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ABSTRACT

KEYWORDS: Embedded Device Security; Zero Trust Architecture; Trust Score;

Programmable Runtime Monitor; Security Core; Lightweight Se-

curity Monitor; Customizable Security Algorithm

With the advent of IoT devices, cloud computing and distributed systems, Zero Trust

Architectures (ZTA) have gained high significance. ZTA guidelines suggest that access

policies of a device be dynamically reconfigured based on the changing trust levels of

the device. This would require a trusted agent on the device that continuously moni-

tors and establishes the device’s trust. While some system software utilities are present

to establish this trust for systems with sufficient computational power, there are no

such options for resource constrained IoT edge devices. In this project, we propose

PROMiSE, a light-weight hardware architecture for establishing the trust of a de-

vice at runtime by monitoring execution patterns of a resource constrained device.

The trust-score quantifies the level of trust in the device. It is dynamically updated by

secure dedicated hardware that includes a security monitor that monitors critical param-

eters of each processing core and a security core (SeCore) that computes the trust-score

using the monitored parameters. The trust score can be communicated to the ZTA in a

secure, untamperable manner.
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CHAPTER 1

INTRODUCTION

Today’s network infrastructure has become very fluid with an increasing number of

dispersed devices and users falling under categories such as user-managed devices

(BYOD), IoT, and remote workers. IoT is everywhere with devices ranging from wear-

ables like smartwatches to health monitors to RFID inventory tracking chips, with all

devices communicating via networks or over the cloud. Even the IT environment of any

industry nowadays relies heavily on distributed computing, with systems communicat-

ing over the enterprise network.

Such large networks can leave us blind to threats that can enter the network to freely

roam and attack it, if there is no comprehensive security protocol. It is very difficult

to monitor each endpoint device in a large network with such large number of devices

connected to it. A compromised endpoint device on the network can enable the attacker

to enter the network and leak or tamper the data.

Thus, the majority of organizations have started adopting the policy of Zero Trust Ar-

chitecture (ZTA) whereby access is denied unless it is explicitly granted and the right

to have access is continuously verified. Zero trust assumes there is no implicit trust

granted to assets or user accounts based solely on their physical or network location

or based on asset ownership. It is a strategic approach to cybersecurity that secures an

organization by eliminating implicit trust and continuously validating every stage of a

digital interaction.

Therefore, there is a need for a mechanism to provide dynamic trust levels of a de-

vice in a secure, untamperable and efficient manner. In this project, we have devel-

oped PROMiSE (Programmable Runtime Oriented MonItor for Secure Execution), a

lightweight hardware architecture to establish trust for endpoint devices in a network.

Our architecture consists of dedicated hardware modules to monitor critical parameters

and architectural events of the processor, and a dedicated Security Core (SeCore) which

runs a programmable algorithm to quantify the level of trust into a trust score. The pro-

grammability of the algorithm provides great customizability and flexibility with a lot

of ease to the programmer to adapt to new kinds of attacks in future, to incorporate new



policies, and to develop the algorithm customized to its own organization. The trust

score is securely communicated to the ZTA Host in an untamperable manner, which de-

cides on the access policies or the plan of action for the device based on its trust score.

The key contributions of this work are as follows:

1. A Lightweight Hardware Security Monitor: This is a hardware module tightly
coupled to each processing core. It has the ability to track critical parameters of
the processor at run-time, such as the bus communications, program counter, and
general-purpose registers. For an extremely secure execution, it has the ability to
monitor the entire architectural state of the processor.

2. SeCore: A secure hardware module that uses the tracked parameters to dynam-
ically detect anomalies in the execution of the processor, such as an ongoing
attack. SeCore is software programmable and can be customized based on appli-
cation, threat models and user-requirements.

3. Trust Score : SeCore uses the tracked parameters to dynamically compute the
trust-score of the device, either using pre-defined attack signatures or anomaly
detection algorithms. A low-value of the trust-score indicates an attack or a
potential compromise of the device. The programmer can customize the trust
score computing algorithm based on the application requirements. Future attacks
can be addressed by modifying the trust-score computing algorithm, without any
changes in the underlying hardware.

4. Remote Monitoring of Endpoint Devices in ZTA : The computed trust score is
signed and encrypted to prevent misuse of the score. The score can be sent over a
communication channel to a remote system (ZTA Host) in a secure untamperable
manner. This communication is completely independent from the other process-
ing cores. Additionally, the remote system will always expect a heartbeat packet
from the device to make sure that the communication is indeed active at all times.
The device can also expect a heartbeat packet from the remote system in order
to prevent attacks where the communication channel may be disabled. Once an
attack is determined by the remote system, the prevention or recovery mechanism
is left to the implementation choice which will depend on a variety of reasons like
the threat model, security criticality, etc. Thus, the Remote Server decides on the
privilege levels and what action to take based on the trust score. For instance,
the actions could block the device from accessing the entire enterprise network if
the trust-score is below a threshold. Thus would enable dynamically establishing
trust of resource constraint endpoint devices in a ZTA network.
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CHAPTER 2

BACKGROUND

This chapter gives an overview of Zero Trust Architecture (ZTA). We analyze the se-

curity vulnerabilities of the endpoint devices connected over the network and the attack

surface for ZTA. Finally we arrive at the need for runtime monitoring in ZTA.

2.1 Zero Trust Architecture (ZTA)

The main concept behind the zero trust security model is "never trust, always verify.”

A zero trust architecture (ZTA) uses zero trust (ZT) principles to plan industrial and

enterprise infrastructure and workflows. ZTA is an enterprise’s cyber security plan that

utilizes zero trust concepts and encompasses component relationships, workflow plan-

ning, and access policies. ZTA assumes any user, asset, or resource is untrustworthy

and must be verified and continually evaluated for every session and activity before ac-

cess is granted.

Most modern corporate networks consist of many interconnected zones, cloud services

and infrastructure, connections to remote and mobile environments, and connections to

non-conventional IT, such as IoT devices. The idea behind ZTA is that the network de-

vices should not be trusted by default, even if they are connected to a corporate network

or have been previously verified. The zero-trust approach advocates checking the iden-

tity and integrity of devices irrespective of location and providing access to applications

and services based on the confidence of device identity and device health combined with

user authentication. ZTA reduces insider threat risks by consistently verifying users and

validating devices before granting access to sensitive resources. For outside users, ser-

vices are hidden on the public internet, protecting them from attackers, and access will

be provided only after approval from their trust broker.



Figure 2.1: Granting resources based on policy checks in ZTA

The core principles of ZTA are:

• Multi-factor authentication (MFA)

• Least privilege access : Users are given only the minimum access or permissions
needed to perform their tasks.

• Device access control: Whenever a device tries to access the network, it ensures
that it is authorized and meets the required health condition.

• Microsegmentation: It breaks up security perimeters into distinct security seg-
ments and defines security controls for each unique segment. ZTA utilizes this
technique to ensure that a person or program with access to one of those segments
will not access any of the other segments without separate authorization.

• Continuous monitoring and verification

2.2 Device Security in ZTA

A typical enterprise network has a wide variety of endpoint devices that are either man-

aged or provisioned by the enterprise, user owned, or COTS. These endpoint devices

are either human-operated or part of an IoT/OT network and can range from server

machines to low-profile sensor nodes. They can exist outside the enterprise network,

requiring remote access, for example remote users. This diversity in the architecture

(device and network), location, and application of endpoint devices coupled with the

human factor and the mobility in many devices can potentially create a huge attack

surface. The attack surface is further escalated by:

• the capabilities of devices (small, medium and large footprints and processing
power) and networks (wired/wireless, secure/insecure protocols). For example,

– for unmanaged devices (with small footprints and/or intermittent network
connectivity), the enterprise has limited visibility in the device.

4



– low power devices have limited energy and compute resources to support
monitors that can provide a level of trust.

• the fact that device-manufacturers adopt a distributed design approach by inte-
grating hardware modules/IPs from a large number of third parties.

• security being an afterthought in some devices/applications, and not a primary
concern because of other factors like time-to-market, small memory and process-
ing footprints and cost.

All of these make endpoint devices one of the weakest and easily exploitable links

in a zero-trust network.

2.3 Need for Runtime Monitoring in ZTA

As discussed in section 2.1, ZTA requires continuous monitoring and verification. No

user or device (inside or outside) should be automatically trusted. Since at the start, all

devices are at zero trust, we need a mechanism to establish the trust level of the device.

Assigning a fixed trust score based on a pre-defined algorithm has several limitations.

First, it may either overestimate or under-estimate the trust in the device. There are

chances that a device assigned a high trust-score, may get compromised at runtime,

potentially affecting the entire network. Similarly devices assigned a low trust-score

may get restricted in access, even if they are benign. Thus, a pre-established trust-

score at the start may not capture the dynamic trust levels in the device. Thus runtime

monitoring to establish dynamic trust scores at runtime is important for the smooth

and correct working of the ZTA network. This provides continual verification, without

sacrificing user experience.

5



CHAPTER 3

RELATED WORK

In the current market there exist monitors for endpoint devices for keeping your data

secure in remote networks. This chapter presents some of the well known device mon-

itoring tools in this field, and finally tells how PROMiSE is different from them.

3.1 Existing Device Monitors

With the IT environment of an industry relying so heavily on distributed systems com-

municating over remote networks, several network and device monitoring tools have

been developed. Some of the well known ones among them are listed below:

• Microsoft Endpoint Manager : Microsoft Endpoint Manager (MEM) is a cloud-
based solution for deploying, managing and securing devices in the enterprise. IT
administrators are also able to create policies for personal devices being used to
access an organization’s applications and data. MEM uses cloud (MS Intune) and
on-premise (Configuration Manager) solutions to configure devices and deploy
applications. It has Analytic Tools that deliver actionable insights based on the
data gathered by Configuration Manager. It can help organizations identify issues
with applications, drivers and updates.

• VMware Airwatch : It is a software solution that helps IT administration deploy,
manage and configure mobile applications in a secure manner. It has device and
application management tools which help in securing, configuring, deploying and
enforcing policies on tablets, smartphones, and PC’s.

• SOTI Mobicontrol : It is a Mobile Device Management (MDM) tool which
provides both cloud based or on-premise solutions, for secure execution of appli-
cations and to remotely control the device to some extent.

