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ABSTRACT 
 
 

 

KEYWORDS: DOTA 
 

 

Object detection is an important and challenging problem in computer vision. Even 

though the recent years have witnessed major breakthroughs in object detection in 

natural scenes, such successes have been slow to aerial imagery. The reasons are 

not only because of the huge variation in the scale, orientation and shape of the 

object instances on the earth’s surface, but also due to the scarcity of well annotated 

datasets of objects in aerial scenes  

.  

DOTA is a large-scale dataset for object detection in aerial images. It can be used to 

develop and evaluate object detectors in aerial images. The images are collected 

from different sensors and platforms. Each image is of the size in the range from  

No table of figures entries found.800 × 800 to 20,000 × 20,000 pixels and contains 

objects exhibiting a wide variety of scales, orientations, and shapes. This article 

focuses on state of art algorithms and objects detection models and implementing 

them on the DOTA and as well as simulating more real life dataset using DOTA as 

base and studying the effect on the model.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5 

 

Contents 
 

 

 

ACKNOWLEDGEMENTS ................................................................................................................... 3 

 

ABSTRACT ........................................................................................................................................... 4 

Table of Images ................................................................................................................................ 7 

ABBREVIATIONS ............................................................................................................................ 7 

 

CHAPTER 1 .......................................................................................................................................... 8 

1.1 Introduction ............................................................................................................................ 8 

 

CHAPTER 2 ........................................................................................................................................ 10 

DOTA - Dataset for Object  deTection in Aerial images .......................................................... 10 

2.1 Overview .......................................................................................................................... 10 

2.2 Motivation ........................................................................................................................ 10 

2.3 DOTA advantages .......................................................................................................... 12 

 

CHAPTER 3 ........................................................................................................................................ 13 

Dynamic Head: Unifying Object Detection Heads with Attentions. ........................................ 13 

3.1 Overview .......................................................................................................................... 13 

3.2 Motivation ........................................................................................................................ 13 

3.3 New Ideas ........................................................................................................................ 14 

 

CHAPTER 4 ........................................................................................................................................ 16 

Towards Transformer-Based Object Detection ......................................................................... 16 

4.1 Overview .......................................................................................................................... 16 

4.2 Motivation ........................................................................................................................ 16 

4.3 Advantages ..................................................................................................................... 17 

4.4 New results ...................................................................................................................... 17 

 

CHAPTER 5 ........................................................................................................................................ 19 

Implementation of the model ........................................................................................................ 19 

5.1 Overview .......................................................................................................................... 19 

5.2 Faster R-CNN for object detection .............................................................................. 19 

5.3 Architecture ..................................................................................................................... 20 

5.4 Implementation and results ........................................................................................... 21 



6 

 

 

 

 

 

 

 

CHAPTER 6 ........................................................................................................................................ 22 

Simulation of data and testing ...................................................................................................... 22 

6.1 Overview .......................................................................................................................... 22 

6.2 Simulation of Motion Blur .............................................................................................. 22 

      6.2.1 Results ......................................................................................................................... 23 

6.3 Simulation of Atmospheric turbulence Blur ................................................................ 24 

     6.3.1  Limitations .................................................................................................................. 25 

     6.3.2 Implementation and results. ....................................................................................... 25 

6.4 Simulation of noise ......................................................................................................... 26 

6.4.1 Results ......................................................................................................................... 27 

6.5 Simulation of Gaussian Blur ......................................................................................... 28 

 

CHAPTER 7 ........................................................................................................................................ 29 

Retraining the Model ...................................................................................................................... 29 

7.1  Overview ......................................................................................................................... 29 

7.2  Motion Blur ..................................................................................................................... 29 

7.3  Atmospheric Turbulence Blur ...................................................................................... 31 

7.4  Noisy images ................................................................................................................. 31 

7.4 Gaussian Blur ................................................................................................................. 32 

 

CHAPTER 8 ........................................................................................................................................ 33 

