SET ASSOCIATIVE DATA TLB FOR SHAKTI
C-CLASS PROCESSOR

A Project Report

submitted by

GURAJALA BHAVITHA CHOWDARY

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY & MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

JUNE 2022

THESIS CERTIFICATE

This is to certify that the thesis titled SET ASSOCIATIVE DATA TLB FOR SHAKTI
C-CLASS PROCESSOR, submitted by GURAJALA BHAVITHA CHOWDARY,

to the Indian Institute of Technology, Madras, for the award of the degree of DUAL

DEGREE, is a bona fide record of the research work done by him under our supervi-

sion. The contents of this thesis, in full or in parts, have not been submitted to any other

Institute or University for the award of any degree or diploma.

Prof. V. Kamakoti

Research Guide

Professor

Department of Computer Science and
Engineering

IIT Madras, 600 036

Place: Chennai

Date: 16th June, 2022

Prof. Nitin Chandrachoodan
Research Co-Guide
Associate Professor

Department of Electrical Engineering
IIT Madras, 600 036

ACKNOWLEDGEMENTS

I would like to express my gratitude towards my project guide, Prof. V. Kamakoti for
giving me the opportunity to work on this project. His extensive knowledge and experi-
ence in this field has been a great source of inspiration. I would also like to acknowledge
Prof. Nitin Chandrachoodan as the co-guide of this project and I am grateful for his sup-
port. I would also like to express my deepest gratitude to my project mentor, Neel Gala

for his constant support throughout the course of my project.

I would like to thank my parents and friends for their encouragement and unwavering

support throughout my education and research.

ABSTRACT

KEYWORDS: TLB; MMU; Virtualisation; Set associative mapping

Shakti C-class currently has a fully associative data TLB. This project explores the
idea of a set associative TLB, that is flexible with the associativity of the mapping. The
TLB is also designed to support multiple page sizes. The replacement policies explored

are Round robin and Random replacement policies.

Source Code is in Bluespec System Verilog. Compilation and verilog Generation were

done using BlueSpec Compiler. It is tested and then integrated with C-class.

il

MMU
TLB
LRU
OS
VPN
BSV
BSC
LFSR

ABBREVIATIONS

Memory Management Unit
Translation Lookaside Buffer
Least Recently Used
Operating System

Virtual Page Number
Bluespec System Verilog
Bluespec System Compiler

Linear Feedback Shift Register

il

CHAPTER 1

INTRODUCTION

C-Class is a member of the SHAKTI family of processors. It is an extremely config-
urable and commercial-grade 5-stage in-order core supporting the standard RV64GCSUN
ISA extensions. C-Class now has separate fully associative I-TLB and D-TLB. This
project explores the possibility of set associative data TLB for C-Class while also hav-
ing the provision to apply fully associative mapping or direct mapping based on the
number of ways and sets needed and inputting that to the code. The entire code is

written in Bluespec System Verilog.

Tralnineg Inta

Wiite back data

Register File
PC-Gen and CSR

Operand Fetch

iis-Prediction Flush

Memary = Wrrite Back
Access Unit = it

Trap flush

Mem Req
Instruction
Drata
Cacha TLE Mis=s — TLB Miss Cache
H:i]
e Non-Cacheable | o =
T Access
lcacr.e Miss Cache Miss l
< AR [ARI4-Lite ! TileLink-L Bus Fabns (configurable) >

Real Time Clock I2C, 5PI, Q5P1, FlexBus, By etary DS,
[LARTxN] { madule] [*SPI } [E:pmsnn Bus] [PWMs, 125,] rogHi aarg s
athr third pary 1P

Figure 1.1: Block Diagram of Shakti C-class core

CHAPTER 2

Main components

2.1 Virtual Memory

Virtual memory, or virtual storage is a memory management technique that provides
an idealized abstraction of the storage resources that are actually available on a given
machine which creates the illusion to users of a very large memory.

Uses of Virtual Memory:

* Virtual Memory allows users to write code as if it has total unrestricted control of
the entire memory range, regardless of the memory usage of any other program

* Virtual Memory also provides protection and isolation as it does to let malicious
code touch the memory spaces of other running programs

* Virtual memory improves efficiency as it allows to undersubscribe or oversub-
scribe the memory space.

