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ABSTRACT

Keywords - stability, non-linearity,pole placement,feedback control

Stabilization of unstable systems is a significant area in the automatic control disci-
pline. It is needed in many applications, some examples being missile guidance or stabi-
lization of a biped robot. The main objective of this study is to research the single inverted
pendulum to develop a controller for it. We aim to stabilize the pendulum’s upright po-
sition while keeping the cart oscillating around the desired position. Full-state feedback
controller, which can have its characteristics modified by changing the placement of the
dominant poles, is considered. The results of the full-state feedback controller turned out

to be very stable, precise and controllable.
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Chapter 1

INTRODUCTION

1.1 Overview

The stability of an inverted pendulum has become a common engineering challenge for
researchers. It is a classic problem in automatic control, which interests many other disci-
plines such as mechanics, physics, mathematics, etc. The inverted pendulum is an unsta-
ble and non-linear system. This system has two positions of equilibrium, one of them is
stable while the other is unstable. The stable position corresponds to the pendulum point-
ing downright. Releasing the pendulum from any position other than exactly straight up
makes it fall and oscillate around the stable position until it comes to rest due to friction
forces. Therefore, the stable position requires no control, and it is not interesting from a

control point of view.

1.2 Problem Formulation

The system in this example consists of an inverted pendulum on a cart; A pole of mass
m and length 1 is attached to the cart, with 6 in [0,—7] for the left-hand plane and [0,7]
for the right-hand side. We suppose the cart moves on a rail, and the pole can go under
it. Inverted Pendulum Our goal is to balance the pole above its supporting cart (6=0) by

displacing the cart left or right. Thus, two actions are possible.
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Figure 1.1: Inverted Pendulum Schematic

State vectors in this scenario are position, speed, angle, angular speed;

For this problem, the outputs are the cart’s displacement (x in meters) and the pen-
dulum angle (¢ in radians), where ¢ represents the deviation of the pendulum’s position
from equilibrium, that is, 8 = 7+ ¢.

The design criteria for this system for a 0.2-m step in desired cart position x are as

follows:

* Settling time for x and 6 of less than 5 seconds
* Rise time for x of less than 0.5 seconds
* Pendulum angle 6 never more than 20 degrees (0.35 radians) from the vertical

* Steady-state error of less than 2% for x and 6

We aimed to keep the pendulum vertical in the other situations in response to an impulsive
disturbance force delivered to the cart. We did not attempt to direct the cart’s movement.
We’re trying to keep the pendulum vertical while managing the cart’s location to go 0.2
metres to the right.

We can use Full-state feedback to solve this problem. This type of control system’s

schematic is presented below,
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Figure 1.2: Full state feedback

Where K is a matrix of control gains, please take note that here we feedback all of the

system’s states rather than using the system’s outputs for feedback.

1.3 Objectives

The scope of the project is to study and design the control system of an unstable system,
in this case, an inverted pendulum. We will be simulating different alternatives on a
computer with a modelled reality system. Our goal is to stabilize the pendulum’s upright
position while keeping the cart oscillating around the desired position to evaluate the

alternatives and conclude.

1.4 Motivation

A cart Inverted pendulum system is one of the most common use to be considered for
testing many control algorithms since it has some challenging problems associated with
non-linearity, complexity and under-actuated system model. Non-linearity behaviour of
the inverted pendulum can be observed easily. Different pendulum angle responses can
be obtained by giving the same velocity in the cart. The cart inverted pendulum can be
understood as an under actuated system since the system has a lower number of actu-
ators than the degrees of freedom. One of the most convenient methods to model the
inverted pendulum system is to use Lagrange’s equation. However, many inverted pendu-
lum models have been derived using a simplified physical model. This simplified model
may lead to problems implementing the control algorithm in an actual physical inverted

pendulum system. An inverted pendulum system model is presented in this report, where



the mathematical model of the inverted pendulum was derived using Lagrange’s equa-
tion. The determination of the pole-zero of the system is discussed. A simple method of
pole placement is proposed to stabilize the pendulum at the desired position of the cart.
Matlab simulation results show the effectiveness of the proposed method. And yet, this

intuitive approach can lead to a better understanding of the control behaviours.



Chapter 2

BACKGROUND

We used different concepts and steps in this report to analyze the model of a cart inverted

pendulum. These are:
1. Mathematical Modelling using (Lagrange equations)
2. Linearization of system
3. State-space modelling
4. Pole placement method

Let us discuss the background of some of the concepts I used in this report.

2.1 Inverted Pendulum

An inverted pendulum is a classic example of a model where the system’s centre of mass is above its fulc

which is similar to most real-life situations, such as humans, rocket ships and seismome-

ters(old model).