8.1 CONCLUSION ......................................................................................................................... 33 

8.2 Future possibilities ................................................................................................................... 33 

 

REFERENCES ................................................................................................................................... 34 

 

Code and Supplement Data ............................................................................................................. 35 

 
 
 
 
 
 
 
 
 



7 

 

Table of Images 
 

 

 

 
Figure 1: An example taken from DOTA. ............................................................................. 11 
 
Figure 2 : An illustration of the above mentioned  Dynamic Head approach. ....................... 15 
 
Figure 3 :  An illustration of the simulation of motion blur .................................................... 22 
 
Figure 4  : An illustration of the simulation of motion blur .................................................... 24 
 
Figure 5: An illustration of the simulation of noisy ................................................................ 26 
 
Figure 6: An illustration of the simulation of Gaussian blur .................................................. 28 
 
 
 
 
 
 

ABBREVIATIONS 
 
 
 

 

DOTA Large-scale dataset for object detection in aerial images 
 
MSCOCO  Microsoft Common Objects in Context 
 

OBB oriented bounding boxes 
 
NLP Natural Language Processing 

 

 ViT           Vision Transformer 
 
 FRCNN Faster RCNN 
 
 RoI   Region of Interest 
 
 AP  Average Precision 
  
 mAP  Mean Average Precision 



8 

 

 

CHAPTER 1 
 

1.1 Introduction 
 

 

Object detection in Earth Vision refers to identifying objects of interest (e.g., vehicles, 

airplanes) on the earth’s surface and classifying their categories. In many this is 

different from conventional object detection datasets, where objects are generally 

oriented upward because of the gravity. Also the object instances in aerial images 

often appear with arbitrary orientations, as illustrated in Fig. 1, depending on the 

perspective of the Earth Vision platforms.  

 

Various studies have been conducted in the field of object detection in aerial images 

drawing upon recent advances in Computer Vision and accounting for the high 

demands of Earth Vision applications. Most of these methods attempt to transfer 

object detection algorithms developed for natural scenes to the aerial image domain. 

Recently, driven by the successes of deep learning-based algorithms for object 

detection, Earth Vision researchers have pursued approaches based on fine-tuning 

networks pre-trained on large-scale image datasets (ImageNet and MSCOCO) for 

detection in the aerial domain. While such fine-tuning based approaches are a 

reasonable avenue to explore, images such as Figure 1 reveals that the task of 

object detection in aerial images is different from the conventional object detection 

task in the following aspects: -  

 

 The scale variations of object instances in aerial images are huge. This is not 

only because of the spatial resolutions of sensors, but also due to the size 

variations inside the same object category.  

  Many small object instances are crowded in aerial images, for example, the 

ships in a harbor and the vehicles in a parking lot, as illustrated in Fig. 1. 

Moreover, the frequencies of instances in aerial images are unbalanced.  
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 Objects in aerial images often appear in arbitrary orientations. There are also 

some instances with an extremely large aspect ratio, such as a bridge 

 

Besides these distinct difficulties, the studies of object detection in Earth Vision 

are also challenged by the well-known dataset bias problem i.e. the degree of 

generalizability across datasets is often low. In order to alleviate such biases, the 

dataset should be annotated to reflect the demands of real world applications. 

 

 

Following this chapter the report is organized as follows: chapter 2 introduces 

why DOTA as a dataset is necessary and how it is different and hence how it will be 

useful. Chapter 3 talks about the Dynamic Head: Unifying Object Detection Heads 

with Attentions, idea of model. Chapter 4 talks about Towards Transformer-Based 

Object Detection, another useful insight for object detection algorithms. Chapter 5 

talks about the state of the art model implemented on the DOTA and the results. 