2.2 Block Diagram of Virtual Memory Organization

Virtual Physical Physical
- MMU >
Address . :
ress Address Cache Address Main Disk
Memory Memory | Transfer | Storage
Data Data

Figure 2.1: Block Diagram of Virtual memory management

2.3 MMU

A memory management unit (MMU) is a computer hardware component that handles
all memory and caching operations associated with the processor.
MMU’s operations can be divided into 3 categories:

* Hardware memory management, which oversees and regulates the processor’s
use of RAM (random access memory) and cache memory.

* OS (operating system) memory management, which ensures the availability of
adequate memory resources for the objects and data structures of each running
program at all times.

* Application memory management, which allocates each individual program’s re-
quired memory, and then recycles freed-up memory space when the operation
concludes.

2.4 Virtual memory address translation

The idea behind virtual memory is that physical memory is divided into fixed size pages.
Pages are typically 512 to 8192 bytes, with 4096 being a typical value. Page size is vir-
tually always a power of two. Pages frames are loaded into memory only when they are
needed. Adjacent page frames are not necessarily loaded into adjacent pages in mem-
ory. At a point in time during the execution of a program, only a small fraction of the

total pages of a process may be loaded.

It is possible that a process might access a page which is not in memory. The MMU
will determine that this page is not loaded, and this will generate a page fault. A page
fault is an interrupt. The handler for a page fault locates the needed page frame on the
disk, copies it to a page in memory, and updates the page table, telling it where the page

frame is loaded. Control then returns to the process.

In Fig. 2.1} we can see that the virtual address coming from the processor is con-
verted to physical address by MMU.
The physical address obtained from processor is split into Virtual Page Number(VPN)

and offset. VPN added to the page table base address is then used to compare with the

control bits of page table and the corresponding page frame is extracted and concate-
nated with offset to produce the physical address. This can be seen as a block diagram
in the 2.2] This process of searching the page table for physical address is also called
as Page Table Walk, also referred to as PTwalk henceforth.

Virtual sddrveas from procesaor

!

I]
Virtual page numl:q-l'| [Offaet |

Page table hase regiater
||";L!.':1- tahle ;l||||I'\1-::::|

.

PAGE TABLE

'\—L.—‘ _l.'_-
Contrel Page frame | Page |'|-;|_|-m.| Oiffaet |
hita in memaory | |

Figure 2.2: Virtual Address —> Physical Address

2.5 TLBs

Translation Lookaside Buffers(TLBs) are used for performance enhancement in this
address translation discussed above. They are cache-like structures. They can be called
address translation cache. These are based on the principles of temporal and spatial
locality which most programs conform to. Most processes, no matter how large they
are, are usually only executing steps in a small part of the text segment and accessing
only a small fraction of the data during any given time short time period. This means
that they are accessing only a small number of pages. The idea behind a TLB is that

these pages are cached.

If the requested address is present in the TLB, the search yields a match quickly and

the retrieved physical address can be used to access memory. This is called a TLB hit.

4

If the requested address is not in the TLB, it is a miss, and the translation proceeds
by looking up the page table in a process called a page table walk as discussed in the
previous section. The page walk is time-consuming when compared to the processor
speed, as it involves reading the contents of multiple memory locations and using them
to compute the physical address. After the physical address is determined by the page
walk, the virtual address to physical address mapping is entered into the TLB. The entire

relationship between TLB, MMU and Cache can be seen in the @below:

— CPU Retry
Virtual Address l 1
4 Search Cache Search page table

Mlﬂ Mlss* l
Update cache Update

¥
l from main Generate PA main memory,

memory g
Generate PA cache an
| f" Update TLB page table entry

Return value I |

from cache

+
Search TLB i %
|| @& [T
Imi s5ec memory
i

Data |

Figure 2.3: TLB operation

CHAPTER 3

Design of TLB

3.1 Associativity of TLB

The design aspects of TLB are important for the performance of processor.

* The bigger the size of TLB:
— The higher the hit rate

— The slower the response

— The greater the expense

* The larger the page size
— the size of the page table is inversely proportional to the page size

— transferring larger pages to/from secondary storage is more efficient than
transferring smaller pages

— reduces the number of TLB misses.
The present TLB in Shakti C-Class processor is Fully Associative.

Fully Associative

Fully Associative Mapping refers to a technique of cache mapping that allows mapping
of the main memory block to a freely available cache line. In case the data and informa-
tion are fetched from memory, then they can be placed in an unused block of a cache.

