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ABSTRACT

KEYWORDS: Differential Privacy ; Noise addition mechanism; Privacy Budget;

Budget-Accuracy Trade-off; Low-Rank Matrix Completion.

Differential Privacy is a theoretical privacy framework introduced for privacy-preserving

data analysis. It is predominantly used to mask user participation in applications where

the risk of the leakage of sensitive information exists. This is achieved by adding selec-

tive noise proportional to the privacy budget to certain portions of the algorithm through

a noise addition mechanism. Matrix Completion is one such application where there is

a large risk of leaking user information through the model recommendations. Many

different private extensions of matrix completion algorithms are being introduced to

mitigate this problem. In this work, we aim to explore the different types of noise ad-

dition mechanisms in the context of the Low-Rank Matrix Completion problem. This

work also introduces an alternative type of noise addition mechanism, which provides

a conditionally better trade-off between the privacy budget and accuracy. This is be-

cause any noise addition mechanism introduces noise into the system, which negatively

affects the accuracy or predictive power of the algorithm. To address this problem, a

new optimization procedure tailored to the new noise addition procedure is introduced.

Ideally, we would like to obtain more accurate results with less privacy budget, and the

newly proposed mechanism and optimization procedure take a step in this direction.

These claims are backed by experimental results collected using both synthetically gen-

erated and real datasets.
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CHAPTER 1

INTRODUCTION

1.1 Differential Privacy

Privacy has always been a major concern in the 21st century, both for end-users and

huge corporations. Big Data breaches have become commonplace in recent years,

forcing governments, organizations, companies, and the common man to give more

emphasis to privacy. On the contrary, every major breakthrough in ML techniques in-

volves model training and hyperparameter optimization which require copious amounts

of data. Due to the ever-increasing demand for innovation in ML fueled by its ex-

plosive growth in the current times, and the shortage of good data sources, research

institutions frequently share their datasets to meet their requirements. This data often

contains confidential or sensitive information about participants, which when disclosed

improperly can have adverse effects on their lives, by disrupting their social life and/or

causing physical injury. These risks are detailed in Korolova (2010) and Calandrino

et al. (2011).

Figure 1.1: Three issues with making data private solved by introducing DP. 1

The development of privacy-preserving techniques like Differential Privacy has be-

come a necessity, as these models play a vital role in mitigating the problem. Differen-

tial Privacy was introduced by Dwork et al. (2014a) as a theoretical privacy framework
1Image courtesy: A Brief Introduction to Differential Privacy, Aaruran Elamurugaiyan.

https://medium.com/georgian-impact-blog/a-brief-introduction-to-differential-privacy-eacf8722283b


that can be incorporated into an algorithm to provide an extended private version of it

[Dwork et al. (2006), Dwork et al. (2007), Dwork et al. (2014b)]. These extensions

have been incorporated into widely used algorithms in leading fields like gradient de-

scent, deep learning, clustering, localization, and data mining [Song et al. (2013), Abadi

et al. (2016), Xia et al. (2020) and, Friedman and Schuster (2010)].

As we speak, increasingly many organizations are leveraging DP to protect their

end-users’ sensitive information, such as their real-time location, clinical information,

and life’s events. These real-world DP applications include 2:

• U.S. Census Bureau, to show commuting patterns [Machanavajjhala et al. (2008)].

• Google’s RAPPOR, for telemetry [Erlingsson et al. (2014)].

• Google, for sharing historical traffic statistics in 2015 3.

• Apple used DP in iOS 10 to improve Siri in 2016 4.

• Microsoft, for telemetry in Windows [Ding et al. (2017)].

• LinkedIn, for advertiser queries [Rogers et al. (2020)].

Differential Privacy is achieved by adding noise to the output to make sure that the ex-

istence or non-existence of any user does not affect the output in a significant manner.

Two noise addition mechanisms exist for DP: 1) The Laplacian mechanism which pre-

serves (ϵ, 0)-privacy and 2) The Gaussian mechanism which preserves (ϵ, δ)-privacy.

The Laplacian mechanism requires a lesser privacy budget than the Gaussian mech-

anism, but it also compromises accuracy due to the heavy-tailed nature of Laplacian

noise. We aim to give a provide a middle ground to these extremes through the Huber

Mechanism.

1.2 Matrix Completion

Originally made prominent by the Netflix Prize in 2006 [Bennett and Lanning (2007)],

the problem of completing a matrix with incomplete entries to attain a low-rank struc-

ture, also known as Low-rank Matrix Completion is now an extremely active research

area in machine learning [Rendle et al. (2019)], because of its applications in key fields
2List sourced from Wikipedia.
3Tackling Urban Mobility with Technology, Andrew Eland.
4How Apple personalizes Siri without hoovering up your data, Karen Hao.

2

https://en.wikipedia.org/wiki/Differential_privacy
https://europe.googleblog.com/2015/11/tackling-urban-mobility-with-technology.html
https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/


like Recommender Systems Luo et al. (2014), Phase retrieval Candes et al. (2011) and

Image restoration He et al. (2015). Many giants like Meta, Amazon, and Netflix ac-

tively leverage Matrix Completion to provide recommendations to their users. Matrix

Completion also finds applications in Gene Expression [Kapur et al. (2016)] and Drug

Response [Hao et al. (2019), Liu et al. (2020)].

Several approaches have been proposed to solve this problem in existing literature.

Cai et al. (2008) solved the nuclear-norm minimization problem originally proposed by

Candes and Recht in 2008 [Candes and Recht (2008)] using singular value thresholding,

and Candes and Plan (2010) proved that the resultant matrix had the lowest rank. Jain

et al. (2012) expressed the target matrix X in the bi-linear form as a product of two

matrices X = U.V⊤ and solved the problem by alternative minimization. Some other

approaches made use of matrix decomposition techniques like SVD ([citeliu2013ftf, Lu

et al. (2015)] and QR decomposition [Liu et al. (2018)] to solve the problem. A majority

of these solutions utilize iterative procedures to converge to an optimal solution.

Many LRMC models are prone to leak user data through their recommendations

[Calandrino et al. (2011)]. So, we require a privacy framework like DP to protect the

user-rating data. There are many researchers are working on providing private exten-

sions to low-rank matrix completion problems. Liu et al. (2015) utilized a connection of

DP to Bayesian posterior sampling [Ahn et al. (2012)] via Stochastic Gradient Langevin

Dynamics [Welling and Teh (2011)] to achieve private collaborative filtering. Jain et al.

(2018) provided the first provably joint differentially algorithm based on the Frank-

Wolfe method for Quadratic Programming Frank and Wolfe (1956). Chien et al. (2021)

extended the Alternating Least Squares using the Gaussian addition mechanism and

derived the privacy guarantees for the same. They used an amalgam of noise addition,

clipping, and thresholding to achieve the more relaxed (ϵ, δ)-DP. characteristic of the

Gaussian mechanism. This mechanism provides good accuracy, but compromises a lot

on the privacy budget, especially if the data is more ℓ1-sensitive.

3



1.3 Contributions of the thesis

The main contributions of this thesis are:

1. Introduced the novel Huber mechanism of noise addition and derived the privacy
bounds to provide a better budget-accuracy trade-off for LRMC.

2. Explored the various kinds of noise addition mechanisms for preserving differen-
tial privacy in the context of Low-Rank Matrix Completion.

3. Introduced a new optimization procedure for LRMC problems tailored to additive
Huber noise for better accuracy with less privacy budget.

4. Experimentally validated the claims made. Tabulated and interpreted the results
obtained in the experiments.

1.4 Chapter-wise organization

In Chapter 2, the fundamentals of DP are described in a detailed manner, including the

formal definition of Differential Privacy in Section 2.1, ℓ1 and ℓ2 sensitivity in Section

2.2 and the Gaussian and Laplacian noise addition mechanisms in Section 2.3.

Chapter 3 provides a detailed understanding of Matrix Completion, specifically

Low-Rank Matrix Completion (LRMC). This includes formally posing the LRMC Prob-

lem, LRMC methods like Singular Value Thresholding, Alternating Least Squares (ALS)

and Iteratively Reweighted Least Squares (IRLS) in Sections 3.1, 3.2, 3.4.1, and 3.5

respectively. We also discuss some applications of LRMC, like Collaborative Filtering

and Social Network Recovery.

Chapter 4 introduces the new Huber mechanism of noise addition for differential

privacy in Section 4.5. Some relevant topics like the PDF and CDF of Huber noise,

sampling from the Huber noise PDF, and the derivations of the privacy bounds are ex-

plored in Sections 4.1, 4.2, and 4.4. Finally, we discuss a new optimization procedure

tailored to Huber Noise in Section 4.6.

Chapter 5 details the privacy guarantees provided by the algorithms for different

noise addition mechanisms in Section 5.1, and the experiments conducted for deter-

mining the accuracy of these algorithms in Section 5.2. These results are tabulated and

interpreted to provide the conclusions.

4



Chapter 6 concludes the thesis by providing a summary of all the innovations in-

troduced in the thesis and the results from the experiments section. It also discusses

future work that can improve upon the existing theory. This includes topics like the

exploration of the new noise addition mechanism in the context of other applications of

differential privacy and introducing a more suitable definition of sensitivity.

