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Abstract

Scene graphs are powerful representations that parse images into their abstract seman-

tic elements, i.e., objects and their interactions, which facilitates visual comprehension

and explainable reasoning. Although several methods have been proposed, the state-

of-the-art performance for SGG is still far from acceptable. Most recent advancement

achieves only 16% mean recall. On the other hand, commonsense knowledge graphs

are rich repositories that encode how the world is structured, and how general con-

cepts interact. So, from using the information which we have in the commonsense

graph, we propose a novel graph-based neural network that iteratively propagates

information between the two graphs, as well as within each of them, while gradually

refining their bridge in each iteration. This message passing through the creation of

bridge leads to a better estimate of nodes and predicates, thus improving the mean

recall. This Graph Bridging Network, GB-Net, successively infers edges and nodes,

allowing to simultaneously exploit and refine the rich, heterogeneous structure of the

interconnected scene and commonsense graphs.

Use Case: In construction of buildings, it’s very difficult to keep track of advance-

ments in work, but by generation of scene graphs from images during construction,

we can keep track of everything that’s happening. It finally helps in speeding up

the process and also data can be well-communicated between employees of different

disciplines because the information is digitalized.
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Chapter 1

Introduction

Natural language processing (NLP) has a long history of extracting organised, sym-

bolic, semantic representations from data, known as semantic parsing at the sentence

level and information extraction at the document level. Many applications exist for

the resulting semantic graphs or knowledge graphs, including question answering and

information retrieval. Scene Graph Generation (SGG), which tries to extract a

symbolic, graphical representation from a given image, where each node corresponds

to a localised and categorised object (entity), and each edge encodes a paired inter- ac-

tivity (predicate). Applications of SGG are Visual Question Answering (VQA),

Image captioning, Image synthesis. Figure 1.1 shows some examples of VQA.

Figure 1.2 can let you understand what is SGG, what are commonsense graphs and

scene graphs, what are entities and predicates in a basic level.

Figure 1.1: Example QA pairs in the Visual Genome dataset. Source: [3]

1
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Figure 1.2: Left: An example of a Visual Genome image and its ground truth scene
graph. Right: A section of the commonsense graph that is relevant. Scene Graph
Generation is formulated as the problem of constructing a bridge between these two
graphs and passing information through it. Such bridge not only classifies each scene
entity and predicate, but also creates an inter-connected heterogeneous graph whose
rich structure is exploited by this method (GB-Net). Source: [1]

Despite the fact that many methods have been proposed, SGG’s current perfor-

mance is still far from satisfactory. Recently, researchers were only able to match the

top 100 predicted subject-predicate-object triples against ground truth triples with a

16 percent mean recall. This shows that the present SGG approaches are insufficient

to deal with the task’s complexity. The basic idea of those works is that having prior

knowledge of the world can be quite useful when interpreting a complex scenario. If

we know the relationship of a Person and a Jacket is most likely wearing, we can

more easily distingush between wearing , on , and attachedTo, and classify their re-

lationship more accurately. Similarly, even if we only observe Man-wearing-Jacket

in training data, we can generalise and recognise a Woman-wearing-Jacket triplet
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at test time provided we know aMan and aWoman are both sub-types of Person .

Figure 1.3: Before vs After getting information from Commonsense Graph. All edges
are Bidirectional, information can come and enrich the graph, it also can work as a
feedback.

Scene and commonsense graphs are both represented as knowledge graphs with

entity and predicate nodes and many sorts of edges. A scene graph node represents an

entity or predicate instance in a specific image, whereas a commonsense graph node

represents an entity or predicate class that is unrelated to the image. A scene graph

edge denotes the involvement of an entity instance (such as a subject or object) in a

predicate instance in a scene, whereas a commonsense edge denotes a general truth

about the interaction of two ideas in the real world.