Hence, whenever a search is needed, comparison has to done

The major disadvantage of the fully associative implementation is the amount of hard-
ware needed for the comparison increases in proportion to the cache size and hence,

limits the capacity after a point.

N-way Set associative mapping

N-way set associative mapping restricts the entry of blocks into TLB lines. An N-way
set associative mapping provides N blocks in each set where data mapping to that set
might be found. Each memory address maps to a specific set, but it can map to any one
of the N blocks in the set. When N=1, it is called direct mapping.

So each address is divided into Tag, Set and Block offset. The tag is only compared to

the tags present in the corresponding set in TLB.

Memory
Address Nay 0
10 1
Data V Tag Data
| Set3
Set 2
Set1
Set 0
— :|25 32 28 32
- m I
ﬂf.] |[=]
_/ I___)
\. — i
Hit, []_[- Hity \ © /—Hit
\ »T:az
&
T
Hit Data

Figure 3.1: Set Associative Mapping

3.2 Separate TLBs for Different Page Sizes

TLBs must be fast and energy-efficient. Performance is desirable as TLBs reside on the
critical datapath of pipelines. This means that they are usually built in a simple manner
that meets timing constraints, with lookup and miss handling characteristics that are

amenable to speed.

Large pages can dramatically reduce the frequency of TLB misses. There are, how-
ever, several reasons why typical page sizes have not increased. One of them being,
larger pages result in larger working sets due to internal fragmentation, i.e., memory
wasted due to the page size being larger than what the program needs. For improving

TLB performance we use two page sizes and to require page sizes to be powers of two

and pages to be aligned (i.e., a page of size B must be placed in virtual and physical
memory at an address that is a multiple of B). If the large page size can be judiciously
used, this method can make the TLB map more memory without a significant impact

on working set size and no effect on minimum protection granularity.

However, supporting multiple page sizes also complicates the design of set-associat-
ive TLBs. The reason is that different page sizes require a different number of page
offset bits. 4KB baseline pages require 12 page off- set bits, 2MB large pages require
21 page offset bits, while 1GB large pages require 30 page offset bits. To reduce con-
flict misses in set-associative TLBs, we use the least significant bits of the virtual page

number as showin in

e, o00x Jalooooo 1[1] coooo01[10] 110010111000

[
4KB page offset
i J
2MB page offset
L Y J
1GE page offset

L1 TLB (4KB pages) L1 TLB (2MB pages) L1TLB (1GB pages)

o 5 o ™
R o [

Figure 3.2: Multiple Page Sizes

As the page size cannot be identified by looking at the virtual address, a parallel
lookup is done in all the L1 TLBs. A miss is reported if it’s not found in any of the
lookups. Then a page table walk is done and the page is placed in the appropriate TLB.

Hardware in MMU aids in the determination of page size.

3.3 Replacement policies for TLB

When a Page table walk occurs, that page has to be placed in the respective TLB. If the
set that the page belongs to is completely occupied, we have to replace an existing line.
There are different policies for that, some policies used in this project are discussed

below:
1. Round Robin Replacement policy
Round-robin or cyclic replacement means there is a counter that cycles through

the available ways and cycles back to 0 when it reaches the maximum number of
ways.

2. Random Replacement policy

A random number is generated and that page is replaced with the new page. LFSR
is used to generate this random number in this code

3. LRU

Least Recently Used (LRU) is to remove the least recenlty used page among the
pages present and replace it with the new entry.

3.4 Testing

A test bench for bluespec was written and was used to tested some scenarios by chang-

ing the number of ways and sets, the code passed all the cases.

3.5 Integration with C-class

The code was integrated with C-class, macros were enabled for compiling and it was

built successfully.

CHAPTER 4

Code Explanation

4.1 Defining interfaces and other variables

Defining the necessary interfaces, variables, vectors and registers for the code.

Interfaces, methods are defined for the following:

* Interfaces to send the core request

* When there’s a tlb miss, sending and receiving the request from ptwalk and re-
ceive the response

* Methods to receive the current:
— satp csr from the core

— current privilege mode of operation

— current values of the mstatus register

Each RegFile can be understood as a set, Vector of regfile indicates all the sets that

make up the tlb. The arguments are given accordingly.

