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ABSTRACT

KEYWORDS: Machine Learning; Active Learning; Active Class Selection; Re-

gression

In machine learning, Active Class Selection (ACS) algorithms aim to actively select a

class and ask the oracle to provide an instance for that class to optimize a classifier’s

performance while minimizing the number of requests. In this project, we attempt to de-

velop Active Class Selection algorithms for the case of regression where there exist no

distinction of classes for samples. Our experimental evaluations show that algorithms

directly inspired by existing ACS algorithms fail to perform better than the random

sampling baseline. We propose a new algorithm, "Input Space Disparity," that we show

outperforms the baselines on a logical subset of datasets in early iterations. It effectively

prefers sampling difficult y-values, thereby improving the regression performance.
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CHAPTER 1

INTRODUCTION

Classification techniques in medical research, economy, or neurobiology require human

labeling effort during the training phase of the model. As this is usually very expen-

sive and time-consuming, the field of active learning (AL) appeared. Here, the algo-

rithm aims to actively select only the most informative samples from an extensive pool

of unlabeled data and sequentially ask for their label. This way, better classification

performance is reached with fewer training instances than passively feeding arbitrary

instances to the classifier.

This report addresses a related field called active class selection (ACS), specifically

in the context of regression. Instead of arbitrarily selecting an unlabeled instance and

acquiring its label, ACS methods request an unseen sample by specifying its class.

However, in the case of ACS, less information is available to determine what is valuable

for training, e.g., unlabeled samples to approximate the data distribution are missing.

This section elaborates on machine learning(ML), active learning(AL), and active

class selection. The rest of the article is structured as follows. In Sec. 2, we discuss the

literature on active class selection, followed by implementing a few baselines. We then

modify existing ACS algorithms to make them suitable for regression datasets using the

’binning’ trick. In the last section, we propose a new algorithm, Input Space Disparity.

We provide a pseudo code and performance on various datasets for each algorithm.

1.1 Machine Learning

Machine learning (ML) is a field of exploration dedicated to learning and building meth-

ods that ’learn,’ that is, methods that leverage data to enhance performance on some

tasks. ML is a part of Artificial Intelligence(AI). Machine learning algorithms build a

model using training data. They make predictions without being explicitly programmed

to do so. ML algorithms are used in various applications, such as email filtering, com-



puter vision, medicine, speech recognition, and fields where it is challenging to develop

conventional algorithms.

Model training in machine language is feeding an ML algorithm with data to help

identify and learn good values for all attributes involved. There are several types of

machine learning models, of which the most common ones are supervised and unsu-

pervised learning. Supervised learning is possible when the training data contains input

and output values. Each data set with the inputs and the expected output is called a

supervisory signal. The training is done based on the deviation of the processed result

from the documented result when the inputs are fed into the model. Unsupervised learn-

ing involves determining patterns in the data. Additional data is then used to fit patterns

or clusters. It is an iterative process that improves accuracy based on the correlation to

the expected patterns or clusters. There is no reference output dataset in this method.

There are seven steps involved in building ML models.

Describing The Problem : It the foremost step toward determining what an ML

model should perform. This effort also enables identifying the right inputs and their

outputs.

Data Collection : After describing the problem statement, it is necessary to inves-

tigate and collect the data needed to feed the ML model. Data Collection is a critical

stage in creating an ML model because the quantity and quality of the data used will

decide how effective the model will be. Data can be collected from existing databases

or can be created from scratch.

Conditioning The Data : The data preparation stage is when data is cleaned and

structured as required to prepare it for training the ML model. Data preparation is the

stage where the appropriate features of data are selected. This stage can have an im-

mediate effect on the execution time and results. This is also at the stage where data

is segregated into two groups – one for training the ML model and the other for eval-

uating the model’s performance. Pre-processing data by standardizing and eradicating

duplicates is also carried out at this stage.

Selecting Appropriate Model : Picking and designing a model must be done ac-

cording to the ML model’s objective. Several models, like linear regression, k-means,

and bayesian methods, are to pick from. The type of data usually determines the choice
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of models. For instance, image processing convolutional neural networks would be the

ideal pick, and k-means would work best for segmentation.

The Model Training : ML algorithm is trained by feeding samples from the datasets.

It is the phase where the understanding takes place. Proper training can immensely

improve the prediction rate of the ML model. The weights of the model are usually

initialized randomly.

Evaluating the model : The ML model must be evaluated against the "validation

dataset." It is necessary to assess the accuracy of the model. Determinating the measures

of success based on what the model is intended to achieve is crucial for explaining

correlation.

Parameter Tuning : Picking the correct set of parameters used in the ML model is

key to attaining good accuracy. The set of parameters that are picked based on their im-

pact on the model architecture are called hyperparameters. The technique of identifying

the hyperparameters by adjusting the model is called parameter tuning.

1.2 Active Learning

The fundamental concept behind active learning is that ML models can achieve greater

accuracy with fewer training labels if they can carefully choose the data from which it

learns. An AL agent may pose queries, often in the form of unlabeled data samples to

be hand-labeled by an oracle. AL works well in most ML problems, where unlabeled

data may be abundant or easily obtained, but labels are difficult, time-consuming, or

costly to obtain.

There are several strategies in which AL agents may pose queries, and several dif-

ferent query strategies have attempted to decide which samples are most informative.

In this section, we present two such strategies, the pool-based active learning setting )

using an uncertainty sampling query strategy and the query-by-committee algorithm.

3



1.2.1 Uncertainty sampling

Extensive collections of unlabeled data can be gathered for many real-world learning

problems at once. This motivates a pool-based sampling strategy, which assumes a

small set of labeled data L and a large pool of unlabeled data U available. Queries are

selectively pulled from the pool. Typically, instances are queried greedily, according to

an informativeness score used to evaluate all instances in the pool.

The most straightforward and most commonly used query framework is uncertainty

sampling. In this framework, an AL agent queries the samples that are least certain

how to label. This approach is often straightforward for probabilistic learning models.

For example, when using a probabilistic model for binary classification, uncertainty

sampling queries the instance whose posterior probability of belonging to a class is

nearest 0.5. For problems that have three or more classes, a more general uncertainty

sampling variant might query the instance whose prediction is the least confident:

x∗
LC = argmax

x
1− Pθ(ŷ|x)

where ŷ = argmaxx Pθ(y|x) or the class label with the highest posterior probability

under the model θ.

1.2.2 Query-By-Committee

Another, more theoretically-motivated query selecting framework is the query-by-committee

(QBC) algorithm. The QBC approach involves maintaining a committee C = {θ1, θ2, .., θ(C)}

of models which are all trained on the current labeled set L but represent competing hy-

potheses. Each committee member is then allowed to vote on the labelings of query

candidates. The most informative query is considered to be the instance about which

they most disagree.

For measuring the level of disagreement, two main approaches have been pro-

posed. The first is vote entropy:

4



x∗
V E = argmax

x

∑
i

Vyi

C
log

Vyi

C

where yi again ranges over all possible labelings, and Vyi is the number of “votes”

that a label receives from among the committee members’ predictions, and C is the

committee size. This can be thought of as a QBC generalization of entropy-based un-

certainty sampling. Another disagreement measure that has been proposed is average

Kullback-Leibler (KL) divergence

x∗
KL =

1

C
argmax

x

C∑
1

D(Pθc||PC)

where :

D(Pθc)||PC) = argmax
x

∑
i

Pθc(yi|x) log
Pθc(yi|x)
PC(yi|x)

Here θc represents a particular model P in the committee, and C represents the

committee as a whole, thus PC(yi|x) =
∑C

1 Pθc(yi|x) is the “consensus” probability

that yi is the correct label.

