
A Deep Reinforcement Learning-based Approach to

Beamforming in Cell-Free Networks

A Project Report

submitted by

SHAMEEM AHAMED IBRAHIM

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

JUNE 2022



THESIS CERTIFICATE

This is to certify that the thesis titled A Deep Reinforcement Learning-based Ap-

proach to Beamforming in Cell-Free Networks , submitted by Shameem Ahamed

Ibrahim, to the Indian Institute of Technology, Madras, for the award of the degree of

Master of Technology, is a bona fide record of the research work done by him under

our supervision. The contents of this thesis, in full or in parts, have not been submitted

to any other Institute or University for the award of any degree or diploma.

Prof. Srikrishna Bhashyam
Project Guide
Associate Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 17th June 2022



ACKNOWLEDGEMENTS

First and foremost, I would like to sincerely thank my project guide Dr. Srikrishna

Bhashyam. It is his guidance, swiftness in clearing my small & big doubts, consistency

in showing me the way forward, leniency in understanding any delays in the work and

dedication to regularly check my progress that has led me to do this project properly.

I would also like to the thank Dr. Balaraman Ravindran for his online lectures on Rein-

forcement Learning that equipped me to do this project. I would also like to thank all

the professors in the Department of Electrical Engineering who have taught me courses

crucial to this project, and my career.

I would also like to thank Sanjeev for clearing a difficult roadblock during the project.

I would also like to thank Dhruv for sharing his experience working in a related project

that helped me in doing my project.

Finally, none of this would have been possible without my invaluable parents giving

me an education way above their means, doing their best to support me and stand by

me through thick and thin, at home and at campus, and not letting any of the trials and

tribulations they were facing affect me.

i



ABSTRACT

KEYWORDS: Beamforming, Neural Networks, Deep Reinforcement Learning,

6G, Cell-Free Networks

As the carrier frequency of wireless communication keeps increasing from a few GHz

in 4G to mmWave in 5G to possibly more than a hundred GHz in 6G, the signal strength

decays quickly and gets blocked by more obstacles. In such a case, traditional cellular

networks may not be able to operate practically. Thus, we need a cell-free network

where there are multiple access points (APs) in an area and all of them communicate

with every user equipment (UE) in that area. This can only work when all the APs are

connected to a common central processing unit (CPU) using high-speed optical chan-

nel, thus keeping them synchronized.

At the CPU, in order to decipher which signal came from which UE, we need beam-

forming parameters that maximize the signal from the desired UE and minimizes the

interference from other UEs. In order to find out the optimal beamforming parameters,

we use a Deep Reinforcement Learning technique called Deep Deterministic Policy

Gradient (DDPG) implemented using deep neural networks. The performance of the

beamforming parameters learned using DDPG is then compared with a benchmark ob-

tained from MATLAB using the fmincon function. We also look at a few preliminaries

that help us understand the cell-free network better. This project draws strong inspira-

tion from the work of Hossain et al. [4].
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CHAPTER 1

Introduction

Operating frequencies for wireless communications have always been increasing. Car-

rier frequencies in 3G stayed below 3 GHz [1], while carrier frequencies in 4G (LTE)

stayed below 10 GHz [2]. 5G has a frequency range around 30-50 GHz [3] which is in

the mmWave region. Samsung has a vision for 6G that includes carrier frequencies upto

300 GHz [13]. As carrier frequencies keep increasing, the penetrative power of the sig-

nal keeps decreasing. mmWave is vulnerable to being stopped by even rain. This calls

for network densification, i.e. smaller cells thus resulting in there being more APs in a

unit area. With network densification comes high levels of Inter-Cell Interference and

Inter-User Interference. To solve this, 5G uses massive MIMO where multiple antennae

with specific beamforming parameters are used to at APs to directly shine signals at an

UE giving the network spatial orthogonality [10]. Even after using massive MIMO,

Inter-Cell Interference (even though reduced) is still the limiting factor in cellular net-

works [9]. The issue lies at the heart of the concept of cellular communications itself,

i.e. in the concept of the cell.

Therefore we need to think beyond cellular communication. Coordinated Multipoint

technique with Joint Transmission (CoMP-JT) is a technique where more than one AP

transmits the same signal to an UE [11]. The signals have to be synchronized in order

for the UE to realize any betterment in performance. This is the problem with CoMP-JT

as it needs multiple APs at different distances from an UE to send signals that have to

arrive at the UE synchronously.

In this project, we discuss a technique presented by [4]. The network is a cell-free

network, i.e. there is no concept of cell. All the APs in an area of consideration send

signals to all UE in that area. The APs are all connected to a CPU through high-speed

optical links called front haul. The CPU processes the signals obtained from the APs

and helps the APs send signals in a synchronised manner. All the UEs send signals to

all the APs as well. This causes a lot of Inter-User Interference (IUI). In order to solve

the issue of Inter-User Interference, we use Beamforming Parameters. To discriminate

the signal obtained from an particular UE from the signals of other UEs, the CPU uses



a set of scalars called beamforming parameters. The optimal beamforming parameters

are hard to obtain to brute-forcing as the dimensionality is prohibitively high (this is due

to there number of beamforming parameters beings equal to the product of the number

of UEs and APs). Due to the multitude of factors influencing the channel gain between

an AP and a UE like log-normal shadowing and small-scale fading, it is also impossible

to find the optimal beamforming parameters using any hard-coded closed-form expres-

sion.

Thus we consider a Deep Reinforcement Learning (DRL) technique called Deep Deter-

ministic Policy Gradient (DDPG) to optimize the beamforming parameters. The DDPG

agent runs on the CPU and interacts with signals obtained from the APs in real-time to

find the optimal beamforming parameters in an iterative manner. We then benchmark

the performance of this DDPG network with the bisection method using the MATLAB

function fmincon.