• OpManager MSP : It is a network monitoring tool which proactively monitors
the performance, health, and availability of their clients’ network. It can man-
age large client networks remotely from one central console. It monitors device
availability, performance and alarms of multiple customer networks. It generates
maps and custom reports directly from the central console.



3.2 Differentiating PROMiSE from existing solutions

While the solutions mentioned above provide device managers for monitoring devices

at runtime, these applications run on high-end devices with significant compute power.

Our framework, on the other hand, is targeted for small resource constrained IoT

edge devices. We make use of a small dedicated and trusted lightweight hardware

which continuously monitors the runtime behavior of the device to establish a dynamic

trust score. The computed trust score can be communicated in a secure manner to a

remote server, thus permitting the ZTA network to dynamically gauge the trust of the

device.

Additionally, the above mentioned solutions are at software level, so if the OS is com-

promised, they would be rendered useless. On the other hand, PROMiSE is imple-

mented at hardware level giving more security and making it untamperable even if

the OS of the device is compromised.

Furthermore, the majority of the solutions don’t focus their entire attention on security,

but on ease of deployment and configuring of the device applications for the ease of IT

administration. Our solution on the other hand is fully dedicated for establishing

dynamic trust of the device and secure execution of programs.

7



CHAPTER 4

THE ARCHITECTURE

This chapter presents the hardware architecture of PROMiSE, explaining the role of

each component in detail.

4.1 Overview

Given below is the architecture of a single endpoint device. We consider a multi-core

SOC having n cores, where n is at-least 1. Each core would have a lightweight security

monitor tightly coupled to it, which would monitor at runtime multiple architectural

parameters such as the system bus, program counter, general purpose registers, etc. The

monitor would have a separate dedicated memory to which it can send all the informa-

tion it monitors. The monitor’s monitored information can be read only exclusively by

the SeCore, not by the other cores or even monitors of other cores, thus avoiding poten-

tial data breach and tampering by other cores. Note that for a multi-core device, each

device would have its own separate security monitor with a monitor memory of their

own (as can be seen in the figure, core-1 to core-n have their own monitors). Only the

monitor assigned to the corresponding monitor memory can write to it, thus avoiding

tampering by other cores. In this way, we have isolated the information of each core

from the other cores.

The SeCore can be thought of as another lightweight core designed only for security

computations. It would read from the monitor memories of each core, and use those

values to execute a trust score algorithm written in software. It would have a dedicated

memory (SeCore Memory) to which only the SeCore can read and write into, which it

uses for its computations. This is because, if the SeCore would use the main memory

for storing temporary data, there is a possibility of other cores modifying that data. Thus

having this SeCore Memory would keep the monitored data completely secure and un-

tamperable. Finally, the trust score is digitally signed and sent out using the Network

Interface to the ZTA network completely independent of the main processing cores.



Figure 4.1: Architecture of PROMiSE

4.2 Components of the Architecture

In this section, we would go over each of the components in figure 4.1 in detail.

4.2.1 Security Monitor

The Security Monitor is a lightweight, secure and dedicated hardware module which

monitors and captures at runtime the important architectural information, such as sys-

tem bus, program counters, some important registers, etc. It runs parallel to the proces-

sor excecution. This Monitor would be tightly coupled with the processor, by wiring

the required registers to the monitor.

Note that even by monitoring just the system bus, we can have a high level of security

since memory requests are captured allowing us to detect data leaks and data breaches.

Further, using the memory requests we can also detect other micro-architectural events

like cache flushes, tlb misses etc. which can help detect attacks like Flush+Reload and

Prime+Probe (which can help detect various side channel attacks like Spectre, Melt-

down, etc.)

Any attack would reflect in the architectural state of the processor, so by monitoring

particular architectural parameters, the kinds of attacks that can be detected using this

monitor are endless.

The monitor is also process aware, detecting context switches done by the OS. It would

9



monitor a unique process identifier, and if there is a context switch, it would store the

counters for those processes in the monitor memory, and reset the counters to start

monitoring the new process. Later when the previous process gets scheduled again the

counters are loaded from the memory, by checking the process id.

Note that this monitor just monitors and captures information which the SeCore can

use for its trust score computations. The monitor does not have any compute intensive

algorithms running in it. Thus, it has minimal hardware which makes it lightweight.

For a multi-core architecture, each core would have a dedicated monitor associated

with it (as shown in the figure above). This would keep each core’s architectural state

completely isolated and secure from other cores.

4.2.2 Monitor Memory

This is a Memory dedicated specifically for the Security Monitor to which it can write

the information which it monitors. The monitor in each core would have a monitor

memory associated with it (as shown in figure 4.1). Only the associated monitor can

write to it. Only the SeCore can read from the monitor memory of each core (to use

the monitored data for security computations). Thus, using this dedicated memory, we

are able to isolate the monitored data of a core from the other cores, and would be

completely untamperable since only the assigned monitor can write to it.

Note that it would be a very small memory unit, since we are just monitoring a few

registers and architectural parameters which would take minimal area on Silicon. Thus,

its latency would not cause any kind of bottleneck problems. It would be a very small,

lightweight and fast memory.

4.2.3 SeCore

SeCore is a separate core dedicated for security computations. It can be thought of as

a security processor. It would read data from the monitor memory of each core, and

use the monitored data to run the trust score computing algorithm provided by the soft-

ware programmer. The software programmer can customize the algorithm running on

SeCore according to the user requirements and desired security level. Due to this cus-

tomizability, we can change the trust score algorithm even for some new kind of attack

10



in future, without making any changes in hardware.

SeCore uses a dedicated memory, SeCore Memory, for loading and storing the inter-

mediate data during the computations. In this way, we are not using main memory at

all, so that other cores can’t read from the main memory or tamper the data. All the in-

formation is completely secured within the SeCore and SeCore Memory. The program

running on SeCore would mainly use pointers to read from SeCore Memory, and use

them to make decisions.

We therefore have a completely isolated secure hardware module responsible for the

security computations. Note that this core is mainly a security processor, so we can

make it lightweight by having just the necessary hardware required for the security

computations.

4.2.4 SeCore Memory

As mentioned above, this is a dedicated memory for SeCore which it uses to load and

store the intermediate data during trust score computations. Only the SeCore can read

and write into this memory. In this way the information captured by the monitor re-

mains between the SeCore and SeCore Memory. Other cores cannot tamper the data,

which could have been the case if main memory was used to store the data from which

other cores can read and write from.

This Memory again would be a small memory since it is mainly used to store intermedi-

ate data of SeCore which would not require a lot of space. Therefore, SeCore Memory

would be small, lightweight and fast memory, not adding a lot of latency.

4.2.5 Communicating with Enterprise network

We can reuse the existing network interface, to send trust scores to the Enterprise Net-

work. The trust score computed by SeCore is digitally signed and sent to the remote

server (ZTA Host) using the Network Interface. SeCore can either periodically send

data to it, or send data only when it thinks there is a critical breach to reduce bus traffic.

If we decide to send data only if we detect a critical breach, there may be a problem of

denial of service for the SeCore, the remote server may think everything is fine. Thus,

SeCore should be prioritized over other cores to obtain lock for the network interface.

11



The device is expected to send heartbeat packets to the ZTA Host for it to acknowledge

the connection is active. The ZTA Host also sends heartbeat packets to the device to

make sure that the communication channel is active. This mechanism would prevent

denial of service attacks.

4.2.6 ZTA Host

The computed trust-score would be sent to the ZTA Host (remote server). The host

decides on the privilege levels of the endpoint devices based on their trust score and the

course of action to take in case the host detects any suspicious activity from any of the

devices.

12



CHAPTER 5

ADDRESSING ATTACK VECTORS

This chapter gives some examples of the attack vectors we can address as a function of

the architectural parameters we monitor. Note that in this work, the focus is not on the

kinds of attacks we can detect, but on the architecture. Thus we have listed just a few

examples of the attacks we can prevent. For any kind of attack, it is reflected in the

architectural state of the processor. Since we can monitor any kind of architectural

parameter, the possibilities of the kinds of attacks we can prevent are limitless.

5.1 Monitoring System Bus

Since we are monitoring the system bus, we are monitoring the memory requests. Thus

we can see all the read and write addresses and data. Using these, we can monitor

several other architectural events like cache flushes, tlb misses, cache misses, etc.

• Observing cache flushes and rate of flushes, we can detect attacks like flush+reload
and rowhammer, since in these attacks a high rate of cache flushes is involved

• Cache Misses and Miss Rate can help us detect attacks like Prime+Probe, since
the probe phase mainly relies on detecting victim evictions by high access times
due to cache misses

• Several Speculative attacks like Meltdown also rely on Flush+Reload, so we can
also prevent several side channel attacks.

• By Monitoring read requests to hard disk, we can also prevent ransomware

• Since we are monitoring the addresses, we can detect data breaches, if critical
regions of memory are being over-read or overwritten by monitoring the read and
write requests

• Data leaks like heartbleed can also be prevented by monitoring read addresses.

• Since we are looking at the addresses via system bus, we can measure the bus
traffic. High traffic at particular addresses can point to some anomaly

• In a lot of architectures, there are separate system buses for instructions and data.
Thus we can also monitor instructions, the applications of which are discussed
below in section 5.4



5.2 Monitoring Program Counter

By Monitoring the program counter, and observing the pattern in which it changes, we

can detect control flow breaches like ROP. Furthemore, looking at forward and back-

ward jumps navigate us through the control flow of the program being executed, and

can help us detect any control flow breaches or deviation from the expected control

flow graph.

5.3 Monitoring Branch Predictor

Monitoring the branch predictor or branch history register can help:

• prevent side channel attacks like Spectre which exploits speculative execution
using branch predictor.

• detect ROP, since an ROP chain consists of several gadgets that end in return in-
structions. These return instructions do not have their corresponding call instruc-
tions, and therefore the CPU encounters several branch mispredictions during
their execution.

• detect anomalies by looking at a high rate of branch mispredictions

5.4 Monitoring Instructions

Keeping an eye for certain patterns in instructions can help detect a wide variety of

attacks, for example:

• Have counters for call and return instructions. Number of return instructions
exceeding call instructions, indicates an ROP attack.