To help understand the flow better, a typical cycle in an AL iteration is shown below:

Figure 1.1: A typical cycle in an AL iteration is shown below
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1.3 Active Class Selection

AL assumes that instances are inexpensively obtained, and the labeling process incurs a

fee. Envision the opposite scenario, however, where an agent can query a known class

label, and obtaining each instance incurs a cost. This reasonably new problem setting

is called Active Class Selection(ACS). Lomasky et al. (2007) were the first to propose

several ACS query algorithms for an “artificial nose” task, in which a machine learns to

discriminate between different vapor types (the class labels), which must be chemically

synthesized (to generate the samples). Some of their approaches show significant gains

over the “passive” learning equivalent of uniform class sampling.

ACS algorithms have control over the data generation (or data synthesis process).

They request to be fed a certain mixture of samples from different classes. The moti-

vation behind such algorithms is that carefully controlling the class distribution of the

samples fed to the ML model during training can help speed up the learning process

compared to feeding arbitrary samples to the model.

1.3.1 Illustrative example

A vivid example of the application of ACS is the training of brain-computer interfaces

for motoric prostheses as presented in the paper of PAL. To train such a prosthesis, an

impaired patient has to imagine motoric movements, for example, of his fingers while

his brain activity is recorded. The task is to build a model that reads the brain activity(X)

and predicts the motoric movements(Y) he is trying to achieve. We do not have existing

data, and neither do we have an oracle that helps us label these brain activities! We can

only ask the patient to generate brain activity(X) for a motoric movement(Y) to get an

(X, Y) pair that we can use to train our ML model. As usual, we must minimize the

number of samples we collect from the patient to minimize the cost of acquisition and

discomfort for the patient. Hence, ACS comes to our advantage in strategically asking

the patient to generate the samples.

Figure 1.2 shows different learning stages of such an exemplary ACS process. In the

beginning, the algorithm only knows the number of classes (fingers). If certain classes

(fingers) are hard to distinguish in the data (here, class 1), learning should focus on these

6



Figure 1.2: t-SNE plot of different learning stages in an ACS sampling process

classes. By requesting the patient to generate more training instances of these classes

instead of spending time on already learned classes, a good classification performance

is achieved earlier – an achievement that enables the patient to perform otherwise im-

possible tasks. As visualized by this example, ACS is useful whenever classes vary in

difficulty.
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CHAPTER 2

LITERATURE REVIEW

Active Class Selection (ACS) addresses the question: if one can collect n additional

training instances, how should they be distributed with respect to class? In this section,

we will briefly mention the theoretical developments in the field of ACS over the years.

2.1 Active Class Selection

This paper was the first on Active Class Selection (ACS), a new category of prob-

lems for multi-class supervised learning. The primary motivation for the paper was

as follows: If one can control the classes from which training data is generated, using

feedback during learning to steer the generation of new training data will yield better

performance than learning from any a priori fixed class distribution. ACS is the process

of iteratively selecting class proportions for data generation. In this paper, they present

several methods for ACS. An empirical evaluation shows that for a fixed number of

training instances, methods based on increasing class stability outperform methods that

seek to maximize class accuracy or that use random sampling. Finally, they present the

results of a deployed system for their motivating application: training an artificial nose

to discriminate vapors.

They show that successful methods for ACS can be grounded by recent results in

stability and generalization, which show that one can predict expected error based on

empirical error with a stable learning algorithm that satisfies certain constraints. The

goal of ACS is to minimize the number of new training examples needed in order to

maximize learning performance. Given the ability to choose class proportions for data

collection, they are interested in assessing for each class whether the empirical error is

converging to the expected error, i.e., to determine when we can do no better for this

class. Uniform sampling works best if the error rates of all classes are converging at

the same rate. If this is not the case, then one heuristic is to sample in proportion to

the inverse of the convergence rates for each class. Using this intuition, they propose



two methods for ACS that base class proportions on heuristic assessments of class sta-

bility. They compare these two methods to uniform and random sampling (sampling in

proportion to the distribution specified as best by the domain expert).

All of their methods begin with a small set of labeled training data T1 of size b[1],

where b[r] is the number of instances to add in round r. They perform f-fold cross-

validation (CV) over T1. From the CV, they obtain class predictions for T1. Their

methods differ in how they use these predictions to specify the class proportions (Pr[c],

c ϵ classes) for the next round of data generation. Specifically, on round r, they generate

a new set of examples, Tnew, a set of b[r] examples generated using the class proportions

Pr[c]. They add this data to the existing data to create a new set Tr := Tr1 + Tnew.

2.1.1 Uniform

Sample uniformly from all classes. This is especially useful when all the classes are of

uniform difficulty.

Pr[c] :=
1

|classes|
∗ b[r]

2.1.2 Inverse

Select class proportions Pr[c] inversely proportional to their CV accuracy on round

r−1. Thus, they obtain more instances from classes where we have low accuracy. This

method relies on the assumption that poor class accuracy is due to not having observed

sufficient training data. Although this may be true initially, their results show that this

method does not perform well in the long run.

Pr[c] :=

1
acc[c]∑|classes|

1
1

acc[i]

∗ b[r]

9



2.1.3 Original Proportion

Sample in proportion to the class proportions in T1. The idea is that domain knowledge

led to these proportions, perhaps because they are the true underlying class distribution.

Pr[c] := nc ∗ b[r]

where nc is the proportion of class c found in the collected data T .

2.1.4 Accuracy Improvement

Sample in proportion to each classes’ change in accuracy from the last round. If the

change for class c is 0, then Pr[c] = 0. The intuition is the accuracy of classes that have

been learned as well as possible will not change with the addition of new data and thus

we should focus on classes that can be improved. This method looks for stability in the

empirical error of each class.

Pr[c] := max(0,
currAcc[c]− lastAcc[c]∑|classes|

1 currAcc[i]− lastAcc[i]
)

2.1.5 Redistricting

The idea behind redistricting is that instances from Tr1 whose classification changes

when classified by a new classifier trained on Tr1

⋃
Tnew are near volatile boundaries.

Thus, we strive to assess which classes are near volatile boundaries in order to sample

from these these “unstable” classes. The pseudocode is shown below. They begin

with a CV over T1, the initial sample of the data. They obtain a prediction for each

xiϵT1. In the second round, they collect T2 of size b[2]. They next perform a CV

over all of the data collected thus far and create a classifier for each fold. Note that on

subsequent iterations, they keep the data from Tr1 in the same folds, and stratify only

the newly generated data Tnew into the existing folds. For each fold f , we compare

the classification results of Cr,f and Cr1,f on each instance xiϵTr1. If the labels are

different, then the counter for the class specified by the true label yi, redistricted[yi] is

10



incremented. They conclude by generating predictions of the new batch of data Tnew

and increment r.

After the second round they add instances using the formula in Step 12, where c is

a class from the set of all classes in the dataset, Pr[c] is the number of instances of c

to add, nc is the proportion of c in Tr1 and b[r] is the number of new training instances.

They divide redistricted[c] by nc to keep small classes from being ignored and large

classes from being overemphasized.