We also experimentally verify the accuracy of the Welch-Satterthwaite Approximation

for the sum of a small to medium number of Gamma RVs. We then study the effects

of non-orthogonal pilots in uplink (UL) transmission both theoretically and experimen-

tally. We also study the effects of correlated log-normal shadowing and compare it with

the simpler non-correlated log-normal shadowing experimentally. We then experimen-

tally analyse the probability of outage experimentally. The last three experiments are

performed in a cell-free environment. For all the experiments performed, the algorithm

used is given in a pseudo code format in order to verify for reproducibility and to pro-

vide a starting platform to improve on in the future. We use the work of Hossain et al.

[4] as the basic foundation and to guide the direction of this project.

1.1 Organization of Thesis

The organization of this thesis is as follows,

• Chapter 2 discusses the arrangement of the environment and factors considered
in the performance of the cell-free network technique.

• Chapter 3 discusses the accuracy of Welch-Satterthwaite Approximation, the ef-
fects of non-orthogonal pilots, the effects of correlated shadowing and the proba-
bility of outage in a cell-free network.

• Chapter 4 explains the DDPG network setup with useful background information
and how the MATLAB benchmarking setup works.

2



• Chapter 5 provides the assumptions made, options chosen, numerical values of
the parameters used in the experiments along with the results obtained and the
inferences drawn from them.

• Chapter 6 provides the conclusion for the thesis and discussed the scope for future
work in this subject area.

3



CHAPTER 2

The Environment

2.1 Arrangement of UEs and APs

In cellular networks, the area under consideration is divided into cells, thus the name.

The perfect cell is a circle due to the path-loss (ignoring shadowing and fading) be-

ing constant throughout the boundary of the cell. Unfortunately, the circle does not

tessellate with itself. Only three polygons (triangle, square, hexagon) tessellate with

themselves [8]. Out of these three, hexagon has the highest coverage area for a given

cell radius (distance of the farthest point in the cell from the centre). Thus ideally the

area under consideration in cellular networks is divided into hexagonal cells, each with

one 1 AP in the centre. All UEs in a cell are connected to the central AP of that cell

until a hand-off occurs. A hexagonal cell may further be divided into several sectors

in order to decrease inter-cell interference. Several cells combine to form a cluster in

which every frequency isn’t repeated.

In reality, practical considerations force the formation of non-hexagonal cells. This

combined with the fact that if there are more APs than UEs, we’re not utilizing the full

potential of the network when every UE is connected to only one AP. In such situations,

cell-free networks become helpful. In a cell-free network, every UE in the area under

consideration communicates with every AP in that area.

In this project, uplink data transmission in a cell-free network is analysed. The area

of interest is a circular disk in the 2D Euclidean plane. The number of APs is higher

than the number of UEs. All the APs are connected to each other and the CPU through

high-speed low latency optical fibres. It is assumed that the APs and UEs are stationary.

The positions of APs and UEs are chosen uniformly at random.



Figure 2.1: A possible network configuration for M = 15 and K = 7. Notice the
random placement of APs and UEs

Fig. 2.1 shows such a possible configuration. This leads to configurations where

one UE in very close to an AP or where several UEs don’t have an AP nearby. Thus

any protocol must be evaluated for a variety of configurations before deciding on its

efficacy.

2.2 The Channel

All APs are assumed to be isotropic radiators of the signal. All UEs are assumed to

be isotropic receivers as well. The channel is assumed to be flat and single-tap. The

number of APs is denoted by M and the number of UEs is denoted by K. The gain

between the kth UE and the mth AP is assumed to be the following,

gmk = L
κ/2
mkF

1/2
mk hmk (2.1)

The path-loss exponent κ is always greater than or equal to 2. h is distributed as a

Nakagami-M RV. This is the small-scale fading and its value changes at every time

step. A Nakagami-M RV is distributed according to the following PDF,

fX(x) =
2MM

Γ(M)ΩMx2M−1e−
M
Ω

x2

(2.2)

5



whereM is the shape parameter (M ≥ 1/2) and Ω is the spread parameter (Ω > 0).

|h|2 is required for calculating the SINR and it is distributed as a Gamma RV with the

following PDF,

fX(x) =
βα

Γ(α)
xα−1e−βx (2.3)

where α is the shape parameter (α =M) and β is the rate parameter (β =M/Ω).

F is the log-normal shadowing factor. It is defined as,

Fmk = 10
σmkzmk

10 (2.4)

σmk is the standard deviation of the log-normal shadowing in decibels. If simplicity is

the aim, zmk is taken to be distributed following the standard normal distribution, i.e.

zmk ∼ N (0, 1). In reality, the shadow fading between various UEs and APs are not

independent of one another. So for a general case,

zmk =
√
δam +

√
1− δbk (2.5)

where am (m = 1, ...,M ) and bk (k = 1, ..., K) are distributed according to the standard

normal distribution. δ is the transmitter-receiver shadow fading correlation coefficient.

This correlation happens because nearby links tend to be shadowed by the same objects

or structures.

In this project, the problem of uplink beamforming is the main goal. The problem is

tackled with the help of a DRL technique called DDPG. In this technique, a network

is trained over several episodes in the environment and each episode contains a fixed

number of time steps. L−κ
mk and Fmk don’t change throughout the training process and

are assumed to be known to the CPU for simplicity. hmk on the other hand is changing

every time step, unknown and has to be estimated using pilot sequences. The effects

of shadow fading correlation coefficient (δ) and the effects of non-orthogonal pilots are

studied in further chapters.