• For attacks like prime and probe, in the probe phase to measure the access times
for the cache entries, instructions like rdcycle, rdtime are used very frequently.
Thus by looking at high rates of such instructions, we can identify a lot of side
channel timing attacks.

• Flush+Reload attack uses high number of clflush instructions for cache flushing.
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5.5 Monitoring Stack & Base Pointer

The base pointer (also known as frame pointer) points to the base address of the func-

tion’s frame, while the stack pointer points to the top of the stack. The stack pointer

must always be below the base pointer during execution. Thus, by monitoring the stack

pointer and base pointer, we can detect buffer overflow attacks

5.6 Monitoring OS Mode Switching

We can detect system calls by looking at the mode switch by OS. Now, when an OS

is compromised, it generally exploits system calls to attack into the system. Thus, by

looking at a high rate of certain kinds of system calls, we can even detect a compromised

OS.

5.7 Using AI Models on SeCORE

We can have sophisticated AI models running on SeCORE to detect a variety of attacks

with high precision, by monitoring a number of architectural parameters and the pattern

in which they change.

5.8 Memory Monitoring prevents majority of attacks

Majority of the attacks, at the end of the day, are tampering with memory. Attacks ei-

ther overwrite the memory, or read from secure regions in the memory. Even attacks

like ROP, Buffer overflow are overwriting the stack, which is part of the memory. So

by having proper algorithms running on SeCore, we can in theory prevent a very wide

range of attacks. All we would need is monitor hardware for system bus monitoring

which is very lightweight and easily compatible with existing processors.
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Note that the above attack vectors addressed in this chapter don’t cover the entire list of

attacks we can detect. As mentioned at the start of this chapter, the number and variety

of attacks we can detect is limitless, since for any attack we would be closely moni-

toring the architectural parameters associated with the attack. Addressing all possible

attacks that can be detected is not the focus of this work.
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CHAPTER 6

TRADE-OFFS

In this chapter we discuss the various trade-offs in our way of implementing PROMiSE.

(In general the trade-off between security and performance is very common and gener-

ally security is overlooked so as to not have any reduction in performance. PROMiSE

handles this trade-odd very well, having very minimal performance overhead, while

giving a lot more security.)

6.1 Hardware vs Software Implementation

Since we are monitoring at hardware level, it is much more secure than having a soft-

ware implementation, where a compromised OS may tamper with the security. But the

more the hardware, the more would be the area overheads and performance penalties.

So the monitor is made very lightweight, by monitoring only the very crucial parame-

ters which can cover a wide range of attack detection. The dedicated memories for the

monitors and the SeCore are also very small. Thus the area and performance penalties

are very less.

6.2 Tightly Coupled vs Plug & Play

Depending on the amount of architectural information we monitor, our monitor can

be either tightly coupled with the processor, or can be plug & play type. Suppose

we monitor a number of registers like program counters, branch predictors,etc. in the

processor, then we would need to wire them out to connect to the monitor. Though very

minimal, this would require changes in the existing processor. On the other hand, we

can monitor only a few parameters, for example the system bus. In this case, we can

make our monitor plug & play type where we can just connect it on the system bus

without making any changes to the existing processor. This would be less secure than

the tightly coupled case since the number of parameters monitored is less, but would be



much more compatible and easy to use with the existing processor architectures. Note

that even by monitoring just the system bus, we can still prevent a number of attacks (as

discussed in section 5.8). So we can get a high ratio of security provided with respect

to hardware cost incurred.

6.3 Complexity of Algorithm Running on SeCore

As discussed in section 5.8, there is a potential to detect a large number of attacks.

That said, if we want to cover a large number of attacks by just monitoring limited pa-

rameters, the algorithm would be equally complex and compute intensive. Further, the

higher accuracy of trust score we want, the more complex the algorithm would be. For

example, we can just check how frequently the program counter takes large jumps to

detect ROP, or have a sophisticated learning algorithm based on a pattern of program

counter changes to get a more accurate trust score but with a more compute intensive

algorithm. Additionally, having very complex algorithms, like AI Models for attack

detection running on SeCore, would not keep SeCore as lightweight as it was.

Note that we don’t want the latency of the algorithm to be so high, that it delivers the

result after a significant portion of the attack is completed.

6.4 Lightweight Monitor vs More Security

Suppose we are monitoring the architectural parameter, the program counter. The mon-

itor and the monitor memory can either have a single register to store the last observed

pc, or can have n registers to store the last n pc values. Since the SeCore also reads from

the monitor memory at a certain sampling rate, it may miss reading a few pc values if

only the last observed pc was stored. But with the last n pc values, the larger the n, the

lesser the chance that SeCore would miss reading a pc value.

Thus with larger n, we get more security but more area overhead, making the monitor

less lightweight than before.
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CHAPTER 7

A CASE STUDY: IMPLEMENTATION & RESULTS

In this chapter we present a case study, implementation of our architecture on a RISC-V

based SOC. Note that the implementation presented here is not the most optimised, it is

just to demonstrate the working of our idea. We address detecting cache flush based at-

tacks like Flush & Reload and Prime & Probe in this implementation. The architectural

parameters to be monitored and the trust score algorithm are chosen accordingly based

on this threat model.

7.1 SHAKTI C-Class

For the processing core, we use SHAKTI C-Class. It has a single core. The core

is highly optimized, 5-stage in-order design with MMU support and capability to run

operating systems such as Linux. It has only an L1 Cache. We would add our security

monitor inside the c-core, the main processing core. We re-use it’s SOC as our toplevel

SOC, in which we would connect our designed modules.

The c-class architecture is codes in Bluespec SystemVerilog (BSV) language. Therefore

we use BSV to design and implement all our modules for PROMiSE.

Figure 7.1: Micro Architecture of c-class



7.2 Designing the Architecture

In this section, we go over coding of each component of our architecture (See Appendix

for the important codes). Note that since c-class supports only single core architectures,

we demonstrate a single core architecture in this work. We would use AXI4 for it’s

system bus. The data bus is 64 bits, and the address bus is 32 bits. We use the existing

network interface from the c-class SOC as our communication channel.

Figure 7.2: Implementation of PROMiSE on c-class SOC

7.2.1 Security Monitor

In this work, the security monitor is designed to monitor the AXI Bus. This is because

our aim in this implementation is to prevent cache based attacks and just by monitoring

the AXI Bus, we can monitor the memory requests and thus detect cache flushing, since

a cache flush results in sending a write request to memory.

Brief Explanation of Security Monitor’s code

See Appendix A.1 for the code. In it’s interface, we have methods to monitor AXI Read

and Write requests (getting read and write data). These methods just store the input ad-

dress and data in the corresponding register variables and update counters to measure

read/write traffic. It also has a method to detect cache flushes based on the address of

the write request. Finally we have a method to write the observed data to the monitor

memory, which basically just returns a data structure which is a struct of the monitored

data variables. The monitor module basically has few registers in which it stores the ob-

served parameters of the cpu core using the interface methods. These register variables

values are written to monitor memory using the writing to monitor memory method.
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Detecting cache flushes

In order to detect cache flushes, we monitor the write addresses to the main mem-

ory,since each cache flush involves sending a write request to the memory. Using the

addresses we can determine the set index of the cache (Of 32 bit address, MSB 20 bits

are the tag, and the next 6 bits are set index). The monitor detects a line flush only if

there is a consecutive eviction of all the 64 sets. Any other case, it categorises it as a

random eviction. In each case, update the counters accordingly. As we can see, the

algorithm to detect cache flushes is extremely simple and lightweight.

Modifications required in c-core:

The monitor is instantiated inside the c-core. Whenever there is a rule to process AXI

read or write request, pass the data using the methods in monitor to get read or write

data. Additionally for rules processing write requests, use the method of checking cache

flush. The c-core additionally would have a method to write to the monitor memory. For

that method, just return the monitor’s method to write to monitor memory. As we can

see, very minimal changes are required in the existing processor design to incorporate

our code

7.2.2 Monitor Memory

The monitor memory is designed as a very small memory containing a few registers,

to store the monitored data. Note that since this memory is not a BRAM, it is just a

collection of a few registers, making it extremely small,lightweight and fast.

Brief Explanation of Monitor-Memory’s code

See Appendix A.2 for the code. The monitor memory basically has registers to store

the data observed by the security monitor. It has a method which it uses to get the data

from the security monitor and update it’s registers. The input to this method would be

the return value of the method which the security monitor uses to write the data.

It contains a function , get_rd_data ,which returns the appropriate register’s data corre-

sponding to the input address. This function would be used to read from the registers,

passing an address and getting the data. Memory mapping of each register to the ad-

dresses in realized in this function.
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Finally, it has a rule to process read requests from SeCore. Note that There will be no

write request to this memory region, since only the monitor can directly write to this.

There would only be read requests. We use the arid field of AXI to make sure that only

SeCore can read it’s data. Since we would be reading single registers at a time from this

memory, the rule is written for single burst transactions.

The monitor memory module also has an AXI bus instantiated. The memory would not

have an AXI Bus inside itself. This bus would be the system bus, with a connection

being made in the toplevel SOC. So we are basically just using this to monitor system

bus’s requests

Modifications in the SOC

Instantiate this memory in the SOC.

Ifc_monitor_mem_axi4 monitor_mem <- mkmonitor_mem;

Now, make a connection to pass the data captured by security monitor to the monitor

memory. This is basically hard-wiring the registers of the security monitor and the

monitor memory, since the security monitor sits inside the c-core, and we are connecting

it’s send method which returns a struct of all registers to the get method of monitor

memory to receive the struct.

mkConnection(monitor_mem.get_monitored_data,ccore.send_monitored_data);

Finally, connect the memory’s AXI to the system’s AXI bus. The constant Mon-

itor_mem_slave_num is to be defined in Soc.defines. Modify the fn_slave_map in

Soc.bsv as well to incorporate the slave number for this memory.

mkConnection (fabric.v_to_slaves[‘Monitor_mem_slave_num],monitor_mem.slave);

7.2.3 SeCore

For SeCore, we use the processing core of SHAKTI c-class, by instantiating the c-

core as SeCore in c-class SOC. Note that in actual design, the SeCORE is much more

lightweight than the core of c-class and we don’t need SeCore to be as compute in-

tensive as the main processor. Just for this demonstration, we are re-using the existing

processing core, since a new processor design is not the focus of our work.
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Modifications to c-core

We add another module parameter, named core-id, differentiate between c-core and

SeCore. In the SOC, c-core is instantiated with core-id of 0, and SeCore with id of 1.

