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ABSTRACT

KEYWORDS: Stereo, Low Light Imaging, Low light paired image dataset, Stereo

low light image enhancement, Low light stereo depth estimation

Imaging in low light is challenging due to low photon count and low SNR. Short-
exposure images suffer from noise and high-exposure images are frequently difficult
to capture in a variety of situations. Stereo depth estimation is a critical task in many
applications, including ADAS and smart phone cameras. Matching based tasks such
as stereo depth estimation are highly affected by noise in low light images. As a re-
sult, having corresponding long exposure images for low exposure noisy images aids in
improving depth estimation performance.With a paired stereo dataset, we can also in-
vestigate stereo low light image enhancement which subsequently improves the stereo

depth estimation.

In this thesis we propose a stereo low light paired dataset consisting of 2000 short
exposure stereo images, each with a corresponding long exposure stereo images. There
are 200 distinct long exposure outdoor colour stereo images ,100 distinct long expo-
sure indoor color and monochrome stereo images. Having monochrome stereo im-
ages in addition to color stereo images aids in improving the tasks like low light color
monochrome image enhancement, low light color transfer, colour monochrome stereo
image matching which are using simulated datasets in the literature. We also go over

some of the challenges that were encountered during the dataset collection process.

Following this, We explore low-light stereo image enhancement. We propose a
light-weight and fast hybrid U-net architecture guided using epipole-Aware loss that
not only enhances images for visual quality but also for improving downstream depth

estimation performance.
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CHAPTER 1

Introduction

Deep learning’s recent success has resulted in solutions to many previously challenging
problems. Computer vision, like any other field, has benefited greatly, as evidenced by
many low, medium, and high-level tasks such as edge detection, segmentation, object
detection, depth prediction, image enhancement, and so on. Quality of the image used

as input affects the performance of all vision tasks.

Images captured in low light suffer from Poisson noise, have low grey scale, and
low SNR, affecting the performance of downstream tasks and high-exposure images
which are noiseless and have High SNR are frequently difficult to capture in a variety
of situations. As a result, we’d like to enhance the low-light images so that they look

visually appealing and have high SNR without blurring or over exposed regions.

Short Exposure (Low SNR Image) Long Exposure (High SNR Image)

Figure 1.1: Low Light and High light Image pair

Stereo views of scene can help in predicting the absolute depth (unlike monocular
camera where depth is subjected to scale), construct 3d point clouds. Below we show a
image where we superposed left and right views and we can see that nearer the objects

more the disparity ,thus stereo helps in depth estimation.



Figure 1.2: Stereo Anaglyph plot

Nighttime depth estimation is a critical task in many applications like ADAS and
smart phone cameras. In low-light images, matching-based tasks such as stereo depth
estimation are heavily influenced by noise. A grid of images illustrating the same is

shown below.

Left stereo Long Exposure (High SNR Image) Amplified Short Exposure (Low SNR Image)
- g T "

Disparity from well lit stereo views

Figure 1.3: Motivation

From the above figure we see that depth from low light/exposure images are clearly

sub-optimal compared to depth obtained from high exposure images. We see that there



are two possible ways to improve depth from low light images, one is to enhance the
stereo pair of low light images maintaining the stereo consistency, later estimate depth
from enhanced images and second is supervise the depth estimation from low light
images using corresponding high light noiseless images. We see that for both possible

solutions we need a paired stereo image dataset.

In this thesis ,first we propose a stereo low light paired image dataset which has
2000 low exposure exposure images, each with a corresponding high exposure images.
or outdoor images, we have paired low-light and well-lit colour stereo images, and for
indoor images, we additionally have paired monochrome stereo images.Having addi-
tional monochrome images along with color images, helps us to improve the tasks like
low light mono color paired enhancement, low light color transfer, stereo mono color

depth estimation [[1]] for which current methods use simulated data.