2.3 The SINR

Assume that the CSI matrix (gmk) is known to the CPU after training with pilot se-

quences and that during the pilot training each UE had a mutually orthogonal pilot

6



sequence allotted to it, thus leading to no pilot estimation errors. Let xk be the signal

sent by the kth UE with power pk uniformly in all directions. xk has an average power

of 1, since the term pk is the actual transmit power. The CPU tries to find out what

was the signal sent by each UE using a set of beamforming parameters ωmk such that

0 ≤ ωmk ≤ 1, ∀m, k. The CPU’s estimate of the signal received from the kth UE is as

follows,

yk =
M∑

m=1

ωmk

[
K∑
l=1

√
plgmlxl + ηm

]
(2.6)

where ηm is the AWGN added at the receiver of the mth AP. Expanding the above

equation,

yk =
M∑

m=1

ωmk
√
pkgmkxk︸ ︷︷ ︸

Desired Signal

+

Inter-User Interference︷ ︸︸ ︷
M∑

m=1

ωmk

K∑
l=1,l ̸=k

√
plgmlxl +

M∑
m=1

ωmkηm︸ ︷︷ ︸
Noise

(2.7)

The neural network that will learn the beamforming parameters should ideally maxi-

mize the power of the first term and minimize the power of the second term. From

equation 2.7, the SINR of the signal from the kth UE at the CPU γk after applying the

beamforming parameters is as follows,

γk =

∑M
m=1 ω

2
mkg

2
mkpk∑M

m=1 ω
2
mk

∑K
l=1,l ̸=k g

2
mlpl +

∑M
m=1 σ

2
mω

2
mk

(2.8)

where σ2
m is the noise power at the mth AP. The network is constrained by the inter-user

interference part and not the noise part in the denominator, otherwise there wouldn’t be

a problem to solve here. Equation 2.8 is of utmost importance to the neural network

as will be seen in coming chapters. The Per-User Transmission Rate (R) can be calcu-

lated by using the total Transmission Rate divided by number of UEs. The following

equations illustrate the way to calculate R,

R =
1

K

K∑
k=1

γk (2.9)

7



CHAPTER 3

The Preliminaries

3.1 Welch-Satterthwaite Approximation

3.1.1 Motivation

The calculation of SINR of each UE is used in finding out the Per-User Transmission

Rate and outage probability, and in training the neural network. This calculation re-

quires us to sum a number of non-identically distributed Gamma RVs. The number of

independent non-identically distributed Gamma RVs depends on whether the network

is large-scale, medium-scale or small-scale. In order to simplify this calculation and

most importantly to obtain an upper limit for the outage probability, a way to accurately

approximate the sum of Gamma RVs is needed.

Since it is not guaranteed that the number of RVs to be summed will be large, Cen-

tral Limit Theorem is ruled out. It is also the case that the Gamma RVs to be summed

may not necessarily have the same rate parameters. This rules out the possibility of

using the MGF method to derive the aforementioned sum. This leads us to using the

Welch-Satterthwaite Approximation for approximately finding out a close-enough upper

bound for the sum of non-identical Gamma RVs [14].

3.1.2 The Approximation

Let X1, ..., Xn be i.n.d (independent non-identically distributed) Gamma RVs for some

n > 1, n ∈ N. Let α1, ..., αn be their respective shape parameters and β1, ...βn be their

respective rate parameters. This can be written as Xi ∼ G(αi, βi), i = 1, ..., n. Let Y

be the sum of all the aforementioned i.n.d. Gamma RVs. i.e. Y = X1 + ...+Xn. Y is

the RV whose PDF we have to approximate. The Welch-Satterthwaite Approximation

states that the PDF of Y can be approximated by an upper bound which is also a Gamma



RV. Let the PDF of Y be denoted by fY (y). Then,

fY (y) ≈
βα

Γ(α)
yα−1e−βy (3.1)

where α and β are defined as,

α =
(α1

β1
+ ...+ αn

βn
)2

α1

β2
1
+ ...+ αn

β2
n

(3.2)

β =

α1

β1
+ ...+ αn

βn

α1

β2
1
+ ...+ αn

β2
n

(3.3)

An important fact to be observed is that if all the βis (i = 1, , , n) are equal, we get

α = α1 + ... + αn and β = β1 = ... = βn. This is what we get from the MGF method

as well as thus the Welch-Satterthwaite Approximation gives the exact PDF of Y if all

the Xis had equal rate parameters.

3.1.3 Experimental Verification

The following method, given here in pseudo code format, was used to experimentally

verify the accuracy of the Welch-Satterthwaite Approximation for a few different num-

ber of i.n.d. Gamma RVs summed.

Algorithm 1 Verifying Welch-Satterthwaite Approximation
for n ∈ List of number of RVs do

Initialize array y
for i = 1, ..., n do

Generate unique αi & βi

Generate a large number of random numbers from G(αi, βi)
Add the random numbers to y

end for
Calculate α & β according to 3.2 & 3.3
Generate PDF of G(α, β) using scipy.stats
Plot the PDF of G(α, β) and histogram of y together

end for

9



3.2 Effect of Non-orthogonal Pilots

3.2.1 Motivation

Pilot sequences are used in coherent detection communication to estimate the channel

gain. They are signals known to both the transmitter and receiver before the commu-

nication. Every channel has a coherence time (τc), which is decided by the Doppler

frequency (fD), over which the channel can be assumed to be constant, which means

that the small-scale fading is highly correlated with itself for this duration. This time is

utilized to both send the pilot sequences (to estimate the channel gain) and data (which

is decoded using the estimated channel gain).

The number of symbols in the pilot sequence is controlled by both the coherence time

and the bandwidth available. The number of symbols in the pilot sequence equals the

maximum number of unique mutually orthogonal pilot sequences. This is due to the fact

that there can’t be n+1 mutually orthogonal vectors (or even linearly independent vec-

tors) in an n-dimensional vector space. As the number of UEs in a network increases,

non-orthogonal pilot sequences have to be used and this causes additional errors in the

estimation of channel gain (called Pilot Contamination). This causes additional errors

in decoding the data resulting from a decrease in SINR. In this section, we will study

the effects of non-orthogonal pilots in cell-free networks.