5



CHAPTER 2

DIFFERENTIAL PRIVACY

Differential Privacy is a theoretical framework introduced by Dwork et al. (2014a) that

enables the data-owner to publicly share or distribute a dataset while withholding the

private sensitive information of individuals. DP allows for the expression of patterns in

the dataset’s clusters while withholding individual information. It can also be thought

of as a strict, mathematical embodiment of privacy in the context of statistical or ML

frameworks. The core idea behind DP is that if the effect of a random minor perturba-

tion in the dataset is negligible enough, then the result of any malicious query cannot

hold significant information about any particular individual, thus preserving privacy.

Going by the mathematical definition of DP, privacy is ensured by enforcing a con-

straint on any procedure or algorithm distributing private information of end-users in

the form of a statistical dataset or otherwise. Any procedure or algorithm that satisfies

this constraint is termed as differentially private.

Figure 2.1: DP preventing sensitive information from being leaked through the re-
sponses to the queries of the brown adversary. 1

Differentially private algorithms are being increasingly leveraged by governmental

institutions to disseminate large-scale demographic information or key statistical ag-

gregates while still ensuring that the public responses to any surveys, like the census,

1Image Courtesy: Differential Privacy, Harvard University Private Tools Project.

https://privacytools.seas.harvard.edu/differential-privacy


remain confidential. Some companies like Linkedin [Rogers et al. (2020)] and Apple 2

are also leveraging DP to gather and store information about end-user behaviour while

ensuring that this information remains obscure even to employees who utilize this data

to train models.

Figure 2.2 details the kinds of information present in any dataset. General informa-

tion is a property of the dataset as a whole and does not belong to any unique individual

data subject. The other side of the coin is private information, which is attributed to one

and only one individual.

Figure 2.2: Types of information in Data as per DP. 3

DP aims to address the paradox posed by privacy-preserving data analysis, i.e. to obtain

information about a population without gaining any information about any particular

individual. To put this in perspective, consider the following thought experiment. Con-

sider a medical study using a medical dataset that proves alcohol increases the risk of

heart attacks, which may heighten the estimate of an insurance company’s prolonged

medical costs of an alcoholic. So, does this mean the study has harmed the interest

of the alcoholic? The impact is indeterminate: if insurance premiums rise, then they

may be negatively impacted based on their social standing, or they may be positively

impacted, as the study may convince them to give up drinking after learning of the haz-

ards of alcohol consumption. All that is deterministic is that more of the alcoholic’s

information is public after the study than before. So does this mean their privacy is

2How Apple personalizes Siri without hovering up your data, Karen hao.
3Image Courtesy: Understanding Differential Privacy, An Nguyen.
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compromised? The idea of Differential Privacy will maintain a view that the study did

not harm the personal interest of the individual in any manner, as the impact on the

alcoholic is similar, irrespective of their participation in the study. This means that it is

the inferences of the study that impact them, not their individual participation.

Salient Features of DP:

• Explicit Privacy budget: A budget can be explicitly set for any algorithm or pro-
cedure that regulates the amount of privacy provided (by regulating the noise
added to the algorithm’s outputs) that trades off with its accuracy. It allows for
easy comparison between different methods.

• Aggregate Privacy: DP allows for an overall budget and analysis for groups as a
whole.

• Free from Post-processing: DP is immune to post-processing effects. An adver-
sary cannot apply a procedure to the output of a private algorithm to gain any new
private information without insider knowledge.

• Easy to compose: A well-defined privacy budget makes it straightforward to ac-
cumulate the privacy over multiple iterations. This allows for the building of
complex DP frameworks from rudimentary components.

Let’s go over some important definitions first before formally defining DP.

2.1 Formal defining Differential Privacy

A privacy mechanism M is a randomized algorithm that takes a database in matrix

format as input and provides a response to a raised query. The idea of a randomized

algorithm is explained in 2.1.1.

2.1.1 Randomized algorithms

DP works by introducing randomness into the output of an algorithm before public

distribution. This is essential, as any non-trivial guarantee of privacy that needs to hold

irrespective of any augmentation of information in the future requires a component of

randomness, as perfectly deterministic quantities could always be exposed some day.

8



The working of randomized algorithms is illustrated by the flowcharts in Figure 2.3:

(a) A Deterministic Algorithm

(b) A Randomized Algorithm

Figure 2.3: Flowcharts of deterministic and randomized algorithms.

So it becomes essential to discuss the domain and range of random algorithms. Any

randomized algorithm with domain X and discrete range Y is typically associated with

a mapping from X to Psim(Y ), the probability simplex over Y , defined as:

Psim(Y ) =

p ∈ R|Y | : pi ≥ 0 ∀i and
|Y |∑
i=1

pi = 1

 (2.1)

A randomized algorithm F with domain X and discrete range Y is denoted by the

mapping F : X → Psim(Y ). For an input x ∈ X , the random algorithm F gives the

output F (x) = yi with probability pi ∀ y ∈ Y . The probability space of the outputs is

characteristic of the type of randomness the algorithm introduces into the input during

processing.

2.1.2 Mathematical definition of Differential Privacy

The Differential privacy framework is defined mathematically as follows [Dwork et al.

(2014a)]:

9



Definition 2.1.1 (Differential Privacy) A randomized mechanismM preserves ϵ-differential

privacy if for all datasets D1 and D2 that differ on a single element (i.e. ∥D1 −D2∥1 =

1) and for all possible sets A,

Pr(M(D1) ∈ A) ≤ exp(ϵ) · Pr(M(D2) ∈ A). (2.2)

where Pr(E) indicates the probability of occurrence of Event E. This idea is visually

portrayed by the chart in 2.4:

Figure 2.4: Illustration of the mathematical definition of DP. 4

Such a mechanism M is said to be (ϵ, 0) differentially private. A weaker notation of

privacy is defined for cases when ϵ differential privacy is preserved for the large part,

excluding a small fraction δ:

Definition 2.1.2 A randomized mechanism M is said to preserve (ϵ, δ)- differential

privacy if for all datasets D1 and D2 that differ on a single element and for all possible

sets A,

Pr(M(D1) ∈ A) ≤ exp(ϵ) · Pr(M(D2) ∈ A) + δ. (2.3)

Such a mechanismM is said to be (ϵ, δ) differentially private.

4Image Courtesy: Understanding Differential Privacy, An Nguyen.

10

https://towardsdatascience.com/understanding-differential-privacy-85ce191e198a


2.2 Sensitivity

The idea of sensitivity stems from the fact that every random algorithm is sensitive to

noise, and such sensitivity works in our favour if it makes the algorithm behave in a

privacy-preserving fashion [Dwork et al. (2006)]. To elucidate, the sensitivity of a ran-

dom algorithm refers to the uncertainty in the response that we must introduce in order

to hide the participation of a singular individual. In other words, it provides an upper

bound on the “degree of perturbation” required to preserve privacy. Mathematically

speaking, it captures the magnitude by which a single user’s data can affect F in the

worst case.

To determine an algorithm’s sensitivity, the upper bound of the tentative perturba-

tions in the output due to a fixed change in its input needs to be computed. So it goes

without saying that the change introduced to the input needs to be a deterministic value

for comparing the sensitivities of algorithms. But all our inputs are databases, so we

need a rigorous definition of the distance between databases to proceed further.

Let us consider databases x as an unordered list of records from the superset of

records X . Without representing databases as a list, let us instead represent them using

their histograms: x ∈ N|X | in which each entry xi denotes the count of records in the

database x of kind i ∈ X . Here, N is the set of whole numbers.

The ℓ1 norm of a database x is denoted as ∥x∥1 and defined as:

∥x∥1 =
|X |∑
i=1

|xi|. (2.4)

And the ℓ1 distance of two databases x and y is defined as:

distl1(x, y) = ∥x− y∥1 (2.5)

It is worth noting here that ∥x∥1 is the number of records in database x, i.e. its size, and

∥x− y∥1 measures the number of records that differ between x and y. With the defini-

tions in place, we move on to define sensitivity. The general mathematical definition of

11



the ℓp-sensitivity of a function f : N|X | → Rk is given by:

∆f = max
x, y∈N|X|

∥x−y∥p=1

∥f(x)− f(y)∥p . (2.6)

where ∥.∥p denotes the ℓp-norm. Note that there are only two predominant types of

sensitivities in use, the ℓ1 and ℓ2 sensitivities.

2.3 Noise addition mechanisms

Noise addition mechanisms allow us to convert deterministic algorithms to randomized

algorithms, and DP leverages this to introduce privacy into a non-private (usually) deter-

ministic algorithm. There are two methods of noise addition to vector-valued functions

that are widely used, the Laplace mechanism and the Gaussian mechanism.

2.3.1 The Laplace Mechanism

Functions of the form f : N|X | → Rk, also called numeric queries are the most rudimen-

tary kind of database queries, as they straightforwardly map datasets to k real numbers.