This challenge of scene graph generation from entity and predicate categorization

can be reformed into the innovative problem of bridging the two graphs based on

this unified perspective. We are essentially creating a bridge between the image and

general commonsense, because we realised that from commonsense knowledge we can

easily find the links between objects. This creates a link between instance-level visual

information and general commonsense knowledge. This method, given an image, ini-

tialises possible entity and predicate nodes before classifying each node by connecting

it to its appropriate class node in the commonsense graph through a bridge edge. This

model is a graph neural network (GNN) that iteratively propagates messages between

the scene and commonsense graphs, as well as within each of them, while gradually
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refining the bridge in each iteration, to incorporate the rich combination of visual

and commonsense information in the SGG process. This Graph Bridging Network,

GB-Net, infers edges and nodes sequentially, allowing us to leverage and develop the

rich, heterogeneous structure of the interconnected scene and commonsense graphs

at the same time.

We are also going to learn the use-case of Scene graph generation inConstruction

Industry. It’s tough to maintain track of progress in building construction, but by

creating scene graphs from photographs throughout construction, we can keep track

of everything that’s going on. Finally, because the information is digitalized, it aids

in the speeding up of the process and allows for effective data communication among

personnel from other disciplines. For example, imagine a Virtual Question Answering

Protocol (like in Figure 1.1) during the construction of a building or a road. How

many bags of cement were transported? Is the crane carrying something? What is

the stage of plumbing in fifth floor? Normally, these questions require many people

to keep track of the progress and if bigger the project is, more difficult it would be to

track. But, GB Net will provide a scalable solution for this issue.
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Graph Neural Networks

Graph Neural Network (GNN) has recently acquired traction in a variety of fields,

including social networking, knowledge graphs, recommender systems, and even life

science. The ability of GNN to model the dependencies between nodes in a network

allows for a breakthrough in graph analysis research. This chapter will explain the

fundamentals of Graph Neural Networks as well as an advanced algorithm called

GraphSage.

2.1 Graph

Before we get into GNN, let’s first understand what is Graph. In Computer Science,

a graph is a data structure consisting of two components, vertices and edges. A graph

G can be well described by the set of vertices V and edges E it contains.

G = (V,E)

Depending on whether there are directional relationships between vertices, edges can

be either directed or undirected. The vertices are often called nodes.

Figure 2.1: Example of a directed graph

5
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2.2 Architecture

A Graph Neural Network is a sort of Neural Network that works with the graph

structure directly. Node categorization is a common use of GNN. In essence, each

node in the network has a label, and we want to predict the labels of the nodes

without using ground-truth.

Each node v in the node classification issue is defined by its feature xv and is

associated with a ground-truth label tv. The goal is to use the labels of the identified

nodes in a partially labelled graph G to predict the labels of the unlabeled nodes. It

learns to represent each node with a d dimensional vector (state) hv that holds infor-

mation about its neighbors. Where xco[v] denotes the features of the edges connecting

with v, hne[v] means the embedding of the adjacent nodes of v, and xne[v] denotes the

features of the neighbouring nodes of v, and xne[v] denotes the features of the neigh-

bouring nodes of v. After combining all the information, We may use an iterative

update process because we’re looking for a unique solution for hv. Such operation

is called as message passing because we are passing information(message) from a

neighbour to neighbour and formulating the final feature vector hv for each node from

the extracted information.

hv = f(aggregation(xv, xco[v], hne[v], xne[v]))

The output of the GNN is computed by passing the state hv as well as the feature xv

to an output function g.

ov = g(hv, xv)

Both f and g can be viewed as fully-connected feed-forward neural networks. The

aggregation method of neighbourhood features can be a mean aggregator for example.