3.2.2 Theoretical Background

Each UE is given a unique pilot sequence ϕk, k = 1, ..., K of length τp symbols by the

CPU, such that ||ϕk||2 = 1. The duration of the pilot sequence should be less than the

coherence time (τc) of the channel. The UEs then send this pilot sequence of theirs to

all the APs uniformly (i.e. without directing it towards any AP or any group of APs).

The corresponding received signal at the mth AP is,

ym =
K∑
k=1

√
τpρkgmkϕk + ηm (3.4)

where ρk is the normalized SNR of each pilot symbol. ηms are the AWGN i.i.d. RVs

with zero mean and power 1 (the noise power is 1 because the pilot symbols are nor-
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malized, so the calculation of ρk includes the actual noise power). In order to estimate

the signal obtained from the kth UE, we multiply 3.4 with ϕH
k ,

ẏmk = ϕH
k ym =

√
τpρkgmk +

K∑
k′=1,k′ ̸=k

√
τpρk′gmk′ϕ

H
k ϕk′ + ϕH

k ηm (3.5)

The first term is our desired signal. The second term is inter-user interference (IUI) and

the third term is noise. The second term vanishes if all the UEs are allotted mutually

orthogonal pilots (i.e. ϕH
k ϕk′ = 0,∀ k ̸= k′). This may not be possible in reality due to

the constraint posed by coherence time (τc).

The total pilot signal obtained by adding the received pilots from all the APs and then

multiplying them with ϕH
k is,

ẏk = ϕH
k

(
M∑

m=1

ym

)
=

M∑
m=1

ẏmk (3.6)

Using equation 3.5 to expand,

ẏk =
M∑

m=1

√
τpρkgmk︸ ︷︷ ︸

Desired Signal

+

Pilot Contamination︷ ︸︸ ︷
M∑

m=1

K∑
k′=1,k′ ̸=k

√
τpρk′gmk′ϕ

H
k ϕk′ +

M∑
m=1

ϕH
k ηm︸ ︷︷ ︸

Noise

(3.7)

The SINR of the signal in 3.7 γ̇k is,

γ̇k =

∑M
m=1 τpρkg

2
mk∑M

m=1

∑K
k′=1,k′ ̸=k τpρk′g

2
mk′ |ϕH

k ϕk′ |2 +M
(3.8)

The average Per-User Transmission Rate is,

Ṙ =
1

K

K∑
k=1

log2(1 + γ̇k) (3.9)

3.2.3 Experimental Analysis

The following method, given here in pseudo code format, was used to experimentally

analyse the effect of non-orthogonal pilots on the Per-User Transmission Rate of trans-

mitting pilots in a cell-free network.
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Algorithm 2 Analysing the effects of Non-orthogonal Pilots
for τp ∈ List of τps do

Initialize Ṙ_array
for m ∈ List of number of APs do

Distribute the orthogonal pilots to all the UEs, repeating when necessary
Calculate γ̇ks using 3.8
Calculate Ṙ using 3.9
Store Ṙ in the Ṙ_array

end for
Plot Ṙ vs m graph for this value of τp

end for

3.3 Effect of Correlated Shadowing

3.3.1 Motivation

Log-normal shadowing is a large-scale fading phenomenon that occurs due to the ge-

ography of the channel in which the signal is propagating. It is assumed to not change

with time if the APs and UEs are stationery (as is the case in this project). In reality,

the different links between the UEs and APs have shadow fading parameters that are

correlated [6]. In this section, we will discuss the differences between correlated and

uncorrelated log-normal shadowing for different standard deviations of the log-normal

distribution. We will also device experiments that simulate the environment and bring

out the differences discussed. The results will be presented in later chapters.

3.3.2 Explanation

The expression for log-normal shadow fading is given by equation 2.4, where zmk is

given by equation 2.5. This model assumes that the shadow fading experienced by a

link is explained exhaustively by a contribution from the UE side and a contribution

from the AP side. The transmitter-receiver shadow fading correlation coefficient (δ)

determines how much weight is given to each of those contributions. Whatever is the

effect of zmk, is amplified or attenuated by σmk.

In this experiment, we will vary the number of APs, keeping the number of UEs fixed,

and see how the uncorrelated and the correlated case compare for a few different values

of σmk when it comes to Per-User Transmission Rate in a cell-free network. One im-
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portant difference to notice between the correlated and uncorrelated cases is that, in the

uncorrelated case there are MN independent RVs (one for each combination of M APs

and K UEs) and in the correlated case there are only M +N independent RVs (M ams

and K bks).

In this experiment, there is no technique (like beamforming or multiplying with ϕH
k )

to enhance the power of the desired signal. So IUI deals a heavy blow to the SINR. The

expression for SINR is simply,

γsh,k =

∑M
m=1 g

2
mk∑M

m=1

∑
k′=1,k′ ̸=k g

2
mk′ +

∑M
m=1 σ

2
m

(3.10)

The Per-User Transmission Rate Rsh is therefore,

Rsh =
1

K

K∑
k=1

log2(1 + γsh,k) (3.11)

3.3.3 Experimental Analysis

The following method given there in pseudo code format, was used to experimentally

analyse the effect of varying σmk in both correlated and uncorrelated shadow fading

environments on Per-User Transmission Rate in a cell-free network.