Chapter 6 talks about data augmentation and how fine tuning helps improve the 

model. Chapter 7 talks about future scopes. 
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CHAPTER 2 
 

     DOTA - Dataset for Object  deTection in Aerial images 
 

 

2.1 Overview 
 

 

As discussed earlier to advance the object detection research in Earth Vision, a 

large-scale Dataset for Object deTection in Aerial images (DOTA) was created. Over 

2806 aerial images from different sensors and platforms were collected with crowd 

sourcing. Each image is of the size about 4000 × 4000 pixels and contains objects of 

different scales, orientations and shapes. These DOTA images are annotated by 

experts in aerial image interpretation, with respect to 15 common object categories. 

The fully annotated DOTA dataset contains 188,282 instances, each of which is 

labeled by an OBBs, instead of an axis-aligned one, as is typically used for object 

annotation in natural scenes. 

 
 

2.2 Motivation 
 

 

Datasets have played an important role in data-driven research in recent years. 

Large datasets like MSCOCO are instrumental in promoting object detection and 

image captioning research. When it comes to the classification task and scene 

recognition task, the same is true for ImageNet and Places, respectively. However, in 

aerial object detection, a dataset resembling MSCOCO and ImageNet both in terms 

of image number and detailed annotations has been missing, which becomes one of 

the main obstacles to the research in Earth Vision, especially for developing deep 

learning-based algorithms.  
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Aerial object detection is extremely helpful for vehicle counting, remote object 

tracking and unmanned driving. Therefore, a large-scale and challenging aerial 

object detection benchmark, being as close as possible to real-world applications, is 

imperative for promoting research in this field.  

 
 

 
 

                Figure 1: An example taken from DOTA.  

 (a) Typical image in DOTA consisting of many instances across multiple categories.  

 (b) Illustration of the variety in instance orientation and size.  

 (c),(d) Illustration of sparse instances and crowded instances, respectively.  

    

 

Here it is shown four out of fifteen of the possible categories in DOTA. Examples 

shown in (b),(c),(d) are cropped from source image (a). The histograms (e),(f) exhibit 

the distribution of instances with respect to size and orientation in DOTA 

 

 

 

 

 

 



12 

 

2.3 DOTA advantages 
 

 

One could argue that a good aerial image dataset should possess four properties, 

namely,  

1)  A large number of images,  

2)  Many instances per categories,  

3)  Properly oriented object annotation, and  

4) Many different classes of objects, which make it approach to real-world 

applications  

. 

 

         Table 1 : Comparison among DOTA and object detection datasets in aerial    

images.  

 

Besides, what makes DOTA unique among the above mentioned large-scale general 

object detection benchmarks is that the objects in DOTA are annotated with properly 

oriented bounding boxes (OBB for short). OBB can better enclose the objects and 

differentiate crowded objects from each other  

. 
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CHAPTER 3 
 

Dynamic Head: Unifying Object Detection Heads with 
Attentions. 

 

 

3.1 Overview 
 

The complex nature of combining localization and classification in object detection 

has resulted in the flourished development of methods. Previous works tried to 

improve the performance in various object detection heads but failed to present a 

unified view. Here a novel dynamic head framework to unify object detection heads 

with attentions is studied. By coherently combining multiple self-attention 

mechanisms between feature levels for scale awareness, among spatial locations for 

spatial-awareness, and within output channels for task-awareness, the proposed 

approach significantly improves the representation ability of object detection heads 

without any computational overhead. 

 

3.2 Motivation  
 

Object detection is to answer the question “what objects are located at where” in 

computer vision applications. In the deep learning era, nearly all modern object 

detectors share the same paradigm – a backbone for feature extraction and a head 

for localization and classification tasks. How to improve the performance of an object 

detection head has become a critical problem in existing object detection works .The 

challenges in developing a good object detection head can be summarized into three 

categories.  

 The head should be scale-aware, since multiple objects with vastly distinct 

scales often co-exist in an image.  