The mean aggregator takes the average of the latent vectors of a node and all its

neighborhood.

hk
v ← σ(W ∗mean(hk−1

v ∪ hk−1
u , ∀u ∈ N(v)))

The cross-entropy loss can be formulated between the outputs and ground truths of

all vertices:

loss =
m∑
i=1

(CE(gti, oi))
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2.3 Message Passing

Given a heterogeneous graph with different types of nodes and different types of

edges (like scene graphs), we need to circulate information among nodes, To compute

outgoing messages, each node representation is first fed into a fully connected network.

m∆→
i = ϕ∆

send(x
∆
i )

ϕsend is a trainable send head with weights shared across nodes of each node type

∆, for each node i. After computing outgoing messages, multiply them by the edge

weight and transmit them through all outgoing edges. Then, for each node, combine

incoming messages by adding edges of the same type first, and then concatenating

across edge types. By applying another fully connected network to the aggregated

messages, compute the incoming message for each node:

m∆′←
j = ϕ∆

receive

(⋃
∆′

Ek∈E∆
′→∆⋃ ∑

(i,j,akij)∈Ek

akijm
∆′→
i

)

• ϕreceive is a trainable receive head and ∪ denotes concatenation.

• first concatenation is over all 4 node types.

• second concatenation is over all edge types from ∆′ to ∆.

• the sum is over all edges of that type, where the edge is from i to j.

• akij is the edge weight.

After receiving the message, we should update the nodes by using the information

received. If we use a Gated Recurrent Unit (GRU, a type of RNN) update rule,

z∆j = σ(W∆
z m∆←

j + U∆
z x∆

j )

r∆j = σ(W∆
r m∆←

j + U∆
r x∆

j )

h∆
j = tanh(W∆

h m∆←
j + U∆

h (r∆j ⊙ x∆
j ))

x∆
j ⇐ (1− z∆j )⊙ x∆

j + z∆j ⊙ h∆
j

W∆ and U∆ are matrices being trained and they are distinct for each node type ∆.

This update rule can be thought of as a heterogeneous graph extension of GNN, with
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Figure 2.2: Illustration of Message Passing. Source: A blog on GNN

a more complicated message aggregation approach compared to mean aggregation

strategy discussed in previous section.

The number of layers in a graph neural network determines the maximum distance

that messages from each node can travel over the data structure’s connections. We’ll

run message passing twice in a two-layer network, for example, so the signal will

only travel two hops from the source node and won’t be affected by information from

outside the subgraph. We must use extra layers if long-range dependencies are critical

to the situation at hand.

2.4 Comparison with traditional Convnets

If any of this sounds familiar, it’s because it is: We generally slide a convolutional op-

erator across a pixel grid in standard convnets and process one sub-patch of an image

at a time. We combine and transform pixel value information to create new represen-

tations, and, in a way, we treat groups of pixels as neighborhoods of nodes. Overall,

the logic of GCNs is very similar to that of all conventional neural nets: one layer’s

output is passed as input to the next layer. There are, nevertheless, some significant

differences.

1. We run the preprocessing step of aggregating and averaging the values of a

node’s neighbours on every layer in GCNs.

2. A node’s computational graph will be defined by its local network neighbour-

hood, which will be distinct from that of all other vertices. As a result, each
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node will have its own neural network design that will capture and reflect its

environment’s structure.

2.5 Limitations

Despite the tremendous breakthroughs GNNs have made on particular datasets (state-

of-the-art performances on node classification, link prediction, and graph classifica-

tion), there are still flaws that the community is working to resolve. The following

are the two main concerns:

1. In general, GNNs are not noise-resistant. We can reverse all of the classifications

that a GNN produces with simple feature perturbations and edge addition (or

deletion).

2. If their input features are homogeneous, GCNs can sometimes fail to distinguish

between basic graph architectures with slightly varied adjacency matrices. In

downstream tasks like graph classification, this poses a significant challenge.

2.6 Conclusion

A graph neural network is like a normal MLP, but in each layer, weight matrix is

considered only between the nodes where edge is present in the graph. The main

idea of MPNN (Message Passing Neural Network) framework consists of message,

update, and readout functions which operate on different nodes in the graph. A

GNN is employed as an engine for a recommendation system at Pinterest, for example,

and it provides by far the best embeddings, according to Jure Leskovec (Pinterest’s

Chief Scientist). Uber, too, recently released a blog post outlining how a GNN-based

strategy helps them provide accurate UberEats suggestions. In future, most of the

databases will be graphs and GNNs are going to make a huge impact in deep learning.