Algorithm 3 Analysing the effects of Correlated Shadowing
for σ ∈ List of σs do

for Correlated & Uncorrelated case do
Initialize array of Rshs
for m ∈ List of number of APs do

Calculate the gain matrix gmk

Calculate γsh,ks using 3.10
Calculate Rsh using 3.11
Store Rsh in the array of Rshs

end for
Plot Rsh vs m graph for this case

end for
end for
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3.4 Probability of Outage

3.4.1 Motivation

Receiver sensitivity dictates how low the power of the received signal in a link can

get before the packet is lost or the call is dropped. Therefore maintaining the received

signal power above this threshold is of utmost importance in designing communication

networks. Probability of Outage is the fraction of time for which the received signal

power of the link is below the threshold set by receiver sensitivity. It is an important

performance measure of the quality of a link.

In this section, we will look the outage performance in a cell-free network without the

use of beamforming parameters using Monte-Carlo simulations.

3.4.2 Theoretical Background

Since the path-loss and log-normal shadow fading are fixed, probability of outage de-

pends on how often the small-scale fading dips below acceptable levels. The small-scale

fading (hmk) in our model is distributed as a Nakagami-M RV. The determining fac-

tor for probability of outage is SINR falling below a threshold. Let this threshold be

γth. There is no beamforming involved in this experiment, so in equation 2.8, substitute

ωmk = 1, ∀m, k. Therefore the simplified equation for SINR at the kth UE is,

γk =

∑M
m=1 g

2
mkpk∑M

m=1

∑K
l=1,l ̸=k g

2
mlpl +Mσ2

m

(3.12)

Let Xk and Yk be the numerator and denominator of 3.12. Let’s also ignore the effect

of AWGN as the IUI is the deciding factor of SINR. Note that Xk and Yk can be written

as sum of Gamma RVs as follows,

Xk =
M∑

m=1

Xmk, Xmk ∼ G
(
αmk,

βmkL
2κ
mk

pkFmk

)
(3.13)

Yk =
M∑

m=1

K∑
l=1,l ̸=k

Yml, Yml ∼ G
(
αml,

βmlL
2κ
ml

plFml

)
(3.14)
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Welch-Satterthwaite Approximation tells us that sums of Gamma RVs can be approx-

imated with a single effective Gamma RV. Therefore it can approximately be written

that,

Xk ∼ G(αxk, βxk), Yk ∼ G(αyk, βyk) (3.15)

where αxk, βxk, αyk, βyk can be calculated using equations 3.2 and 3.3. The probability

of outage can then be written as,

P(γk ≤ γth) = P(Xk ≤ γthYk) (3.16)

Let FXk & fY k be the CDF of Xk and PDF of Yk respectively. Then the above equation

can be written as,

P(γk ≤ γth) =

∫ ∞

0

FXk(γthy)fY k(y)dy (3.17)

The CDF of a Gamma RV X ∼ G(α, β) is given by,

FX(x) =
1

Γ(α)
γ(α, βx) (3.18)

where γ(., .) is the upper incomplete gamma function. Combining the above equation

with the expression for the formula of the PDF of a Gamma RV, the expression for

probability of outage can be written as,

P(γk ≤ γth) =
β
αyk

yk

Γ(αxk)Γ(αyk)

∫ ∞

0

yαyk−1e−βykyγ(αxk, βxkγthy)dy (3.19)

Equation [7] tells us that the above integral can be calculated and using that the above

equation can be written as,

P(γk ≤ γth) =
β
αyk

yk

Γ(αxk)Γ(αyk)

(βxkγth)
αxkΓ(αxk + αyk)

αxk(βxkγth + βyk)αxk+αyk
2F1(1, αxk+αyk;αxk+1;

βxkγth
βxkγth + βyk

)

(3.20)

where 2F1(., .; .; .) is the Gaussian hypergeometric function. This is the theoretical

formula for probability of outage in a cell-free network. In the following subsection,

the probability of outage is generated experimentally.
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3.4.3 Experimental Analysis

The following method given here in pseudo code format, was used to experimentally

analyse the probability of outage for various numbers of APs and UEs using Monte-

Carlo simulations in a cell-free network.

Algorithm 4 Analysing the Probability of Outage
for k ∈ List of number of UEs do

Initialize probability_outage_array
for m ∈ List of number of APs do

Generate large-scale fading values
Initialize outage counter
for i = 1, ..., No. of simulations do

Generate small-scale fading values
Calculate SINR using 3.12
if SINR ≤ γth then

Increment outage counter by 1
end if

end for
Append outage counter

No. of simulations
to probability_outage_array

end for
Plot Probability of Outage vs m graph for this value of k

end for
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CHAPTER 4

Deep Learning Network

4.1 Reinforcement Learning

In machine learning, we have the training data beforehand and feed it to our neural net-

work or perceptron to learn the pattern. In real life, it may not be possible or advisable

to generate data for training beforehand and then train on it. In such situations, we use

reinforcement learning, where our agent interacts with an environment and learns the

correct actions using states and rewards. Reinforcement learning agents are useful in

solving problems like making a robotic arm pick an object, making a 4-legged robot

walk and playing video games. One famous reinforcement learning agent is Google

DeepMind’s AlphaGo, which defeated the world’s best human player in the board game

Go in 2016 [5].

Reinforcement learning uses the ground work laid by Multi-arm Bandit Problems and

extends it by introducing multiple states [17]. In Multi-arm Bandit, the environment

gives a reward as feedback for performing an action. In reinforcement learning, the

rewards are combined to form a return, which is the expected discounted sum of all

future rewards for performing a particular action in a state. Deep Neural Networks can

be used in reinforcement learning to learn a function that ideally outputs the best action

given a state, after training. This is called Deep Reinforcement Learning (DRL).

A Deep Neural Network has multiple layers of neurons, each of which takes an input

vector, multiplies it with a weight matrix, adds a bias vector, passes it through an activa-

tion function and gives the resulting vector as output. In an equation form, the function

of a layer of neurons can be written as,

voutput = factivation(Mweightsvinput + vbias) (4.1)

The elements of both the bias vector and weight matrix are trainable.