 The head should be spatial-aware, since objects usually appear in vastly 

different shapes, rotations, and locations under different viewpoints. 
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 Thirdly, the head needs to be task aware, since objects can have various 

representations (e.g., bounding box, center, and corner points) that own 

totally different objectives and constraints. 

 

Majority of the recent studies only focus on solving one of the aforementioned 

problems in various ways. It remains an open problem how to develop a unified head 

that can address all these problems simultaneously.  

 

3.3 New Ideas 

 

A novel detection head is proposed, called dynamic head, to unify scale-awareness, 

spatial-awareness, and task-awareness all together. If we consider the output of a 

backbone (i.e., the input to a detection head) as a 3-dimensional tensor with 

dimensions level × space × channel, we discover that such a unified head can be 

regarded as an attention learning problem. An intuitive solution is to build a full self-

attention mechanism over this tensor. However, the optimization problem was found 

to be too difficult to solve and the computational cost is not affordable.  

 

Instead, attention mechanisms were deployed separately on each particular 

dimension of features, i.e., level-wise, spatial-wise, and channel-wise. 

 

 The scale-aware attention module is only deployed on the dimension of level. 

It learns the relative importance of various semantic levels to enhance the 

feature at a proper level for an individual object based on its scale.  

 

 The spatial-aware attention module is deployed on the dimension of space 

(i.e., height × width). It learns coherently discriminative representations in 

spatial locations.  
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 The task-aware attention module is deployed on channels. It directs different 

feature channels to favor different tasks separately (e.g., classification, box 

regression, and center/key-point learning. 

 

 

In this way, a unified attention mechanism is explicitly implanted for the detection head. 

Although these attention mechanisms are separately applied on different dimensions of a 

feature tensor, their performance can complement each other. 

 

 

 

                

 Figure 2 : An illustration of the above mentioned Dynamic Head approach.  

 It contains three different attention mechanisms, each focusing on a different perspective: 

scale-aware attention, spatial-aware attention, and task-aware attention. It is also visualized how the 

feature maps are improved after each attention module.  
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CHAPTER 4 
 

Towards Transformer-Based Object Detection 
 

 

4.1 Overview 
 

 

Transformers have become the dominant model in NLPs , owing to their ability to pre-

train on massive amounts of data, then transfer to smaller, more specific tasks via fine-

tuning. The Vision Transformer was the first major attempt to apply a pure transformer 

model directly to images as input, demonstrating that as compared to convolutional 

networks, transformer-based architectures can achieve competitive results on benchmark 

classification tasks. However, the computational complexity of the attention operator 

means that we are limited to low-resolution inputs. For more complex tasks such as 

detection or segmentation, maintaining a high input resolution is crucial to ensure that 

models can properly identify and reflect fine details in their output.  

 

This naturally raises the question of whether or not transformer-based architectures 

such as the Vision Transformer are capable of performing tasks other than classification. 

But it has been shown that Vision Transformers can be used as a backbone by a 

common detection task head to produce competitive COCO results. 

 

4.2 Motivation 
 

The Transformer model has become the preferred solution for a wide range of 

natural language processing (NLP) tasks, showing impressive progress in machine 

translation, question answering, text classification, document summarization, and 

more. Part of this success comes from the Transformer’s ability to learn complex 

dependencies between input sequences via self-attention, and its scalability that 

makes it possible to pre-train models of remarkable size on large datasets with no 

signs of saturating performance. 
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4.3 Advantages 
 

 

The Vision Transformer (ViT) demonstrated for the first time that a transformer 

architecture can be directly applied to images as well, by treating an image as a 

sequence of patches. Although its performance on mid-sized datasets trails behind 

convolution-based models, the ViT seems to retain the capacity seen in NLP 

transformers, enabling it to pre-train on an unprecedented amount of data. In effect, 

ViT suggests that the standard convolution, which has been the hallmark of vision 

modeling for decades, maybe supplemented or replaced by attention-based 

components.  