Algorithm 1 Redistricting Algorithm
Require: b, array of the number of instances to add in round r

1: Generate a sample T1 of size b[1]
2: Divide T1 into 10 stratified folds T1,1, T1,2....T1,10

3: for f = 1 to 10 do
4: Build Classifier C1,f from {T1− T1,f}
5: for all instances xi in T1,f do do label1[xi] := C1,f (xi)
6: end for
7: end for
8: r := 2
9: while instance creation resources exist and stopping criteria not met do

10: if r = 2 then Tnew := “random” sample of size b[2]
11: elseTnew := sample of size b[r] where the number of instances for class c is

computed as: Pr[c] :=
redistricted[c]

nc∑|classes|
1

redistricted[i]
nc

∗ b[r]
12: end if
13: Tr := Tr1 + Tnew

14: Initialize redistricted[c], ∀ c ϵ classes
15: Divide Tnew into 10 stratified folds Tnew,1, Tnew,2....Tnew,10

16: for f = 1 to 10 do
17: Tr,f := Tr1,f ∪ Tnew,f

18: Build Classifier Cr,ffrom{ Tr − Tr,f}
19: for all instances xi in Tr1,f do
20: labelr[xi] := Cr,f (xi)
21: if labelr[xi] := labelr1[xi] then
22: redistricted[yi] + + /* yi is the true label of xi */
23: end if
24: end for
25: for all instances xi in Tnew,f do
26: labelr[xi] := Cr,f (xi)
27: end for
28: end for
29: r ++
30: end while

11



2.2 Probabilistic Active Learning for Active Class Se-

lection

ACS algorithms usually seek to actively pick a class and ask the oracle to supply an

instance for that class to optimize a classifier’s performance while minimizing the num-

ber of requests. This paper proposes a new algorithm (PAL-ACS) that transforms the

ACS problem into an active learning task by introducing pseudo instances. The perfor-

mance gain model from probabilistic active learning is used to estimate the usefulness

of an upcoming instance for each class. Our experimental evaluation (on synthetic and

natural data) shows the advantages of their algorithm compared to state-of-the-art algo-

rithms. It virtually prefers the sampling from challenging classes and hence improves

the classification performance.

The core idea of their algorithm is to estimate the gain in classification performance

for each class yϵY = 1, ..., C when requesting one additional instance of that class y.

Then, we request an instance x∗ of the best class y∗ and add this new training sample to

the training set L← L ∪ (x, y).

To estimate the expected gain in performance that a label request would probably

induce, probabilistic active learning provides an effective tool. Its performance gain

function can be calculated at any location in the feature space, regardless of the fact if

there is a real unlabeled instance at this location. It only requires local statistics, which

typically are labeling counts
−→
k = (k1, ..., kC). A common strategy to determine this

vector are kernel frequencies as formulated below.

ki =
∑

(xi,yi)ϵLi

exp−||x− x
′||2

2σ2

Li = {(x, y)ϵL : y = i}

The performance gain function for label statistics
−→
k is defined by subtracting the

current expected performance (0 labels added) from the future expected performance

(m labels added).

12



perfGain(
−→
k ,M) = max

m≤M

1

m
(expPerf(

−→
k ,m)− expPerf(

−→
k , 0))

More details regarding the computation of expPerf function can be found in the

original paper.

In contrast to active learning, they do not have access to a pool of unlabeled in-

stances in ACS. Thus, they propose to generate pseudo instances xp to transform the

active class selection problem into an active learning task. They then use the pseudo in-

stances to determine the most beneficial class y∗ which is selected according to equation

below.

y∗ = argmax
y

(
∑
xp

P (xp|L) ∗ P (xp|Ly) ∗ perfGain(
−→
k ))

Overall, PAL-ACS always identifies the difficult classes and samples accordingly.

As a result, its performance is best (in cases some classes are more difficult than others)

or equal with the best competitor (in cases all classes are equally difficult).

2.3 Weighted Informative Inverse Active Class Selec-

tion for Motor Imagery Brain Computer Interface

ACS can be a solution to non-uniform converging of error rates for different classes.

ACS determines the class-wise ratio of samples in the training set based on observed

error. One of the ACS methods is inverse proportion, i.e., the class proportion is the

inverse of class accuracy. The entropy of unlabeled instances is an AL technique for

finding the most informative samples. The intuition for their work is to feed the learner

with the most informative instances while maintaining the class proportion given by the

inverse ACS method. Following this idea, an improved weighted inverse ACS method

is developed and combined with the AL query concept for BCI. This proposed weighted

informative inverse active class selection method has been applied to BCI competition

IV motor imagery (MI) binary class data set 2B. It showed better or similar performance

on most of the subjects with less amount of training samples.

13



AL and ACS are iterative methods and address the problem of having limited train-

ing samples. So, ACS and AL can be combined as a complementary part to increase

the BCI system’s robustness using a lower number of training samples. The idea is to

add the most informative or uncertain samples with the existing training set as per ACS

prescribed class distribution iteratively. The authors introduce weighted accuracy based

on the difference among accuracy of classes in the inverse ACS method for computing

class distribution and integrate the AL method of finding informative instances with this

proposed ACS method.

They first improve the Inverse algorithm into Weighted Inverse ACS (WIACS) as

follows:

wr
c =

C∑
1

expα ∗ (Ac
r−1 − Ai

r−1)

N c
r =

1
Ac

r−1∗wr
c∑C

i=1
1

Ai
r−1∗wr

c

∗ n(r)

Here, wcr is the weight for class c in rth iteration and alpha > 1, is weight constant

determined by trial and error basis

They then propose the Weighted Informative Inverse ACS (WIIACS) method as fol-

lows: WIACS selects the class which will generate more instances in the next iteration.

Usually, random instances are generated. They propose to get the most informative in-

stances for chosen class. The idea is that informative training instances determined by

the AL method of maximum entropy samples will be fed to the learner in the proportion

given by WIACS. The hypothesis is that it will help the learner get adequate learning

space, ensuring an equal convergence rate for all classes.

2.4 Optimal Probabilistic Classification in Active Class

Selection

ACS aims to optimize the class proportions in newly acquired data; a classifier trained

from that data should demonstrate maximum performance during its deployment. This
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paper provides an information-theoretic examination of the problem, resulting in an

upper bound of the classifier’s error. This upper bound shows that the more data is ac-

quired, the better is the performance of the class proportions that occur during deploy-

ment; other class proportions can outperform these natural proportions at the beginning

of data acquisition, but natural proportions indeed yield optimal probabilistic classifiers

in the limit. The more data is acquired, the less beneficial ACS strategies are. Their

bounds further reveal that the degree to which non-natural class proportions are eligible

depends on the correlation between the features and the class label.

The core idea of this paper is motivated by the observation that sophisticated ACS

strategies are often just as good as sampling randomly to the natural class proportions.

Nevertheless, research on ACS tries hard to beat this straightforward baseline. Pursu-

ing to explain this phenomenon, they investigate the theoretical background of ACS

from the viewpoint of information theory. Their analysis yields an upper bound of the

classifier’s error, revealing that the natural class proportions provide optimal classifier

performance in the limit of data acquisition.

For practical applications, they suggest preferring the natural class proportions over

complicated active strategies—given that the natural proportions are precisely known

and the acquisition budget allows for obtaining a sufficiently large sample. They show

that research needs to focus on applications where one of these preconditions is not met.

For example, in astroparticle physics, it is assumed that the ratio between the two preva-

lent classes of particles is roughly between 1:1000 and 1:10000, but the exact ratio is un-

known. Also, the extreme level of such class imbalances requires a deeper examination

in the context of ACS. While they have already identified the effect through which non-

natural class proportions can be advantageous, how to optimize class proportions under

such extreme imbalances remains open. Their experiments suggest that their theoretical

conclusions about probabilistic classifiers also hold for non-probabilistic classifiers.
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CHAPTER 3

THE PROBLEM STATEMENT

The formal problem statement is stated as follows:

We are allowed to query a maximum of N instances. We are allowed to query for a

Y(class or y-value), the expert responds with a corresponding x(instance) for the Y. Our

objective is to come up with a strategy of choosing Y s such that after we collect the

dataset of N (x, Y) pairs, our "knowledge" about the dataset is maximum. We can define

"knowledge" as our ability to predict on unseen data. We can assume Y ϵ [0,1] or that

it can be normalized to [0,1]. Our target is to consistently beat the Random Sampling

baseline over any sub-range of iterations by achieving a lower test RMSE score.