4.2 Deep Deterministic Policy Gradient

DDPG is a DRL algorithm proposed by Lillicrap et al. [12]. The following are the

features of the DDPG algorithm,

• It is a policy gradient algorithm, i.e. it uses gradient descent to learn a policy of
that outputs actions when given states as opposed to outputting a value function
based for all actions from which the best action is then chosen.

• It is deterministic, i.e. the agent outputs a single action when given a state as
opposed to giving an action drawn from a probability distribution depending on
the state.

• It is an off-policy algorithm, i.e. the policy learned is different from the policy
that is used to generate the data for learning.

• It stores it’s interactions with environment as Markov Decision Process experi-
ences of the format [State, Action, Reward, Next_State] in a Re-
play Buffer, from which batches of past experiences are sampled to learn from.

• It is an online-learning algorithm, i.e. the policy is being updated as the agent
is interacting with the environment and gathering experiences as opposed to the
the policy network being trained after the agent has gathered all the experiences
it needs from interacting with the environment.

• It is an Actor-Critic algorithm, i.e. it has an actor network and a critic network
both working together. The actor network outputs an action for a given state and
the critic network gives a value for the action committed for the given state by the
actor. The actor network is trained to maximize the critic value.

• Since the agent outputs a deterministic action, a noise is added to the said action
for the purpose of exploration. Usually, Ornstein-Uhlenbeck Noise is added (due
to its self-correlating property) but a Normal Noise of appropriate distribution is
also found to work [insert paper reference].

• In order for there to be stability in the learning process, two target networks (one
for the actor, one for the critic) are used. The target networks are used for gradient
descent in the critic network. The target networks are then updated regularly.
At the end of the training process, the weights of the target networks converge
with their corresponding actual networks due to the Polyak averaging method
[reference paper].

4.3 Combining Environment and Network

In order for the DDPG algorithm to work properly, we need to connect in properly to

the cell-free environment. The following table shows how the environment is connected

to the DDPG agent.
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Table 4.1: Relation between the Environment and the DDPG agent

State SINR values (γk)
Reward Total Transmission Rate (KR)
Action Beamforming parameters (ωmk)

Table 4.2: Network Notations

Network Component Notation
Episode number e
Timestep number t

State st
Action at
Reward rt

Discount factor ζ
Polyak averaging factor τ

Network weights θ
Batch Size L

Actor µ(st|θµ)
Target actor µ′(st|θµ

′
)

Critic Q(st, at|θQ)
Target critic Q′(st, at|θQ

′
)

The algorithm is run for E episodes with each episode consisting of T timesteps. At

the beginning of each episode, the initial state is generated uniformly at random from a

range of possible SINR values. Per-User Transmission Rate (R) is Total Transmission

Rate divided by number of UEs. For gmk, the path-loss and log-normal shadowing

are fixed at the beginning and don’t change throughout the training process. Small-

scale fading is generated anew every timestep. The reward for any action performed is

directly dependent only on the next state.

Table 4.2 shows the notation used for this DDPG network. For updating the critic

network, the Temporal-Difference(TD) [16] target is first generated using the target

networks as follows,

yt = rt + ζQ′(st+1, µ
′(st+1|θµ

′
)|θQ′

) (4.2)

The loss used for updating the critic network is as follows,

L =
1

L

L∑
i=1

(yi −Q(si, ai|θQ))2 (4.3)

19



The loss used for updating the actor network is the batch average of the negative of the

critic values in a batch. The target networks are updated using the Polyak averaging

factor according to the following method,

θQ
′ ← τθQ + (1− τ)θQ

′
(4.4)

θµ
′ ← τθµ + (1− τ)θµ

′
(4.5)

4.3.1 Algorithm

The following method given here in pseudo code format, was used to optimize the

beamforming parameters for a cell-free network with Nakagami-M fading, using a

DDPG agent. This algorithm is only a modified version of Algorithm 1 in [main paper].

Algorithm 5 Optimizing the Beamforming Parameters
Initialize the actor and critic networks with random weights
Initialize both the target networks with the weights from their corresponding actual
networks
Initialize the Replay Buffer
for e = 1, ..., E do

Generate initial state (s0)
for t = 1, ..., T do

Get the beamforming parameters (at) from the actor network using the current
state (st)

Implement at and observe the new state (st+1) and the reward (rt)
Store the experience (st, at, rt, st+1) in the Replay Buffer
Sample a batch of L experiences from the Replay Buffer
Calculate TD target using equation 4.2
Obtain the critic loss using equation 4.3
Update the critic Q(st, at|θQ) by minimizing the critic loss
Update the actor by minimizing the actor loss (i.e. the negative of the batch

average of the critic values)
Update target networks using the assignment operations given in 4.4 and 4.5

end for
end for
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Table 4.3: Relation between the Environment and the DDPG agent

Parameter Notation Assignment
Input Vector x Action(a)

Objective Function f(x) -Per-User Transmission Rate(−R)
Lower Bound lb ≤ x All zeros vector
Upper Bound x ≤ ub All ones vector
Initial Input x0 Random permissible vector

4.4 Benchmarking using MATLAB

The performance of the DDPG network has to be evaluated against a reliable bench-

mark. For this purpose, we use the function ’fmincon’ from MATLAB, which used

the bisection method [18] to solve multi-dimensional optimization problems under lin-

ear and non-linear constraints and is guaranteed to find the optimal solution obeying

the given constraints. ’fmincon’ minimizes an objective function that outputs a scalar

and can take in a vector as input.