The Laplace mechanism draws noise from the Laplace distribution centered at 0 and

having scale parameter b. The PDF is defined as:

L(x; b) = 1

2b
exp

(
−|x|
b

)
. (2.7)

This is visualized in Figure 2.5, where we can observe that the Laplacian distribution

has a long tail probability, which is more apparent for higher variances. This makes

the outputs of algorithms using the Laplacian mechanism outlier prone. Note that the

variance of this distribution is σ2 = 2b2. Sampling from this distribution is denoted by

X ∼ L(0, b). This can be shortened to L(b) in this scenario as all additive noise in DP

is zero mean. The latter notation is followed for the rest of the thesis. As the name

suggests, the Laplace mechanism directly computes f , and perturbs each dimension

with Laplacian noise.
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Definition 2.3.1 (The Laplace Mechanism) Given any vector-valued function f : N|X | →

Rk, the Laplace Mechanism is defined as:

ML(x, f(.), ϵ) = f(x) + (L1, L2, ..., Lk) (2.8)

whereLi are i.i.d random variables sampled fromL(∆f1/ϵ), and ∆f1 is the ℓ1-sensitivity

of f .

Dwork et al. (2014a) proved that the Laplace mechanism preserves (ϵ, 0)-DP.

Figure 2.5: Zero-mean Laplacian Distributions with varying scale

The key advantage of the Laplace mechanism is that it adheres to the stronger (ϵ, 0)

definition of DP. And, the drawbacks are:

• It is only really good for low sensitivity queries, usually w.r.t ℓ1 sensitivity.

• Needs a generous privacy budget for a large number of queries, leading to less
accurate results.

• Provides a simple solution to handle numeric queries, but cannot be applied to
the non-numeric valued queries. But this drawback applies to all noise addition
mechanisms available currently.
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2.3.2 The Gaussian Mechanism

The Gaussian mechanism, suggestive of its name, adds Gaussian noise instead of Lapla-

cian noise. The PDF of zero-mean Gaussian noise with variance σ2 is given by:

N (x; σ2) =
1√
2πσ2

exp
(
− x2

2σ2

)
(2.9)

This PDF is plotted in Figure 2.6 for better understanding. From the figure, we can

understand that the Gaussian distribution is heavily centered around the mean, which

allows the Gaussian mechanism to maintain good accuracy.

Figure 2.6: Zero-mean Gaussian Distributions with varying standard deviation

For a numerical query f : N|X | → Rk, the Gaussian Mechanism is defined as:

MN (x, f(.), , ϵ, δ) = f(x) + (N1, N2, ..., Nk) (2.10)

where Ni are i.i.d random variables sampled from N (σ2), where σ2 takes the value:

σ2 =
2∆f 2

2 log(1.25/δ)
ϵ2

(2.11)

Here, ∆f2 is the ℓ2 sensitivity of f . The Gaussian mechanism preserves the more

relaxed (ϵ, δ)-DP [Dwork et al. (2014b)] .
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The main advantage of the Gaussian mechanism over Laplacian is that for applications

where the ℓ2 sensitivity is much lower than ℓ1 sensitivity, the Gaussian mechanism

allows the addition of much less noise for the same budget. The drawback is that it only

satisfies the relaxed (ϵ, δ)-DP definition, i.e. it ensures privacy only with probability

(1− δ), and it usually requires a greater privacy budget (as observed in 5.1).
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CHAPTER 3

MATRIX COMPLETION

Matrix Completion, particularly Low-Rank Matrix Completion is an extremely active

research area due to it being the key component in Recommender System based ap-

plications [Luo et al. (2014)]. Many notable giants like Amazon, Netflix, YouTube,

and Meta make daily use of Matrix Completion-based algorithms to make appropriate

recommendations for their user base, generating billions in revenue.

(a) Amazon (b) Netflix

(c) Youtube

Figure 3.1: Widely used Recommendation Engines on the Internet. 1

At its core, Matrix Completion is just filling in missing entries in an incomplete

matrix, with only a small fraction of its entries filled as illustrated in Figure 3.2. One

1Image courtesy: Google images.

https://images.google.com


prominent example is the Netflix problem, where the rows of the matrix represent users,

the columns of the matrix represent items, and a filled-in entry at (i, j) refers to the

rating given by user-i to movie-j, if he/she has watched it, and is left unfilled other-

wise. Therefore, completing the matrix indicates that the missing entries are known,

which means we have estimated what rating user-i would have given movie-k, if he/she

watches it. Based on these estimated ratings, we can simply recommend users highly-

rated new movies that they have not watched yet.

Figure 3.2: Matrix completion of an incomplete 5 × 5 matrix with a rank of 1. Left:
The incomplete matrix; Right: The completed matrix. 2

An apt and widely-used assumption is that the resulting completed ratings matrix

would have a low-rank structure as in Figure 3.2, which itself is based on an under-

lying assumption that people watch movies based on their genres, like action, comedy,

feel-good, or a mix of these genres. So we can safely say that the consideration is that

the number of tastes people have in movies is limited to a small positive constant. Since

similar people watch similar movies, the number of independent features in the com-

pleted matrix would be limited, resulting in a low-rank structure. This assumption can

be generalized to any scenario where people rate items based on their preferences.

3.1 Posing the Low-Rank Matrix Completion Problem

The LRMC problem is posed in the following manner by Candes and Recht (2008):

To find the matrix with the lowest rank X that matches the matrix M that we wish to
2Image Courtesy: Wikipedia.
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complete for all observed entries, denoted by the set Ω:

minimize
X

rank(X)

subject to Xij = Mij ∀(i, j) ∈ Ω.

(3.1)

This formulation is valid only when the entries are not corrupted by noise. Unfortu-

nately, in the real world, the data we obtain is corrupted in most cases. For such data,

the problem is formulated in the following fashion in Candes and Plan (2010) provided

the rank of X is fixed to a pre-defined hyperparameter r:

minimize
X

dist(X,M)

subject to PΩ(X) = PΩ(M),

rank(X) = r.

(3.2)

where dist(X,M) is any distance measure for matrices, and PΩ(M) is defined as:

PΩ(M)ij =

Mij, if (i, j) ∈ Ω,

0 otherwise.
(3.3)

for any matrix M, and 0 is set as the null value. The PΩ(.) constraint is also known as

the equality constraint for matrix completion.

Unfortunately, the rank minimization problem is NP-Hard [Recht et al. (2008)],

and cannot be solved easily. Therefore, many relaxations were proposed to the original

problem in the interest of time complexity and computation resources. We will look at

some of these approaches in the coming sections.

3.2 Singular Value Thresholding

Singular Value Thresholding [Cai et al. (2008)], or SVT is an algorithm that minimizes

the nuclear norm of a matrix subject to the equality constraint for matrix completion.
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Formally, the problem is defined as:

minimize
X

τ ∥X∥∗ +
1

2
∥X∥2F ,

subject to PΩ(X) = PΩ(M).

(3.4)

The Frobenius norm of X is added to the objective to provide regularization. It has

been conclusively shown by Cai et al. (2008) that solving this objective gives a good

low-rank approximation to the incomplete matrix. But even this can’t be solved directly

in the current form since the equality constraint is non-convex. Taking the Lagrangian

dual of the above optimization problem and rewriting the constraint, we get:

Y∗ = arg min
Y

fτ (X) + ⟨Y,PΩ(M−X)⟩ = arg min
Y

τ ∥X∥∗ + ∥X− PΩ(Y)∥2F .

(3.5)

The global solution involves soft-thresholding over the singular values of optimal Y∗.

Despite its simplicity, SVT is an old technique that involves the computation of the

Singular Value Decomposition, or SVD of the matrices to get results, which is com-

putationally expensive. Recently, Matrix Factorization based approaches have picked

up momentum due to their two key advantages over SVT, in being extremely fast and

adequately accurate.

3.3 Matrix Factorization

Matrix Factorization is a collaborative filtering-based approach, which is based on the

transitive principle that it is very likely for people who share an interest in one field to

share common interests in many fields, which could be used to our advantage. Going

by its roots, collaborative filtering is a technique for filtering out the preferences of a

user by collecting the interest and tastes of many collaborative users. This method of

recommending things is conveyed in Figure 3.3.

In Matrix Factorization-based approaches, the incomplete matrix is expressed as a

product of two or three matrices. So, Matrix Factorization is also known as the Multi-

plicative Decomposition of matrices. After the decomposition, suitable procedures are

applied over the individual matrices to get back a low-rank matrix closest to the origi-

3Image Courtesy: Collaborative Filtering in Pytorch, Neel Iyer.
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Figure 3.3: Making recommendations using user-based collaborative filtering. 3

nal. Predominantly, two types of decompositions are used to factorize matrices. Let’s

look at them in more detail.

3.3.1 Singular Value Decomposition

SVD is the most widely known decomposition technique used to factorize matrices, due

to its elegance and widespread utility. SVD decomposes the original X of shape m× n

matrix into three matrices U, Σ, and V of shape m × r, r × r, and r × n respectively

(where r can take any value from 1 to the rank of X), which when multiplied together

give back the original matrix. Here, U is called the left singular matrix, Σ the singular

value matrix and V⊤ the right singular matrix. It is worth noting that Σ is a diagonal

matrix consisting of the singular values of X, which are the eigenvalues of X⊤X. Rows

of U are made up of the left singular vector of X, which are the eigenvector of XX⊤.