There can be many reasons for the problem at hand to be suitable for ACS. The

absence of unlabelled data or oracle is an obvious case. However, there can be many

other reasons to prefer ACS over other alternatives for the reasons listed below:

• The effort required for the oracle to process a query of ACS is less than traditional
AL queries.

• The cost of conducting ACS queries is lesser than traditional AL queries.

• ACS is more effective/suitable for training an ML model on the given task (for
example, if the AL method does not support the model we are planning to use).

• The problem domain is such that specific constraints prevent us from using tradi-
tional AL.

At the beginning of the project, we set out to answer the following questions:

• Find practical domains/constraints where ACS is applicable.

• Work out the mathematics to determine the label that needs to be queried in each
iteration.

• Work out the model-specific mathematics of incorporating the label-sample pair
while training the model.

• Conduct experiments to demonstrate that humans can indeed be effective ACS
agents.



Once we discovered the existence of the field of Active Class Selection, we spent

time conducting a literature survey, extending the ACS algorithms to regression tasks,

and coming up with new ideas for the task of Active Class Selection for regression.

3.1 Motivating Examples

Assume that are interested in building a model to predict chess players’ stable "rating."

The rating demonstrates the skill of chess players. Let us hypothesize that chess play-

ers’ rating(Y) can be predicted using input variables(X), including their demograph-

ics, practice schedules, frequency of tournament play, performance on benchmark skill

tests, speed of calculations, etc. Predicting the rating is a regression task. It is suit-

able for ACS-Regression because of the following reasons. No data sets exist about the

problem statement available to us. We will have to manually collect the data by meet-

ing with chess players, interviewing them, and asking them to take the benchmark tests.

However, each player will demand to be paid to attend the interview. Hence, we can

only afford to interview a few players. If we wish to collect the data randomly before

training our ML model, we do not know how much data we need to collect to attain

the target performance. We note that the list of players and their ratings(Y) is already

present on the FIDE website; therefore, we can choose to interview a player we wish to

interview as our ACS-Regression algorithm dictates.

Another example can be estimating the percentage of particular types of seeds in

a petri dish. Here, X = Image of the petri dish. Y = percentage of a particular type

of seed in the petri dish. Again, we do not have an existing dataset that we can use.

We are forced to generate the samples(images). Generating new images costs us labor,

so we try to minimize the number of images generated. If we wish to collect the data

randomly before starting to train our DL model, we do not know how much data we

need to collect to attain the target performance. Also, in this case, we do not have a

list of naturally occurring Y values available to us, unlike the chess rating example. We

can, in theory, choose to generate an infinite amount of samples for a given "Y" value.
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3.2 Observations

We made the following significant observations by doing a literature review of the field

of Active Class Selection:

• Two major criteria for querying the next sample are diversity and informativeness.

• Poor performance on a class can occur because of low representation in the train-
ing set or because the class is harder to learn.

• We must not deviate too much from natural class proportions as it will violate the
IID (Independent and Identically Distributed) constraint for training a model and
will therefore lead to suboptimal performance.

• Although it is guaranteed that we can never asymptotically beat natural propor-
tion based on querying strategy, we can still aim to achieve a better rate of con-
vergence.

3.3 A Typical ACS-Regression Cycle

As we have seen before, there are existing algorithms for Active Class Selection in

the classification setting. So, naturally, the first idea is to treat regression problems as

classification problems by dividing the output variable range into equal-sized smaller

intervals and considering them as separate classes; we call them y-bins. Whenever we

are asked to provide an x from a given "class," we return a randomly selected sample

from the corresponding y-bin.

Please refer to the image below for a pictorial representation of the setting.

Figure 3.1: ACS-Regression setting if we break the y-range into 5 equal intervals. The
red dots represent samples present inside these y-bins.

A typical ACS-Regression algorithm starts with initializing random samples as its

training set. In each iteration, the algorithm spits out a "shopping list," consisting of
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counts of samples that it requires from different "classes." Once the requested samples

are collected/generated, they are incorporated into the current training set. The algo-

rithm then runs its custom method to create a new shopping list based on the model’s

performance and other evaluations. This cycle repeats until one of the stopping criteria

is satisfied. Refer to the following image.

Figure 3.2: A typical cycle in an ACS-Regression iteration is shown below

19



CHAPTER 4

EVALUATION FRAMEWORK

Every algorithm we propose has to be evaluated to understand its performance. Typ-

ically for ML models, the evaluation is done by maintaining a separate test set. The

performance on the test set is taken as an empirical performance of the model on unseen

data. However, when it comes to the field of Active Class Selection, unlike common

ML problems, we do not possess any data regarding the problem. Hence, we cannot

create a separate test set at the beginning of the training process. Hence, we note that

the a large test set is created only to demonstrate the algorithm’s performance and will

not be required during the actual usage of the algorithms.

Usually, when a new algorithm is designed, it is evaluated the performance of other

state-of-the-art algorithms. However, when we design algorithms in areas with no ex-

isting algorithms, we test our new algorithms against "baselines," these are simple al-

gorithms that offer a minimum natural performance that any newly designed algorithms

are expected to beat. ACS-Regression is a new field of research with no existing algo-

rithms; hence in the following sections, we will design a few standard baselines to help

us understand the performance of our algorithms.

4.1 Datasets and Models

The datasets are taken from Penn Machine Learning Benchmarks from PMLB website

[https://github.com/EpistasisLab/pmlb]. We have conducted experiments on all feasible

datasets in the repository to make our deductions or analysis. However, for demonstra-

tion, we will stick to three datasets, namely – ’1191-BNG-pbc’, ’1196-BNG-pharynx’,

’1201-BNG-breastTumor’. We have used XGboost as the core learning model in all

algorithms. XGboost was chosen as the core model because it is suitable for both the

task of classification and regression, and it just needs one sample to kick off the train-

ing process. The core model will be re-trained as new data is queried and added to the

training set in each iteration.



4.2 Baselines

Notation:

b: Batch Size (Number of samples queried in a single iteration).

M: Total number of classes (The number of pieces in to which the Y range is split

into).

T: Total number of iterations.

ybini : The ith ybin.

n(i): Number of samples requested to be added from ybini in that iteration.

These baselines dictate how to choose the ybin from which the new sample should

be collected.

1. Random Sampling : This is the core baseline that we use throughout out project.
It involves adding a random subset of size b (batch size) from the remaining
dataset into the training set in each iteration.

2. Uniform Querying: This algorithm assumes that each class is of similar diffi-
culty, and hence we query with equal probability a point from each ybin: i.e., the
probability of querying a sample from any ybin = 1

M
.

3. Cyclic Querying: Here, we take a cyclic tour on all the ybins, i.e., ybin0, ybin1,
ybinM , and so on. We come back to ybin0 after covering all the y-bins.

4. Alternated Cyclic Querying: In this algorithm, we cover the y-bins alternat-
ingly, i.e., ybin0, ybinM , ybin1, ybinM−1, ybin2, ybinM−2, and so on. Like cyclic
querying, we loop back to the other ends of the ybins if we cover all the ybins.