 

Transformers are capable of globally attending at every layer of the network, 

potentially making the spatial correspondence between the input and intermediate 

features weaker. This naturally raises the question of whether or not Vision 

Transformers can be fine-tuned to perform tasks that are more locally-sensitive, such 

as object detection or segmentation. 

 
 
 

4.4 New results 
 

 

A new model, ViT-FRCNN was developed, that attempts to answer the above  

question by augmenting a ViT with detection specific task heads to detect and 

localize objects in images. Importantly, ViT-FRCNN demonstrates that a transformer 

based backbone can retain sufficient spatial information for object detection. It is also 

shown that ViT-FRCNN achieves competitive results on the COCO detection 

challenge, while exhibiting many of the desirable properties of transformer based 

models. In particular, some experiments which were done suggested that object 

detection tasks benefit from the massive pre training paradigm commonly used with 

transformers.  
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Experiments also find improved detection performance on large objects (perhaps due 

to the ability of the architecture to attend globally), and fewer spurious over 

detections of objects.   

 

It is also believed that  ViT-FRCNN shows that the commonly applied paradigm of 

large scale pre training on massive datasets followed by rapid fine-tuning to specific 

tasks can be scaled up even further in the field of computer vision, owing to the 

model capacity observed in transformer-based architectures and the flexible features 

learned in such backbones. 
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CHAPTER 5 

Implementation of the model 
 

 

5.1 Overview 
 

 

 

 

 Table 2: The baseline results observed on DOTA (R-FPN-50, without data 

augmentations) . We can see from the table that the best results are with Faster R-CNN OBB with 

RoI Transformer.  

 

 

5.2 Faster R-CNN for object detection 
 

 

A Faster R-CNN object detection network is composed of a feature extraction 

network which is typically a pre-trained CNN, similar to what had been used for its 

predecessor. This is then followed by two sub networks which are trainable. The first 

is a Region Proposal Network (RPN), which is, as its name suggests, used to 

generate object proposals and the second is used to predict the actual class of the 

object. So the primary differentiator for Faster R-CNN is the RPN which is inserted 

after the last convolutional layer. This is trained to produce region proposals directly 

without the need for any external mechanism like Selective Search. After this ROI 

pooling is used and an upstream classifier and bounding box regressor similar to 

Fast R-CNN  

.. 
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5.3 Architecture  
 

The architecture of Faster R-CNN is shown in the next figure. It consists of 2 

modules: 

  1.  RPN: For generating region proposals. 

  2.  Fast R-CNN: For detecting objects in the proposed regions. 

 

   

     
 

The RPN module is responsible for generating region proposals. It applies the 

concept of attention in neural networks, so it guides the Fast R-CNN detection 

module to where to look for objects in the image. 

 

We can see how the convolutional layers (e.g. computations) are shared across both 

the RPN and the Fast R-CNN modules. 

 

The Faster R-CNN works as follows: 

 The RPN generates region proposals. 

 For all region proposals in the image, a fixed-length feature vector is 

extracted from each region using the ROI Pooling layer [2] 

 The extracted feature vectors are then classified using the Fast R-

CNN. 

 The class scores of the detected objects in addition to their bounding-

boxes are returned.
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5.4 Implementation and results 
 

 

The state of the art model with which the best results were observed was 

implemented. The configuration file was loaded and the validation dataset from the 

DOTA website was loaded and model was run to test this validation data. 