Rows of V⊤ consist of the right singular vectors of X, the eigenvector of X⊤X.

Eckart and Young (1936) demonstrated that a rank-r approximation of the rank-r0 ma-

trix X is obtained by computing the SVD of the matrix, and trimming the last r0 − r

rows of U, the rows and columns of Σ, and the columns of V as depicted in Figure 3.4.

.

Figure 3.4: Low-rank approximation using SVD. 4
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3.3.2 Fast Trifactorization

Fast Trifactorization, or FTF was proposed by Liu et al. (2013) as a fast and accurate

method to solve the Matrix Completion problem. In FTF, the rank r matrix X ∈ Rm×n

is factorized into three matrices:

X = LDR (3.6)

where L ∈ Rm×r, D ∈ Rr×r, and R ∈ Rr×n. Despite looking similar to SVD, there is

no constraint on D to be a diagonal matrix in this case. Now, if L is a column orthogonal

matrix and R is a row orthogonal matrix, then:

∥X∥∗ = ∥D∥∗ (3.7)

So, the nuclear norm minimization problem in SVT can be modified as:

minimize
D

∥D∥∗

subject to L⊤L = I, RR⊤ = I,

PΩ(LDR) = PΩ(M).

(3.8)

Here, r becomes a preset hyperparameter that regulates the cost of FTF. Now, the vari-

ables L, D, and R are alternately optimized by fixing other variables. L and R are

updated using QR decomposition, and D is updated by applying SVT to a matrix of

size r × r, which saves a huge amount of computation cost.

While there are tangible benefits to using this procedure, it is still reliant on SVD for

recovering D, which slows the procedure down. But, there was a need for an even faster

procedure even if it was not as accurate, as speed matters much more than accuracy

in Recommender System-based applications. The Alternating Least Squares algorithm

proposed by Koren and Bell (2015) based on Bi-linear factorization addresses this issue.

3.3.3 Bi-linear factorization

The most straightforward and frequently used type of factorization in Collaborative

Filtering is the Bi-Linear Factorization. The bi-linear form of m× n matrix X is given

4Image Courtesy: Matrix Factorization made easy, Rohan Naidu.
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as:

X = U ·V⊤ (3.9)

where U and V are of shape m × r and n × r respectively, where r is the matrix rank

of X. In collaborative filtering terminology, X, U, and V are referred to as the Rating

Matrix, the User matrix the Item matrix respectively, as shown in Figure 3.5.

Figure 3.5: Bi-linear factorization of the Rating Matrix X. 4

The rows of U are called user-embeddings and the columns of V are called item-

embeddings. Conventionally, the ith row of U encodes the preference information of

user-i, and the jth row of V encodes the feature information of item-j. To obtain the

complete matrix, we usually start with a random U and V of desired rank r and ap-

ply optimization techniques that utilize the similarity between users and items to get

their multiplicative result as close to X as possible. The following section details the

procedure to obtain the Bi-Linear form.

3.4 Alternating Minimization

This method, introduced by Jain et al. (2012) involves expressing the target rank k

matrix M in bi-linear form as:

M = UV⊤

where U and V are full-rank and U ∈ Rm×k is the user-embeddings matrix and V ∈

Rn×k is the item-embeddings matrix. U and V occupy lesser memory than M due to

the low-rank assumption, saving us computation and memory costs. As an additional

benefit, imposing constraints on users or items becomes easier when the rating matrix
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is expressed in this form. Note that this model assumes the incoherence of M which

ensures that the singular vectors of M are not too "sparse" [Jain et al. (2012)].

The algorithm works by starting with randomly initialized U0 and V0 and updating

them alternatively by fixing one and updating the other and vice-versa until conver-

gence. The optimization formulation can be written as:

Û, V̂ = argmin
U,V∈Rn×k

∥∥PΩ

(
M−UV⊤)∥∥2

F
+ λ ∥U∥2F + λ ∥V∥2F

Note that regularization is included to maintain the incoherence condition.

3.4.1 Alternating Least Squares

When the loss function used is ℓ2, the Alternating Minimization procedure is called Al-

ternating Least Squares, or ALS [Koren and Bell (2015)]. This is one of the algorithms

experimented with extensively in this thesis. This method has a closed-form solution

for each time step t given by:

∀i Ût
i = (λI+

∑
j∈Ωi

V̂t
j ⊗ V̂t

j)
−1
∑
j∈Ωi

M̂ijV̂
t
j , (3.10)

∀j V̂t+1
i = (λI+

∑
i∈Ωj

Ût
i ⊗ Ût

i )
−1
∑
i∈Ωj

(
M̂ijÛ

t
i + tN

)
(3.11)

where u⊗v refers to the outer product of the vectors u and v, tN ∈ Rk is the noise vector

sampled from any noise distribution, Ω ⊆ [n]× [m], and for i ∈ [n], Ωi := j : (i, j) ∈ Ω

and for j ∈ [m], Ωj = i : (i, j) ∈ Ω. The addition of noise to the ALS procedure is done

as shown in Equation 3.11, identical to the noise addition in Chien et al. (2021). This is

because it was observed during experimentation that adding noise to the output during

the ALS iterations directly leads to large fluctuations during the optimization and does

not allow the algorithm to converge making the final outputs imprecise.

3.5 Iteratively Reweighted Least Squares

IRLS is a robust regression technique proposed by Holland and Welsch (1977) designed

to find an M-estimator that obtains the MLE of a generalized linear model, to address

23



the corruption of the normally distributed data by outliers from a different noise distri-

bution. It has been proved in Dollinger and Staudte (1991) and Kalyani and Giridhar

(2007) that the IRLS procedure approaches the MLE for Huber loss conditionally, mak-

ing the most suitable procedure for optimizing procedures with additive Huber Noise

(Section 4.6). Consider the estimation problem:

y = Ah+ n (3.12)

where y ∈ Rn×1 is the target vector, A ∈ Rn×m is the feature matrix, h ∈ Rm×1

is the vector of true parameters, and n ∈ Rn×1 is the noise vector. According to the

IRLS procedure, we first start with a random estimate ĥ0. Then, the vector of residuals

r ∈ Rn×1 is computed at each time step t, where t ≥ 0 as:

rt = y −Aĥt. (3.13)

The LS criterion is now replaced as:

ĥt+1 = argmin
h

N∑
i=1

ρ
(rt
σ

)
(3.14)

where σ is the standard deviation of the noise and ρ(.) is the objective function. Note

that it should be continuous and convex. If the corrupting noise (for outliers) is drawn

from the Laplace distribution, the objective function becomes the Huber loss [Huber

(1964)]:

Hα(x) =

x
2/2, |x| ≤ α,

α (|x| − α/2), |x| > α.

(3.15)

The influence function for Huber loss is given as:

ϕ(x) =
d(Hα(x))

dx
=

x, |x| ≤ α,

α · sgn(x), |x| > α.

(3.16)

where sgn(.) is the signum function. Solving Equation 3.15 is equivalent to solving

the equation for ĥt:

A⊤Wrt = 0 (3.17)
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where the weight matrix Wt ∈ Rn×n is defined as:

Wt = diag

{
ϕ(rt/σ)

rt/σ

}
(3.18)

and 0 is an m × 1 vector of zeroes. This process is run iteratively for T timesteps to

get the final IRLS estimate ĥT . While IRLS may not be a matrix completion technique,

it will be used in the next chapter to introduce an optimization procedure for matrix

completion tailored to the Huber mechanism.
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CHAPTER 4

THE HUBER MECHANISM

As we saw in Section 2.3, Gaussian or Laplacian noise is added to confidential data

to preserve DP through the Gaussian and Laplacian mechanisms respectively. We also

saw that the Laplacian mechanism preserves (ϵ, 0)-DP while the Gaussian preserves

(ϵ, δ)-DP. The selection of a noise addition mechanism is done based on the particular

requirements of the algorithm or procedure, mainly its sensitivity to the noise added.

But a trade-off always exists between privacy budget and model accuracy. For bet-

ter accuracy, we need data that contains less noise, but preserving privacy requires the

addition of more noise to mask individual participation. These two operations are con-

tradictory in nature, hence the trade-off. Coming to noise addition, the Laplacian mech-

anism is more suited for applications where the privacy budget is constrained, whereas

the Gaussian mechanism is more suited for applications where the data is more nor-

mally distributed since the noise just acts as part of the data. In other words, the

Gaussian mechanism is more suitable for applications that have a significantly lower

ℓ2-sensitivity than ℓ1-sensitivity since it allows for the addition of a smaller amount of

noise to achieve the same privacy.

4.1 Huber Noise

An alternative to these types of noise addition mechanisms is proposed in this thesis.

It is based on the Huber Loss function proposed by Huber (1964). The expression for

Huber loss has already been given in Equation 3.15.