5. Querying the Most Diverse ybin: Here, we try to query from the y-bin farthest
from all the ybins already existing in the training set. We query the median ybin
to start the iteration.
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Figure 4.1: Performance of Uniform Querying algorithm

Figure 4.2: Performance of Cyclic Querying algorithm
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Figure 4.3: Performance of Alternated Cyclic Querying algorithm

Figure 4.4: Performance of Querying the Most Diverse ybin algorithm
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CHAPTER 5

LOMASKY INSPIRED ALGORITHMS

The idea of ACS is to distribute the number of instances per class such that a cer-

tain level of classification performance is reached with the lowest number of requested

instances. The work presented in Lomasky et al. mentions different techniques to de-

termine this class distribution for acquisition chunks. We will focus on two of these

techniques, namely Inverse and Redistricting.

The approach Inverse distributes the samples according to the inverse of the class

accuracy. An extension of this is called Accuracy Improvement. It distributes the values

according to the accuracy difference between the two most recent chunks. The Redis-

tricting method counts the number of labels that have been flipped (these instances are

marked as redistricted) by adding the most recent chunk to the training set. Here, the

upcoming instances are distributed with respect to the number of redistricted instances

of the true classes.

In order to adapt these algorithms to the regression task, we need to make a few

changes to how we treat the dataset and the algorithm. As regression deals with pre-

dicting the value of a continuous variable, it technically does not contain a countable

number of output classes. Hence, we adopt the "y-binning " concept described in earlier

sections. It helps us split up the y-range into a finite number of ’classes’ – here, we treat

a small range of y values as a class. The assumption of binning like this is that some

natural similarities exist between the samples with close enough y values.

We observed that the baseline algorithms we constructed could not match the base-

line of random sampling over all iterations. The methods were also much more unstable

than random sampling - The spikes can be observed in the RMSE score in the initial

iterations. However, most algorithms achieved a comparable asymptotic RMSE score

towards the end of the iterations. We observed that the Inverse Accuracy was unable

to perform well compared to the baseline. The rate of convergence of the Inverse Ac-

curacy algorithm is low compared to the baseline. On the other hand, the Redistricting

method, after being adapted for the regression task with a few modifications, was able to



perform very close to the baseline of Random Sampling. In fact, on two datasets, Redis-

tricting had a marginally better convergence rate during the initial iterations. However,

RMSE was slightly worse than the baseline after a few iterations. To ensure that the

performance of the algorithms was not a result of any ’lucky’ hyperparameter setting,

we thoroughly examined all the algorithms under various hyperparameter settings. We

ensured that they were behaving in a stable manner. The redistricting method had com-

parable performance to the baseline under most hyperparameter settings. Similarly, we

verified that the worse performance of other algorithms was not because of a particular

hyperparameter setting.

5.1 Redistriction

In this section, we explain the details of how we modify Lomasky’s redistricting algo-

rithm for the regression task. Firstly, we use the concept of "binning" to separate the

datasets into C classes. Although we have divided the dataset into different classes, this

is only to return appropriate samples when the algorithm asks for them. Note that the

model used at the algorithms’ core will be Regression, i.e., it can take in a value of

x and predict a continuous variable y. Lomasky’s classification-redistricting algorithm

works by checking the stability of model prediction on adding new samples. It checks

if the "class label" of the previous training samples changed when the new samples are

incorporated into the training set. We will use the "binning" classes we assigned at the

beginning to see if the sample changed its class or not.

The performance of the Redistricting-Regression algorithm can be seen below.

5.2 Inverse score

Similar to the redistricting algorithm, we need to modify the Inverse method that Lo-

masky originally proposed. We need to use "binning" to create virtual classes for the

regression datasets. As there is no concept of "accuracy" in regression tasks, we need to

use a similar performance score for regression, the RMSE score. The core idea behind

the inverse method is that the worse performance of the algorithm on a few classes is

caused by the deficiency of samples in those classes.
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Algorithm 2 Redistricting Algorithm for Regression
1: Generate a sample T1 of size b
2: Divide T1 into k stratified folds T1,1, T1,2....T1,k

3: for f = 1 to k do
4: Build Regression Model R1,f from {T1− T1,f}
5: for all instances xi in T1,f do do label1[xi] := R1,f (xi)
6: end for
7: end for
8: r := 2
9: while instance creation resources exist and stopping criteria not met do

10: if r = 2 then Tnew := “random” sample of size b
11: elseTnew := sample of size b where the number of instances for class c is com-

puted as: Pr[c] :=
redistricted[c]

nc∑|classes|
1

redistricted[i]
nc

∗ b
12: end if
13: Tr := Tr1 + Tnew

14: Initialize redistricted[c], ∀ c ϵ classes
15: Divide Tnew into k stratified folds Tnew,1, Tnew,2....Tnew,k

16: for f = 1 to k do
17: Tr,f := Tr1,f ∪ Tnew,f

18: Build Regression Model Rr,f from {Tr − Tr,f}
19: for all instances xi in Tr−1,f do
20: labelr[xi] := Rr,f (xi)
21: if ybin(labelr[xi]) ̸= ybin(labelr−1[xi]) then
22: redistricted[ybin(yi)] + + /* yi is the true label of xi */
23: end if
24: end for
25: for all instances xi in Tnew,f do
26: labelr[xi] := Rr,f (xi)
27: end for
28: end for
29: r ++
30: end while

Algorithm 3 Inverse-RMSE Algorithm for Regression
1: Generate a sample T1 of size b
2: while instance creation resources exist and stopping criteria not met do
3: Tnew := sample of size b where the number of instances of class c is computed

as Pr[c] :=
1

RMSE[c]∑|classes|
1

1
RMSE[i]

∗ b
4: Tr := Tr−1 + Tnew

5: end while
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Figure 5.1: Performance of Redistricting-Regression algorithm

The assumption that having a low number of samples leads to a bad performance on

that class is usually only justified at the start of the training. Another downside of this

method is that it assumes that all classes are logically formed, and having a large number

of samples from any class is sufficient for the model to have a good test RMSE on them.

However, it does not take care of the case when a class is ill-formed or contains mostly

outliers from which no information can be gathered, no matter how many samples we

collect from those classes. It ’wastes’ its resources by forcefully trying to improve the

performance of under-performing classes. However, in many cases, bad performance is

not only caused by having a low number of classes but usually classes being very hard

to train due to the presence of outliers. It can also happen if the class distribution is

highly complicated to decipher information from the training samples.
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Figure 5.2: Performance of Inverse-RMSE algorithm
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CHAPTER 6

MODIFIED REDISTRICTING ALGORITHMS

In this chapter, we will discuss the modifications attempted on the classical redistricting

algorithm.

The objective was to improve the redistricting algorithm on these aspects:

1. How can we modify the redistricting algorithm to account for the magnitude of
deviations after adding new samples and not just the redistricting counts?

2. As regression is inherently a continuous variable prediction task, can we redesign
the redistricting algorithm without using the concept of binning?

3. Can we devise a better binning strategy for the y-range instead of dividing it
uniformly?

4. Can we make the y-bins dynamic with iterations as the distribution of the remain-
ing training data keeps changing?

6.1 Deviation dependent Redistricting Algorithm

As regression is a continuous method, maintaining a redistricting-score based on hard

classifying the samples as ’changed class’/’not changed class’ is inappropriate. Let

us assume we classify a sample as ’redistricted’ if the prediction after adding the new

samples deviates from the original prediction by more than a threshold d. If we keep

this threshold extremely low, we will observe that most of the sample will get counted

as redistricted! On the other hand, if we keep the threshold very high, we might only

consider those points to be redistricted that are outliers or are very hard to understand

for the model.