 

classname: plane                                       classname: baseball-diamond 

ap:  0.9014526645635133                        ap:  0.8756156060304421 

 

classname: bridge     classname: ground-track-field 

ap:  0.7358691439350338    ap:  0.8072462286767592 

 

classname: small-vehicle    classname: large-vehicle 

ap:  0.7476489526033117    ap:  0.8886002316343158 

 

classname: ship     classname: tennis-court 

ap:  0.8868232500621034    ap:  0.9059249633791323 

 

classname: basketball-court   classname: storage-tank 

ap:  0.8715753581872354    ap:  0.9014873059340347 

 

classname: soccer-ball-field   classname: roundabout 

ap:  0.759248194164202    ap:  0.8570194710661244 

 

classname: harbor    classname: swimming-pool 

ap:  0.8796535504239384    ap:  0.8113566147588557 

 

classname: helicopter 

ap:  0.7954980842911878 

 

map: 0.8416679746473459 

 

classaps:  [90.14526646 87.5615606  73.58691439 80.72462287 74.76489526 88.86002316 

 88.68232501 90.59249634 87.15753582 90.14873059 75.92481942 85.70194711 

 87.96535504 81.13566148 79.54980843] 
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CHAPTER 6 

Simulation of data and testing 

 
 

6.1 Overview 
 

 

To test how the model performs with more real life like data, few datasets were 

simulated. Some of the type of simulation which was done was: 

 Simulating Motion Blur images 

 Simulating Atmospheric turbulence images 

 Simulating Noisy images 

 Simulating Gaussian Blurring images 

 

6.2 Simulation of Motion Blur 
 

Validation dataset was used to the simulate Motion blur to the images of that dataset, 

and then tested with the model. At first the kernel was created and then the kernel 

was applied to the input image using filter2D module available in cv2.  

 

 

   

(a)         (b) 

  Figure 3 :  An illustration of the simulation of motion blur 

     (a)  Normal image  (b) Motion blurred image 
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6.2.1 Results 
 

classname: plane      classname: baseball-diamond 

ap:  0.6924784381687126     ap:  0.5934263509479027 

 

classname: bridge      classname: ground-track-field 

ap:  0.1502267573696145     ap:  0.32676635067857873 

 

classname: small-vehicle     classname: large-vehicle 

ap:  0.09090909090909091    ap:  0.321147237203076 

 

classname: ship      classname: tennis-court 

ap:  0.22886234000603503    ap:  0.620826880836447 

 

classname: basketball-court    classname: storage-tank 

ap:  0.3515151515151515     ap:  0.5260798534560256 

 

classname: soccer-ball-field    classname: roundabout 

ap:  0.3982918546280185     ap:  0.25095307917888565 

 

classname: harbor     classname: swimming-pool 

ap:  0.36856141853682617    ap:  0.322982623748434 

 

classname: helicopter 

ap:  0.30171277997364954 

 

map: 0.36964934714376324 

 

classaps:  [69.24784382 59.34263509 15.02267574 32.67663507  9.09090909 32.11472372 

 22.886234   62.08268808 35.15151515 52.60798535 39.82918546 25.09530792 

 36.85614185 32.29826237 30.171278  ] 
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6.3 Simulation of Atmospheric turbulence Blur 
 

Fast and accurate simulation of imaging through atmospheric turbulence is essential 

for developing turbulence mitigation algorithms. Recognizing the limitations of which 

were present already, a new concept known as the phase-to-space (P2S) transform 

which can significantly speed up the simulation was studied and tried to implement to 

our validation dataset.  

 

P2S is build upon three ideas:  

(1) Reformulating the spatially varying convolution as a set of invariant convolutions 

with basis functions. 

(2) Learning the basis function via the known turbulence statistics models, 

(3) Implementing the P2S transform via a light-weight network that directly converts 

the phase representation to spatial representation.  

 

This new simulator was observed to offer 300x -- 1000x speed up compared to the 

mainstream split-step simulators while preserving the essential turbulence statistics. 

Validation dataset was used to simulate atmospheric turbulence blur to the images of 

that dataset, and then tested with the model.  

 

    

   (a)       (b) 

   Figure 4  : An illustration of the simulation of motion blur 

     (a)  Normal image  (b) Atmospheric turbulence blurred image 
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6.3.1  Limitations 
 

While trying to implement this new method to our DOTA validation set, there were 

Some limitation noticed. 

 They were: 

 The present simulation can be done only on square images. 