The PDF of Huber Noise is given as [Huber (1964)]:

pX(x) = H(α) = Nα · exp(−Hα(x)) (4.1)

where Nα is the normalization constant of the PDF, the expression for which is given



as:

Nα =
1

√
2π · erf

(
α√
2

)
+ 2

α
· exp

(
−α2

2

) (4.2)

Here, erf(.) is the Gauss error function, defined as:

erf(x) =
2√
π

∫ x

0

e−t2dt

Huber noise is symmetrically distributed such that the PDF takes on the form of the

Gaussian distribution in the central portion, also called the head, and the Laplacian dis-

tribution in the tail. Gaussian, Laplacian, and Huber distributions of the same variance

are plotted in Figure 4.1 for a better perspective:

Figure 4.1: The plot of the noise PDFs with variance 2

The transition parameter α is altered to control the mix between the Gaussian and

Laplacian distributions. We can set the transition parameter to the desired value so that

the PDF matches the shape we require. This is illustrated in Figure 4.2

As seen in Figure 4.1, the tail of the PDF is similar to the Laplacian PDF. Hence, it

is expected that the Huber noise addition mechanism similarly achieves (ϵ, 0)-privacy.

The detailed proof is given in Section 4.4. At the same time, the center of the Huber

PDF takes the shape of the Gaussian distribution. So, for larger values of the transi-
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Figure 4.2: The variation in the shape of the Huber PDF with α

tion parameter, the sampled noise will mimic the behaviour of samples drawn from the

Gaussian distribution, which makes the Huber mechanism more similar to the Gaussian

mechanism. So this allows the Huber mechanism to add a smaller amount of noise to

achieve stronger privacy guarantees like the Laplacian distribution.

4.2 Sampling from the Huber CDF

Before deriving the privacy bounds for the Huber Mechanism, it is important to know

how to sample from the Huber Distribution. We need to use the Inverse-CDF method to

draw samples from the Huber PDF because it is not possible to directly sample from the

Huber PDF in code and, the key ingredient for the Inverse-CDF technique is the inverse

function of the Huber CDF, which we explore in the following subsection.

4.2.1 The Huber CDF and Inverse-CDF

The complete derivations for the CDF and Inverse-CDF of Huber noise are given in

Appendix B. The Huber CDF is as follows:
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FX(x) =



1
α·N(α)

·
(
eα(x+α/2)

)
, ; x ≤ −α

1
α·N(α)

· e−α2/2 + 1
N(α)
·
√

π
2
·
(

erf
(

x√
2

)
− erf

(
−α√
2

))
, ; −α ≤ x ≤ α

1
α·N(α)

·
(
2e−α2/2 + α

√
2π · erf

(
α/
√
2
)
− e−α(x−α/2)

)
, ; x > α

(4.3)

And the Inverse CDF for Mixed-Huber Noise is given as:

F−1
Y (y) =



1
α
· log (α ·N(α) · y)− α

2
; y ∈ (0, y1)

√
2 · inv_erf

((
y ·N(α)− 1

α
· e−α2/2

)
·
√

2
π
+ erf

(
−α√
2

))
; y ∈ [ y1, y2 ]

1
α
· log

(
2e−α2/2 + α

√
2π · erf

(
α√
2

)
− y · α ·N(α)

)
+ α

2
; y ∈ (y2, 1)

(4.4)

where inv_erf(.) is the inverse error function. The expressions for y1 and y2 are given

in Equations B.23 and B.24 respectively.

4.2.2 Sampling using the Inverse-CDF method

In the Inverse-CDF method of sampling, samples are drawn from the uniform distribu-

tion first. These samples are then passed on to the Inverse CDF of Huber noise F−1
Y (y)

given in 4.4. The output of the Inverse CDF function is the required sample of Huber

noise. To verify if the derivations in Appendix B are right, 1000000 samples are drawn

from the Huber PDF and a histogram of the samples is plotted in Figure 4.3.

4.3 Relationship between α and variance

As observed in Figure 4.2, the variance of the Huber PDF changes when α is changed,

and so a proper variance derivation is essential to understand the behaviour of Huber
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Figure 4.3: The histogram of samples.

noise. The noise is zero-mean, i.e. E(X) = 0. Thus, the variance is given by

σ2 = E(X2)−
(
E(X)2

)
so we just need to calculate E(X2):

E(X2) =

∫ ∞

−∞
x2 · pX(x) · dx

E(X2) =
1

N(α)

(∫ −α

−∞
x2eα(x+α/2) dx +

∫ α

−α

x2e−x2/2 dx +

∫ ∞

α

x2e−α(x−α/2) dx

)
= I1 + I2 + I3

Since our noise PDF is an even function, and so is f(x) = x2:

I1 = I3

I2 =
1

N(α)
·
(√

2π · erf
(
α√
2

)
− 2αe−α2/2

)
I3 =

1

N(α)
·
(∫ ∞

α

x2 · e−α(x−α/2) · dx
)
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=
1

N(α)
·

(
eα

2/2 ·

(
2 · (α2 + 1) · e−α2

α3
+ α · e−α2

))

=⇒ I3 =
1

N(α)
·

(
2 · (α2 + 1) · e−α2/2

α3
+ α · e−α2/2

)

Summing up the individual integrals, we get:

σ2 = E(X2)− E(X)2 = I1 + I2 + I3 + 0 = 2I3 + I2

σ2 =
1

N(α)
·
(

4

α3
· (α2 + 1) · e−α2/2 +

√
2π · erf

(
α√
2

))

σ2 =

4
α3 · (α2 + 1) · e−α2/2 +

√
2π · erf

(
α√
2

)
2e−α2/2

α
+
√
2π· = erf

(
α√
2

)

=⇒ σ2 =
4 · (1 + 1

α2 ) · e−α2/2 + α
√
2π · erf

(
α√
2

)
2e−α2/2 + α

√
2π · erf

(
α√
2

) (4.5)

This function is plotted in Figure 4.4, where we can observe that the relationship

between α and variance decays extremely fast, starting from close to∞ at α → 0, to

almost 1 at just α = 3. The function is not defined for alpha < 0, and it asymptotically

approaches ∞ at 0 implying that it is not defined at 0, so the domain of the function

is (0,∞). We can also observe that the variance reaches 1 asymptotically as α → ∞,

implying that the range of the function is (1,∞). For α ≥ 3, the behaviour of the

Huber distribution is very similar to that of the Gaussian distribution, and for α ≤ 0.7,

its behaviour is practically identical to the Laplacian distribution.

4.4 Deriving the Privacy bounds

In this section, we formally derive the privacy guarantees of the Huber mechanism.

Proposition: The Huber mechanism guarantees (ϵ, 0) differential privacy with ϵ =

α ·∆f1, where ∆f1 is the ℓ1- sensitivity of the model.

Proof: Given that ∆f1 is the sensitivity of the model, we determine the ratio of Huber

probabilities between a given point x and x + ∆f1. As ∆f1 indicates the maximum
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Figure 4.4: Variance vs alpha

distance between two data points in a model, this ratio is indicative of ϵ according to

Definition 2.2. Note that this is also similar to the ratio considered to provide differential

privacy guarantees for the Laplace mechanism in Dwork et al. (2014a).

p(x;α)

p(x+∆f1;α)
=

Nα exp(−Hα(x))

Nα exp(−Hα(x+∆f ))

= exp(Hα(x+∆f1)−Hα(x))

Define g(x) as

g(x) = Hα(x+∆f1)−Hα(x)

It is evident from the nature of the two functions Hα(x + ∆f1) and Hα(x) that g(x)

is piece-wise defined. We consider two cases based on the behaviour of the function:

∆f1 ≤ 2α and ∆f1 > 2α. We derive the bounds for the two cases separately in

Appendix A and verify that the upper bound for g(x) in both cases is given by α ·∆f1,

thus validating our earlier proposition.
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4.5 Formally defining the Huber Mechanism

The Huber mechanism directly computes f , and perturbs each dimension with noise

drawn from the Huber Distribution. Given any vector-valued function f : N|X | → Rk,

the Huber Mechanism is defined as:

MH(x, f(.), ϵ) = f(x) + (H1, H2, ..., Hk) (4.6)

whereHi are i.i.d random variables sampled fromH(ϵ/∆f), and ∆f is the ℓ1-sensitivity

of f . The Huber mechanism preserves (ϵ, 0)-DP.

4.6 The Alternating-IRLS procedure

Since the ALS procedure is more suited for a normal distribution of the noise, we need

a more suitable optimization algorithm for Huber noise. This issue is addressed by the

Alternating-IRLS, or A-IRLS procedure for matrix completion 1. This procedure is

based on the Alternating Minimization procedure given in Jain et al. (2012). The noise

addition is in the same location as Chien et al. (2021) and Jain et al. (2018), because

it was observed that adding noise to the output of each iteration introduced a lot of

fluctuation in the optimization procedure while performing the experiments in 5. . This

did not allow the algorithm to converge and thus produced imprecise results.

Since the noise is only added to the item embeddings, the user embeddings are

optimized using ALS which saves time. The item embeddings are optimized using

the procedure given in 3.5 as Huber noise is being added. Note that the optimization

computation for each item embedding is done privately, which has two benefits: 1) This

can be parallelized to save time and 2) We can make sure that the computation is done

securely to avoid leakage to adversaries.

After these alternating steps are done, the final completed matrix is obtained by

multiplying the user and item embeddings together.