Inside c-core, in the rules to send read requests to AXI bus, we incorporate the core-id

in the arid field of AXI. Thus, when we send a read request to monitor memory or SeC-

ore memory, it checks the arid, and sends a valid response only if the id corresponds

to SeCore. Similarly for the rules to send write requests, we incorporate the core-id in

the awid field of AXI. So if c-core sends a write request to SeCore memory, it would

check the awid and know that the id corresponds to c-core, thereby sending an invalid

response. In this way, only the SeCore can write to SeCore memory.

Modifications in the SOC

In the SOC, SeCore is instantiated with core-id of 1 (c-core is given a core id of 0).

The reset-pc of SeCore is set to 0x80200000, reasons of which would be discussed in

section 7.5.

Ifc_ccore_axi4 seCore <- mkccore_axi4(’h80200000, 0, 1);

Connect it as a master on AXI Bus

mkConnection(seCore.master_d,

fabric.v_from_masters[valueOf(Secore_mem_master_num)]);

mkConnection(seCore.master_i,

fabric.v_from_masters[valueOf(Secore_fetch_master_num)]);

Don’t forget to define the memory and fetch master numbers of Secore and increase the

number of masters be increased

typedef (TAdd#(Debug_master_num, 1)) Secore_mem_master_num;

typedef (TAdd#(Secore_mem_master_num, 1)) Secore_fetch_master_num;

typedef (TAdd#(Secore_fetch_master_num, 1)) Num_Masters;

7.2.4 SeCore Memory

The SeCore Memory is designed as a single port BRAM which is also instantiantiated

in the c-class SOC as a slave on the AXI Bus. Again, to make sure only the SeCore can

read and write to the SeCORE Memory we use the arid and awid field of AXI protocol.
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Brief Explanation of Code:

See Appendix A.3 for the entire code. The code is very similar to c-class’s bram.bsv.

The module mksecore_mem instantiates a single port BRAM, and has methods to read

and write into it. The module mksecore_mem_axi4 is a wrapper around the mksec-

ore_mem module, which instantiates the mksecore_mem module as dut. The mksec-

ore_mem_axi4 module has rules to process AXI reads and writes. It places the AXI

requests on the dut, which inturn uses it’s (mksecore_mem module’s) read/write meth-

ods to return the response, and that response is again placed on the AXI bus by the rules

in mksecore_mem_axi4 module handling AXI requests.

Note that in the rule conditions itself, we check if the id corresponds to SeCore, other-

wise the rule doesn’t fire itself in the first place. The id would be obtained by the arid

or awid field of AXI. Thus, only the SeCore can read or write into this memory.

The size of this memory would not be too large.

Modifications in SOC

Similar to Monitor Memory, instantiate SeCore memory in the SOC, and connect it as

a slave on the AXI Bus.

7.3 Synthesis Results

We synthesized the security monitor, and compared it against the c-class processing

core. The results are given below.

Monitor C-Core OverHeads

LUTs 26 56413 0.04%

Registers 396 28268 1.38%

MUXes 0 3544 0%

BRAM 0 68 0%

DSPs 0 27 0%

As can be seen, the security monitor is very lightweight, causing negligible overheads

when included in the processing core.

Additionally, all designs have satisfied the timing requirements, and don’t cause any

timing violation when included in the c-class SOC.
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7.4 Simulation Framework

In this work, we use verilator as our simulator. We compile the bluespec files generate

verilog files using it. Now, using verilator, we generate a verilated output of the top level

testbench. We would use this verilated output to simulate our hardware architecture in

software. To run c-codes on this, we compile the c-code we want to run on the processor

and generate its hex dump. We run this hex dump on the verilated output.

Figure 7.3: Running c-codes on our Architecture

7.5 Adding Support for Multi-Core Architecture

The c-class SOC doesn’t support multi-core architectures. Though we have a single

processing core, the cpu and SeCore make up 2 cores. We can’t have 2 cores instantiated

in the SOC just like that for simulation to work, because as discussed in section 7.4, we

have a single hex dump of all instructions, but it cannot be determined which instruction

will run on which core.

Figure 7.4: Problem with multi-core

To solve this, we do the following:

1. Set the reset-pc of SeCore to 0x80200000
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2. Using linker, add a section named secore at 0x80200000. So instructions starting
from this section would excecute on SeCore
SECTIONS
{

/*Code for secore section will start from
program counter 0x80200000 to run on SeCore*/

. = 0x80200000;

.secore : { *(.secore) }

/* text: test code section */
. = 0x80000000;
.text.init : { *(.text.init) }

Note that code from 0x80000000 runs on c-core, so we have sufficient space be-
tween 0x80200000 and 0x80000000 so that the two code regions do not overlap.

3. Now that we have added the section to excecute instructions on SeCore, we need
to add instructions for proper booting up of the core. SeCore would need a seper-
ate stack to run c-codes on it. Thus, during bootup, in the C runtime file crt.S, we
make all initializations, setup the stack, and jump to init function which calls the
main function to run on SeCore
.section .secore,"ax",@progbits
.globl secore
secore:

# initialize global pointer
.option push
.option norelax

la gp, __global_pointer$
.option pop

la tp, _end + 63
and tp, tp, -64
# get core id
csrr a0, mhartid
li a1, 1

1:bgeu a0, a1, 1b
# give SeCore 128KB of stack + TLS
sll a2, a0, STKSHIFT
add tp, tp, a2
add sp, a0, 1
sll sp, sp, STKSHIFT
add sp, sp, tp
# Now all initializations are done and stack is setup for SeCore
# Jump to the init files, which calls
# the main function to run on SeCore
la t0,_init_secore
jalr ra,t0

Note that simply having a jump to _init_secore as j _init_secore would throw an
error, since such large jumps may not be supported (an offset of nearly 0x200000).
To overcome that error, we load the address in a register, and jalr to that register
value.

4. Finally, in the init files (syscalls.c), add a function _init_secore which calls the
main running on SeCore.
void _init_secore(int cid, int nc){

// only single-threaded programs should ever get here.
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int ret = main_secore(0, 0);
exit(ret);

}

The main_secore is the main function which would run on SeCore and would
contain the trust score computing algorithm. In the c-code for SeCore, as one has
a main function, there should be a main function named main_secore, and have
the trust score algorithm inside it.
We have a main_secore function in the init file, which would be over-ridden by
the main_secore code we would write.
int __attribute__((weak)) main_secore(int argc, char** argv)
{

// single-threaded programs override this function.
printstr("No main_secore found\n");
return -1;

}

5. Write your trust score algorithm in a function named main_secore. which would
run concurrently on SeCore along with c-core’s main.

Figure 7.5: Segregating which instruction should execute on which core

7.6 FreeRTOS on PROMiSE

To demonstrate side channel attacks like Prime+Probe or Flush+Reload, we would need

an Operating System running on top of our hardware architecture, since these attacks

heavily rely on context switching between the victim program and the attack.

We choose FreeRTOS as the operating system, for it’s ease in implementation. FreeR-

TOS is like a monolithic kernel, i.e. its entire code is in a single file. Even the tasks

(processes) to be running on it are written in the same file. This monolithic kernel can

be thought of as a single c-code. Thus, to run it on c-class, one can use the simulation

framework as explained in section 7.4, generating a hex dump of FreeRTOS with the

tasks written, and running that hex dump on the verilated output. (One may need to

change the uart addresses of FreeRTOS according to SHAKTI c-class for it to run prop-

erly)
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Now to run it on the hardware of PROMiSE, we would again need to follow the method-

ology of section 7.5. We add a section in the linker, at the start of that section setup the

stack and have all initialization, and finally jump to the main code to execute on SeCore.

This would give us a hex dump containing both the trust score computing algorithm to

run on SeCore, and the FreeRTOS code with the user’s tasks on c-core. Since it has

been explained in detail in section 7.5, we would not be going over the implementation

again.

Note that the tasks run on FreeRTOS which in turn runs on the c-core or cpu. But the

trust score computing c-code runs directly on SeCore, so even if the OS is compromised,

it cannot tamper the the trust score algorithm’s outputs.

7.7 Crafting Attacks

In this section, we present two simulations of attacks, one simulating a high rate of

cache flush, and the other simulating a prime and probe attack.

7.7.1 Simulating high cache flushes

In the framework developed in section 7.5, we would have the cpu and the SeCore

concurrently executing their own codes. Have the attack excecuting on cpu, and the

SeCore parallely running the trust score algorithm to give the trust scores at runtime.

We simulate high cache flushes by filling the entire cache with an array, say array-1.

Now filling the entire cache with another array, say array-2, results in eviction of array-

1, and this flushing of the cache. Again filling the entire cache with array-1 results in

eviction of array-2. Keep repeating this cycle of each of the arrays evicting the other,

for the desired duration of simulating high flush rate.

volatile int array1[SIZE]; //SIZE is size of cache

void main() {

//Some initial non malicious code ...

volatile int array2[SIZE];

//num_loops is number of times this cycle

//of evicting each other would run
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int num_loops = 5;

for (int j=0;j<num_loops;j++){

//This loop fills cache with array-1

//should result in eviction of array-2

for(int i=0; i<SIZE; i++)

array1[i] = i;

//This loop fills cache with array-2

//should result in eviction of array-1

for(int i=0; i<SIZE; i++)

array2[i] = i;

}

//Rest of the non malicious code ...

}

7.7.2 Simulating a Prime+Probe attack

We have 2 processes (tasks) running on the OS FreeRTOS, a victim and a spy. The spy

fills the cache with an array. The victim program evicts some entries of the cache. The

spy then checks the access times of each array index, which basically checks access

time of each cache location. Thus we can know which entries of spy array which the

victim has evicted to fill it’s data, and therefore get to know victim’s data. In this way,

we have formed a covert channel between the victim and the spy.