 The present simulation can be done only on images with max size 

(1024,1024) 

 

6.3.2 Implementation and results. 
 

 For the above mentioned reasons it was taken care to reduce the images to square 

 images. Then the images which can be simulated according to the size restriction 

 were simulated and then tested with the model. The results are attached below. 

 

 classname: plane     classname: baseball-diamond 

 ap:  0.0      ap:  0.004784688995215311 

 

 classname: bridge     classname: ground-track-field 

 ap:  0.0      ap:  0.27272727272727276 

 

 classname: small-vehicle    classname: large-vehicle 

 ap:  0.09090909090909091   ap:  0.011363636363636364 

 

 classname: ship     classname: tennis-court 

 ap:  0.0      ap:  0.13114754098360656 

 

 classname: basketball-court   classname: storage-tank 

 ap:  0.36363636363636365   ap:  0.0 
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 classname: soccer-ball-field   classname: roundabout 

 ap:  0.0      ap:  0.0 

   

 classname: harbor    classname: swimming-pool 

 ap:  0.0      ap:  0.0 

 

 classname: helicopter 

 ap:  0.0 

 

 map: 0.058304572907679035 

 classaps:  [ 0.          0.4784689   0.         27.27272727  9.09090909  1.13636364 

   0.         13.1147541  36.36363636  0.          0.          0. 

   0.          0.          0.        ] 

 

6.4 Simulation of noise 
 

 

The validation dataset was used to simulate noise and then test with the 

model .Random noise module from skimage was used for the process. The mode 

used in the random noise was Gaussian with variance 0.1.  

 

      

       (a)            (b) 

   Figure 5: An illustration of the simulation of noisy 

     (a)  Normal image  (b) Noisy  image 
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6.4.1 Results 
 

classname: plane     classname: baseball-diamond 

ap:  0.7237441914887486    ap:  0.25668449197860965 

 

classname: bridge     classname: ground-track-field 

ap:  0.09090909090909091   ap:  0.09090909090909091 

 

classname: small-vehicle    classname: large-vehicle 

ap:  0.5785400169229519    ap:  0.772844252161494 

 

classname: ship     classname: tennis-court 

ap:  0.7953298630902484    ap:  0.723062320741326 

 

classname: basketball-court   classname: storage-tank 

ap:  0.23593073593073594   ap:  0.610276794788549 

 

classname: soccer-ball-field   classname: roundabout 

ap:  0.16083916083916083   ap:  0.17676767676767677 

 

classname: harbor    classname: swimming-pool 

ap:  0.7620259731904611    ap:  0.45403279473643443 

 

classname: helicopter 

ap:  0.2505827505827506 

 

map: 0.4454986136691552 

 

classaps:  [72.37441915 25.6684492   9.09090909  9.09090909 57.85400169 77.28442522 

 79.53298631 72.30623207 23.59307359 61.02767948 16.08391608 17.67676768 

 76.20259732 45.40327947 25.05827506] 
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6.5 Simulation of Gaussian Blur 
 

 

Similar to the simulation of noise mentioned above for the simulation of Gaussian 

blurs a module from skimage was used. The validation dataset was used to simulate 

Gaussian blur and then tested with the model. Gaussian filters module from skimage 

was used for the process.. 

 

    

      (a)            (b) 

   Figure 6: An illustration of the simulation of Gaussian blur 

     (a)  Normal image  (b) Gaussian blurred  image 

 

 

The resultant map was observed to be 0.1 and as we can see from the images it was 

pretty evident that the model won’t be able to perform that good. The variance was 

set to high value (0.1) to actually test the model under extreme conditions. 

 

The model was also tested with low variance (0.01) for instance and it performed well 

with map 0.45 
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CHAPTER 7 
 

Retraining the Model 

 
 

7.1  Overview 
 

To test how the model performs with more real life like data, we created more 

datasets from simulation and tested them. The results were bad and not up to the 

standards of the state of the art model. To see if the model performed well if it is 

trained with more real life like dataset, the fine tuning process was performed. 