The power of GNN in modeling complex graph structures is truly astonishing.
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Representation of Knowledge

Graphs

For GNN computations, any type of databases should be formulated as graphs. Sim-

ilar to all other graphs, we need to define edges, nodes for Knowledge Graphs too.

Any Knowledge graph can be defined as a set of entity and predicate nodes and set of

directed and weighted edges. Each node will have a semantic label. The two types of

Knowledge Graphs which we try to represent mathematically are Scene Graphs and

Commonsense Graphs.

3.1 Commonsense Graph

Recollect that commonsense knowledge graphs are rich repositories that encode how

the world is structured, and how general concepts interact. We represent

the predicate nodes of Commonsense Graph as Commonsense Predicates (CP) and

entity nodes of Commonsense entities (CE). Each node represent the general concept

of its semantic label, there won’t be any repetition of nodes. Each edge encodes a

relational fact involving a pair of entities with a predicate. For example, Man-can-

Eat, Wheel-partOf-Vehicle consists of pair of two concepts and how they are

related. So each relation CE → CP → CE in a commonsense graph represented by

two edges: CE → CP and CP → CE, but also there exists possibility of edges like

CP → CP or CE → CE.

For a set of edges encoding the relation r between a commonsense graph nodes,

EC = {ECE→CP
r } ∪ {ECP→CE

r } ∪ {ECE→CE
r } ∪ {ECP→CP

r }

10
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3.2 Scene Graph

Similar to Commonsense graph, Scene graph contains Scene Entity(SE) nodes and

Scene Predicate(SP) nodes, but it’s slightly different. Recollect that Scene Graphs

parse images into their abstract semantic elements, i.e., objects and their

interactions, which facilitates visual comprehension. Scene graph contains the

following information:

• Each SE node is associated with a bounding box on the image.

• Each SP node is associated with an ordered pair of SE nodes, namely a subject

and an object.

• Since there are two types of entity nodes: subjects and objects, there are four

types of edges: sub-pred, pred-sub, obj-pred, pred-obj.

NSE ⊆ [0, 1]4 X NCE

NSP ⊆ NSE X NCP X NSE

ES = {ESE→SP
subjectOf} ∪ {ESE→SP

objectOf} ∪ {ESP→SE
hasSubject} ∪ {ESP→SE

hasObjject}

[0, 1]4 is a set of possible 4-pairs of coordinates each constituting a bounding box.

NSE X NCP X NSE denotes all possible triplets of two SE nodes and a SP node.

3.3 Bridging Problem Statement

What we have to do:

• Predict the label for every bounding box with a subject or object (We use a

Faster R-CNN for object detection)

• Predict the predicate for every possible pair of scene entity nodes. (ignore if

there is no possibility for a particular pair)

How can we do:

• By introducing a set of bridge edges EB that connect each SE node to it’s

corresponding CE node (creating a bridge between Scene and Commonsense

graphs for information sharing).
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N ?
SE ⊆ [0, 1]4

N ?
SP ⊆ NSE X NSE

EB = {ESE→CE
classifiedTo} ∪ {ESP→CP

classifiedTo} ∪ {ECE→SE
instanceOf} ∪ {ECP→SP

instanceOf}

The superscript ? mean that the predicted label is removed from the SE node

and the label is unknown. Though the label is removed, it’s connected to the cor-

responding node in the commonsense graph. There are two types of bridge edges:

classifiedTo and instanceOf . Edges in the direction of scene graph to common-

sense graph are called classifiedTo and instanceOf is other way around. This is

because, CE nodes are considered as labels and SE nodes are considered as instances

of those labels.