To add a different type of noise, like Laplacian or Gaussian, we just replace the noise

generation procedure in Line 11 of Algorithm 1 with the corresponding procedure of

the noise type.
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Algorithm 1: A-IRLS
Input: Incomplete data matrix X, assumed rank r, regularization parameter λ,

privacy budget ϵ, sensitivity ∆f1, number of iterations T , number of
IRLS iterations N .

Output: The completed matrix M̂

1 Initialize Û and V̂ with random entries

2 for T iterations do
3 for i ∈ Nm do

4 ûi ←
((

V̂Ωi,Nr

)⊤
V̂Ωi,Nr

+ λIr

)−1(
V̂Ωi,Nr

)⊤PΩi
(xi)

5 end
6 for j ∈ Nn do
7 Randomly initialize θ̂0 ∼ U(0, 1)r
8 for k ∈ N do
9 res← P

Ω̃j

(x̃j)− Û
Ω̃j ,Nr

θ̂k−1

10 Wk ← diag(ψ(res) / res)
11 Generate Huber noise vector tH ∼ H(ϵ/∆f1)r

12 A←
(
Û

Ω̃j ,Nr

)⊤
WkÛΩ̃j ,Nr

+ λIr

13 θ̂k ←
(
A
)−1((

Û
Ω̃j ,Nr

)⊤
WkPΩ̃j

(x̃j) + tH

)
14 end
15 v̂j ← θ̂N
16 end
17 end
18 return mi = Vûi, i = 1, 2, . . . , m
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CHAPTER 5

EXPERIMENTS AND RESULTS

In this chapter, we present extensive simulation results on the privacy and accuracy of

the ALS and A-IRLS algorithms with all three types of noise addition mechanisms for

LRMC. We detail all the observations obtained from the simulation results and provide

the inferences gained.

5.1 Privacy

In this section, we take a closer look at the privacy budget of all three noise addition

mechanisms when noise of similar variance is added. This is a convenient way to com-

pare the privacy provided by the noise addition mechanisms, since a smaller privacy

budget for smaller variance implies that we have budget to spare for a better privacy

guarantee without affecting model accuracy.

Note that it is assumed that the sensitivity of all algorithms ∆f1 = ∆f2 = ∆f ,

where ∆f is set to the maximum possible value, the range of all the datasets considered

for the experiments, which is 5. This is not always the case but is essential to get a

fair and objective sense of the privacy budget requirements of the various mechanisms.

Therefore, the sensitivity ∆f is set to 5 and the numerical evaluation of the theoretical

budget required for similar variance settings is tabulated in Table 5.1:

Table 5.1: Budgets of the various mechanisms for a set noise variance.

Variance 1 2 3 4
Gaussian (15.96, 10−5) (11.29, 10−5) (9.22, 10−5) (7.98, 10−5)
Laplacian (7.07, 0) (5.00, 0) (4.08, 0) (3.54, 0)

Huber (15.00, 0) (5.38, 0) (4.23, 0) (3.60, 0)

Please note that the Huber noise variance approaches 1 as α→∞ asymptotically, but it

decays fast and is practically equal to 1 at α = 3. So, we are using this value whenever

the noise is of unit variance.



Key takeaways from Table 5.1:

• Laplacian noise has the lowest privacy budget of all three algorithms, but Huber
is close when the variance is ≥ 2.

• Gaussian noise has the highest privacy budget, especially when the ℓ2 sensitivity
is close to the ℓ1 sensitivity, despite the δ-relaxation of DP. It also doesn’t decrease
as much with increasing variance. For applications with a stricter budget, we
might need to add a lot of noise due to which the accuracy may take a big hit.

• The behaviour of Huber noise is similar to Gaussian when the variance is low,
where both have high privacy budgets.

• For high variance noise addition, Huber noise behaves like Laplacian noise and
has a low privacy budget.

5.2 Accuracy

In this section, we present the prediction accuracies of the ALS and Alternating-IRLS

algorithms with different noise addition mechanisms, and the interpretation of these

results.

Datasets considered: Three different datasets were considered for the simulations:

1. A randomly generated synthetic dataset with different rank settings. The genera-
tion procedure is given in Subsection 5.2.

2. The MovieLens100k dataset (Harper and Konstan (2015)). The dataset consists
of approximately 1000 users and 100000 ratings, accounting for a total of 5.1%
(observable) entries.

3. The Sweet Recommender System dataset (Kidziński (2017)). This dataset con-
tains 2000 users, 77 items, and over 45000 ratings which accounts for 39.19%
of the total data. The visible entries had to be sub-sampled to match our desired
observed fraction setting.

We measure the performance of the algorithms using the Root Mean Squared error

metric which is calculated as
∥∥X−UV⊤

∥∥
F
/(
√
mn), where X ∈ Rm×n [Chien et al.

(2021), Liu et al. (2013)]. While experimenting with synthetic data, we vary the rank of

X, the noise variance, fraction of observed entries (also called the observable fraction or

visible fraction) and evaluate the performance of the three noise addition mechanisms

using both ALS and Alternating IRLS and decide the optimal course of action to collate

and comparatively analyze results from the two real datasets.
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Synthetic data:

U ∈ Rm×r and V ∈ Rn×r were randomly generated and scaled appropriately to get the

desired entry range. They are then multiplied together to give the ground-truth low-rank

matrix M ∈ Rm×n, where r is the rank of M:

U ∼ U(0, 1)m×r

V ∼ U(0, 1)n×r

M = c ·UV⊤

where c is a scaling constant to get the desired data range. M is then sub-sampled

depending on the observed fraction setting to get the final incomplete data matrix. The

hyperparameter settings used for the simulations are tabulated in Table 5.2.

Table 5.2: Simulation parameters

Parameter Value
Number of alternating steps T 50
Number of IRLS iterations N 20
Regularization parameter λ 0.5

Trials for averaging 10
Ratings range (1 - 5)

The RMSE results for the synthetic data of ranks 5, 10, and 20 are tabulated in Tables

5.3, 5.4, and 5.5 respectively. We also vary the type of noise addition mechanism, the

variance of the added noise and visible fraction of the synthetic dataset to measure their

impact on the performance of the two algorithms.

From the results in Tables 5.3, 5.4, and 5.5, we make two key observations:

1. The Huber mechanism gives more accurate results for a majority of the cases, and
one speculation for this behaviour is that ALS and A-IRLS have the problem of
converging to local minima. When the algorithm is stuck near a local minimum,
the more heavily tailed Huber noise gives the algorithm a heavier momentum out
of the local minimum than Gaussian noise, which is heavily centred around the
mean. On the other hand, the Laplacian distribution has the longest tail of the
three noise types and may provide excessive momentum to the algorithm when it
is near the global minimum and cause it to converge to other local minima.

2. The A-IRLS procedure gives significant improvement over ALS for additive Hu-
ber noise in most cases, which is in line with theoretical expectations.

1No noise here indicates that the algorithm has no noise added for differential privacy. Inherent noise
exists in all datasets.
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Table 5.3: RMSE for synthetic dataset of rank 5

Variance Observed fraction Algorithm No noise 1 Gaussian Laplacian Huber

1

5%
ALS 0.2040 0.3740 0.3701 0.3569

A-IRLS 0.2039 0.3728 0.3939 0.3640

10%
ALS 0.0948 0.2008 0.2017 0.2002

A-IRLS 0.0950 0.2000 0.2013 0.1995

15%
ALS 0.0567 0.1924 0.1926 0.1923

A-IRLS 0.0567 0.1927 0.1924 0.1901

2

5%
ALS 0.2481 0.6388 0.6338 0.6261

A-IRLS 0.2482 0.6370 0.6427 0.6194

10%
ALS 0.0981 0.2203 0.2209 0.2111

A-IRLS 0.0982 0.2194 0.2208 0.2047

15%
ALS 0.0550 0.2018 0.2022 0.1950

A-IRLS 0.0551 0.2016 0.2019 0.1947

Table 5.4: Results for Synthetic dataset of rank 10

Variance Observed fraction Algorithm No noise Gaussian Laplacian Huber

1

5%
ALS 0.4058 0.6471 0.6452 0.6720

A-IRLS 0.4059 0.6376 0.6888 0.6479

10%
ALS 0.2317 0.3015 0.3029 0.3016

A-IRLS 0.2317 0.3023 0.3037 0.3031

15%
ALS 0.1602 0.2770 0.2774 0.2768

A-IRLS 0.1596 0.2773 0.2771 0.2767

2

5%
ALS 0.3971 0.6454 0.6674 0.6361

A-IRLS 0.3972 0.6835 0.7347 0.6646

10%
ALS 0.2288 0.3075 0.3086 0.3098

A-IRLS 0.2317 0.3086 0.3080 0.3040

15%
ALS 0.1599 0.2836 0.2839 0.2802

A-IRLS 0.1602 0.2822 0.2838 0.2799

Table 5.5: Results for Synthetic dataset of rank 20

Variance Observed fraction Algorithm No noise Gaussian Laplacian Huber

1

5%
ALS 0.6902 1.5165 1.5330 1.5142

A-IRLS 0.6886 1.5493 1.5715 1.5191

10%
ALS 0.4622 0.5087 0.5113 0.5083

A-IRLS 0.4600 0.5054 0.5189 0.5083

15%
ALS 0.3961 0.4520 0.4529 0.4516

A-IRLS 0.3957 0.4513 0.4526 0.4494

2

5%
ALS 0.6126 1.8677 1.8843 1.8770

A-IRLS 0.6136 1.9546 1.9966 1.9524

10%
ALS 0.4648 0.5222 0.5248 0.5159

A-IRLS 0.4631 0.5220 0.5258 0.5154

15%
ALS 0.3895 0.4470 0.4486 0.4448

A-IRLS 0.3960 0.4474 0.4488 0.4429

Additionally, it can be observed that increasing the variance of the additive noise

leads to a general decrease in performance, but this is heavily pronounced for data
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with lesser observed fraction. Additionally, this behaviour is more subtle for Huber

noise than the Gaussian and Laplacian mechanisms, which suggests that the Huber

mechanism is preferable for higher variance noise addition.