* pagesizel refers to 4KB, takes the lower 12 bits of virtual address for page offset

» pagesize?2 refers to 2MB, takes the lower 21 bits of virtual address for page offset

FIFOs are used for storing all the addresses and placing the requests. Variables defined

and their explanation

* satp: lower bits of satp register(ppnsize) holds the ppn of root page table

ASID: address space identifier (ASID) facilitates address-translation fences on a
per-address-space basis

For sv32, satp_mode=0, no translation, if satp_mode=1, Page-based 32-bit virtual
addressing

When MXR=0, only loads from pages marked readable (R=1) will succeed.
When MXR=1, loads from pages marked either readable or executable (R=1 or
X=1) will succeed.

* When SUM=0, S-mode memory accesses to pages that are accessible by U-mode
(U=1) will fault.
When SUM=1, these accesses are permitted.

* MPP represents mode(U or S)

* When MPRV=0, loads and stores behave as normal, using the translation and
protection mechanisms of the current privilege mode.
When MPRV=1, load and store memory addresses are translated and protected,
and endianness is applied, as though the current privilege mode were set to MPP

4.2 sfence

Stence rule will simply invalidate all the tlb entries. As we now have two tlbs, both
of them have to be cleared. When sfence is fired, Each regfile in the vector is initiated
to a vector of zeroes in both TLB with 4KB page size and 2MB page size. After the

operation is done, sfence is deactivated again until further use

4.3 When the core sends a request

TLB lookup is done in parallel by extracting the tags, if it is a TLB miss, PTwalk is
done. FIFOs are used to store addresses, an address is dequed from FIFO whenever
needed.

The virtual address that needs to be looked up is dequed from the FIFO. This is used
to extract the page offset and tag. Set tag is obtained by truncating the required num-
ber of bits in the address after removing the page offset bits. The other bits are taken to

compare the addresses present in the set. The same is done in parallel for both the TLBs.

Mask is extracted and the value is used to extract the bits. The physical address is
dependent on the mask value, takes the bits of vpn or ppn based on this. bits are taken
from both of them and lower_pa is decided based on the mask bits. Physical address is

obtained by concatenating lower _pa and page offset.

When there’s a tlb miss, ptwalk lookup is instantiated

11

4.4 Replacement policies

The implementations of Round Robin and Random policies:

Randon replacement policy

Random generation is done using LFSR for 8 bits. The lower bits are now used for 4KB
and upper bits are used for 2MB. If all lines are valid choose one to randomly replace.
Round Robin replacement policy

Round Robin replaces the dtlb lines in a sequential order. A vector is created in the size
of the number of sets and it is incremented each time a replacement is made in the set.

This parameter is used to update the entry in each set.

12

CHAPTER 5

CODE

interface Ifc_sa_dtlb;

interface Put#(DTLB_core_request#(‘vaddr)) put_core_request;
// If it’s a TLB hit, it is present in either one of the TLBs,
paddr is different in both cases (4KB, 2MB)

interface Get#(DTLB_core_response#(‘paddrl))
get_core_responsel ;

interface Get#(DTLB_core_response#(‘paddr2))

get_core_response?2;

interface Get#(PTWalk_tlb_request#(‘vaddr)) get_request_to_ptw;
interface Put#(PTWalk_tlb_response #(TAdd#(‘ppnsize ,10),

‘varpages)) put_response_frm_ptw;

method Action ma_satp_from_csr (Bit#(‘vaddr) s);
method Action ma_curr_priv (Bit#(2) c);
method Action ma_mstatus_from_csr (Bit#(‘vaddr) m);
method Bool mv_tlb_available;

‘ifdef perfmonitors
method Bit#(1) mv_perf_counters;

‘endif

endinterface

/% doc:module: =/
(x#synthesize *)
(#conflict_free="put_response_frm_ptw_put,

put_core_request_put ")

module mksa_dtlb#(parameter Bit#(32) hartid) (Ifc_sa_dtlb);

/1 RegFile is indexed by the first argument and holds

the inputs of second argument size

Vector#(‘setnuml , RegFile#(Bit#(‘tlbindex), Bit#(‘pagesizel))
v_set_pl <— replicateM (mkRegFile (unpack (0))));
Vector#(‘setnum2, RegFile#(Bit#(‘tlbindex), Bit#(‘pagesize2))
v_set_p2 <—- replicateM (mkRegFile (unpack (0))));