Given an image I and a commonsense graph with required knowledge, the goal of

SGG is to maximize:

p(NSE,NSP , ES|I,NCE,NCP , EC) =

p(N ?
SE,N ?

SP , ES|I) x p(EB|I,NCE,NCP , EC ,N ?
SE,N ?

SP , ES)

First expression of RHS is maximized by implementing a region proposal network

that generate bounding boxes given an image. Second term is maximized by imple-

menting this Graph Bridging network (GB-Net) that creates bridge edges between

commonsense graph and scene graph.
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Method

4.1 Introduction

Given an image, the proposed method is:

1. Apply Faster R-CNN and detect objects.

2. Represent them as scene entity (SE) nodes.

3. Apply a simple predicate proposal algorithm, which is creating a scene predicate

(SP) node for each pair of SE nodes, yet to be classified.

4. Combine this with a background commonsense graph. We generate bridge edges

between the two networks that connect each instance (SE and SP node) to its

corresponding class (CE and CP node).

5. Messages should be propagated among all nodes, via each edge type, with ded-

icated message passing parameters.

6. Compute pairwise similarity between every SP node and every CP node, and

discovers most similar pairs to match scene predicates to their respective classes,

using the updated node representations after message passing.

7. Similarly we can compare similar SE and CE nodes for better predictions for

entity nodes.

8. Repeat the process of propagating messages on refined bridges till final steady

state is achieved, in which we can extract output scene graph.

13
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Figure 4.1: Pipeline of scene graph generation. Grey background graph represent the
generating scene graph and yellow background graph represent commonsense graph.
In step-4, similar nodes are connected by bridge edges. In step-5, similar predicate
nodes between scene graph and commonsense graph are found and color coded.

4.2 Features

4.2.1 Scene Graph

The object detection network (Faster R-CNN) outputs a set of n detected objects.

Each of those will have a output distribution pi, a bounding box bi, and an ROI-
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Figure 4.2: Final scene graph after removal of unfamiliar predicates by comparing
predicate node features of both knowledge graphs

aligned feature map vi. Every scene entity node feature vector is derived from this

feature vector.

xSE
i = ϕSE

init(vi)

where ϕSE
init is a fully connected layer branched from the backbone (Faster R-CNN)

after ROI-align.

Recollect our simple predicate proposal algorithm: creating scene predicates between

every pair of SE nodes. Feature vectors of SP nodes, say ui, are initialized by using

the ROI features of the bounding box enclosing the union of it’s subject and object.

So, suppose ϕSP
init is also a fully connected layer branching from the backbone, then

xSP
i = ϕSP

init(ui)

Coming to the edges, as we discussed before, there are four types of edges: s →
p (subjectOf), p → s (hasSubject), o → p (objectOf), p → o (hasObject).

Connect each predicate node to it’s corresponding subject and object such that each

triplet s→ o→ p has 4 edges among them. The reason for having two different types

of edges for opposite directions is that how we use predicate information to update

entities in the message passing phase should be different from how we use entities to

update predicates.

4.2.2 Commonsense graph

For commonsense graph nodes, we can directly extract features from their word em-

beddings, as the embeddings already will have semantic knowledge of that word. So

we can initialize the feature vector for commonsense graph nodes as linear projection
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of their embeddings.

xCE
i = projCE

init(e
ent
i ) and xCP

i = projCP
init(e

pred
i )

Commonsense graph has various types of edges like usedFor, partOf, relatedTo,

isA, mannerOf, similarTo.

Figure 4.3: An illustration of the GB-Net procedure. Using a Faster R-CNN, we
first initialise the scene graph and entity bridges. Messages are then propagated to
update node representations, which are then used to update entity and predicate
bridges. This is done T times, with the last bridge determining each node’s output
label. Source: [1]

4.2.3 Bridge edges

There are two types of bridge edges, classifiedTo and instanceOf . An SE node

representing a detected Cat intuitively refers to the Cat concept, and thus the com-

monsense graph’s Cat node. So, we use a classifiedTo edge type to connect each

SE node to the CE node that corresponds to the label predicted by Faster R-CNN.