The values of the product of path-loss and log-normal shadowing are passed to MAT-

LAB from Python in a .txt file. This ensures the same configuration is being opti-

mized for in both DDPG and MATLAB. The value of small-scale fading is generated

in MATLAB itself. Table 4.3 shows the parameters fed into fmincon function. Since

f(x) has to be a deterministic function, we use the average value of the small-scale

fading (i.e. expected value of a Gamma RV) in the optimization phase. While testing

to find out the performance of the optimized beamforming parameter obtained from

fmincon, the average reward over a large number of Monte-Carlo simulations is cal-

culated.

4.4.1 Algorithm

The following method given here in pseudo code format, was used to find the bench-

mark for the Per-User Transmission Rate of a cell-free network using the fmincon

function.
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Algorithm 6 Benchmarking using MATLAB
Obtain the values of M,K, σm, path-loss and shadow fading
Generate initial input vector x0

Set the options to plot ’optimplotstepsize’
Feed the parameters and deterministic objective function into ’fmincon’
Run the ’fmincon’ optimizer
Retrieve the optimized beamforming parameter from ’fmincon’
Initialize sum_rewards to zero
for i=1,...,No. of Simulations do

Calculate the actual reward for the optimized beamforming parameter
Add the reward obtained to sum_rewards

end for
Export sum_reward

No. of Simulations
to Python
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CHAPTER 5

Simulation

5.1 Preliminaries

5.1.1 Welch-Satterthwaite Approximation

Table 5.1 shows the numerical values used for experimentally verifying the accuracy of

Welch-Satterthwaite Approximation.

Table 5.1: Values for Welch-Satterthwaite Approximation

Parameter Value
Numbers of RVs (Ks) [2,4,6,8]

Number of Samples per RV 30000
Shape Parameter of ith RV (αi) i+ 1
Rate Parameter of ith RV (βi) 1

i+2

Figure 5.1 shows the experimental results comparing the Welch-Satterthwaite Approx-

imation with PDFs created from a large number of samples.

Figure 5.1: Accuracy of Welch-Satterthwaite Approximation

It can be observed that the Welch-Satterthwaite Approximation is accurate for the sum

of a small to medium number of Gamma RVs.



5.1.2 Effect of Non-Orthogonal Pilots

Table 5.2 shows the numerical values used for experimentally studying the effect of

non-orthogonal pilots in a cell-free network. In order to remove the effect of random

processes such as position of UEs and APs, log-normal shadowing and small-scale

fading, we have assumed all gains to be 1, i.e. gmk = 1, ∀m, k.

Table 5.2: Values for Effect of Non-Orthogonal Pilots

Parameter Value
Number of UEs (K) 10

Numbers of APs (Ms) [10,15,20,25,30]
Lengths of Pilot Sequence (τps) [4,5,7,9,10]
Normalized Symbol Power (ρk) 100 mW ∀ UEs

Figure 5.2 shows the effect non-orthogonal pilots for various lengths of pilot sequence

and various numbers of APs.

Figure 5.2: Effect of Non-Orthogonal Pilots

It can be observed that for τp ≤ K
2

, increasing the number of APs has little effect on

Per-User Transmission Rate. For τp > K
2

, increasing the number of APs increases the

Per-User Transmission Rate.
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5.1.3 Effect of Correlated Shadowing

Table 5.3 shows the numerical values used for experimentally studying the effects of

correlated shadowing. The effects of path-loss and small-scale fading have been ignored

(i.e. Lmk = hmk = 1, ∀ m, k) in order to remove the effects of random independent

processes.

Table 5.3: Values for Effect of Correlated Shadowing

Parameter Value
Number of UEs (K) 10

Numbers of APs (Ms) [10,13,17,20]
Standard Deviation (σmk ∀m, k) [4,6] in dB

Total Noise Power (
∑

σ2
m) −30 dBm

Correlation Coefficient (δ) 0.5

Figure 5.3 shows the difference between correlated and uncorrelated shadowing for two

different values of σmk for various numbers of APs.

Figure 5.3: Effect of Correlated Shadowing

It can be observed that changing the standard deviation of the log-normal shadowing

from 4dB to 6dB has little effect on the Per-User Transmission Rate. It can also be
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observed that correlated shadowing has a better performance and varies less. This is

because there are less independent RVs involved in correlated shadowing (M+K com-

pared to MK for uncorrelated case). There appears to be no clear effect of changing

the number of APs.

5.1.4 Probability of Outage

Table 5.4 shows the numerical values for studying the probability of outage in a cell-

free network without any optimized beamforming parameters. In order to remove the

effect of unrelated random processes, the effects of path-loss and shadow fading are

ignored (i.e. Lmk = Fmk = 1, ∀m, k).

Table 5.4: Values for Probability of Outage

Parameter Value
Numbers of UEs (Ks) [25,30,35,40]
Numbers of APs (Ms) [10,32,55,77,100]
Number of Simulations 50000

Transmit Power (pk) 37 dBm ∀ UEs
SINR threshold (γth) −17 dB

Total Noise Power (
∑

σ2
m) −80 dBm

Figure 5.4 shows the probability of outage for various numbers of APs and UEs in a

Nakagami-M fading cell-free network.

It can be observed that the probability of outage decreases approximately in a logarith-

mic fashion when the number of APs is increased for a given number of UEs. It can

also be observed that the probability of outage increases as the number of UEs increases.

This is because an increase in the number of UEs increases the IUI interference.

5.2 Environmental Configuration

Table 5.5 shows the numerical values of parameters in the environment for optimiz-

ing the beamforming parameters using DDPG in a cell-free networks. We assume the

instantaneous CSI is available at the CPU at every time step, i.e. gmk is known, so

there is no need to estimate it using pilot sequences. In 2.8, the total noise power is∑M
m=1 σ

2
mω

2
mk. This is substituted with its upper bound Mσ2

m for simplicity.