/+ doc:reg: reg to indicate which tlb the replacement is done
in, 0 indicates 4KB sized TLB, 1 indicates 2MB TLB =/
Reg#(Bit#(1)) wr_tlbchoice <- mkReg(0);
/% doc:reg: resgister to indicate which tlb index needs to
be used for replacement*/
Reg#(Bit#(‘tlbindex) rg_tlbind <-— mkReg(0);
/+doc:reg: register to indicate which entry need to be
filled /replaced

There will be multiple lines with the same tlb index,

max (setnuml , setnum2)=setnuml is taken to indicate the number
Reg#(Bit#(‘setnuml)) rg_replacel <— mkReg(0);
Reg#(Bit#(‘setnum2)) rg_replace2 <— mkReg(0);
Vector#(‘setnuml, Int#(‘tlbindex)) setnuml <-
replicateM (mkReg (0));
Vector#(‘setnum?2, Int#(‘tlbindex)) setnum2 <-

replicateM (mkReg (0));

/+doc:reg: =/
Reg#(Bit#(‘vaddr)) rg_miss_queue <— mkReg(0);

/% mkSizedFIFO takes integer depth as an argument =/

14

/% depth— capacity of FIFO =x/
FIFOF#(PTWalk_tlb_request#(‘vaddr))

ff_request_to_ptw <— mkSizedFIFOF (2);
FIFOF#(LookUpResult) ff_lookup_result <— mkSizedFIFOF (2);
FIFOF#(DTLB_core_response#(‘paddr)) ff_core_response <-
mkBypassFIFOF () ;

// global variables based on the above wires

/l satp—-supervisor address transalation and protection
Bit#(‘ppnsize) satp_ppn = truncate (wr_satp);

Bit#(‘asidwidth) satp_asid = wr_satp[‘asidwidth — 1 +
‘ppnsize : ‘ppnsize];

‘ifdef sv32

Bit#(1) satp_mode = truncateLSB (wr_satp);

‘else

Bit#(4) satp_mode = truncateLSB (wr_satp);

‘endif

Bit#(1) mxr wr_mstatus[19];

Bit#(1) sum wr_mstatus [18];

Bit#(2) mpp wr_mstatus[12 : 11];

Bit#(1) mprv = wr_mstatus[17];

/+doc:reg: register to indicate that a tlb miss is
in progress /

Reg#(Bool) rg_tlb_miss <— mkReg(False);

/«+doc:reg: register to indicate the tlb is undergoing an
sfence =/

Reg#(Bool) rg_sfence <— mkReg(False);

‘ifdef perfmonitors

/+doc:wire: =%/

15

Wire#(Bit#(1)) wr_count_misses <— mkDWire (0);
‘endif

rule rl_fence(rg_sfence && !rg_tlb_miss &&
'ff_lookup_result.notEmpty);
for (Integer 1 = 0; 1 < ‘setnuml; 1 =1 + 1) begin
v_set_pl[1] <= replicateM (unpack (0));
end
rule rl_fence(rg_sfence && !rg_tlb_miss &&
'ff_lookup_result.notEmpty);
for (Integer 1 = 0; 1 < ‘setnum2; 1 =1 + 1) begin
v_set_p2[i] <= replicateM (unpack (0));
end
rg_sfence <= False;
rg_replace <= 0;
‘logLevel (dtlb, 1, $format("DTLB[%2d]: SFencing Now", hartid))

endrule

rule rl_send_response (!rg_sfence);
let lookup = ff_lookup_result. first;
ff_lookup_result.deq;
//4KB offset (12 bits)
Bit#(12) page_offsetl = lookup.va[ll : O];
Bit#(‘tlbindex) tagl = truncate (lookup.va >> 12);
Bit#(TAdd#(12, ‘tlbindex)) vpncomp =
truncateLSB (lookup.va >> 12);
//2MB offset(21 bits)
Bit#(21) page_offset2 = lookup.va[20 : O];
Bit#(‘tlbindex) tag2 = truncate (lookup.va >> 21);
Bit#(TAdd#(21, ‘tlbindex)) vpncomp =
truncateLSB (lookup.va >> 12);
// Bit#(‘vpnsize) fullvpn = truncate (lookup.va >> 12);

Bit#(2) priv = mprv == 0?wr_priv : mpp;