Enhancing stereo images would benefit several night-time applications that need to
incorporate 3D information from the surrounding world.or example, today most self-
driving cars use LiDAR to get reliable depth estimates in low-light conditions. At the
same time cameras are inevitable for other ADAS-oriented tasks such as lane detection
and pedestrian identification. However, if high-quality restoration can be done for low-
light stereo images, the costly and bulky LiDAR may be removed for cost-efficient
products. Other applications such as bokeh effect in smartphones and AR/VR headsets

can similarly benefit from low-light stereo enhancement.

We propose a hybrid U-net architecture to restore dark stereo images in a way that
not only benefits the visual perception of individual images but also respects the epipo-
lar geometry for downstream applications and has low-time complexity for real-world
deployment, see Fig.[5.I] To benefit visual enhancement, our hybrid architecture in-
dependently processes the left and right views in the initial scale spaces because in
these scale spaces the left/right features do not align well due to large disparity. But
as the scale-space becomes coarser due to repeated downsampling, the view disparity
decreases, and the receptive field of the network increases significantly. So at coarser
scales, we channel-wise concatenate the left and right features and let the network im-
plicitly learn from both views. This not only favours epipole preservation but also
reduces a lot of computational complexity. We avoid using 3D convolutions or atten-

tion modules to keep the network fast. Though our proposed solution is quite simple, it



is very effective and has been overlooked in the existing literature perhaps because the

focus was on well-lit images.

The proposed hybrid architecture uses only 2D convolutions and so to better enforce
the epipolar constraints, we train it using an Epipole-Aware differentiable loss module.
The Epipole-Aware module computes the L1 loss between disparity obtained from the
GT views and disparity obtained from the enhanced views. A naive approach would
have used state-of-the-art depth from stereo model instead of our Epipole-Aware mod-
ule to enforce the geometric constraints. But this approach has two challenges. Firstly,
back-propagation through the depth estimation models is computationally very expen-
sive requiring multiple GPUs, and thus the primary task of training the enhancement
network will suffer due to memory scarcity. Secondly, almost every depth from stereo
model available today has been optimized for either KITTI [2] or synthetic SceneFlow
dataset [3]]. Thus, they cannot be used out-of-the-box to train networks for images cap-
tured using any arbitrary stereo setup. Our Epipole-Aware differentiable loss module
relies on classical computer vision for depth computation and has only one hyperpa-
rameter. It can thus be directly plugged in to train stereo enhancement models for any
general stereo rectified setting. The Epipole-Aware loss module is not designed to re-
place state-of-the-art stereo depth models, which if supplied a huge amount of training
data, time and memory can deliver excellent depth estimates, but to offer quick and and
light-weight coarse level depth estimates sufficient for enforcing epipolar constraints

during training.

1.0.1 contributions

* We propose a new novel low light paired outdoor color stereo image dataset with
baseline 24cm which has 1000 short exposure stereo images with a corresponding
long exposure images. It has a total 200 distinct stereo long exposure scenes.

* Aditionally,We also collected a low light paired indoor dataset of stereo color and
stereo monochrome cameras seperated by 6cm which has 1000 short exposure
images with corresponding long exposure image. It has 100 distinct stereo long
exposure scenes.

* We explore high-speed stereo image enhancement, which although an important
problem, has been largely unexplored in the existing low-light enhancement lit-
erature

* We propose an Epipole-Aware differentiable loss module which can be used out-
of-the-box for training stereo enhancement models for any arbitrary stereo recti-



fied setting.

* Our extensive benchmarking shows that our solution is not only significantly bet-
ter than most existing strategies but also offers 4 — 60 x speed-up with 15 — 100 x
lower floating-point operations.



CHAPTER 2

Related works

In this section, we discuss the various datasets related to our work, which are primarily
from two domains: low light image enhancement and stereo image depth estimation
along with it we also mention major works in image low light enhancement and briefly

discuss stereo models designed for different stereo applications.