The inverted pendulum is one of the most prominent and iconic examples in control
theory. It is naturally unstable and non-linear and is frequently used as a model. As an
academic example, a cart that can move freely beside a guide is frequently used to create
an inverted pendulum. And a pendulum that can freely rotate around the cart’s centre of
rotation. The force applied to the cart is a controllable variable. The pendulum must be

balanced.



For the pendulum to stay upright, the pendulum must be actively balanced. Stabiliza-

tion can be accomplished in a variety of ways.
* Applying a torque at the pivot point.
* Moving the pivot point horizontally.

* Changing the rate of rotation of a mass mounted on the pendulum on an axis parallel

to the pivot axis.

* Oscillating the pivot point vertically.

PID controllers, state-space representation, neural networks, fuzzy control, and other
control systems are tested using the inverted pendulum as a benchmark. When consider-
ing the pendulum alone, it has two stable and unstable equilibrium positions. The goal is
to use a control system to stabilize an unstable position, even if perturbed somehow. In
a practical case, the guide along which the cart moves is finite; to simulate this, both the
cart’s location and the pendulum’s position must be rendered stable.

In this report, We have used the state-space model and Pole placement method to

control the pendulum position in space.

2.2 Linearization of the system

Linearization is a method for assessing the local stability of an equilibrium point of a
system of non-linear differential equations or discrete dynamical systems. Linearization
makes it possible to use tools for studying linear systems to analyze a non-linear system’s
behaviour near a given point of equilibrium. The inverted pendulum is a non-linear sys-
tem. We must linearize the pendulum around the unstable equilibrium position, which is

when the pendulum is in its upright position.

2.3 What is Pole Placement

One of the traditional control theories, the pole placement approach, has an advantage
in system control for desired performance. To achieve the desired system behaviour,

shift the pole location to that desired pole location once the system transfer function is



specified mathematically. After that, each coefficient should be defined in the same order
as the intended transfer function. A characteristic polynomial is compared to a transfer
polynomial. This method of pole placement control produces the desired outcome. It
is simple to control the gain numerically, but the precision of system transfer is critical.
The function is highly critical and costly to implement in a high-order system. The Pole
placement method is a controller design method in which we determine the places of the
closed-loop system poles on the complex plane by setting a controller gain K.

Poles describe the behaviour of linear dynamical systems. Through feedback, you
are attempting to change that behaviour more favourably. Thus we can decide where
the closed-loop poles should be and then force them to be there by designing a feedback
control system via the pole placement method where we choose a controller gain K that
places the poles in their desired locations.

Let the following be the model of your system in state space:

X =Ax+Bu.

The eigenvalues of A are the poles. Through the use of (for example) full state feed-
back, you set

u=-Kx,

with which the closed-loop system dynamics matrix becomes

Ac=A+BK.

Now the eigenvalues of Ac describe how your closed-loop system will behave. A and
B are (usually constant) matrices that do not depend on K (they express a linear model
of the physical system you want to control). Thus, Ac is a function of the controller gain
K only; through modification, you can place the eigenvalues of Ac (i.e., the closed-loop

poles) as desired (under certain conditions).

2.4 What is State-space model

State space is a mathematical modelling of systems in universe age old topic in control
engineering . It represents a model of fixed inputs and outputs and a few sets of variables
associated with first-order differential equations. State variables in this model are a form
of the variable whose output changes over time and depends on the values given for the

input variables. The value of the output variables relies upon the model of the state and



input variables. Putting a model into state-space representation is the premise for many
strategies on top of things evaluation and the dynamics technique.

Analysis of multi-input and multi-output structures is made smooth using the state-
space modelling. Inside the case of the transfer function, while there’s single input and
a single output, we can take the Laplace model of input and the output and get the re-
sult. But, when there are multiple inputs and multiple outputs,but we can’t perform the
identical procedure on it. Because we’ve got a state vector in our state-space model, we
can represent all our input and output variables in the vector form and perform to get the
desired output for the device. The state-space model gives facts about controllability. We
will say up to what extent the given model is controllable. It tells us how much lot quan-
tity it can manipulate its functionality. The state-space model offers us information about
the functionality of a specific model. The state-space modelling applies to all dynamic
structures. We can examine all dynamic systems like linear, non-linear, time-variant, and

time-invariant structures.