16

/1 ‘logLevel can be understood as print function
‘logLevel (dtlb, 1, $format("DTLB[%2d]: LookupResult:
",hartid , fshow (lookup)))
if (lookup.translation_done)begin
ff_core_response.enq(DTLB_core_response
{address: truncate (lookup.va), trap: lookup.trap,
cause: lookup.cause, tlbmiss: False });
end
else begin
/!l page_fault is 1initiated as false
Bool page_fault = False;
/! The cause is checked
Bit#(‘causesize) cause = lookup.access ==
?‘Load_pagefault : ‘Store_pagefault;
/! The lookup is assigned to a variable
let pte = lookup.pte;
Bit#(TSub#(‘vaddr, ‘maxvaddr)) unused_va =
lookup.va[‘vaddr — 1 : ‘maxvaddr];
// permissions are checked
let permissions = pte.permissions;
Bit#(TMul#(TSub#(‘varpages ,1), ‘subvpn)) mask =
truncate (pte . pagemask);
Bit#(TMul#(TSub#(‘varpages ,1), ‘subvpn)) lower_ppn =
truncate (pte .ppn);
Bit#(TMul#(TSub#(‘varpages ,1), ‘subvpn)) lower_vpn =
truncate (fullvpn);
Bit#(TMul#(TSub#(‘varpages ,1), ‘subvpn)) lower_pa
=(mask&lower_ppn)| (~mask&lower_vpn);
// msb bits of physical address extraction
Bit#(‘lastppnsize) highest_ppn = truncateLSB (pte.ppn);
/! the physical address is finally obtained after the
trucation of the above things

‘ifdef sv32

17

Bit#(‘vaddr) physicaladdress = truncate ({ highest_ppn,
lower_pa, page_offset});
‘else

Bit#(‘vaddr) physicaladdress

zeroExtend ({ highest_ppn ,
lower_pa, page_offset});
‘endif

‘loglevel (dtlb, 2, $format("DTLB[%2d]:
mask:%h" ,hartid ,mask))

‘loglevel (dtlb, 2, $format("DTLB[%2d]:
lower_ppn:%h", hartid ,lower_ppn))
‘logLlevel (dtlb, 2, $format ("DTLB[%2d]:
lower_vpn:%h" , hartid ,lower_vpn))
‘loglevel (dtlb, 2, $format("DTLB[%2d]:
lower_pa:%h" ,hartid ,lower_pa))
‘logLevel (dtlb, 2, $format("DTLB[%2d]:
highest_ppn:%h" ,hartid , highest_ppn))

/1 check for permission faults
‘ifndef sv32
if (unused_va != signExtend (lookup.va[‘maxvaddr—-1]))begin

page_fault = True;

end
‘endif
/l pte.a == 0 |l pte.d == 0 and access != Load
if (! permissions.a |l (!permissions.d && lookup.access
1= 0))
begin

page_fault = True;
end
if (lookup.access == 0 && !permissions.r &&
(!permissions.x |l mxr == 0))

begin// if not readable and not mxr executable

18

page_fault = True;

end

if (priv == 1 && permissions.u && sum == 0)

begin // supervisor accessing user
page_fault = True;

end

if (! permissions.u && priv == 0)begin
page_fault = True;

end

/1 for Store access

if (lookup.access != 0 && !permissions.w)begin

// if not readable and not mxr executable
page_fault = True;

end

if (lookup.tlbmiss)begin
rg_miss_queue <= lookup.va;
ff_request_to_ptw.enq(PTWalk_tlb_request{address
lookup.va, access : lookup.access });
ff_core_response.enq(DTLB_core_response{address

?7, trap : False, cause : ?, tlbmiss : True });

end

else begin
‘logLevel (dtlb, 0, $format("DTLB[%2d]: Sending PA:%h
Trap:%b" ,hartid , physicaladdress , page_fault))
‘logLevel (dtlb, 0, $format("DTLB[%2d]: Hit in
TLB:" , hartid , fshow (pte)))

ff_core_response.enq(DTLB_core_response{address

truncate (physicaladdress), trap : page_fault,
cause : cause , tlbmiss : False });
end
end

endrule

19

interface put_core_request = interface Put
method Action put (DTLB_core_request#(‘vaddr) req)

if (!rg_sfence);

‘logLevel (dtlb, 0, $format("DTLB[%2d]: received req: "
,hartid , fshow(req)))

//4KB offset (12 bits)

Bit#(12) page_offsetl = lookup.va[ll : O];

// tag is obtained by truncating the address after
removing the page offset bits

Bit#(‘tlbindex) tagl = truncate (lookup.va >> 12);