Instead of one-to-one classification, intuitively it makes sense to connect each entity

to top Kbridge classes using label distribution pi as weights.

A new hasInstance edge to construct a reverse link from each CE node to the

associated SE nodes, but with the same weights. This, as previously said, is to ensure

that information flows from commonsense to scene as well as scene to commonsense,

but not in the same way.

For predicates, define two new edge types for predicates, classifiedTo and hasIn-

stance, which are initially empty and will be updated to connect SP and CP nodes.
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These four edge types can be thought of as flexible bridges that connect the two fixed

graphs, which are latent variables that the model must determine.

This results in a graph with four different types of nodes (SE, SP, CE, and CP)

and different types of edges: scene graph edges ES like hasObject, commonsense

edges EC like isA, and bridge edges EB like classifiedTo. Next, we’ll discover how

to keep commonsense and scene edges fixed while updating node representations and

bridge edges.

4.3 Message passing and bridging

We apply the concepts of message passing from Chapter 2, Section 3 as this is a

heterogeneous graph with different types of nodes and connected by different types

of edges. Using the equations, we can find the updated node representations for each

iteration. We should now update the bridge edges EB that connect scene nodes to

commonsense nodes using the revised node representations. To accomplish this, we

compute a pairwise similarity between each SE and all CE nodes, as well as between

each SP and all CP nodes.

aEB
ij =

exp⟨xSE
i ,xCE

j ⟩EB

Σj′exp⟨xSE
i ,xCE

j′ ⟩EB

, where ⟨x, y⟩EB = ϕSE
att (x)

TϕCE
att (y)

aPB
ij =

exp⟨xSP
i ,xCP

j ⟩PB

Σj′exp⟨xSP
i ,xCP

j′ ⟩EP

, where ⟨x, y⟩PB = ϕSP
att (x)

TϕCP
att (y)

where ϕ∆
att is a fully connected network that resembles attention head and it’s different

for each node type. We use each aij obtained as edge weights for bridge edges like

hasInstance and classifiedTo, for both entity bridges and predicate bridges. Given

the updated bridges, propagate messages again to update node representations, and

iterate this process for a fixed number of steps. The final values of aEB
ij and aPB

ij are

the outputs of our model, which can be used to classify each entity and predicate in

the scene graph.

4.4 Class-balanced loss

Because of the highly skewed predicate statistics in dataset, the best-performing

models tend to predict the predicate nodes as the most common classes, such as on

and wearing. To overcome this, we use a recently proposed class-balanced loss, in
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which each class’s weight is inversely proportional to its frequency. For each of the

predicate nodes, we use the following loss function:

LP
i = − 1− β

1− βnj
log aPB

ij

This can be seen as an upgrade to traditional cross-entropy loss. Here j is the class

index of the ground truth predicate aligned with i, nj is the frequency of class j in

training data, and β is a hyper-parameter. By observing, we can realise that setting

β to 0 will make it a regular cross-entropy loss and if β tends to 1, it suppresses more

frequent classes and making sure the network learn the predicates well.
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Implementation and Results

5.1 Dataset

5.1.1 Images and Labels

We use Visual Genome Dataset to train this network. Visual Genome offers a multi-

layered perspective on images. It enables a multi-perspective examination of an image,

ranging from pixel-level information such as objects to relationships that necessitate

more inference, and even deeper cognitive tasks like as question answering. It’s a

large dataset that can be used to train and assess the next generation of computer

vision models. This contains 108,077 photos with labelled objects (entities) and

paired relationships (predicates), which are then post-processed to generate scene

graphs. The most frequent 150 entity classes and 50 predicate classes are filtered out

to create a new sub-dataset for training this network.