Chapter 3

Pole Placement Method - Working
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Figure 3.1: freebody Diagram

Above is the free body diagram for all forces acting on the inverted pendulum model.
(M +m)i+ bx+mlf cos 0 —ml6?sin6 = u

(I+mi?)6 +mglsin® = —mlicos O

We first formulate the Newtonian equations and solve them using substitution and

other mathematical methods. for simplification, let us assume
* friction-less surface (b=0)
* moment of inertia of pendulum is negligible. (1=0)

* air resistance is not applicable



We will be left with simplified equations of motion in terms of %,%,0,0
(M +m)i+mifcos® —ml6?sin6 = u

ml*0 + mglsin® = —mlicos 0

for linearizing the equations assume small perturbations.

For small perturbations, 6 = 0 therefore, we have

e sin@ =20
e cos0=1
« 62=0

final equations used henceforth in this report are:

(M+m)i+mld=u
10+ = g6

On simplification and comparing with standard state space equations we will get ma-

trices as:
X=Ax-+Bu
y=Cx+Du
01 0 0 0
00 —mg/M 0 /M
where A= B = I calculated system response for
00 0 1 0
0 0 gM+m)/ML 0O —1/Ml

open loop function and open loop poles’ I considered a feedback loop with gain K and

new equations will be

u=—Kx
x=(A—BK)x
y=Cx+Du

I took the numeric values of masses and length accordingly for performing calcula-

tions. M = lkg m = 0.1kg [ = 0.5m g = 9.8m /s
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I calculated the system response of the closed-loop function. I assigned closed-loop
poles by trial and error approach in Matlab, plotted graphs in each case, and selected poles
such that the system response was good and satisfied our criterion. by using the Matlab
command K = place(A,B,P)- I calculated values to the vector K and noted down the
result of the closed-loop system function

To obtain a reasonable speed and damping in the response of the designed system
(for example, the settling time of approximately 4~5 sec and the maximum overshoot of

15%~16% in the step response of the cart , let us choose the desired closed-loop poles at
P=[-8-5-2-0.8|;

obtained from MATLAB iterations

I plotted graphs of state functions versus time for each state and verified the stability
of the function.It is noted that, as in any design problem, if the speed and damping are not
quite satisfactory,then we must modify the desired characteristic equation and determine a
new matrix Computer simulations must be repeated until a satisfactory result is obtained.

Plots and observations of the Matlab report are discussed in the next chapter.

11



Chapter 4

EXPERIMENTAL RESULTS

4.1 Observations

I have plot state equations versus time in Matlab using plot function

%10° Open loop Response

datat
data2 A
data3 e

o H datad

theta

Figure 4.1: Open loop response

This is open loop plot of the all four states x,%,0,0 we can see that these are diverging

from stable point zero to infinity and very unstable.
We need to employ a negative feedback model to compensate for the instability in this

graph. Below is a graph of all four states to time in the closed-loop model.
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Now, let us look individually at each graph and see how is equilibrium state achieved

in each case.

position

position versus t
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Figure 4.2: Closed loop response

position versus t

Figure 4.3: Position vs Time
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velocity versus t
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omega versus t
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Figure 4.6: Omega vs time

We can notice that transient response is second order, and each plot (position approx-

imately) reaches a steady state at zero point and attains equilibrium within 4 to 5 seconds
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Chapter 5

CONCLUSION AND APPLICATIONS

Stabilizing a cart inverted pendulum system using the pole placement method has been
successfully conducted. The simulation result shows that the pole placement method can
search feedback gain K. The simulation showed that the more negative the pole location
makes, the pendulum’s response will race toward point zero. Still, the more significant
overshoot caused, and the response of the cart position is faster to reach the set point. But,
the greater control output caused. Modelling of cart-inverted pendulum shows that system
is inherently unstable as the pendulum swings to and fro without applying any external
control forces with non-minimum phase zero. A full state feedback controller using a
state variable feedback controller is proposed to stabilize a cart-inverted pendulum. In
addition, the system has good robustness; it can overcome any external disturbances on

the cart or pendulum rod.

5.1 Real Life Applications

There are quite a few examples in the real world of the inverted pendulum, both made by
humans and in the natural world. The most prevalent example of the inverted pendulum
is humans. People need to make constant adjustments to maintain the upright position
of the body, whether standing, walking or running. Another simple example is balancing
brooms with a hand or a finger.

The inverted pendulum has been employed in various devices. For instance, early
seismometers’ central component because any disturbance caused the pendulum to oscil-

late, and the response was measurable. Some two-wheeled personal transports that offer

16



higher manoeuvrability are designed based on inverted pendulum models. The inverted
pendulum is also related to rocket and missile guidance. The centre of gravity is behind
the centre of drag, causing aerodynamic instability that needs to be corrected not to start
spinning out of control. It is also related to the balance of a biped humanoid robot, which

has similar characteristics as previously mentioned with humans.
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