2.1 Existing Datasets

RENOIR[4] and similar datasets were among the first to be proposed for low light
image enhancement tasks. They lack a paired well-lit image that corresponds to low
light for supervised training. We have the MIT-Adobe Sk dataset[S]], which is similar
to RENOIR[4]] but is paired. The low light levels in both datasets are not extreme.
Earlier several low-light image enhancement works used High Dynamic Range datasets
as an alternative for paired training, such as the MEF dataset. Then [6] proposed a LOL
paired dataset . Later, SID [[7]] proposed a dataset with paired low-light raw images and
well-lit PNG images. These datasets are now used for benchmarking low-light image
enhancement algorithms. There are also a few single view low light video enhancement

datasets available, such as SDSD|8]] and SMOID.[9]]

A paired low light well lit dataset was recently proposed by MID[10]. They col-
lected two views of the same scene, and the geometric relationship between the two
views is not stereo and varies from scene to scene. This dataset cannot be used for
stereo tasks because the translation varies between scenes even after stereo rectification.
Aside from these, there are many unpaired low light datasets, such as Ex-dark[11], for
a variety of tasks such as object detection, segmentation, and so on. However, these

datasets lack a paired well-lit image.

Over time, Middlebury[[12]] proposed various stereo datasets with varying illumi-
nation and exposure settings. One can use low and high exposure images as paired

datasets, but even low exposure images are bright and not close to low light images.



KITTI[2] and Cityscape[l3] are standard stereo datasets used to testbenchmark
stereo depth algorithms. However, these datasets are collected during the day. As a
result, stereo depth estimation cannot be used in low light or at night. Oxford Robocar
dataset[14] is a multipurpose stereo data set collected in all weather and time of day
conditions to improve the adaptability of stereo depth estimation models. They also
collected nighttime images, but they are noisy, blurry, and of poor quality, and they are

not paired.

2.2 Low-light image enhancement

Early methods on low-light enhancement used different variations of histogram equal-
ization to enhance the dynamic range [[15 [16]. Later, people found that exploiting
Retinex theory [17, /18] to decompose low-light images into illumination and reflectance
components aided better enhancement [[19, 20, 21]. Now-a-days, however, people use
learning based networks for better low-light enhancement [22, 23| [24]. Chen et al. [7]
proposed the famous SID dataset for extreme low-light image enhancement and the
dataset has since then motivated several works on extreme low-light image enhance-
ment [25, 26} 27, 28]]. Most of these methods had a considerable computational over-
head. Thus, few light-weight single image enhancement methods [29, 30] have also
been proposed by slightly compromising the visual enhancement. Previous works have
explored burst photography [31]] for monocular image enhancement. With the success
of learning based techniques for monocular image enhancement, they have been also

extended for for low-light video [32, 33]] and Light Field restoration [34].

2.3 Deep stereo models for different stereo applications

Stereo models have been used for wide variety of tasks such as depth estimation [35,
36,137,138, 139, 40], super resolution [41} 42, 43,144, 45, 46l]. Majority of depth models
warp stereo features to generate a 4D cost volumes (Height x Width x Disparity X
Features) and then regress using 3D convolutions to compute disparity. Although
these methods produce state-of-the-art results, using 3D convolution is computationally

expensive. To alleviate this problem, recent stereo super resolution methods [41, 44]



propose relatively cheaper attention modules. While attention modules have been ben-
eficial for well-lit images, applying them to extremely noisy low-light images may con-
fer similar improvements. Deep stereo models have also been used for stereo deblur-
ring [42], correcting double refraction [47], and image compression [48] but the task of

light-weight enhancement of extreme low-light stereo images has been barely studied.



CHAPTER 3

Proposed Dataset and Analysis

We gathered a novel real-world extreme low light paired stereo image dataset for train-
ing and benchmarking tasks such as low light image enhancement, low light depth
prediction, and so on. This dataset is known as a Stereo See in the Dark(SSD). Follow-
ing SID[7]], we collect paired short and long exposure RAW and sRGB images for each

scene.

There are 200 distinct long exposure outdoor colour stereo images captured in the
beautiful IIT Madras campus and the images were captured during midnight, when
illumination at the cameras is less than 10 lux for the majority of scenes,100 distinct
long exposure indoor color and monochrome stereo images captured primarily with low

artificial lighting. Long exposure stereo image pairs from the dataset are shown below.