5.1.2 Commonsense Graph

This approach makes use of a background knowledge graph to store commonsense

information about the target entity and predicate classes. Such data has been shown

to be useful in the creation of scene graphs. This makes intuitive sense because they

can aid the model in distinguishing between different visual classes by utilizing higher-

level semantic meanings and class relationships. Ontological hierarchy is another type

of useful information for scene graph generation from Commonsense graph. If we

know the relationship of a Person and a Jacket is most likely wearing, we can

more easily distingush between wearing , on , and attachedTo, and classify their

relationship more accurately.

19
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Man and Woman are both subtypes of Person, therefore a typical person can

generalise Man’s traits to Woman’s. Another example is statistical commonsense,

in which the average human understands that a Vase is more likely to be on a Table

than anywhere else, not because of semantic features, but because that is how things

are usually done.

Commonsense graph has 150 entities and 50 predicates as conventionally used

in the SGG task. We compile the edges (i.e. facts) from a variety of datasets and

APIs like WordNet, ConceptNet, to make it as rich and comprehensive as possible.

Overall, these three sources lead to 19 edge types (including backward edge types for

asymmetric relationships).

5.2 Implementation

The main goal is to jointly infer entities and predicates from scratch given an image.

We need to create a task to more clearly evaluate entity and predicate recognition

because this task is restricted by the quality of the object proposals. So, we take

object detection for granted and provide the model with both ground truth bounding

boxes and their true entity class. This is partly because object detection performance

is a bottleneck that limits the performance. The average per-image recall of the

top K subject-predicate-object triplets is the major evaluation parameter in each

challenge. The classification confidence of all three factors is multiplied to calculate

the confidence of a triplet that is used for ranking. Each predicate in the ground

truth scene graph creates a triplet, which we compare to the top K triplets in the

output scene graph. If all three items are correctly identified, a triplet is matched.

For all ϕinit, ϕsend, ϕrecieve, ϕatt networks discussed before, we use three-layer fully

connected networks with ReLU activation. We perform only 3 message passing steps

and node representations are 1024-dimension. For object detection, we use Faster

R-CNN which has a VGG-16 backbone and predicts 128 proposals. After many trails

of hyperparameter tuning, the best values of β(Section 4.4) is 0.999 and best value of

Kbridge(Section 4.2.3) is 5. We use GloVE embeddings for entity node initialization

in Commonsense graph.

5.3 Results

Before comparing results, let us know about some existing methods in SGG. Most

basic method is FREQ, it is a simple baseline model that uses statistics solely from
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the training data to predict the most frequent predicate for any given pair of entity

classes. IMP+ employs a Faster R-CNN backbone, however it doesn’t use any exter-

nal information, instead relying on message passing between entities and predicates to

classify them. Still FREQ outperforms IMP+, which implies commonsense knowledge

is more important. There’s also SMN, which applies bi-directional LSTMs on top

of entity characteristics before classifying each entity and pair, and KERN, which

encodes VG statistics into the graph’s edge weights before propagating messages.

Mean Recall(mR): We compute the recall for each predicate class separately

and take the mean. It’s worth mentioning that mean recall is more essential than

overall recall, because most SGG approaches tend to achieve high overall recall by

focusing on the few most common classes and disregarding the rest. In mR metric,

all predicates are given equal method in deciding if the method is good or not.

Figure 5.1: Some of most frequent relations in Visual Genome. Mean recall is more
essential than overall recall, because most SGG approaches tend to achieve high
overall recall by focusing on the few most common classes and disregarding the rest.

We can observe that GB-Net-β model improves mean-recall significantly. If mean-
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Table 5.1: Evaluation in terms of mean and overall recall, for top 50 and top 100
triplets according to classification confidence, with and without class-balance loss
parameter (β). Numbers are in percentage. The best method for each metric is
shown in bold.

