs also helps in minimally invasive
surgery. In this thesis, several methods based on Structure-from-Motion and Photo-
metric stereo, both conventional and learning-based solutions, have been employed to

obtain 3D information from endoscopic scenes.

The first method that we tested was COLMAP which is an improved version of
the conventional Structure-from-Motion approach. We used traditional feature descrip-
tors like SIFT and learning-based feature extraction (SuperPoint), and feature matching
methods (SuperGlue). The results were not optimal because these networks were not
trained on endoscopic data. Endoscopic images are smooth and textureless, so the num-
ber of distinct features detected is very low. We then used an end-to-end unsupervised
learning approach for Structure-from-Motion, due to the lack of labelled ground-truth
depth information for endoscopic images. The results were better than the conventional
SfM method, but the problems that arise due to the smooth and textureless nature of

endoscopic images persist.

We then shifted to photometric stereo, as it does not depend on correspondence
matching and is capable of producing dense depth map estimates. In this thesis, the per-
formance of conventional and near-field photometric stereo on images of ordinary ob-
jects and endoscopic images has been demonstrated. We decided to test out a learning-
based approach for photometric stereo to improve the performance for endoscopic im-
ages. In order to train a deep learning model for photometric stereo, we created a syn-
thetic photometric stereo dataset of endoscopic images using the Unity3D simulation

environment. Using this dataset, we trained a model for near-field photometric stereo,



and the results are shown in this thesis. The model trained on this synthetic dataset
generated by us will be used to predict the depth estimates of real-world endoscopic
scenes that will be captured using our lab prototype of a photometric stereo endoscope

(built using a Raspberry Pi camera and four LEDs) and some ex-vivo tissues.

The next step in this project is to collect more synthetic data using the pipeline
explained in Chapter [5] and the Appendix. Generating more data will help overcome
the problem of overfitting encountered while training our deep learning model for near-
field photometric stereo. Another interesting direction to explore is the combination
of information obtained from SfM-based methods and photometric stereo methods to

improve the 3D reconstructions.
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CHAPTER 8

Appendix: Guide for Data Collection using Unity

8.1 Installation

1. Install UnityHub for Windows from https://unity3d.com/get-unity/
download.

2. Follow the installation wizard and create a Unity account when prompted to do
SO.

3. Open UnityHub and go to the “Installs” tab. Click on the “Install Editor” button.
To get a specific version of Unity (if it is not listed in the Official releases tab),
switch to the Archive tab and follow the instructions.

4. Find the version of Unity you need from the archive and download it using Uni-
tyHub, like so:


https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download

5.

8.2

The version of Unity that I have used is 2021.3.1f1. The version used in the VR
Caps [[15] project 1s 2019.3.3f1. Download both versions. It is possible to have
multiple versions of Unity installed on your computer. Remember to select the
correct version while creating a new project.

Creating a new project and downloading the recorder:

. Go to the Projects tab and click on the new project button. The following screen

opens. Choose a version of Unity, set the project name and location and click
“Create Project”.
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2.

8.3

You have to use the 3D HDRP template to create a new project which is capable
of using the Unity AOV Recorder for recording the depth and surface normals of
the scene.

. Open the project. Note that when you create a new project or import a project for

the first time, there will be a significant delay. Click on the “Window” menu and
select Package Manager.

Select the “Unity Registry” option and find the “Recorder” package and click
“Install” in the right pane.

Unity Image Recorder manual
Unity AOV Recorder manual

Please note that the recorder stores the images in SRGB format and each pixel
intensity value has to be raised to 2.2 to get RGB values.

Importing the organ models:

. Open the VR-Caps-Unity project with the correct version of Unity (2019.3.3f1).

This project can be downloaded from here.

Add this project to UnityHub. Go to the Projects tab and click on the arrow next
to “Open” at the top right corner and select “Add project from disk”. Find the
project in the location where you downloaded VR-Caps-Unity and click “Add
Project”.

. Open the project by double-clicking on it in Unity Hub once it is added.
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https://docs.unity3d.com/Packages/com.unity.recorder@3.0/manual/RecorderImage.html
https://docs.unity3d.com/Packages/com.unity.recorder@3.0/manual/RecorderAOV.html
https://github.com/CapsuleEndoscope/VirtualCapsuleEndoscopy

4. Open the “Record_scene”:

5. In Record_scene, drag the GI_2_high_connected into the Assets section at the
bottom left to create a new Prefab.
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6. Right-click on the newly created Prefab and select Export Package. Save it in the
file format of “unitypackage” in the Assets folder of the project that you want to
import these organs into.
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7. Open the project where you want to import the organs. Right-click anywhere in
the empty space after selecting “Assets” in the Project window (lower half of the
screen). Click Import Package->Custom Package.
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8. Find the Prefab that we created in the previous steps and select “Open” to import
the Prefab into the new project.
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9. Drag the package from the Assets window into the Scene Hierarchy window. The
organs get added to the scene.

8.4 Camera Parameters

To set camera parameters like focal length, sensor size etc. first check the “Physi-
cal Camera” checkbox. The focal length and the sensor size in X and Y directions

have to be set in millimetres. If these values are set correctly, then Unity automati-
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cally calculates the field of view angle. Ensure that the value matches with the camera

specifications. You can also set the aperture value if you know the F-stop of the camera.