Table 5.6 shows the values of parameters and options chosen for the DDPG network
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Figure 5.4: Probability of Outage under Nakagami-M Fading

Table 5.5: Values of Parameters in the Environment

Parameter Value
Radius of Area 18 m

Number of UEs (K) [7, 10]
Number of APs (M ) [15, 50]

Path-loss Exponent (κ) 2
Shape Parameter (αmk) 1 ∀m, k
Rate Parameter (βmk) 1 ∀m, k
Transmit Power (pk) 37 dBm ∀ UEs

Standard Deviation of Shadow Fading (σmk) 8 dB ∀m, k
Noise Power (σ2

m) −114 dBm ∀m

that optimizes the beamforming parameters in a cell-free network.

Image 5.5 shows the placement of APs and UEs for K = 10 and M = 50. Image 5.6

shows the placement of APs and UEs for K = 7 and M = 15.

27



Table 5.6: Values of Parameters for the Network

Name Choice
Neuron Type keras.Dense

Discount Factor (ζ) 0.99
Polyak Averaging Factor (τ ) 0.001

Critic Optimizer Adam
Actor Optimizer Adam

Number of Episodes (E) 400
Number of Timesteps per Episode (T ) 200

Replay Buffer Size 100000
Batch Size (L) 64

Figure 5.5: Arrangement of APs and UEs for K = 10 and M = 50

5.3 MATLAB Benchmark

For the arrangement shown in figure 5.5, figure 5.7 shows the normalized square root

constant_matrix consisting of the path-loss and log-normal shadowing in grayscale

image format along with the optimized beamforming parameters obtained using the

fmincon function also displayed as a grayscale image. Figure 5.9 shows the step sizes

of the objective function during the process of optimization of the fmincon function

for all iterations.

For the arrangement shown in figure 5.6, figure 5.8 shows the normalized square root

constant_matrix consisting of the path-loss and log-normal shadowing in grayscale
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Figure 5.6: Arrangement of APs and UEs for K = 7 and M = 15

image format along with the optimized beamforming parameters obtained using the

fmincon function and the DDPG network also displayed as grayscale images. Figure

5.10 shows the step sizes of the objective function during the process of optimization of

the fmincon function for all iterations.

Figure 5.11 and 5.12 show the Total Transmission Rate (i.e. total throughput) for 4

different sets of beamforming parameters average over 10000 trials.

(i) ωmk = 1, ∀m, k

(ii) Optimized beamforming parameters obtained using fmincon function.

(iii) For each AP, the UE with the highest entry in the constant_matrix gets 1,
the rest get 0.

(iv) For each UE, the AP with the highest entry in the constant_matrix gets 1,
the rest get 0.

It can be observed that the beamforming parameters obtained from MATLAB com-

bine each UE with only one AP (i.e. the beamforming parameters for a UE is almost

zero for all APs but one AP has almost one).
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Figure 5.7: Left to Right: (a) Optimized Beamforming parameters from MATLAB. (b)
Optimized Beamforming Parameters from DDPG. (c) Normalized Square
Root of the constant_matrix, M − 50, K = 10

Figure 5.8: Left to Right: (a) Optimized Beamforming parameters from MATLAB. (b)
Optimized Beamforming Parameters from DDPG. (c) Normalized Square
Root of the constant_matrix, M − 15, K = 7

5.4 Deep Learning Network

Figure 5.13 and 5.14 shows the training episodic returns averaged over the past 40

episodes for the DDPG network. The episodic reward is the average reward over all the

timesteps in that episode. In order to get the Per-User Transmission Rate, the episodic

return has to be divided by the number of UEs. It can be observed that the episodic

reward doesn’t increase significantly after the first few episodes.
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Figure 5.9: Step Sizes during process of Optimization in MATLAB, M = 50, K = 10

Figure 5.10: Step Sizes during process of Optimization in MATLAB, M = 15, K = 7

Figure 5.11: Performance of four different sets of Beamforming Parameters, M =
50, K = 10
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Figure 5.12: Performance of four different sets of Beamforming Parameters, M =
15, K = 7

Figure 5.13: Training the DDPG network, M = 50, K = 10

Figure 5.14: Training the DDPG network, M = 15, K = 7
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CHAPTER 6

Conclusion

In this project, the accuracy of Welch-Satterthwaite Approximation has been verified

experimentally for small to medium number of Gamma RVs. The effect of non- or-

thogonal pilots on Per-User Transmission Rate in a cell-free network has been exper-

imentally analysed in isolation from other random effects. The effect of correlated

log-normal shadow fading and the standard deviation (σmk) of the fading on Per-User

Transmission Rate in a cell-free network has been experimentally studied. Probability

of outage in a cell-free network without an optimized beamforming has been experi-

mentally studied. The theoretical formula for the probability of outage and its derivation

has been given. The expression for calculating the SINR of various UEs in a cell-free

network has been given with its derivation.

A brief introduction to Reinforcement Learning has been given. The nature and salient

features of DDPG have been given with explanations for what those features mean. A

DDPG network has been implemented to optimize the beamforming parameters to max-

imize the Per-User Transmission Rate and its performance has been benchmarked using

the bisection method in the MATLAB function fmincon. The nature of the optimized

beamforming parameter obtained from MATLAB has been shown visually. Clearly un-

derstandable algorithms for all the code used to generate the results have been given in

pseudo code form.

6.1 Scope for Future Work

Probability of Outage using the optimized beamforming parameters can be analysed.

Other reinforcement learning algorithms like Proximal Policy Optimization (PPO) [15]

can be used to optimize the beamforming parameters. Algorithms designed to estimate

the CSI while optimizing the beamforming parameters can be used to bring cell-free

networks closer to being implemented in a real world situation. Algorithms that si-

multaneously take care of the effect of having non-orthogonal pilots and the estimation



errors they bring along, while optimizing the beamforming parameters can be looked

into.
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