Metric
Method

FREQ IMP+ SMN KERN GB-Net GB-Net-β

R@50 71.3 75.2 81.1 81.9 82.87 83.45
R@100 81.2 83.6 88.3 88.9 89.95 90.31
mR@50 24.8 20.3 27.5 36.3 39.59 44.52
mR@100 37.3 28.9 37.9 49.0 53.38 58.65

recall is high for a method, we can assume that it is less-biased, Also, this model has

better recall compared to any other model performing scene graph generation.

Figure 5.2: Example image and it’s scene graph. Source :[1]
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Application in Construction

According to the United Nations, the world’s population will reach 9.7 billion people

by 2050. Not only must the global AEC (Architecture, Engineering, and Construc-

tion) industry turn to smarter, more efficient ways to design and build to keep up

with global demand, but also to help develop smarter, more resilient spaces.

Despite the fact that AI is becoming more widely used in all fields, it has had

little impact on the AEC business. (At least not in comparison to other businesses

such as medicine, agriculture, and so on.) This is due to a lack of well-organized

data, as there are numerous disciplines such as mechanical (heating, ventilation, and

air conditioning, or HVAC for short), electrical, and plumbing. It’s challenging to

bring together data from a variety of fields in one place. We can, however, parse the

data to the ML model we want to train as we need with the help of BIM (Building

Information Modelling) and adequate preprocessing.

6.1 BIM introduction

The complete process of creating and managing information for a constructed asset

is known as Building Information Modeling (BIM). BIM integrates structured, multi-

disciplinary data to build a digital 3D representation of an asset across its lifecycle,

from planning and design to construction and operations, using an intelligent model

and a cloud platform.

It’s tough to maintain track of progress in building construction, but by creating

scene graphs from photographs throughout construction, we can keep track of every-

thing that’s going on. Finally, because the information is available digitally, we can

use the information achieved by SGG to update the BIM model, any change that is

being done can be automatically modelled back into the data without any interference

23
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Figure 6.1: BIM Usage (Source: Autodesk)

of any third party, thus reducing the resources, time taken.

6.2 Updating BIM by generating Scene graphs

Now, even though BIM is good in handling data, it has lot of limitations. For example,

because it contains data from different disciplines, frequently updating it is a big

problem. Any minor mistake may generate clashes with other departments. So,

using SGG, we can automate the process of BIM update Suppose, a camera captures

this incident (Figure 6.1). From that picture, if the model realises the wheelbarrow is

transferred, digital data can be changed (for example, amount of cement used can be

tracked). Also, we can learn that building already has a foundation. Okay, but for all



CHAPTER 6. APPLICATION IN CONSTRUCTION 25

Figure 6.2: A typical photograph taken by a camera during the construction.

of this, we need a new commonsense graph with some construction terms and with

information about how buildings, construction process work in real life. Figure 6.2

gives an example illustration of Commonsense graph in Construction Domain. Now

if we retrain the network using the images in construction domain, (or we can use

transfer learning approach) we can achieve that target. Some examples of images and

their output scene graphs too are illustrated below (Fig 6.4, 6.5, 6.6, 6.7).

Figure 6.3: Example Commonsense graph in construction domain.
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Figure 6.4: A worker carrying a wheel-
barrow

Figure 6.5: Scene graph

Figure 6.6: Two workers holding ham-
mers

Figure 6.7: Scene graph
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Conclusion

This unique, graphical neural architecture includes external commonsense knowledge

in a bridge new way for Scene Graph Generation. We combined the scene graph and

commonsense graph formulations into two types of knowledge graphs that are fused

into a single graph using a dynamic message passing and bridging mechanism. This

approach propagates messages to update nodes in an iterative manner, then compares

nodes to update bridge edges, and so on until the two graphs are carefully connected.

In various metrics, this technique outperforms the current state of the art.

Coming to the use-case in construction domain, if we are successfully able to parse

data digitally, and update BIM, it will be a game changer, AEC industry generally

suffers with loss of resources due to lack of automation in updating the status and

this solves it. Also, there is no room for any corruption in this case and there wont

be any catastrophes.
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