We need to make sure the context switching between the victim and the spy happens at

specific points. The spy first fills the cache, then a context switch to victim which evicts

certain entries, then a context switch to spy which determines the access times. Context

switch at some other point may lead to losing information, for example consider spy

fills the array and then starts determining the access time of first few entries, and then a

context switch happens to victim which evicts one of the first few entries whose access

times have already been determined by the spy, thus the spy not being able to capture

which entries the victim has evicted. In general attackers run such attacks for several

iterations and take the average, but for this work, we have used the vTaskPrioritySet

function of FreeRTOS to change the priorities of the tasks at certain points so that there

is a context switch at those points.
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Note that the focus of this work is not on crafting an efficient attack, but on the archi-

tecture which helps us detect it. So we just simulate an attack which would help us test

if we are able to detect the architectural events relevant to the attack properly.

To detect this attack, we use that fact that at the start of prime phase, the cache flush rate

is very high. Thus by detecting high cache flushes, we try to detect the attack at the start

itself. Note that these attacks generally run multiple times, so at every frequent interval

there would be a high flush rate detected when the spy fills the entire cache with it’s spy

array

The snippet of the code is given below:

void vTaskSpy(__attribute__((unused)) void *pvParameters);

void vTaskVictim(__attribute__((unused)) void *pvParameters);

TaskHandle_t SpyTaskHandle;

TaskHandle_t VictimTaskHandle;

/*-----------------------------------------------------------*/

int main(void)

{

printf("FREERTOS starting\n");

xTaskCreate(vTaskSpy, "Task1",500,NULL,3,&SpyTaskHandle);

xTaskCreate(vTaskVictim,"Task2",500,NULL,2,&VictimTaskHandle);

//Initially Priority of Spy more than Victim (3>2)

//so that it can fill the cache

/* Task scheduledd with help of clint */

vTaskStartScheduler();

/* Exit FreeRTOS */

return 0;

}

/*-----------------------------------------------------------*/

//Does the Prime & Probe

void vTaskSpy(__attribute__((unused)) void *pvParameters)

{

//Spy Running : Filling Cache with Spy Array
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//Initially fill the whole cache

for(int i=0; i<CACHE_SIZE; i++){

spy_array[i]=i;

}

//Lower priority of Spy so that now

//Victim can run and evict some cache entires

vTaskPrioritySet(SpyTaskHandle,1);

int temp;

//In the loop, keep checking which locations in cache

//are a miss, by accessing each entry of spy array.

//Later fill the entire cache again with the spy array

while(1){

//Determining Time of Access

for(int i=0; i<CACHE_SIZE; i++){

asm volatile("rdcycle a0\n");

register int t1 asm("a0");

temp = spy_array[i];

asm volatile("rdcycle a1\n");

register int t2 asm("a1");

int time_taken = t2-t1;

printf("Time for index:%d=%d\n",i,time_taken);

}

//Fill the entire Cache Again with the Spy Array

for(int i=0; i<CACHE_SIZE; i++){

spy_array[i]=i;

}

//Now again victim should run, and the cycle continues

}

}

void vTaskVictim(__attribute__((unused)) void *pvParameters)

{

int secret_key = 1;

if(secret_key==1){

for(int i=0; i<VICTIM_ARRAY_SIZE; i++){

victim_array[i]=i;

}

}

//Delete this Victim task once it evicts some cache entries
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//vTaskDelete(VictimTaskHandle);

while(1){

printf("Victim Running\n");

}

}

7.8 Trust Score Algorithm

In this work, we use a very simple algorithm to calculate the trust score, considering

cache based architectural attacks as our threat vectors. Note that these algorithms pre-

sented here are very basic algorithms, since arriving at the most efficient algorithm is

not the focus of our work. With comprehensive trust score algorithms incorporating

anomaly detection, one can achieve very high security. For example using ML mod-

els for pattern detection of certain architectural parameters, we detect attacks with high

accuracy, reflecting it in the trust score. The amount of security one can achieve by bet-

tering the algorithm is limitless. Reaching at the most efficient algorithm is a separate

work in itself. In this work, we just try to reflect in the trust score that a high rate cache

flushing may indicate an attack, for example the prime phase of prime+probe attack, or

the cache flushing in flush+reload attack.

We compute 3 scores, S1,S2 and S3, which would lie between 0-100, and would de-

crease with increase in cache flush rates. The trust score is taken as a weighted average

of the three scores.

Score 1 (S1):

S1 =
Random Evictions× 100

Random Evictions+ (Line F lushes)(Line Size)

A low value of S1 indicates a high number of line flushes.

This is a ratiometric measurement which computes the ratio of the number of random

evictions from the cache to the sum of random evictions and line flushes. Since each

line flush evicts all entries of that line, we multiply the number of line flushes with the

line size. The denominator is basically the total number of cache evictions.

We multiply the numerator with 100 so that the score S1 lies between 0-100, rather

than 0-1 which would happen if we just took the ratio of random evictions by total evic-
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tions. We do this because having scores in the range of 0-1 would involve floating point

computations. Instead to make the computation lightweight, we multiply by 100 and

make the data type as int, so as to round off the numbers between 0-100 and make the

computation lightweight.

Score 2 (S2):

S2 =
Cycles Since Last F lush× 100

Cycles Since Last Random Eviction+ Cycles Since Last F lush

A low value of S2 indicates a high rate of line flushes.

Note that by looking at the cycles elapsed since last eviction, we can know the rate of

eviction, since high rate of an event would correspond to very less cycles since that last

event. Thus in score S2, in a way, we are taking a ratio of rates. We multiply the nu-

merator by 100 because of the same reason as mentioned above, to avoid floating point

computations. Note that the denominator has a sum of random eviction and flush evic-

tions rather than just random evictions because the ratio (flush)/(flush+random) would

always lie between 0-1 making S2 lie between 0-100 always.

Score 3 (S3):

S3 = 100− Line F lushes× Line Size× 100

Total Cycles

A low value of S3 indicates a high rate of line flushes.

This computes rate of line flushes as ratio of flush evictions and number of cycles

elapsed. Note that this would always be less than 1, since cycles in which flush evic-

tions happened would always be less than the total number of cycles. We multiply the

numerator by 100 because of the same reason as mentioned above, to avoid floating

point computations. We subtract this from 1, so that the score goes low if the flush rate

becomes high.
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TRUST SCORE:

TRUST SCORE =
w1 × S1 + w2 × S2 + w3 × S3

w1 + w2 + w3

The trust score is weighted average of S1,S2 and S3, the weights w1, w2 and w3 are

decided based on which score we want to give more importance. Note that since S1, S2

and S3 lie between 0-100, the trust score also lies between 0-100. A higher trust score

implies the device is more trustworthy.

Coding the trust score

We use the above algorithm to compute the trust score in SeCore. In main_secore

function, write the following code:

1 int main_secore() {

2 //Important to have these as volatile, otherwise won’t read from

3 //memory everytime, but rather store in cache and keep using the

4 //same stored data for any future dereferencing of pointer

5 volatile int* R = (int*)(0x40000000); //No. of Random Evictions

6 volatile int* F = (int*)(0x40000008); //No. of Line Flushes

7 volatile int* TC = (int*)(0x40000010); //Total Cycles

8 volatile int* RC = (int*)(0x40000018); //Cycles since random eviction

9 volatile int* FC = (int*)(0x40000020); //Cycles since last flush

10 int w1 = 1, w2 = 2, w3 = 2;

11 int L = 64; //Line Size

12 int S1, S2, S3, Trust_Score = 0;

13 while(1){

14 //-----------------------Score S1-------------------------

15 int S1_numerator = (*R)*100;

16 int S1_denominator = *R + (*F)*L;

17 if(S1_denominator!=0)

18 S1 = S1_numerator/S1_denominator;

19 else // denominator 0 means no evictions, so no threat in our model

20 S1 = 100; //max score

21 //-----------------------Score S2-------------------------

22 S2 = ((*FC)*100) / (*FC + (*RC));

23 //Both FC=1 and RC=1 means in the previous cycle both random

24 //eviction and flush happened which is not possible. So FC=1

25 //and RC=1 can happen only if no eviction has happened and

26 //those registers have their initial value

34



27 if(*FC==1 && *RC==1)

28 S2 = 100; //max score

29 //-----------------------Score S3-------------------------

30 //Multiply F*L by 50000, otherwise F*L/TC is almost 0

31 S3 = 100 - ( (*F)*L*50000 )/(*TC);

32 if(S3<0) //It means a very very high flush rate

33 S3=0; //Min score

34 //-----------------------Trust Score-----------------------

35 Trust_Score = (w1*S1+w2*S2+w3*S3)/(w1+w2+w3);

36 printf("Trust Score: %d\n",Trust_Score);

37 }

38 return 0;

39 }

7.9 Trust Score Results

We compare the trust score of two programs, one being malicious simulating an attack

as mentioned in section 7.7.1, while the other being normal program consisting a simple

code which just runs some computations and doesn’t involve any evictions. The SeCore

would have the trust score computing algorithm as was given above. Using these, we

get the following graph of the trust score over the progress of the program.

Figure 7.6: Attack reflected in lowering of trust

Since the normal program doesn’t have any evictions, it is not a concern based on

our threat model assumption for this case study. Thus the trust score remains high and

constant at 100, which is the maximum trust. The malicious code on the other hand,
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when it runs the cache based attack, we can see that the trust score goes down and we

can detect the attack. Later as it runs normal computations, the trust score slowly starts

going up.
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CHAPTER 8

FUTURE SCOPE

In this chapter, we would discuss some ideas which can be achieved by slight modifica-

tions to PROMiSE. We discuss the future work that can be done so as to cover a wide

range of security applications using PROMiSE.

8.1 PROMiSE can prevent a range of attacks

Any attack that runs, its characteristics are reflected in the architectural state of the

processor. Since we are monitoring key architectural parameters at hardware level, in

theory we can detect any kind of attack. We need to identify and look out for the proper

architectural parameters relevant to the attack.

Infact, as discussed in the section 5.8, there is a potential to detect a large number of

attacks, just by monitoring the system bus and memory requests. Thus by developing

proper learning and anomaly detection algorithms, we can cover a wide range of attack

detection by monitoring just a few parameters.

8.2 PROMiSE can provide TrustZone

A lot of Architectures don’t have TrustZones or Secure World. In our design, the SeCore

can be thought of as a Trust Zone at hardware level, since it is completely isolated from

other cores. Thus very sensitive codes can be run on SeCore, which is a secure core.