To account for the amount of deviation that the sample has incurred after the new

samples are added, we modify the redistricting score to be proportional to the average

of deviations (i.e., |predictionnew− predictionold|) of all samples in each ybin. Hence,

we give more importance to those classes whose samples, on average, deviated more.



Algorithm 4 Deviation dependent Redistricting Algorithm
1: Generate a sample T1 of size b
2: Divide T1 into k stratified folds T1,1, T1,2....T1,k

3: for f = 1 to k do
4: Build Regression Model R1,f from {T1− T1,f}
5: for all instances xi in T1,f do do label1[xi] := R1,f (xi)
6: end for
7: end for
8: r := 2
9: while instance creation resources exist and stopping criteria not met do

10: if r = 2 then Tnew := “random” sample of size b
11: elseTnew := sample of size b where the number of instances for class c is com-

puted as: Pr[c] :=
deviation[c]

nc∑|classes|
1

deviation[i]
nc

∗ b
12: end if
13: Tr := Tr1 + Tnew

14: Initialize deviation[c], ∀ c ϵ classes
15: Divide Tnew into k stratified folds Tnew,1, Tnew,2....Tnew,k

16: for f = 1 to k do
17: Tr,f := Tr1,f ∪ Tnew,f

18: Build Regression Model Rr,f from {Tr − Tr,f}
19: for all instances xi in Tr−1,f do
20: labelr[xi] := Rr,f (xi)
21: deviation[ybin(yi)]+ = abs(labelr[xi]− labelr−1[xi])
22: end for
23: for all instances xi in Tnew,f do
24: labelr[xi] := Rr,f (xi)
25: end for
26: end for
27: r ++
28: end while
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Figure 6.1: Performance of Deviation dependent Redistricting Algorithm

6.2 Continuous Redistricting Algorithm

One of the main objectives of this section is to attempt to build a redistricting algo-

rithm that does not use binning. To achieve this, we extend the deviation-dependent

Redistricting Algorithm proposed in the previous section. Ideally, it would be best if

we could get a continuous PDF as a request from the redistricting algorithm. Assuming

we have a magical method that allows us to sample from this PDF, we would be able to

complete the loop of continuous redistricting. However, there are two challenges : (1)

The previous method of the deviation-dependent redistricting algorithm gives us a dis-

crete redistricting score and not a continuous PDF. (2) We need to design the function

to return samples from the remaining training data following the continuous PDF.

The first issue can be addressed as follows. We do not compute the average deviation

separately for each ybin. Instead, we generate (ytrue, deviation) pairs for all the samples

in the current training set. We train a separate regression model using these (ytrue,

deviation) pairs. Building this model allows us to have a model that can tell us the

value of the expected deviation for any value of y, thereby giving us some sort of PDF

on the y-range.
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The second issue of designing a sampling function from the training set following

a PDF can be built as follows. We sample a y-value from the PDF using statistical

methods, then we return an instance in the training set closest to the y-value we obtained

by sampling the PDF. We repeat this process to get the total number of samples required.

However, on implementing the algorithm we designed above, we noticed from the

scatter plots of (y, deviation) points that the spread of these points varied heavily even

around a single y value. Very high variation for a given input value meant that if we

used any ML model to fit the (y, deviation) values, we would not get a good model.

To prevent this, we removed all the points with less than 30% deviation. This got rid

of many points. However, to remove the spread for a single y-value, we took the 75th

percentile value of deviation within a (y - delta, y + delta) region to get a single estimate

of deviation for the y value. Nevertheless, the algorithm’s performance was still much

worse than the random sampling baseline.

Figure 6.2: Performance of Continuous Redistricting Algorithm
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Algorithm 5 Continuous Redistricting Algorithm
1: Generate a sample T1 of size b
2: Divide T1 into k stratified folds T1,1, T1,2....T1,k

3: for f = 1 to k do
4: Build Regression Model R1,f from {T1− T1,f}
5: for all instances xi in T1,f do do label1[xi] := R1,f (xi)
6: end for
7: end for
8: r := 2
9: while instance creation resources exist and stopping criteria not met do

10: if r = 2 then Tnew := “random” sample of size b
11: elseTnew := sample of size b, each one sampled from PDF
12: end if
13: Tr := Tr1 + Tnew

14: Divide Tnew into k stratified folds Tnew,1, Tnew,2....Tnew,k

15: DeviationPairs = {}
16: for f = 1 to k do
17: Tr,f := Tr1,f ∪ Tnew,f

18: Build Regression Model Rr,f from {Tr − Tr,f}
19: for all instances xi in Tr−1,f do
20: labelr[xi] := Rr,f (xi)
21: Insert {yi, abs(labelr[xi]− labelr−1[xi])} into DeviationPairs
22: end for
23: for all instances xi in Tnew,f do
24: labelr[xi] := Rr,f (xi)
25: end for
26: end for
27: Train Regression model of DeviationPairs and generate deviation PDF
28: r ++
29: end while
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6.3 Gaussian Mixture Model based Binning

In section we introduced the concept of binning. Binning helps us modify the re-

gression dataset into classification by dividing the continuous output value into bins.

However, the binning strategy described in section divides the normalized y-range of

[0,1] into smaller bins of size 1
m

if m is set as the number of classes. However, there

are multiple issues with this approach. It assumes that all segments of the y-range are

of the same difficulty, sample density, and importance. It does not give us a good idea

about the value of the hyperparameter m we must use. Even if the dataset had ac-

tual natural clustering in the output dimension, uniform binning would not think twice

before breaking a coherent natural class into multiple separate classes. We use one-

dimensional Gaussian Mixture Based (GMM) clustering to fix these issues. GMM can

detect the presence of natural classes in the y dimension. It also gives us a good idea of

the hyperparameter m if we use the elbow method to find the best value of m.

Figure 6.3: Performance of Gaussian Mixture Model based Binning
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Algorithm 6 Gaussian Mixture Model based Binning
1: Use GMM to separate training set y-values into bins
2: Generate a sample T1 of size b
3: Divide T1 into k stratified folds T1,1, T1,2....T1,k

4: for f = 1 to k do
5: Build Regression Model R1,f from {T1− T1,f}
6: for all instances xi in T1,f do do label1[xi] := R1,f (xi)
7: end for
8: end for
9: r := 2

10: while instance creation resources exist and stopping criteria not met do
11: if r = 2 then Tnew := “random” sample of size b
12: elseTnew := sample of size b where the number of instances for class c is com-

puted as: Pr[c] :=
redistricted[c]

nc∑|classes|
1

redistricted[i]
nc

∗ b
13: end if
14: Tr := Tr1 + Tnew

15: Initialize redistricted[c], ∀ c ϵ classes
16: Divide Tnew into k stratified folds Tnew,1, Tnew,2....Tnew,k

17: for f = 1 to k do
18: Tr,f := Tr1,f ∪ Tnew,f

19: Build Regression Model Rr,f from {Tr − Tr,f}
20: for all instances xi in Tr−1,f do
21: labelr[xi] := Rr,f (xi)
22: if GMMbin(labelr[xi]) ̸= GMMbin(labelr−1[xi]) then
23: redistricted[GMMbin(yi)] + + /* yi is the true label of xi */
24: end if
25: end for
26: for all instances xi in Tnew,f do
27: labelr[xi] := Rr,f (xi)
28: end for
29: end for
30: r ++
31: end while
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6.4 Dynamic Binning

In the previous sections, we described uniform and GMM-based binning strategies.

However, as we move through iterations and sample points from the remaining train-

ing set, the distribution of the remaining training set changes as the distribution of the

samples requested by the ACS algorithms might differ from the natural distribution of

the remaining training set. We need a dynamic solution to make the binning adaptive to

the changing distribution of the remaining training set. To achieve this, we use binning

before every ACS iteration, thereby getting a fresh set of bins suitable for the current

samples in the remaining train set.