 

7.2  Motion Blur 
 

 

For fine tuning the model to test for motion blur the training dataset (DOTA v1.,0) 

was downloaded and then the motion blur was applied to the images, after which the 

model was trained for 3 more epochs from the checkpoint file of epoch 12.  

 

Now with the new checkpoint file after training the motion blur test dataset which was 

simulated earlier is tested again. The results are attached below. 

 

classname: plane     classname: baseball-diamond 

ap:  0.897384194537383    ap:  0.8251323618666322 

 

classname: bridge     classname: ground-track-field 

ap:  0.5775343271399943    ap:  0.6855725880682307 
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classname: small-vehicle    classname: large-vehicle 

ap:  0.5952708938374129    ap:  0.7518409612469756 

 

classname: ship      classname: tennis-court 

ap:  0.7672778665054064    ap:  0.9074144931074888 

 

classname: basketball-court    classname: storage-tank 

ap:  0.7310149379101146    ap:  0.8084151495231706 

 

classname: soccer-ball-field    classname: roundabout 

ap:  0.717572047851575    ap:  0.6195425484160633 

 

classname: harbor     classname: swimming-pool 

ap:  0.7877335809810467    ap:  0.6709034171816368 

 

classname: helicopter 

ap:  0.6362059312878985 

 

 

map: 0.7319210199640688 

 

classaps:  [89.73841945 82.51323619 57.75343271 68.55725881 59.52708938 75.18409612 

 76.72778665 90.74144931 73.10149379 80.84151495 71.75720479 61.95425484 

 78.7733581  67.09034172 63.62059313]  

 

 

 

      

 



31 

 

7.3  Atmospheric Turbulence Blur 

 

For fine tuning the model to test for atmospheric turbulence blur the training dataset 

(DOTA v1.,0) was downloaded and then the process of simulating atmospheric 

turbulence to the images was done, after which the model was trained for 3 more 

epochs from the checkpoint file of epoch 12.  

 

Now with the new checkpoint file after training the atmospheric turbulence blur test 

dataset which was simulated earlier is tested again. The results are attached below. 

 

New map: 0.10015187000642735 

 

7.4  Noisy images 

 

For fine tuning the model to test Noisy images the training dataset (DOTA v1.,0) was 

downloaded and then the process of simulating random noise to the images was 

done, after which the model was trained for 3 more epochs from the checkpoint file of 

epoch 12.  

 

Now with the new checkpoint file after training the noisy images test dataset which 

was simulated earlier is tested again. The results are attached below. 

 

New map: 0.7964068823 
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7.4 Gaussian Blur  

 

For fine tuning the model to test Gaussian blur images the training dataset (DOTA 

v1.,0) was downloaded and then the process of simulating Gaussian blur to the 

images was done, after which the model was trained for 2 more epochs from the 

checkpoint file of epoch 12.  

 

Now with the new checkpoint file after training the gaussian blur test dataset which 

was simulated earlier is tested again. The results are attached below. 

 

New map:  0.2223478912 

 
 
 
 
 
 
 
 
 
 
‘ 
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CHAPTER 8 
 

 

 

8.1 CONCLUSION 
 
 

 

The state of the art model faster_rcnn_RoITrans was implemented and tested with 

DOTA dataset. We can see the model performed well with the original DOTA dataset 

with high clarity images, but when tested with simulated data the model couldn’t 

perform that well, actually performing pretty bad except some cases.  

The fine tuning process performed on the model with the simulated dataset proved 

the resultant model can perform better on those type of data. 

 

 

8.2 Future possibilities  
 

 

 

The future improvements or possibilities which can be explored with the model on the 

DOTA can be perform distillation and find out how much can we reduce the size of 

the network. One more thing which can be tried is to try changing the backbone of 

the network, trying self supervised training/learning. 
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