8.3 Security Hub storing entire architectural state

We can have a security hub which stores all the parameters necessary for security in-

cluding registers and counters of certain architectural events. Now the Monitor can be

made programmable and using a MUX, it can choose from the parameters stored in



the security hub, which it thinks would be useful for a particular application. Thus the

monitor’s monitoring would be faster and more efficient since we are monitoring only

the necessary parameters relevant to security of that particular application currently run-

ning.Therefore, this solution would give us much more security, programmability and

faster execution but at the same time, would incur additional hardware costs.

8.4 PROMiSE in Remote Network Monitoring

Our framework can also be used in Remote Network Monitoring (RMON). RMON

is the process of monitoring network traffic on a remote Ethernet segment to detect

network issues such as dropped packets, network collisions and traffic congestion. It

uses a variety of parameters from the devices connected on the network to arrive at

the statistics. PROMiSE can help in supplying these parameters from each device in a

secure and untamperable manner, thus avoiding a lot of potential network attacks.

8.5 PROMiSE for ZTA Microsegmentation

One of the core principles of ZTA is Microsegmentation. It breaks up security perime-

ters into distinct security segments and defines security controls for each unique seg-

ment. ZTA utilizes this technique to ensure that a person or program with access to one

of those segments will not access any of the other segments without separate authoriza-

tion.PROMiSE can help provide microsegmentation, with the help of trust scores. For

example, the segment of users who are supposed to get only guest account access to the

network, the trust score of their devices can be lowered to incorporate this.

8.6 Attesting Control Flow Graph using SeCore

Since SeCore is a security core, we are not limited by the amount of security tasks it can

achieve. One such idea is to have a control flow attestation mechanism inside SeCore.

A lot of attacks like ROP exploit control flow breaches. The way we would achieve

security against control flow attacks is as follows:
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1. The compiler generates a control flow graph of the program at compile time. Note
that at compile time, we do not know the exact path a program would take since
a lot would depend on user inputs, (specially for embedded systems applications)
and can lead to exponential paths. Therefore, we have segmentation for the con-
trol flow graph, and store all the segments separately. At runtime, once we know
the user inputs, the segments can be stitched together to know the exact path.

Figure 8.1: Segmentation of Control Flow Graph

2. Now when the program runs, as and when we get the inputs (from user /peripher-
als /sensors), the Monitor captures them, compresses them and stores them in its
Monitor Memory. Note that the monitor can monitor these inputs since the inputs
are written to the main memory and we are monitoring the memory read/write
requests using system bus. We compress the inputs because there may be a large
number of inputs in the embedded device and storing all of them as it is would re-
quire a large space. Now, since we have the inputs, the control flow graph would
a single definitive path.

3. Now that the control flow graph has a definitive path, we can store the hash of
the program counter in a Bloom Filter at every n change in pc (pc+n), n can
be 4,8,16,etc. depending on what granularity we want. Bloom Filter is a very
efficient way to store the history of pc values. Since Bloom Filter needs k different
hash algorithms, we rather use the same hash algorithm but operate it on different
bits. Finally we encrypt the Bloom Filter and the compressed inputs, and send it
to the remote server.

4. The remote server (ZTA Host) already has the control flow graph generated at
compile time. It would decrypt and decompress the inputs to generate the defini-
tive path in the control flow graph. Using the decrypted Bloom Filter, it would
check if that path has been executed by observing the pc values.

Thus, we can get a very comprehensive security against control flow breaches using

the above technique. The only drawback is the significant hardware overhead and high

latencies.
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Figure 8.2: Control Flow Attestation using SeCore

Figure 8.3: Methodology of Runtime Remote Attestation

8.7 PROMiSE for Performance Monitoring

By making use of architectural states captured by the security monitor, we can monitor

the performance of the processor at runtime. Using counters for specific architectural

events, we can have performance counters using the monitor. For example just by

looking at the read or write requests in the system bus, we can monitor bus traffic.
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CHAPTER 9

COMPARING WITH EXISTING PROPOSALS

This chapter compares our work with some of the significant research proposals which

may seem similar to PROMiSE, and differentiates PROMiSE against them.

9.1 PROMiSE vs HPCs

Hardware Performance Counters (HPCs) are special purpose registers built into mod-

ern processors and monitor low-level micro-architectural events, e.g., branch-misses,

cache-misses, and number of instructions executed. HPCs are typically used to monitor

the performance of applications at run-time.

• Our Solution prevents information leakage: The major advantage of our architec-
ture over using HPCs is that in HPCs there is possibility of data leakage, while in
our case the monitored data is completely secure. To read performance counters,
in some cases we are provided with APIs which can be used to get the counter
data, or in some cases there exist instructions to read from certain registers. In
some HPCs, we read using a special interrupt called Performance Monitoring In-
terrupt (PMI) which needs OS support. Therefore, in the end, we are relying on
software to get the data, and a compromised OS can leak that information or tam-
per with the data. Thus, information leakage via HPCs of applications has been
exploited as covert channels.
But in our case, we have a dedicated hardware core (SeCore) which would read
from the monitors (which in our case have all the counters). The software al-
gorithm we write to get the counter data runs on SeCore which is a completely
secure and untamperable core. Thus, in this way we have solved the major prob-
lem of data leakage which would exist if we use HPCs.

• Our Monitor takes care of OS Context Switches: Context Switching by the OS
may affect the counter values. The counter values for a new process may not be
reset to zero, and contain data from the previous process. Thus for HPCs, the
runtime variation (for example OS activity, scheduling of programs in multitask-
ing environments, and multi-processor interactions may change between different
runs) would result in different counter values across runs.
Our Monitor Hardware takes care of context switching by the OS. It monitors the
satp register and stores counters separately for each process in the Monitor Mem-
ory. In case of context switching to another process, it either resets the counters
or loads the stored counters if the new process was already scheduled. Thus
the monitor’s counter values would be much more accurate. It would not have



non determinism resulting from variations in OS scheduling, context switching
or multitasking.

• Lack of determinism in architectural events may result in false positives for attack
detection. If we are using HPCs for security by monitoring these events, a false
positive may result in wrongful termination of the program. But in our case, we
use the monitored values to arrive at a trust score and send the result to a remote
server. The hardware doesn’t make any decision to terminate the program. We
use ZTA systems, and entrust the ZTA Host (remote server) to make decisions
like lowering its privilege levels. In this way, we are reducing the penalty for
false positives.

• Sampling rate of HPCs vary across processors. If the sampling rate is low, we may
miss out on several architectural events which may result in missing detection of
potential attacks. Our Monitor continuously monitors. It can be thought of as a
hardware accelerator which continuously runs in parallel. Thus the probability of
missing detection of any architectural event relating to some potential attack is
very less

• Some HPCs bundle several similar events together, for example, number of arith-
metic instructions instead of number of add instructions. Our solution decides on
specific events which are critical for security, and closely monitors them individ-
ually.

• There is a lack of portability in HPCs, a lot of architectural events may not be
available on other processors. We are monitoring some very basic parameters like
program counters, system bus, etc. which are present in almost all processors.

9.2 Security Monitor vs PHMon

Programmable Hardware Monitor (PHMon) is also a hardware monitor for security.

The following are the differences between PHMon and PROMiSE:

• PHMon itself has the code to make evaluations and take action based on observed
parameters. Our Monitor doesn’t make any decisions, it just monitors. So it is
much more lightweight.

• All the decisions based on parameters monitored by the monitor are taken by
SeCore, based on the trust score algorithm the programmer provides. In this way,
we have segregated the monitoring and decision making tasks in the monitor and
SeCore respectively. On the other hand, PHMon does both the tasks of monitoring
and decision making.

• The code which runs on SeCore to evaluate trust score based on parameters ob-
served by monitor is also customisable. This is highly advantageous, because
over time new attacks develop. But in the case of PHMon, to make any changes in
the algorithm to incorporate that, we would need to make hardware level changes.
In our case, the algorithm is on software, providing greater customizability. Thus,
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PROMiSE can incorporate the changing policies in ZTA systems with much more
ease than PHMon.

• PHMon needs Hardware level implementation, OS support for process manage-
ment, and APIs to help communicate with Application. Our monitor just requires
hardware changes. So it is much easier to implement. Further, all applications
can’t use the data observed by the monitor. Only the code running on SeCore can
use it by simply accessing certain memory regions using pointers, without any
need for APIs.

• Since PHMon itself takes decisions and actions, there may be chances of false
positives and a non malware code getting terminated. After all, PHMon monitors
a few architectural parameters and checks against a threshold. There is no way
to guarantee a 100% perfect threshold. Our way on the other hand sends a report
of Trust Score to Remote Server, that can take decide on the plan of action. So
never will a false positive detected will get a program immediately terminated,
thus solving the problem of false positives.

• Incorporating PHMon requires significant changes in existing processors. For
example, its Tag based approach to detect data flow breach requires extending
the existing Memory and adding a tag to each. The monitor would just require
wiring out certain registers to it. Infact, we can even have our monitor completely
plug & play type (as discussed in section 6.2) in which case we would not need
to make any changes in the existing processors at all.

Bottomline, our monitor is much more lightweight easier to implement, and it just

monitors. In PROMiSE, the task of detecting attacks and breaches is done by the SeC-

ore, thus having a clear segregation in monitoring and decision making. PHMon is more

complex and itself does the security tasks like detecting data flow control flow breaches.

Figure 9.1: PHMon
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9.3 Our way of Runtime Attestation vs OAT

OAT is Operation Execution Integrity ATtester. OAT is implemented at compiler level.

It needs a TrustZone Or Secure World. Our Runtime attestation doesn’t any compiler

changes. Majority of attestation is achieved via Hardware. Further, we don’t need a

TrustZone Or SecureWorld. Our Monitor and SeCore would help achieve this.

OAT does some Runtime checks and generates Hash of the report. We compute the

trust score and send it’s digitally signed copy to the remote server.