Left View Right View

Figure 3.1: Sample Outdoor Image

Left colour View Right colour View Left Monochrome View Right Monochrome View

Figure 3.2: Sample Indoor Image



3.1 Camera Setup and Calibration

Two lightweight FLIR BFS-U3-88S6C-C machine vision cameras were used. Each
sesnor produces a Bayer image with a pixel resolution of 4096x2160 and a pixel width
of 3.45um. We use a TAMRON MI111FM16 lens with a focal length of 16mm, an
aperture range of 1.8 to 22, and a field of view (HxV) of 42.6° x 42.6°. The cameras
are controlled by the manufacturer’s pySpinnaker SDK toolkit.We fixed the focus and
aperture settings prior to data capture because the camera did not have an auto focus and
aperture option. We settled on a focus plane of around 20m and an aperture of f/4 after
extensive experiments and theoretical calculations with constraints of having Depth of
field in the range of Sm-40m and an upper limit of long exposure of 12s. Below we

show lens and camera

Camera Lens Settings

Figure 3.3: Camera and lens

Outdoor Setup
KITTTI dataset is used for benchmarking for many outdoor stereo depth algorithms. As
many stereo deep learning algorithms explicitly require disparity ranges for architecture
design [35} 136, 137]. For our outdoor stereo setup, we used a 24cm baseline because it
produces similar disparity/width of image ranges to KITTI [2] for a given depth range.
To correct the stereo images, we need a stable and rigid stereo rig to hold the cameras
and prevent any relative motion between the cameras. More on this in the [4.2] section.

Our final outdoor camera setup is shown below.

11



Figure 3.4: Outdoor Setup

Indoor Setup

Depth range in the indoor is very less compared to outdoor. Hence we reduce the
baseline 6cm. In indoor we add 2 mono chrome cameras. We have 2 color cameras
seperated by 6cm in the left and 2 monochrome cameras seperated by 6¢cm in the right.
Nearest color and monochrome cameras are seperated by 12cms. Below we show the

final indoor setup.

Figure 3.5: Indoor Setup

We cannot, like any other physical system, create a perfect stereo system in which

the relative pose between cameras is only translation perpendicular to the camera plane.

12



To correct this, we must stereo rectify the images after they have been captured. We
used the built-in stereo camera calibrator app in Matlab. We capture stereo checker-
board images every day before data capture to calibrate the stereo setup’s internal and
extrinsic parameters. We assume that there is no relative movement between cameras
within a single day of capture. The Anaglyph plot before and after rectification of im-

ages from our dataset is shown below.

Figure 3.6: Before rectification Stereo Anaglyph plot

Figure 3.7: After rectification Stereo Anaglyph plot

13



3.2 Protocols

To maintain consistency in the dataset, we collect data follwing specific protocols/methods
as described below.Similarly to SID[7]], we capture a long exposure image and a short
exposure image of the scene.L.ong exposure times are typically between 1s and 10s.Moving
objects in the scene blur long exposure images and causes misalignment of short-long

exposure image pairs. As a result, we only record data from static scenes.

Our dataset’s main application is image enhancement, and nighttime self-driving
cars in dark or night time environments. We collect data in extremely low light condi-
tions. Hence at each scene, we measure lux with the mobile app and primarily capture

scenes with illumination at the camera is less than 10 lux.

Gamma correction is a simple post-processing technique that increases the contrast
of an image.It is typically the final step in the image signal processing pipeline.As
a result, we disable gamma correction during data capture and, if necessary, we can

enable it during post-processing of the dataset.

To capture a low-light scene, we can use either a high exposure with a low gain/ISO
or a low exposure with a high gain/ISO. A high ISO increases quantization noise and
decrease the image SNR. Depth from stereo images is primarily estimated by comput-
ing matches between stereo pairs for each pixel.Noise has a negative impact on match-
ing.This is one of the main reasons why estimating depth at night is difficult.As a result,
for each long exposure image, we set the gain to zero and allow the exposure to be as
long as it needs to be. Not only do we want perceptually good high exposure ground

truths, but we also want the best noise performance.