While analyzing the results for Huber noise, we can observe that A-IRLS gives

better accuracy than ALS for higher variance values. One reason for this occurrence is

that the Huber and Gaussian distributions have a similar shape for lower variance values

(larger α values).

ALS gives a consistently better RMSE for Gaussian noise, which is in line with

theoretical expectations. However, the Alternating-IRLS procedure gives a better per-

formance than ALS for Laplacian noise in a majority of the cases. This makes A-IRLS

more suitable for the Laplace mechanism.

Real datasets

After analyzing the results from the Synthetic data, we compare the results of ALS +

Gaussian noise (ALS+G), A-IRLS + Laplacian noise (A-IRLS+L) and A-IRLS + Huber

noise (A-IRLS+H) procedures for the MovieLens-100k and SweetRS datasets in Tables

5.6 and 5.7 respectively. Note that no noise is being added in the cases of plain ALS

and A-IRLS and so they are not private algorithms.

Hyperparameter Settings for experiments with real data: We perform T = 20 iterations

of ALS for Movielens (because of overfitting) and T = 100 for SweetRS. We set the

model rank to 32 and regularization parameter λ = 0.5 for both the datasets. The A-

IRLS procedure is run for N = 10 iterations. The results obtained are tabulated below:

Table 5.6: RMSE for MovieLens100k, Visible fraction = 5.1%

ALS A-IRLS ALS + G A-IRLS + L A-IRLS + H
MSE 1.2463 1.2787 1.3883 1.3952 1.3755

Table 5.7: RMSE for SweetRS

Visible fraction ALS A-IRLS ALS + G A-IRLS + L A-IRLS + H
5% 2.1333 2.1334 2.2103 2.2096 2.2022
10% 1.7103 1.7102 1.8830 1.8827 1.8757
15% 1.6881 1.6891 1.7686 1.7756 1.7694

From the results of the SweetRS dataset, we can observe the same trend in the per-
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formance of the A-IRLS procedure as observed in the synthetic data. We can also see

that the differences in performance between private and non-private cases are orders of

magnitude less as compared to Synthetic data. This may be because the Synthetic data

was generated to adhere to a low-rank ground truth, which is just an assumption for real

datasets.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we have explored the different noise addition mechanisms for Differential

Privacy in the context of Low-Rank Matrix Completion. We introduced the novel Huber

mechanism for noise addition and derived the privacy bounds for it in Chapter 4. We

also introduced the new Alternating-IRLS optimization procedure for additive Huber

noise in the same chapter which is tailored to give more accurate results for identical

budget.

After interpreting the results from Chapter 5, we can conclude the following: 1)

The Gaussian mechanism gives more accurate results, especially for data with a small

fraction of observed entries, but the large privacy budget required works against its

favour. 2) The Laplace mechanism gives a competent result for its low privacy budget

requirement. But the heavy tail of the Laplacian distribution sometimes adds a large

gradient leading to inconsistent model performance. 3) The Huber mechanism gives

the best overall trade-off, with the dual advantages of a low privacy budget and high

accuracy, particularly for stricter privacy budgets.

This thesis has only explored the merits of the Huber mechanism in the context

of differentially private matrix completion. But we believe that it can be applied in

a similar fashion to all privacy-preserving applications in general. Thus, it is neces-

sary to analyze the benefits and drawbacks of the Huber mechanism in the context of

other applications of differential privacy before reaching a generalized conclusion. Ad-

ditionally, this thesis only uses the already established definitions of sensitivity, which

may not be suitable for the Huber mechanism. It is worthwhile to explore the effects

redefining sensitivity has on the various noise addition mechanisms.
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APPENDIX A

Derivation of privacy bounds for the Huber mechanism

For getting the privacy bounds of Huber noise, we need to derive the bounds case-wise

and then combine them to obtain the universal bound.

A.1 Case 1: ∆f ≤ 2α

We go over all the intervals of x in order and find the upper bound of the function g(x).

i. For x < −∆f − α, both |x| and |x+∆f | are greater than α, both x and x+∆f
are negative :

g1(x) = α ·
(
|x+∆f | − α

2

)
− α ·

(
|x| − α

2

)
(A.1)

= α ·
(
−x−∆f − α

2

)
− α ·

(
−x− α

2

)
(A.2)

= −α ·∆f (A.3)

Since the value of g1(x) is a constant, the maximum of g1(x) in this range (g1max)
is −α ·∆f itself.

ii. For −∆f − α ≤ x ≤ −α, |x| remains greater than α whereas |x+∆f | becomes
less than α :

g2(x) =
(x+∆f)2

2
− α ·

(
|x| − α

2

)
(A.4)

=
x2 + 2x∆f +∆f 2

2
− α ·

(
−x− α

2

)
(A.5)

=
x2 + 2x (α +∆f) + ∆f 2 + α2 + 2α∆f

2
− α ·∆f (A.6)

=
(x+ α +∆f)2

2
− α ·∆f (A.7)

The minimum value of g2(x) occurs at x = −α − ∆f . The function is then
monotonically increasing as we approach −α, i.e. the maximum in this range



(say g2max occurs at x = −α, which is:

g2max = g2(x)
∣∣
x=−α

(A.8)

=
(−α + α +∆f)2

2
− α ·∆f (A.9)

=
∆f · (∆f − 2α)

2
(A.10)

≤ 0 (A.11)

Since ∆f ≤ 2α by the case definition.

iii. For −α < x ≤ α−∆f , |x| becomes less than α and |x+∆f | remains less than
α, hence :

g3(x) = x∆f +
∆f 2

2
(A.12)

The maximum value in this range occurs at x = α−∆f as g3(x) is monotonically
increasing (as the slope ∆f ≥ 0 by definition). Therefore,

g3max = g3(x)
∣∣
x=α−∆f

(A.13)

= α ·∆f − ∆f 2

2
(A.14)

≤ α ·∆f (A.15)

Since ∆f ≥ 0 by definition. In this case, g3max is non-negative and upper
bounded by α ·∆f .

iv. For α−∆f < x ≤ α, |x| remains less than α whereas |x+∆f | becomes greater
than α. Now, x+∆f also becomes positive, so :

g4(x) = α ·
(
|x+∆f | − α

2

)
− x2

2
(A.16)

= α ·
(
x+∆f − α

2

)
− x2

2
(A.17)

= α ·∆f − 1

2
(x− α)2 (A.18)

The maximum value in this range occurs at x = α as (x − α)2 has a global
minimum at x = α. Hence, g4max for this range is :

g4max = α ·∆f (A.19)

v. For x > α, both |x| and |x + ∆f | are greater than α, both x and x + ∆f are

48



positive :

g5(x) = α ·
(
|x+∆f | − α

2

)
− α ·

(
|x| − α

2

)
(A.20)

= α ·
(
x+∆f − α

2

)
− α ·

(
x− α

2

)
(A.21)

= α ·∆f (A.22)

Since the value of g5(x) comes out to be a constant, the maximum of g5(x) in this
range (g5max) is α ·∆f itself.

Piecing the values together, we get the piece-wise defined function exp(Hα(x+∆f)−Hα(x))

as :

exp(g(x)) =



e−α·∆f ; x < −∆f − α,

e
(x+α+∆f)2

2
−α·∆f ; −∆f − α ≤ x ≤ −α,

ex·∆f+∆f2

2 ; −α < x ≤ α−∆f,

eα·∆f− 1
2
(x−α)2 ; α−∆f < x ≤ α,

eα·∆f ; x > α.