You can find the specs for the Raspberry Pi camera here. This is the camera that we

are trying to mimic in Unity.

8.5 Data Collection using Unity

The camera parameters are set as described above. There are four light surrounding the
camera. Each light is created as a Point Light with range 10 and when it is switched
on, the intensity value is set at 600000 Lumen. The camera and light setup is created to

mimic this setup:
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https://www.raspberrypi.com/documentation/accessories/camera.html#hardware-specification

Figure 8.1: Diagrammatic representation of the Camera + LEDs model

The big circle in the centre is for the camera. The other 4 smaller circles are for
LEDs and the square in each circle is the region from which the LED positions are
randomly sampled. The random sampling is done to make the neural network robust to

errors in the light positions in the real 3D-printed model.

The translation and rotation of the camera, switching on and off of the LEDs are
controlled by the code. At each position of the camera, the orientation of the camera is
changed 19 times. At each rotation, first we keep the LEDs at their fixed positions, then
the positions are randomly sampled from within the orange square region shown in the
image. Since we have one fixed set of positions, and the sampling is done twice, at each
rotation, we get 12 images of the scene. The Unity Image Sequence Recorder stores
the image, and also the location and orientation of the camera, LEDs, both absolute
and relative to the camera. The Unity AOV Recorder stores the depth and the surface

normals.
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8.6 Steps for Data Collection

The code that controlls the camera and lights is in the file CamLightsController.cs. To
add such a script in a new project, select the camera (Main Camera) in the Inspector
pane, click on “Add Component”. Select “New script”, enter the file name, and click
“Create and Add”. A script is added to the camera object. It can be opened by clicking

on the the script in the Assets window.

1. Create a folder named “Data Collected” in the main project folder. Inside this
folder, create a folder named any_folder_name. Inside the folder, create another
empty folder named “TextFileRecordings”. The information about the camera
and LED location, orientation, absolute depth of the centre pixel etc. gets stored
in this folder.

2. The images, depth and surface normals will be saved in the “ImageRecordings”,
“DepthRecordings”, “SurfaceNormalRecordings” folders respectively. These fold-
ers are all created automatically when the code runs.

3. File naming convention:

* Images: image_<p>_variation_<q>_light_<r>.png represents an image col-
lected at the p!” position with the r* light switched on and all others switched
off. If q is 0, it means that the LEDs are at their fixed positions. If q is greater
than 0, the q is the variation number. image_<p>_noLights.png represents
the image collected with all lights switched off.

e Depth: depth_image_<p>.png represents the depth image collected at the
p'" position.

* Surface Normal: surface_normal_image_<p>.png represents the surface nor-
mal image collected at the p** position.

4. The image_width and image_height variables control the shape of the images and
depth and surface normal maps that the Recorder stores.

5. The variable number_of_variations stores how many times LED positions need
to be sampled from the square regions.

6. The variable folder name must be the name of the folder inside “DataCollected”,
it corresponds to “any_folder_name” mentioned in step 1.

7. The floating point variable r is the radius of the circle on which the centres of the
LEDs lie. If the size of the 3D printed model changes, then this variable will need
to be changed. The current value is 0.74cm.

8. The variable basePath has to be modified based on the location of the project.

9. There are three boolean variables recording_depth, recording_images, record-
ing_normals. Only one of these must be true and the other two must be false
at any time. If recording_images is true, then the images are recorded and stored
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in the ImageRecordings folder. The text files are also populated with camera
location, orientation, LED position, absolute depth of the centre pixel etc.

10. positionChange defines how the camera will translate along X, Y, Z axes. It is in
the third line of the IEnumerator waiter function.

11. The floating point arrays rotation_angles_x, rotation_angles_y, rotation_angles_z
store the angle by which the camera will be rotated along that axis. The rotation
will be such that we pick a value from one of these arrays and the rotation along
the other two axes will be zero.
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8.7 Text File data

» camera.txt: Each line stores the XYZ coordinates of the camera, followed by the
orientation of the camera in quaternion format, followed by the orientation of the
camera in Euler angles (degrees).

 centre_pixel_absolute_depth.txt: On each line, we have the absolute depth of the
centre pixel.

* lightLocal<x>.txt: It stores the XYZ coordinates of the LED, followed by the
orientation of the LED in quaternion format, followed by the orientation of the
LED in Euler angles (degrees). Note that everything in this file is with respect to
the camera as the LEDs are child objects of the Main Camera.

The first line below the header shows the values for LED 1. The next two lines
are also for LED1, but these correspond to the cases where the position of the
LED is sampled from a region around the correct position. The fourth line shows
the fixed LED positions again, as it corresponds to the next orientation of the
camera. Every three lines (1 fixed + 2 number_of_variations) correspond to one
position/orientation of the camera.
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8.8 Calibration setup

* Adjust the XYZ coordinates and the rotation along the axes in the “Transform”
section of the Inspector window.

* The SphereCollider radius is 0.5. The radius of the sphere is the product of the
Scale and the SphereCollider radius.

* Directional Light (Sun) must be removed from the scene before doing any data
collection. Remember that for directional light, its location does not matter, only
the rotation matters.
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