/!l The other bits are taken to compare the addresses
present in the block

Bit#(TAdd#(12, ‘tlbindex)) vpncompl =

truncateLSB (lookup.va >> 12);

//2MB offset (21 bits)

Bit#(21) page_offset2 = lookup.va[20 : O0];

// tag 1s obtained by truncating the address after
removing the page offset bits

Bit#(‘tlbindex) tag = truncate (lookup.va >> 21);

// The other bits are taken to compare the addresses
present in the block

Bit#(TAdd#(21, ‘tlbindex)) vpncomp2 =

truncateLSB (lookup.va >> 21);

/1 Bit#(‘vpnsize) fullvpn = truncate (lookup.va >> 12);

/+doc:func: =/

function Bool fn_vtag_match (VPNTag t);
return t.permissions.v && (({’1,t.pagemask} & fullvpn)
== t.vpn) && (t.asid == satp_asid |l t.permissions.g);

endfunction

20

Bit#(‘vaddr) va = req.address;
Bit#(‘causesize) cause = req.cause;
Bool trap = req.ptwalk_trap;
Bool translation_done = False;
// checking in the first tlb
for(i <= 1; 1 <= ‘setnuml; i <= 1 + 1)begin
let hit_entryl = find (vpncompl,
readVReg(v_set_pl[i][tagl]));
if (Chit_entryl) break
end
// checking in the second tlb
if (! hit_entryl) begin
for(i <= 1; 1 <= ‘setnum2; i <= 1 + 1l)begin
let hit_entry2 = find (vpncomp2,
readVReg(v_set_p2[i][tag2]));
end
end
Bool tlbmiss = !isValid(hit_entryl |l hit_entry2);
VPNTag pte = fromMaybe(?, hit_entry);
Bit#(TSub#(‘vaddr, ‘paddr)) upper_bits =
truncateLSB (req.address);
Bit#(2) priv = mprv == 0?wr_priv : mpp;
translation_done = (satp_mode == Il priv == [
req.ptwalk_req Il req.ptwalk_trap);
if (!trap && translation_done)begin
trap = lupper_bits == 1;
cause = req.access == 0? ‘Load_access_fault:
‘Store_access_fault;

end

if (req.sfence && !req.ptwalk_req)begin

rg_sfence <= True;

21

end

else begin
ff_lookup_result.enq(LookUpResult{va: va, trap: trap,
cause: cause, translation_done: translation_done ,
tlbmiss: tlbmiss , pte: pte, access: req.access });

end

if (req.sfence)
rg_tlb_miss <= False;
else if(rg_tlb_miss && req.ptwalk_trap)
rg_tlb_miss <= False;
else if(!translation_done && !req.ptwalk_req) begin
rg_tlb_miss <= tlbmiss;
‘ifdef perfmonitors
wr_count_misses <= pack(tlbmiss);
‘endif

end

endmethod

endinterface

module mkreplace#(parameter Bit#(2) alg)(Ifc_replace #(sets ,way
provisos (Add#(a__, TLog#(ways), 4));

// defining vectors needed for round robin

Vector#(‘waynum4KB, Int#(‘tlbindex)) waynum4KB <-
replicateM (mkReg (0));

Vector#(‘setnum?2, Int#(‘tlbindex)) setnum2 <-

replicateM (mkReg (0));

// valueof , that takes a size type and gives the
corresponding Integer value

let v_ways = valueOf(ways);

22

let v_sets = valueOf(sets);
// compile time assertion by staticAssert
staticAssert(alg==0 ||l alg==1 |l alg==2,"Invalid replacement
Algorithm ");
//Random algorithm
if (alg == 0)begin
LFSR#(Bit#(8)) random <-— mkLFSR_8();
Reg#(Bool) rg_init <— mkReg(True);
//the rule to initiate LFSR
rule initialize_Ifsr(rg_init);
random .seed (1);
rg_init <=False;

endrule

/! The idea is to use the lower bits for 4KB dtlb and upper
bits for 2MB dtlb
method ActionValue#(Bit#(TLog#(ways))) line_replace
(Bit#(TLog#(sets))
index , Bit#(ways) valid);
if (&(valid)==1 && &(dirty)==1)begin

replace = random. value ();

if (clog2(tag+1)==12) begin

// extracting bits needed for 4KB from the random

number generated

waynum4KB = replace [#Add(‘waynum4KB, -1):0];

v_set_pl [waynum4KB][rg_replacel] <= tag;

end

if (clog2(tag+1)==12) begin
waynum2MB =
replace [#Add(‘waynum2MB , # Add (‘ waynum4KB ,
—1)): ‘waynum4KB | ;

v_set_pl [waynum2KB][rg_replacel] <= tag;