Figure 9.2: OAT
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CHAPTER 10

CONCLUSION

This work proposes PROMiSE, a dedicated lightweight hardware architecture that can

capture the dynamic trust score of low-constraint embedded devices, typically used

in IOT applications. PROMiSE can be incorporated to meet the requirements of the

changing policies mandated by ZTA. The trust-score, computed by an isolated, non-

tamperable and dedicated processing core (SeCore) ensures a high degree of confi-

dence in the trust measurements. Further, the reprogrammability feature ensures that

PROMiSE can be adapted for a variety of application scenarios.



APPENDIX A

CODES

This contains all the codes discussed in chapter 7

A.1 Security Monitor

Code for the Security Monitor

1 package monitor;

2

3 import monitored_data_struct::*;

4

5 interface Ifc_monitor;

6 //Monitor AXI Read Data

7 method Action get_read_data (Bit#(32) addr);

8 //Monitor AXI Write Data

9 method Action get_write_data (Bit#(32) addr, Bit#(64) data);

10 //Monitor if any cache flush detcted

11 method Action check_cache_flush (Bit#(32) addr);

12 //Write monitored data to monitor memory

13 method Monitored_data write_to_monitor_memory();

14 endinterface: Ifc_monitor

15

16 module mkMonitor(Ifc_monitor);

17

18 //------------AXI Read and Write----------------------

19 //Read address passed from the core

20 Reg#(Bit #(32)) read_addr <- mkReg(0);

21 //Write address passed from the core

22 Reg#(Bit #(32)) write_addr <- mkReg(0);

23 //Write data passed from the core

24 Reg#(Bit #(64)) write_data <- mkReg(0);

25 //Measures bus traffic based on read requests

26 Reg#(Bit #(32)) rd_counter <- mkReg(0);



27 //Measures bus traffic based on write requests

28 Reg#(Bit #(32)) wr_counter <- mkReg(0);

29

30 //-------------Checking Cache Flushes-----------------

31 //Tag of the cache is MSB 20 bits of the address

32 Reg#(Bit #(20)) tag <- mkReg(0);

33 //set_index is the next 6 bits

34 Reg#(Bit #(6)) set_index <- mkReg(0);

35 //Counts consecutive cache block access (in consecutive set).

36 //64 consec block accesses in a line means line eviction

37 Reg#(Bit #(6)) consec_ctr <- mkReg(0);

38 //Counts random cache block access

39 Reg#(Bit #(64)) random_ctr <- mkReg(0);

40 //Counts number of times full cache line flushed

41 Reg#(Bit #(64)) line_flush_ctr <- mkReg(0);

42 //Counts total cycles elapsed

43 Reg#(Bit #(64)) total_cycles <- mkReg(0);

44 //Counts number of cycles elapsed since last Line Flush.

45 //Would be useful for computing "RATE" as 1/cycles_since_flush

46 //(thats why initialised with 1)

47 Reg#(Bit #(64)) cycles_since_flush <- mkReg(1);

48 //Counts number of cycles elapsed since last Random Eviction.

49 //Would be useful for computing "RATE"as 1/cycles_since_random

50 Reg#(Bit #(64)) cycles_since_random <- mkReg(1);

51

52 rule rl_count_cycles;

53 total_cycles <= total_cycles+1;

54 endrule

55

56 method Action get_read_data(Bit #(32) addr);

57 read_addr <= addr;

58 rd_counter <= rd_counter + 1;

59 endmethod

60

61 method Action get_write_data(Bit#(32) addr, Bit#(64) data);

62 write_addr <= addr;

63 write_data <= data;

64 wr_counter <= wr_counter + 1;

65 endmethod

66
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67 //This method computes and updates counters for the cache

68 //accesses. It detects if a line flush happened

69 method Action check_cache_flush(Bit #(32) a);

70 //a[31:12] is the tag and a[11:6] is the set_index

71

72 if (a[11:6]==set_index+1) //succesive set

73 begin

74 if( a[11:6]==63) //Last set

75 begin

76 //Check if all 64 sets are accessed in succession

77 //when we reached the 64th set

78 if ( consec_ctr==63 )

79 begin

80 //This means line flush detected

81 line_flush_ctr <= line_flush_ctr+1;

82 //Update the cycle counters

83 cycles_since_flush <= 1;

84 cycles_since_random <= cycles_since_random + 1;

85 end

86 else

87 begin

88 //A set of some consecutive blocks evicted,

89 //not entire line flushed

90 random_ctr <= random_ctr + {’0,consec_ctr};

91 cycles_since_flush <= cycles_since_flush + 1;

92 cycles_since_random <= 1;

93 end

94 consec_ctr <= 0; //Reset counter for another new line

95 end

96 else

97 begin

98 //Succesive set, but not last

99 consec_ctr <= consec_ctr+1;

100 cycles_since_flush <= cycles_since_flush + 1;

101 cycles_since_random <= cycles_since_random + 1;

102 end

103 end

104 else

105 begin

106 //Not a succesive set
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107 random_ctr <= random_ctr+1;

108 cycles_since_flush <= cycles_since_flush + 1;

109 cycles_since_random <= 1;

110 end

111

112 //Update the tag and set_index

113 tag <= a[31:12];

114 set_index <= a[11:6];

115 endmethod

116

117 //This method would write these monitored data to the

118 //monitor memory. In a way hard-wiring

119 method Monitored_data write_to_wathdog_memory();

120 return Monitored_data{

121 read_addr:read_addr,

122 write_addr:write_addr,

123 write_data:write_data,

124 rd_counter:rd_counter,

125 wr_counter:wr_counter,

126 random_ctr:random_ctr,

127 line_flush_ctr:line_flush_ctr,

128 total_cycles:total_cycles,

129 cycles_since_flush:cycles_since_flush,

130 cycles_since_random:cycles_since_random

131 };

132 endmethod

133

134 endmodule : mkMonitor

135

136 endpackage : monitor

Data Structure: Struct for the Monitored Data

1 package monitored_data_struct;

2

3 typedef struct {

4 Bit #(32) read_addr;

5 Bit #(32) write_addr;

6 Bit #(64) write_data;

7 Bit #(64) rd_counter;

8 Bit #(64) wr_counter;
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9 Bit #(64) random_ctr;

10 Bit #(64) line_flush_ctr;

11 Bit #(64) total_cycles;

12 Bit #(64) cycles_since_flush;

13 Bit #(64) cycles_since_random;

14 }Monitored_data deriving (Bits);

15

16 endpackage

A.2 Monitor-Memory

Code for the Monitor Memory

1 package monitor_memory;

2

3 import AXI4_Types::*;

4 import Semi_FIFOF::*;

5 import monitored_data_struct::*;

6

7 interface Ifc_monitor_mem_axi4;

8 method Action get_monitored_data(Monitored_data monitored_data);

9 interface AXI4_Slave_IFC#(32, 64, 0) slave;

10 endinterface : Ifc_monitor_mem_axi4

11

12 module mkmonitor_mem(Ifc_monitor_mem_axi4)#( parameter Integer base_addr);

13

14 AXI4_Slave_Xactor_IFC #(32,64,0) s_xactor <- mkAXI4_Slave_Xactor();

15

16 //--------Registers to Store data monitored by the monitor---------

17 //Read address passed from the core

18 Reg#(Bit #(32)) read_addr <- mkReg(0);

19 //Write address passed from the core

20 Reg#(Bit #(32)) write_addr <- mkReg(0);

21 //Write data passed from the core

22 Reg#(Bit #(64)) write_data <- mkReg(0);

23 //Measures bus traffic based on read requests

24 Reg#(Bit #(32)) rd_counter <- mkReg(0);

25 //Measures bus traffic based on write requests

26 Reg#(Bit #(32)) wr_counter <- mkReg(0);

50



27 //Counts random cache block access

28 Reg#(Bit #(64)) random_ctr <- mkReg(0);

29 //Counts number of times full cache line flushed

30 Reg#(Bit #(64)) line_flush_ctr <- mkReg(0);

31 //Counts total cycles elapsed

32 Reg#(Bit #(64)) total_cycles <- mkReg(0);

33 //Counts number of cycles elapsed since last Line Flush.

34 Reg#(Bit #(64)) cycles_since_flush <- mkReg(1);

35 //Counts number of cycles elapsed since last Random Eviction.

36 Reg#(Bit #(64)) cycles_since_random <- mkReg(1);

37

38 //This function returns data (correct register) corresponding to the address

39 //For each consecutive access, add 8 bytes, since 64 bit registers

40 function Tuple2#(Bit#(64),Bool) get_rd_data(Bit#(32) addr, Bit#(3) size);

41 if (addr==base_addr)

42 return tuple2( random_ctr, True);

43 else if(addr==base_addr+8)

44 return tuple2( line_flush_ctr, True);

45 else if(addr==base_addr+16)

46 return tuple2( total_cycles, True);

47 else if(addr==base_addr+24)

48 return tuple2( cycle_random, True);

49 else if(addr==base_addr+32)

50 return tuple2( cycle_flush, True);

51 else if(addr==base_addr+40)

52 return tuple2( read_addr, True);

53 else if(addr==base_addr+48)

54 return tuple2( write_addr, True);

55 else if(addr==base_addr+56)

56 return tuple2( write_data, True);

57 else if(addr==base_addr+64)

58 return tuple2( rd_counter, True);

59 else if(addr==base_addr+72)

60 return tuple2( wr_counter, True);

61 else

62 return tuple2(?,False);

63 endfunction

64

65 //There will be no write request to this memory region, since

66 //only the monitor can directly write to this
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67 //There will be just read requests from SeCore.

68

69 //NOTE: This rule written ASSUMING burst size = 1.