Figure 6.4: Performance of Dynamic Binning Redistricting Algorithm
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Algorithm 7 Dynamic Binning
1: Use GMM to separate training set y-values into bins
2: Generate a sample T1 of size b
3: Divide T1 into k stratified folds T1,1, T1,2....T1,k

4: for f = 1 to k do
5: Build Regression Model R1,f from {T1− T1,f}
6: for all instances xi in T1,f do do label1[xi] := R1,f (xi)
7: end for
8: end for
9: r := 2

10: while instance creation resources exist and stopping criteria not met do
11: if r = 2 then Tnew := “random” sample of size b
12: elseTnew := sample of size b where the number of instances for class c is com-

puted as: Pr[c] :=
redistricted[c]

nc∑|classes|
1

redistricted[i]
nc

∗ b
13: end if
14: Tr := Tr1 + Tnew

15: Use a new GMM to separate the remaining training set y-values into bins
16: Initialize redistricted[c], ∀ c ϵ classes
17: Divide Tnew into k stratified folds Tnew,1, Tnew,2....Tnew,k

18: for f = 1 to k do
19: Tr,f := Tr1,f ∪ Tnew,f

20: Build Regression Model Rr,f from {Tr − Tr,f}
21: for all instances xi in Tr−1,f do
22: labelr[xi] := Rr,f (xi)
23: if GMMbin(labelr[xi]) ̸= GMMbin(labelr−1[xi]) then
24: redistricted[GMMbin(yi)] + + /* yi is the true label of xi */
25: end if
26: end for
27: for all instances xi in Tnew,f do
28: labelr[xi] := Rr,f (xi)
29: end for
30: end for
31: r ++
32: end while
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CHAPTER 7

INPUT SPACE DISPARITY

In this section we propose a new way of querying in Active Class Selection for Regres-

sion settings.

The core idea of Input Space Disparity is to sample more points from those ’classes’

which the ’understanding’ of the models do not agree upon. To measure the ’under-

standing’ of a model regarding a class, we estimate what the model thinks is the region

in which the class exists in the input space.

Figure 7.1: Pictorial representation of Input Space Disparity Algorithm

In each iteration, we train a committee of models using non-overlapping subsets of

training data available up till that iteration, similar to QBC(Query by Committee). Now

we consider the whole input space as a test set and find the predictions for each point in

the test set for each committee member. Now we fix a ybin (say ybini) and consider the

sets of points that were evaluated as ybini by the members, Lets call them P 1
i P 2

i P 3
i etc.

Now, we calculate the ’disparity’ across these sets as described by the formula below.

We query more points from ybins that have larger disparity score. Disparity gives us

a sense of dissimilarity among the sets. By repeating this process for each ybin, we



end up with disparity scores for each ybin. The core idea is that we must sample more

points from those ybins that are having conflicts between the committee members over

what points belonged to those ybins. Refer to Figure 7.1 for a pictorial explanation. If

m is the number of members in the committee, We define Disparity Score for ybini as

described below.

(a) Points predicted as ybin1 by

member1

(b) Points predicted as ybin1 by

member2

(c) Intersection Map for ybin1 (d) Disparity Map for of ybin1.

The above figure is an illustration for generating the disparity score for ybin1. Here,

we have shown in (a) the points in the input space that were predicted to belong to

ybin1 by committee member1. In (b) we show the points in the input space that were

predicted to belong to ybin1 by committee member2. We get a disparity map of these

members in (d). Now we condense this disparity map into a disparity score using a

suitable method as described by the formula. If both members predict similar points

as ybin1, the disparity map will contain negligible number of points and hence give a
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small disparity score. On the other hand, if the committee members do not agree on the

input space location of points belonging to ybin1, they will give completely different

points as predictions for ybin1 and therefore will have a large number of points in the

disparity map which leads to a large disparity score.

Disparity(i) = 1−
| ∩m

j=1 P
j
i |

| ∪m
j=1 P

j
i |

Algorithm 8 Input Space Disparity
1: Generate a sample T of size b
2: while instance creation resources exist and stopping criteria not met do
3: Generate N synthetic random samples P1, P2 ... PN

4: For iϵ{1, 2, ..k} and jϵ{1, 2, ..M} Initialize Sj
i = {}

5: Divide the current train dataset T into k equal parts : T1, T2 ...Tk

6: for f = 1 to k do
7: Build Regression Model Rf from Tf

8: for all instances P1, P2 ..Pi. PN do
9: labelif := Rf (Pi)

10: Add instance Pi to S
labelif
f

11: end for
12: end for
13: Define disparity[i] = 1 -

|∩k
f=1S

i
f |

|∪k
f=1S

i
f |

for iϵ1, 2..M
14: Tnew := sample of size b where the number of instances for class c is computed

as N [c] := disparity[c]∑
i=1 Mdisparity[i]

15: T := T + Tnew

16: end while

7.1 Weighted Input Space Disparity

In the description of the method, we wish to evaluate the committee members on all of

the input space points. However this is not feasible as the number of dimensions in the

input space increases. Hence, we need to estimate the disparity score of the ybins using

an alternative method. We wish to bootstrap an estimate of the disparity scores. To do

this, instead of considering the whole input space as the test set, we uniformly select a

few points in the input space and treat it as a representative of the whole input space.

As we increase the number of points, the disparity scores calculated using this method

approaches the actual disparity scores.

We just described that we will randomly and uniformly select points from the input
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Figure 7.2: Performance of initial Input Space Disparity algorithm

space represent our input space. However, there is a problem with this assumption.

The natural occurrences of samples for given task might not be uniformly spread across

the input region. We should ideally not care about the model performance beyond the

’naturally occurring region’ of the input space. By giving uniform importance to all

points in the input space we give equal importance to the performance of the model on

all regions of the input space. Hence, to give more importance to the areas that are close

to the naturally occurring regions. In other words, instead of generating uniformly and

randomly sampled points in the input space, we must try to sample points that actually

represent the naturally occurring instances of the task at hand.

One way to achieve this is to give weights to the randomly sampled points. We

give higher weights to those points that are close to the actual training set and assign

less weight to those points that are far way from the training set points. This can be

achieved by checking the average distance to the nearest k neighbours. In this way,

we skew the randomly sampled points to act like instances from the original training

set. The proximity scores can then be normalized to be finally used in calculating the

disparity score.
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Algorithm 9 Weighted Input Space Disparity
1: Generate a sample T of size b
2: while instance creation resources exist and stopping criteria not met do
3: Generate N synthetic random samples P1, P2 ... PN

4: Compute ProximityScore for each random Pi as
∑K

i=1 Distance(Pi,KNNi)

K

5: Standardize the ProximityScores by dividing ProximityScores by
max (ProximityScores) to get Weights wi, iϵ{1, N}

6: For iϵ{1, 2, ..k} and jϵ{1, 2, ..M} Initialize Sj
i = {}

7: Divide the current train dataset T into k equal parts : T1, T2 ...Tk

8: for f = 1 to k do
9: Build Regression Model Rf from Tf

10: for all instances P1, P2 ..Pi. PN do
11: labelif := Rf (Pi)

12: Add instance Pi to S
labelif
f

13: end for
14: end for
15: Define IntersectionSeti = {∩k

f=1S
i
f}

16: Define UninonSeti = {∪kf=1S
i
f}

17: Define disparity[i] = 1 -
∑

jϵIntersectionSeti
wj∑

jϵUninonSeti
wj

for iϵ1, 2..M
18: Tnew := sample of size b where the number of instances for class c is computed

as N [c] := disparity[c]∑
i=1 Mdisparity[i]

19: T := T + Tnew

20: end while

Figure 7.3: Performance of Weighted Input Space Disparity algorithm
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7.2 The Final Algorithm

In this section, we describe a few final modifications to the input space disparity algo-

rithm.