23

end
return truncate (rg_replace);
end
// if any line 1is not valid
else 1f(&(valid)!=1) begin
Bit#(TLog#(ways)) temp=0;
for (Bit#(TAdd#(1,TLog#(ways)))
i=0;i<fromInteger(v_ways);i=i+1) begin
if (valid[1]==0)begin
temp=truncate (i);
end
end
return temp;
end
endmethod
// method to update the LFSR with the next value
method Action update_set (Bit#(TLog#(sets)) index,
Bit#(TLog#(ways)) way)if (!rg_init);
random . next ();
endmethod
method Action reset_repl;
random . seed (1);
endmethod
end
else if(alg== 1)begin // RRBIN
Vector#(sets ,Reg#(Bit#(TLog#(ways)))) v_count <-
replicateM (mkReg(fromInteger (v_ways—1)));
method ActionValue#(Bit#(TLog#(ways))) line_replace
(Bit#(TLog#(sets))
index , Bit#(ways) valid);

/+ Bool alldirty = (&valid == 1 && &dirty == 1);

24

Bool somedirty = (&valid == 1 && &dirty != 1);
(&valid == 1 && ldirty == 0); =/

Bool nonedirty

if (clog2(tag+1)==12) begin
// the replacement is done based on the size and
tag which is given to rg_replacel
v_set_pl [waynum4KB][rg_replacel] <= tag;

end

if (clog2(tag+1)==21) begin
// the replacement is done based on the size and
tag
which is given to rg_replace?2
v_set_p2[setnum2][rg_replace2] <= tag;
/!l rg_replacel [setnum2] <= rg_replacel [setnum?2]
+ 1;
/lrg_replace2 <= rg_replace2 + 1;

end

endmethod
method Action update_set (Bit#(TLog#(sets)) index,
Bit#(TLog#(ways)) way);
if (clog2(tag+1)==12) begin
// Based on the tag, if the block in one set is
replaced now, the following block with the same
tag is replaced next
waynum4KB[rg_replacel] <= waynum4KB[rg_replacel]
+ 1;
end
if (clog2(tag+1)==21) begin
// Based on the tag, if the block in one set is
replaced now, the following block with the same
tag is replaced next

waynum4KB[rg_replace2] <= waynum4KB[rg_replace?2]

25

end
endmethod
method Action reset_repl;
for(Integer 1i=0;i<rg_replacel ;i=i+1)
waynum4KB[rg_replacel J<=fromInteger (v_ways—1);
for(Integer 1=0;i<rg_replace2;i=i+1)
waynum4KB[rg_replace2 J<=fromInteger (v_ways—1);
endmethod
end

endmodule

26

CHAPTER 6

REFERENCES

. Caches MMU repository: https://gitlab.com/shaktiproject/uncore/
caches_mmu

. Shakti C-class: https://c—class.readthedocs.io/en/latest/index.
html

. Architectural and Operating System Support for Virtual Memory by By Abhishek
Bhattacharjee, Daniel Lustig - 2017

. Set Associative Mapping: https://www.sciencedirect.com/topics/
computer-science/set-associative-cache

https://gitlab.com/shaktiproject/uncore/caches_mmu
https://gitlab.com/shaktiproject/uncore/caches_mmu
https://c-class.readthedocs.io/en/latest/index.html
https://c-class.readthedocs.io/en/latest/index.html
https://www.sciencedirect.com/topics/computer-science/set-associative-cache
https://www.sciencedirect.com/topics/computer-science/set-associative-cache

	ACKNOWLEDGEMENTS
	ABSTRACT
	ABBREVIATIONS
	INTRODUCTION
	Main components
	Virtual Memory
	Block Diagram of Virtual Memory Organization
	MMU
	Virtual memory address translation
	TLBs

	Design of TLB
	Associativity of TLB
	Separate TLBs for Different Page Sizes
	Replacement policies for TLB
	Testing
	Integration with C-class

	Code Explanation
	Defining interfaces and other variables
	sfence
	When the core sends a request
	Replacement policies

	CODE
	REFERENCES