70 //This is because we would want only one register at a time

71 //Basically fixed burst with size 1

72 rule process_rd_req;

73 let rd_req <- pop_o (s_xactor.o_rd_addr);

74 let {rdata,succ} = get_rd_data(rd_req.araddr,rd_req.arsize);

75

76 //If burst length is more than 1, this rule won’t work

77 //If arid is not 15, it means it is not cming from SeCore

78 //So for both the above cases, have response as failure

79 if (rd_req.arlen>0 || rd_req.arid != 15)

80 succ = False;

81

82 let rd_resp = AXI4_Rd_Data {rresp:succ?AXI4_OKAY:AXI4_SLVERR,

83 rid:rd_req.arid, rlast:(rd_req.arlen==0),

84 rdata: rdata, ruser: ?};

85

86 s_xactor.i_rd_data.enq(rd_resp);

87 endrule

88

89

90 method Action get_monitored_data(Monitored_data monitored_data);

91 read_addr <= monitored_data.read_addr;

92 write_addr <= monitored_data.write_addr;

93 write_data <= monitored_data.write_data;

94 rd_counter <= monitored_data.rd_counter;

95 wr_counter <= monitored_data.wr_counter;

96 random_ctr <= monitored_data.random_ctr;

97 line_flush_ctr <= monitored_data.line_flush_ctr;

98 cycle_random <= monitored_data.cycles_since_random;

99 cycle_flush <= monitored_data.cycles_since_flush;

100 endmethod

101

102 interface slave = s_xactor.axi_side;

103

104 endmodule : mkmonitor_mem

105

106 endpackage : monitor_memory
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A.3 SeCore-Memory

Code for the SeCore Memory

1 package secore_memory;

2

3 import BRAMCore :: *;

4 import DReg :: *;

5 import Semi_FIFOF :: *;

6 import AXI4_Types :: *;

7 import AXI4_Fabric :: *;

8 import AXI4_Lite_Types :: *;

9 import AXI4_Lite_Fabric :: *;

10 import BUtils ::*;

11 import GetPut ::*;

12 import device_common ::*;

13 import Assert ::*;

14

15 export Ifc_secore_mem_axi4 (..);

16 export mksecore_mem_axi4;

17

18 ‘define secore_id 1 //To use as arid & awid in AXI

19

20 interface UserInterface#(numeric type addr_width, numeric type data_width,

21 numeric type index_size);

22 method Action read_request (Bit#(addr_width) addr);

23 method Action write_request (Tuple3#(Bit#(addr_width), Bit#(data_width),

24 Bit#(TDiv#(data_width, 8))) req);

25 method ActionValue#(Tuple2#(Bool, Bit#(data_width))) read_response;

26 method ActionValue#(Bool) write_response;

27 endinterface

28

29 // to make it synthesizable replace addr_width with Physical Address width

30 // data_width with data lane width

31 module mksecore_mem#(parameter Integer slave_base,parameter String modulename)

32 (UserInterface#(addr_width, data_width, index_size))

33 provisos( Mul#(TDiv#(data_width, TDiv#(data_width, 8)),

34 TDiv#(data_width, 8),data_width) );

35

36 Integer byte_offset = valueOf(TLog#(TDiv#(data_width, 8)));
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37 // we create 2 32-bit BRAMs since the xilinx tool is easily able to

38 //map them to BRAM32BE cells which makes it easy to use data2mem

39 //for updating the bit file.

40

41 BRAM_PORT#( Bit#(TSub#(index_size, TLog#(TDiv#(data_width, 8)))),

42 Bit#(data_width) ) dmem <- mkBRAMCore1( valueOf(TExp#(TSub#(index_size,

43 TLog#(TDiv#(data_width, 8))))), False);

44

45 Reg#(Bool) read_request_sent[2] <-mkCReg(2,False);

46

47 // A write request to memory. Single cycle operation.

48 // This model assumes that the master sends the data strb aligned for

49 //the data_width bytes. Eg. : is size is HWord at address 0x2 then the

50 //wstrb for 64-bit data_width is: ’b00001100 and the data on the write

51 //channel is assumed to be duplicated.

52 method Action write_request (Tuple3#(Bit#(addr_width), Bit#(data_width),

53 Bit#(TDiv#(data_width, 8))) req);

54 let {addr, data, strb}=req;

55 let write_enable = (strb!=0);

56 Bit#(TSub#(index_size,TLog#(TDiv#(data_width, 8)))) index_address =

57 (addr - fromInteger(slave_base))[valueOf(index_size)-1:byte_offset];

58 //Now not sending strb, sending a Bool write_enable to resolve

59 //type mismatch. Since it is not byte enabled BRAM,we would

60 //not need strb to read byte-wise

61 dmem.put(write_enable,index_address,truncateLSB(data));

62 endmethod

63

64 // The write response will always be an error.

65 method ActionValue#(Bool) write_response;

66 return False;

67 endmethod

68

69 // capture a read_request and latch the address on a BRAM.

70 method Action read_request (Bit#(addr_width) addr);

71 Bit#(TSub#(index_size,TLog#(TDiv#(data_width, 8)))) index_address=

72 (addr - fromInteger(slave_base))[valueOf(index_size)-1:byte_offset];

73 dmem.put(False, index_address, ?);

74 read_request_sent[1]<= True;

75 endmethod

76
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77 // respond with data from the BRAM.

78 method ActionValue#(Tuple2#(Bool, Bit#(data_width))) read_response if

79 (read_request_sent[0]);

80 read_request_sent[0]<=False;

81 return tuple2(False, dmem.read());

82 endmethod

83 endmodule

84

85 interface Ifc_secore_mem_axi4#(numeric type addr_width,

86 numeric type data_width, numeric type user_width, numeric type index_size);

87 interface AXI4_Slave_IFC#(addr_width, data_width, user_width) slave;

88 endinterface

89

90 typedef enum {Idle, Burst} Mem_State deriving(Eq, Bits, FShow);

91

92 module mksecore_mem_axi4#(parameter Integer slave_base,

93 parameter String modulename )

94 (Ifc_secore_mem_axi4#(addr_width, data_width, user_width, index_size))

95 provisos( Mul#(TDiv#(data_width, TDiv#(data_width, 8)),

96 TDiv#(data_width, 8),data_width) );

97

98 UserInterface#(addr_width,data_width,index_size) dut <- mksecore_mem

99 (slave_base, modulename);

100 AXI4_Slave_Xactor_IFC #(addr_width, data_width, user_width)

101 s_xactor <- mkAXI4_Slave_Xactor;

102 Reg#(Bit#(4)) rg_rd_id <-mkReg(0);

103 Reg#(Mem_State) read_state <-mkReg(Idle);

104 Reg#(Mem_State) write_state <-mkReg(Idle);

105 Reg#(Bit#(8)) rg_readburst_counter<-mkReg(0);

106 Reg#(AXI4_Rd_Addr #(addr_width, user_width)) rg_read_packet <-mkReg(?);

107 Reg#(AXI4_Wr_Addr #(addr_width, user_width)) rg_write_packet<-mkReg(?);

108 Wire#(Bool) wr_read_ack <- mkWire();

109

110 // If the request is single then simple send ERR. If it is a burst write

111 //request then change state to Burst and do not send response.

112 //This rule condition such that it will fire only if awid & wid of

113 //AXI write is ‘secore_id which is that of SeCore

114 rule write_request_address_channel(write_state==Idle

115 && s_xactor.o_wr_addr.first.awid==‘secore_id &&

116 s_xactor.o_wr_data.first.wid==‘secore_id);

55



117 let aw <- pop_o (s_xactor.o_wr_addr);

118 let w <- pop_o (s_xactor.o_wr_data);

119 dut.write_request(tuple3(aw.awaddr, w.wdata, w.wstrb));

120 let b = AXI4_Wr_Resp {bresp: AXI4_OKAY, buser: aw.awuser, bid:aw.awid};

121 if(!w.wlast)

122 write_state<= Burst;

123 else

124 s_xactor.i_wr_resp.enq (b);

125 rg_write_packet<=aw;

126 endrule

127

128 // if the request is a write burst then keeping popping all the data on the

129 //data_channel and send a error response on receiving the last data.

130 //This rule condition such that it will fire only if awid & wid of

131 //AXI write is ‘secore_id which is that of SeCore

132 rule write_request_data_channel(write_state==Burst

133 && s_xactor.o_wr_data.first.wid==‘secore_id);

134 let w <- pop_o (s_xactor.o_wr_data);

135 let address=axi4burst_addrgen(rg_write_packet.awlen, rg_write_packet.awsize,

136 rg_write_packet.awburst, rg_write_packet.awaddr);

137 dut.write_request(tuple3(address, w.wdata, w.wstrb));

138 let b = AXI4_Wr_Resp {bresp: AXI4_OKAY, buser: rg_write_packet.awuser,

139 bid:rg_write_packet.awid};

140 rg_write_packet.awaddr<=address;

141 if(w.wlast) begin

142 s_xactor.i_wr_resp.enq (b);

143 write_state<= Idle;

144 end

145 endrule

146

147 // read first request and send it to the dut. If it is a burst request then

148 //change state to Burst. capture the request type and keep track of counter.

149 //This rule condition such that it will fire only if arid of

150 //AXI write is ‘secore_id which is that of SeCore

151 rule read_request_first(read_state==Idle &&

152 s_xactor.o_rd_addr.first.arid==‘secore_id);

153 let ar<- pop_o(s_xactor.o_rd_addr);

154 dut.read_request(ar.araddr);

155 rg_rd_id<= ar.arid;

156 if(ar.arlen!=0)
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157 read_state<=Burst;

158 rg_readburst_counter<=0;

159 rg_read_packet<=ar;

160 endrule

161

162 // incase of burst read, generate the new address and send it to the dut

163 //untill the burst count has been reached.

164 //This rule won’t fire cuz we won’t have burst_count>0 in SeCore mem

165 rule read_request_burst(read_state==Burst && wr_read_ack);

166 if(rg_readburst_counter==rg_read_packet.arlen)

167 read_state<=Idle;

168 else begin

169 let address=axi4burst_addrgen(rg_read_packet.arlen,

170 rg_read_packet.arsize,

171 rg_read_packet.arburst, rg_read_packet.araddr);

172 rg_read_packet.araddr<=address;

173 rg_readburst_counter<= rg_readburst_counter+1;

174 dut.read_request(address);

175 end

176 endrule

177

178 // get data from the memory. shift, truncate, duplicate based on the

179 //size and offset.

180 rule read_response;

181 wr_read_ack<=True;

182 let {err, data0}<-dut.read_response;

183 AXI4_Rd_Data#(data_width, user_width) r = AXI4_Rd_Data {rresp:

184 AXI4_OKAY, rdata: data0 , rlast:rg_readburst_counter==

185 rg_read_packet.arlen, ruser: 0, rid:rg_read_packet.arid};

186 s_xactor.i_rd_data.enq(r);

187 endrule

188

189 interface slave = s_xactor.axi_side;

190 endmodule

191

192 endpackage
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