(A.23)

The overall upper bound gmax for Case 1 can be computed as

=⇒ gmax = max(g1max , g2max , g3max , g4max , g5max) (A.24)

=⇒ gmax = α ·∆f (A.25)

So, the upper bound of exp(Hα(x+∆f)−Hα(x)) for case 1, say Hmax1 is

=⇒ Hmax1 = exp(gmax)

=⇒ Hmax1 = exp(α ·∆f)

A.2 Case 2: ∆f > 2α

Similar to case 1, we compute the upper bounds of g(x) for different intervals of x.

i. For x < −∆f − α, g1(x) and g1max are identical to those in Case 1.

ii. For −∆f − α ≤ x ≤ α − ∆f , |x| remains greater than α whereas |x + ∆f |
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becomes less than α :

g2(x) =
(x+∆f)2

2
− α ·

(
|x| − α

2

)
(A.26)

=
x2 + 2x∆f +∆f 2

2
− α ·

(
−x− α

2

)
(A.27)

=
(x+ α +∆f)2

2
− α ·∆f (A.28)

The maximum value of g2(x) occurs at x = α − ∆f as the minimum is at x =
−α−∆f and the function is then monotonically increasing as we approach x =
α−∆f . Hence,

g2max = g2(x)
∣∣
x=α−∆f

(A.29)

=
(α−∆f + α +∆f)2

2
− α ·∆f (A.30)

= α · (2α−∆f) (A.31)

≤ 0 (A.32)

since ∆f > 2α by the case definition.

iii. For α−∆f < x ≤ −α, |x| remains greater than α and |x+∆f | becomes greater
than α. Also, note that x is negative but x+∆f becomes non-negative, hence :

g3(x) = α ·
(
|x+∆f | − α

2

)
− α ·

(
|x| − α

2

)
(A.33)

= α ·
(
x+∆f − α

2

)
− α ·

(
−x− α

2

)
(A.34)

= α · (2x+∆f) (A.35)

The maximum value in this range occurs at x = −α as g3(x) is monotonically
increasing (as the slope 2α ≥ 0 by definition of α). Therefore,

g3max = g3(x)
∣∣
x=−α

(A.36)

= α ·∆f − 2α2 (A.37)

≤ α ·∆f (A.38)

since 2α2 ≥ 0. In this case too, g3max is non-negative and upper bounded by
α ·∆f .

iv. For −α < x ≤ α, |x| becomes less than α. So :

g4(x) = α ·
(
|x+∆f | − α

2

)
− x2

2
(A.39)
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= α ·
(
x+∆f − α

2

)
− x2

2
(A.40)

= α ·∆f − 1

2
(x− α)2 (A.41)

The maximum value in this range occurs at x = α as before. Therefore, the
maximum g4max for this range is :

g4max = α ·∆f (A.42)

v. For x > α too, g5(x) and g5max are identical to those in Case 1.

Here, the piece-wise defined function exp(Hα(x+∆f)−Hα(x)) as

exp(g(x)) =



e−α·∆f ; x < −∆f − α,

e
(x+α+∆f)2

2
−α·∆f ; −∆f − α ≤ x ≤ α−∆f,

eα·(2x+∆f) ; α−∆f < x ≤ −α,

eα·∆f− 1
2
(x−α)2 ; −α < x ≤ α,

eα·∆f ; x > α.

(A.43)

The overall upper bound gmax for Case 2 is

=⇒ gmax = max(g1max , g2max , g3max , g4max , g5max) (A.44)

=⇒ gmax = α ·∆f (A.45)

So, the upper bound of exp(Hα(x+∆f)−Hα(x)) for case 2, say Hmax2 is also:

=⇒ Hmax2 = exp(gmax)

=⇒ Hmax2 = exp(α ·∆f)

Hence, the overall upper bound Hmax is given as:

Hmax = max(Hmax1, Hmax2) = exp(α ·∆f) (A.46)

And, the upper bound of Gα(x), as evidenced by the above proof is (α ·∆f).
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APPENDIX B

Deriving the CDF and Inverse-CDF of the Huber

Distribution

B.1 The Huber CDF

The CDF of any probability distribution pX(x) is defined as:

FX(x) = P (X ≤ x) =

∫ x

−∞
pX(t) · dt (B.1)

Since the Huber PDF is defined in parts, it is necessary to split the integral into cases

and evaluate them separately:

CASE 1: x ∈ (−∞,−α)

FX(x) =

∫ x

−∞

1

N(α)
· e−α(−t−α/2) dt (B.2)

=
1

N(α)
·
∫ x

−∞
eα(t+α/2) dt (B.3)

Setting eα·(t+α/2) = p =⇒ α · p = dp. Substituting this in Equation B.3, we get:

FX(x) =
1

α ·N(α)
·
∫
dp (B.4)

=
1

α ·N(α)
· eα(t+α/2)|x−∞ (B.5)

=⇒ FX(x) =
1

α ·N(α)
·
(
eα(x+α/2)

)
(B.6)



CASE 2: x ∈ [−α, α ]

FX(x) =
1

N(α)

(∫ −α

−∞
e−α(−t−α/2) · dt+

∫ x

−α

e−t2/2 · dt
)

(B.7)

=
1

α ·N(α)
· e−α2/2 +

1

N(α)
·
∫ x

−α

e−t2/2 · dt (B.8)

=⇒ FX(x) =
e−α2/2

α ·N(α)
+

1

N(α)
·
√
π

2
·
(

erf
(
x√
2

)
− erf

(
−α√
2

))
(B.9)

CASE 3: x ∈ (α, ∞)

FX(x) =
1

N(α)
·
(∫ −α

−∞
eα(t+α/2) · dt+

∫ α

−α

e−t2/2 · dt+
∫ x

α

e−α(t−α/2) · dt
)

(B.10)

=
1

α ·N(α)
·
(
e−α2/2 + α

√
2π · erf

(
α/
√
2
)
+ e−α2/2 − e−α(x−α/2)

)
(B.11)

=⇒ FX(x) =
1

α ·N(α)
·
(
2e−α2/2 + α

√
2π · erf

(
α/
√
2
)
− e−α(x−α/2)

)
(B.12)

Combining the results of all three Cases, the Huber noise CDF is given as:

FX(x) =



1
α·N(α)

·
(
eα(x+α/2)

)
, ; x ≤ −α

1
α·N(α)

· e−α2/2 + 1
N(α)
·
√

π
2
·
(

erf
(

x√
2

)
− erf

(
−α√
2

))
, ; −α ≤ x ≤ α

1
α·N(α)

·
(
2e−α2/2 + α

√
2π · erf

(
α/
√
2
)
− e−α(x−α/2)

)
, ; x > α

(B.13)

B.2 The Inverse of the Huber-CDF

Since the Huber CDF is also defined in parts (Equation B.13), we need to invert it on a

case-by-case basis too.
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CASE 1: x ∈ (−∞,−α)

To begin the inverting process, we set y to:

y =
1

α ·N(α)
·
(
eα(x+α/2)

)
(B.14)

=⇒ 1

α
· log (α ·N(α) · y) = α · (x+ α/2) (B.15)

=⇒ x =
1

α
· log (α ·N(α) · y)− α

2
(B.16)

∀ y ∈
(
0, 1

α·N(α)
· e−α2/2

)
.

CASE 2: x ∈ [−α, α ]

Like before, we set y to:

y =
1

α ·N(α)
· e−α2/2 +

1

N(α)
·
√
π

2
·
(

erf
(
x√
2

)
− erf

(
−α√
2

))
(B.17)

(
y − 1

α ·N(α)
· e−α2/2

)
·N(α) ·

√
2

π
+ erf

(
−α√
2

)
= erf

(
x√
2

)
(B.18)

=⇒ x =
√
2 · inv_erf

((
y ·N(α)− 1

α
· e−α2/2

)
·
√

2

π
+ erf

(
−α√
2

))
(B.19)

∀ y ∈
[

1
α·N(α)

· e−α2/2, 1
α·N(α)

·
(
e−α2/2 + α

√
2π · erf

(
α√
2

))]
. Here, inv_erf(.) refers

to the inverse-error function.

CASE 3: x ∈ (α, ∞)

Again, we set y to:

y =
1

α ·N(α)
·
(
2e−α2/2 + α

√
2π · erf

(
α/
√
2
)
− e−α(x−α/2)

)
(B.20)

log
(
−y · α ·N(α) + 2e−α2/2 + α

√
2π · erf

(
α√
2

))
= α ·

(
x− α

2

)
(B.21)
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=⇒ x =
1

α
· log

(
2e−α2/2 + α

√
2π · erf

(
α√
2

)
− y · α ·N(α)

)
+
α

2
(B.22)

∀ y ∈
(

1
α·N(α)

·
(
e−α2/2 + α

√
2π · erf

(
α√
2

))
, 1
)

.

Compiling the resulting from all three cases, the inverse CDF of Huber noise is

defined as follows. First, we define y1 and y2 as:

y1 =
1

α ·N(α)
· e−α2/2 (B.23)

y2 =
1

α ·N(α)
·
(
e−α2/2 + α

√
2π · erf

(
α√
2

))
(B.24)

The Inverse CDF for Mixed-Huber Noise is:

F−1
Y (y) =



1
α
· log (α ·N(α) · y)− α

2
; y ∈ (0, y1)

√
2 · inv_erf

((
y ·N(α)− 1

α
· e−α2/2

)
·
√

2
π
+ erf

(
−α√
2

))
; y ∈ [ y1, y2 ]

1
α
· log

(
2e−α2/2 + α

√
2π · erf

(
α√
2

)
− y · α ·N(α)

)
+ α

2
; y ∈ (y2, 1)

(B.25)

where inv_erf(.) is the inverse error function, given as:

inv_erf(x) =
∞∑
k=0

ck
2k + 1

(√
π

2
x

)2k+1

(B.26)

where c0 = 1 and ck is calculated using the recursive procedure given below:

ck =
k−1∑
m=0

cmck−1−m

(m+ 1)(2m+ 1)
(B.27)
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