Low light image enhancement using RAW images works better than SRGB images,
as demonstrated by SID[7] As a result, we capture both RAW and sRGB images for

each image.

For each scene, we take one long exposure GT image followed by five short ex-
posure images. The auto exposure algorithm is used to set the long exposure, and the
other five images are captured at 1/25th, 1/50th, 1/100th, 1/200th, and 1/250th fractions
of the long exposure images. The camera setup is untouched between long and short

exposure images. The left view images from our dataset are shown below.

14



Long Exp X X725 X/50 X/100 X/7200 X/250

Figure 3.8: Left views

In SID[7], where outdoor scenes do not have much depth and thus are not affected
by bit of wind. As the IIT Madras campus always has a light breeze passing through,
there is some blur from tree leaves in few images of our dataset. Although there is a
small percentage of misaligned pixels in a few images, we believe that this fraction is
very small and should have no effect on the deep learning model’s learning from this

data.

3.3 Dataset Analysis

We collected a stereo low light paired image dataset of 200 outdoor and 100 indoor
scenes. We attempted to capture scenes with a wide range of depth range, objects, light-
ing conditions, and exposures. In this section, we will examine the various aspects of

the dataset.

3.3.1 Basic Qualitative Analysis
Outdoor Scenes

Our dataset was collected at night on the IIT Madras campus. The IIT Madras campus
is rich in diversity, with trees, roads, buildings, vehicles, play grounds, and so on. The

image grid below is filled with various scenes.

15



Figure 3.9: Wide spread Outdoor scenes

Indoor Scenes

In Indoor setup there are two types of scenes. One type are real scenes which are
generally seen by the robot like cubicles, path, doors etc.. Other scenes are artificially
created by making cameras look on the table where depth distribution will be skewed.

We also show distribution of our indoor scenes in[3.11]

Artificial scene Real scene

Figure 3.10: Indoor scenes

16



scene

@ Atificial
® Real

Figure 3.11: Indoor Scene Distribution

Exposure pie chart

Low light scenes have a wide range of lighting conditions, including midnight moon-
light scenes, artificial street lights at various distances, and post sunset/pre sunrise
scenes. The changing factor in all of the above is the amount of light that falls on
the camera lens. A lux metre is typically used to measure this.During our capture, we
select scenes with i1llumination less than 15 lux at the lens. The greater the illumination
in the scene, the less exposure is required to capture the GT image.We observed that
for our camera setup and settings, scenes with illumination greater than 5 lux require
exposure in the range of 1 to Ss, scenes with lux less than 5 lux require exposure in
the range of 5s to 10s, and scenes with lux approximately zero require exposure greater

than 10s. A pie chart of exposure distribution in our dataset is shown below.

17



Exposure distribution

@ 1-55(>5Lux)
@ 5-10s(~0-5Lux)
=10s{~0Lux)

Figure 3.12: Exposure Distribution

Depth ranges with images

Current state-of-the-art deep learning algorithms for depth prediction are data-driven,
and network inference results are highly dependent on training data. As a result, hav-
ing scenes at different depth ranges aids the DL model’s adaptability to various real-
world scenarios.During our dataset collection, we attempted to collect scenes with near,
medium, and far depth ranges.Images of scenes with varying depth ranges are shown

below.

Near medium Far

Figure 3.13: Depth ranges

To quantify the depth distribution, we obtain disparity using [49] from well-lit
ground truth images and plot a depth bar chart. We can see that the distribution is
mostly concentrated in the medium and near depth ranges.We also have a sufficient

number of pixels in the far depth range.

18
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3.3.2 Comparison with other datasets

We will compare our collected dataset to existing datasets in the low light enhancement

and stereo depth research communities in this section. We compare with early low light

enhancement datasets like RENOIR to stereo depth KITTI datasets. We compare on

many features such as stereo, low light condition, and so on. From the below table we

can clear see that only our dataset has low light stereo paired images.