Firstly, we observed that the disparity scores for most classes were extremely close,

leading to a very similar request amount for most classes. We found that the intersec-

tion counts while computing the disparity scores were very low. A low intersection

count meant that the models were often vastly disagreeing on the ’understanding’ of the

classes. There could be two reasons for this, i.e., the models were not well trained, or

the samples used for evaluating the models were from a different distribution compared

to the training set distribution. We quickly figured out the latter was the problem as the

train RMSE was relatively low.

To fix the issue of low intersection counts, we tried to improve the similarity of

the random samples generated while evaluating the disparity score. We attempted to

use CTGAN (CTGAN user guide), a framework capable of generating pseudo samples

similar to a given set of training samples. We also increased the total number of samples

generated to estimate the disparity score better. However, this still did not fix the issue.

We observed that random samples generated were highly spread out on the input

space due to the curse of dimensionality. This meant that we needed to reduce the

number of input features to the model. Hence, we had to restrict ourselves to the datasets

with a low number of features (1 to ∼ 8). However, to utilize our existing datasets, we

created multiple smaller datasets by only considering a subset of features at a time.

We also found that the computation of the disparity score can be improved by chang-

ing the score a bit.

Disparity(i) =
| ∪m

j=1 P
j
i |

| ∩m
j=1 P

j
i |

On a separate observation, we divided the datasets based on the distribution of y-

variable into three categories : a) Normal Distribution, b) Skewed Distribution, and

c) Clustered Distribution. The performance shown below is only applicable for the

datasets belonging to (a) category.
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We also override the algorithm to provide a better initialization by passing origi-

nal class proportion based samples. In the later iterations we also add a percentage of

samples according to original class proportion in order to prevent the algorithm from

heavily deviating from the original class proportions.In the final algorithm we did not

use the support of CTGAN samples. Finally, we carefully make sure that we never con-

sume any extra samples as compared to the baseline to keep the performance evaluation

fair.

Algorithm 10 Input Space Disparity -Final Algorithm
1: Generate a sample T of size b
2: while instance creation resources exist and stopping criteria not met do
3: Generate N synthetic random samples P1, P2 ... PN

4: For iϵ{1, 2, ..k} and jϵ{1, 2, ..M} Initialize Sj
i = {}

5: Divide the current train dataset T into k equal parts : T1, T2 ...Tk

6: for f = 1 to k do
7: Build Regression Model Rf from Tf

8: for all instances P1, P2 ..Pi. PN do
9: labelif := Rf (Pi)

10: Add instance Pi to S
labelif
f

11: end for
12: end for
13: Define disparity[i] =

|∪k
f=1S

i
f |

|∩k
f=1S

i
f |

for iϵ1, 2..M
14: Tnew := sample of size b where the number of instances for class c is computed

as N [c] := disparity[c]∑M
i=1 disparity[i]

15: T := T + Tnew

16: end while
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Figure 7.4: Performance of the final Input Space Disparity algorithm on the ’Normal’
Datasets (Part-1)
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Figure 7.5: Performance of the final Input Space Disparity algorithm on the ’Normal’
Datasets (Part-2)
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CHAPTER 8

CONCLUSION AND FUTURE WORK

In this project, we attempted to build an active class selection model for regression. We

achieved better performance than the baseline on a few iterations on datasets with a

standard spread in the y distribution and a limited number of features. However, there

is still a long way to go to design an algorithm that supports all types of datasets irre-

spective of their y distribution or the number of features. We note a few improvements

aspects to conclude this report :

1. In the ISD algorithm, we have used binning to classify the random samples into
classes before calculating the disparity scores. More ’softer’ methods should be
employed to estimate the disparity score better. Similarly, most of the algorithms
we have proposed above for the Regression task relied on cutting up the y-range
to convert it into a Classification problem. More time must be invested in looking
for algorithms that act directly on the samples instead of binning.

2. We need theatrical work to identify complementary scores to the Disparity Score
in the information domain. We can combine them to get better performance, as
suggested by the work on Active Regression Bullard et al. (2018). Also, the idea
of Input Space Disparity is yet shown substantial performance on regression; it
might be better suited for the task of classification, where there is a clear distinc-
tion between the classes.

3. As identified in recent papers, we must aim to combine ACS learning techniques
with other learning techniques such as AL, Reinforcement Learning, continuous
learning, etc.

4. Recent papers on ACS have an observation that the random strategies "propor-
tional" and "uniform" perform highly competitively. Moreover, they come for
free, whereas the informed (i.e., non-random) strategies imply an unavoidable
computational overhead that needs to be justified with the data acquisition cost.
In our report, we observed that random sampling baseline was tough to beat. The
reason is that random sampling ensures that the samples remain independent and
identically distributed. It is also perfect for maintaining the same distribution in
the train set as the actual distribution.

5. In recent papers, the focus has been collecting samples from particular classes as
requested by the ACS algorithms. We must explore a different way of collecting
information to feed into the model. For example, consider asking users, "Can you
give me an instance farthest from the ones you gave me earlier that belongs to the
same class?". Different kinds of queries would require different effort and time
to be generated; algorithms need to be designed by keeping these factors in mind.



Also, by doing a literature review, we arrive at a general idea that we can try to
adapt AL methods by designing algorithms in the reverse direction using pseudo
samples whenever we do not have the actual data.

6. In this report, we have presented the performance of the new algorithms using a
plot of performance against a baseline. Analyzing the performance by looking at
the plot is sometimes challenging when the performances are close by or if they
perform differently on a different portion of the iterations. Hence, a mathematical
way of understanding the performance needs to be developed.

7. We note that the presence of outliers in the datasets can meddle with the binning
strategies or the ACS logic by skewing the classes towards the extreme. Hence,
efforts must be employed to avoid collecting outliers. Gradient-based methods
must be designed to take advantage of the random samples generated without
actual data. One advantage of gradient-based methods is that they are naturally
resistant to outliers, as explained in the paper Bullard et al. (2018).

8. We must design a "relaxed - ACS" field, as suggested in the paper Bunse and
Morik (2019) , where we are allowed to have better control over the sample gen-
eration process - either by controlling some of the input features or their distribu-
tion.

9. We must explore the possibility of having an initial validation set, contrary to a
validation that is used at the end of the training phase in ML. This initial validation
set could be used to choose hyperparameters for the ACS algorithm. It can also
be used to estimate the classes’ relative difficulties and do further analysis that
might lead to better initial performance. However, the cost of obtaining such an
initial validation set must be incorporated into the algorithm.

10. Finally, suppose we cannot find a universally better performing algorithm (com-
pared to the random baseline) on all datasets. In that case, we can consider a par-
ticular problem statement and try to beat the baseline on that particular problem
statement. For example, BCI-based ACS Regression tasks that require user-level
finetuning for every user. Applying ACS to areas of calibration, where data is
collected separately for a different user, would ensure that the advantage we ob-
tained by designing the ACS algorithm does not go to waste after a single round
of data collection.

References : Lomasky et al. (2007), Bunse and Morik (2019), Kottke et al. (2016),

Bunse et al. (2019), Wu and Parsons (2011a), Wu and Parsons (2011b), Wu et al.

(2013), Wu et al. (2018), Settles (2010), Hossain et al. (2017), Bullard et al. (2018),

Romano et al. (2020), Torgo and Gama (1996)
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