Dataset  |Stereo Pair|Night timepaired Outdoor{IndoorMonochrome
RENOIR X X X v X X
MIT-Adobe 5K X X v v X X
Middleburry v X v X v v
LOL X X v v 4 X
SID X v v v 4 X
KITTI v X X v X v
Cityscape v X X v X X
RobotCar v v X v X X
Ours 4 v v v 4 v

Table 3.1: Comparison with other datasets
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3.4 Basic Experiments

In this section, we conduct basic experiments to ensure that the dataset is usable. En-
hancement experiments are carried out in the thesis’s following chapter.Here, we run

various variations of low light stereo depth estimation experiments with the dataset.

The goal of stereo depth prediction is to determine the depth of a scene given two
stereo views of the scene.In this section, we train CFNet[36], a fast and high-performing
stereo depth estimation model, on the collected dataset. As shown in the following
sections, We train different versions possible from our dataset as shown in following

sections.

Figure 3.15: CFNet Architecture

To extract multi-scale image features from an image pair, CFnet first employs a
siamese unet-like encoder-decoder architecture with skip connections. The encoder is
made up of five residual blocks, followed by an SPP module to incorporate hierarchical
context information more effectively.Th e multi-scale features are then divided into
fused and cascade cost volume, and multiresolution disparity is predicted. Visit the

CFnet paper[36] for more information on the architecture.

Loss:CFnet is trained with GT disparity supervision and employs a torch smooth
L1 loss between predicted and GT disparity. However, we do not have supervised GT
disparity labels in our dataset . As a result, we must train in a unsupervised man-
ner.From [50]], we use two unsupervied loss functions: photometric loss and Disparity

smoothness loss.
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3.4.1 Deptht from GT images

This first experiment is performed to determine whether deep learning models can learn
depth from our dataset’s ground truth high light images. This acts as a validity check
to see if the stereo constraints in the rectified images are correct and if our dataset can
be used for depth problems.The CFnet’s input is well-lit images, and the loss to the
guide network is also from well-lit images. Because our dataset lacks depth labels,
quantitative metrics are not possible.As a result, we only show qualitative results in the

results section.

The results are shown when the network is trained on an RTX-3090 24GB GPU for

200 epochs from scratch, with a batch size of 4 and a learning rate of 0.0005.

3.4.2 Depth from low light images

The above experiment is repeated with the same settings except that depth is now es-
timated from low light images and loss is also estimated from low light images.To

conduct this experiment, we used a 1/100th fraction of the GT exposure images set.

3.4.3 Depth from low light with supervision from high light images

In this experiment, we estimate depth using low-light images, but we obtain the loss
to guide the network using well-lit GT images. To ensure an accurate and unbiased
comparison between experiments, we use only 1/100th of the GT exposure images for

training. The experimental setings are the same.

3.4.4 Results

We can see that the depth from GT is the best, which is understandable given that
these are clean, noise-free images of the scenes. We can see that supervising low light
images with high light images significantly improved performance when compared to
supervising low light images alone. This clearly demonstrates our dataset’s applicability

for stereo low light depth estimation, as discussed in the introduction section.
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High Light(HL) Depth from HL Depth from Low light Depth from LL using HL

Figure 3.16: Depth Results comparison
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CHAPTER 4

Challenges in Dataset collection

Collecting a real-world dataset for any task is a time-consuming and difficult pro-
cess.When collecting synchronised stereo low light paired low and high exposure data,
the difficulties multiply. There are numerous minor issues such as cables, scene selec-
tion, two waves of COVID, a support system to move the stereo rig, and so on, but the

following are a few of the major challenges encountered during the collection process.

4.1 Static Scene

Finding a static scene with a significant depth range of 5-40m is extremely difficult
due to numerous factors such as wind, moving animals obstructing the scene between
capture, cars and bikes, and so on. This is a major bottleneck in our data collection
process, with approximately 40 percent of scenes getting rejected or recaptured because

of this reason. The figure [4.T]depict this effect.

4.2 Geometric Challenge

It is critical to have a very rigid stereo rig in order to successfully rectify images ob-
tained from stereo cameras. We arrived at a stable rig after many iterations of improve-

ment, and a few milestone rig designs are shown below.

4.2.1 RIG V1

For a long time, stereo images have been used for a variety of tasks. A stereo rig consists
of a horizontal bar with two screws at the required distances to hold the cameras.We
researched existing stereo rigs on the internet and attempted to recreate the design for

our setup. Our initial setup is shown below.



Histogram equalised low light Images ‘Well Lit Image

Figure 4.1: The first row shows the effect of wind causing blur, the second shows the
effect of animal movement causing misalignment, and the third shows un-
expected vehicle disturbance during capture.

Figure 4.2: Rig V1

On first glance, our stereo appears to be flawless, but that isn’t the case. This setup is
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ideal for DSLR cameras but not for our cameras. DSLR cameras have an approximate
centre of mass that passes through the screw, making the entire camera very rigid and
preventing any sideward motion during the capture process.Our camera lens system
has a very heavy lens with the centre of mass not passing through the screw, which
causes movement in both the vertical and horizontal directions of the camera, causing
relative orientation R and T between cameras to change from initial calibration and
scene capture. Below we show the rectified images from our setup. The rectification

error is approximately in the order of 100 pixels.

Figure 4.3: Rectified Images from Rig V1

We considered several solutions to this problem.

1. Place a checkerboard in each scene and use it to estimate the R and T. R and T
from a checkerboard are calculated by detecting the corners of squares. To do this cor-
rectly, the checkerboard must cover a large portion of the image. This implies that the
checkerboard should be placed near the camera. Because our camera lacks autofocus,
we must touch the camera at each scene, resulting in R and T changes. As a result, this

solution is impractical.

2. Compute the SIFT features and match them for each scene to estimate R and T
using the 8-point algorithm. However, the SIFT features for nighttime noisy images are

sparse and inaccurate to be useful for rectification.

3. The best option is to build a sturdy custom stereo rig.
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4.2.2 RIG V2

To solve the problems mentioned in the preceding section, we realised that we needed
to explicitly hold cameras and lenses to restrict camera movement. So we measured the
dimensions of both the camera and the lens and came up with the design shown in the
drawing below. We manufactured the rig with the help of the IITM workshop using the

above design.

We restricted the camera’s motion in the X-Y plane by surrounding it with walls,
and we restricted the downward motion caused by the heavy weight lens attached to the
camera. The images obtained from this rig have been rectified and are shown below.
We can see that there is a significant improvement in rectification when compared to the
basic mount, but the images obtained are not still perfectly stereo rectified.The rectifi-
cation error is approximately 20 pixels. We are committed to improving the rig’s design

because we saw significant improvement in rectification error from previous design.

Design Manufactured RIG

Figure 4.4: RIG V2 design and product

We believe this is happening because the camera is only screwed to the rig and
the lens has a cantilever mechanism. So, when the rig is mounted on a tripod and taken
outside for the capture, the vibrations cause the lens to move upwards, causing a relative

change in orientation between the cameras.

4.2.3 RIG V3

To address the rig’s upward vertical movement in the final version. We created a counter

female piece (yellow part in the figure below) to sit on top of the lens.

Aside from the major changes mentioned, as with any physical system design pro-
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Figure 4.5: RIG V3

Figure 4.6: Rectified images from the final rig

cess, we have encountered numerous issues such as manufacturing defects,alignment

and so on.

4.3 Temporal alignment challenge

Our dataset is stereo image dataset. Hence there should not be any temporal difference

during the capture of images. There are two ways to capture the images:
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1. We capture all of the left images first, followed by the right view images.Although
our scenes are static, there is a slight breeze outside in some of them, causing the leaves
to move around a little bit. In such cases, capturing the images sequentially may result
in inconsistencies in the left and right views.For example, wind may be present during
the left image capture but cease during the right image capture. As a result, we must
capture both the left and right images at the same time.

LEFT

High
Exp

Figure 4.7: Serial mode of capture

2. As shown below, we can alternate between left and right images. However, the
following process is extremely slow because we must alternate between cameras and

our system must detect the camera each time.

Figure 4.8: Alternating mode of capture

3.The solution is to sync the left and right capture because it does not need to alter-

nate between cameras or go sequentially as shown below.

A GPIO port is available on our machine vision cameras. We used the triggering
circuit to connect both cameras using GPIO port. When the circuit is connected, the left
view becomes the primary (master) camera, and the right view becomes the secondary
(slave) camera. When the Python code is executed, the primary camera sends a signal

to the secondary camera, causing both cameras to begin capturing at the same time and
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High
Exp
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Figure 4.9: synchronous mode of capture

ensuring there is no temporal difference during capture.The circuit is shown below.

Qutpaut

Frirmary L i}

Ground

Secondary

Figure 4.10: Trigger circuit

4.4 Long Exposure Dark frame Noise

We noticed a random speckle in the images we took with our cameras. This effect is
very noticeable in the nighttime high exposure photos. We also noticed that as the ex-
posure increased, so did the noise. Dark noise appears to be a common phenomenon in
high exposure nighttime photography.To avoid this, we capture a dark frame immedi-
ately after the image is captured.A dark frame is an image taken with the same settings
as the photo but with the cap closed. We subtract the dark frame from the image . Below

we show the results on a zoomed patch from our dataset.

Note this subtraction removes the random brightening spots but creates few holes in
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Image Dark frame subtracted

Figure 4.11: Dark current Noise. Zoom for better viewing experience

overexposed regions. This phenomena is more prevalent as the ISO increases.

4.5 Photometric challenge

We used 2 identical cameras for the data capture but due to differences in sensor of the
cameras we are getting images of different colours. But for stereo matching we need to

have images of same color.

Left View Right View

Figure 4.12: Color Imbalance of views

1. We can solve this by including a colour calibration chart in each scene and then
post-processing to obtain the appropriate colours. This works well, but it corrupts the

Scenes.

2. We discovered that the Y channel of the captured images matches, indicating that
the problem is limited to colour matching.As a result, we considered computing a colour
correction matrix. Through SIFT matches, we can learn the colour correction matrix.As
previously stated, SIFT matching is ineffective at night.This process also results in a

global transformation, which incorrectly corrects dark and overexposed regions.

3. We used the photoshop matching white balance option to colour correct the

image after realising we needed to the local transformations. We see that the results of

30



this method are positive. but we don’t know algorithm it uses.

4.Finally we got our best resuls using histogram matching because it uses cumula-
tive distribution to find a local transformation function for different intensity ranges and
matches distribution between left and right images.The results of histogram matching
are shown below. Scikit-image histogram matching was used. We see that still there is

scope of improvement in color matching which can be explored later.

Left View color corrected right View

Figure 4.13: Histogram matched views
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CHAPTER 5

Proposed Stereo Enhancement algorithm

5.1 Dataset simulation

There is no publicly available dataset on extreme low-light stereo enhance- ment for
quantitative benchmarking. Thus following previous works [51} 52, 53], which faceda
similar challenge , we transformed KITTI2015 and cityscapes well-lit stereo images
into low-light images. But instead of naively adding Gaussian noise and darkening
the image using gamma functions we follow a more principled approach for a realistic

modelling [54] as described follows.

In real low-light conditions, the noise affects the image quality right from the point
of image acquisition by the sensor. After the sensor acquisition, the image undergoes
several transformations such as tone mapping, white balancing and gamma decompres-
sion to produce the final RGB image or more specifically the sSRGB image. Thus, to
transform well-lit camera images into low-light images we do not follow the crude ap-
proximation of simply darkening the sSRGB image and adding White Gaussian noise.
We rather follow the pipeline proposed in [54] to first transform the well-lit SRGB im-
ages into demosaiced Linear RGB images, then add the heteroscedastic noise and finally

convert them back to SRGB images.

5.2 Network Architecture

We design a hybrid U-net architecture, that accepts a pair of low-light stereo images
and outputs the restored stereo views. It is designed to enable each view to harness the
information present in the corresponding stereo view with- out using any computation-
ally expensive 3D convolutions or attention mech- anisms. Fig. 1 shows our proposed
network, which operates at 6 scale spaces: 1, 1/2, 1/4, 1/8, 1/16 and 1/32th resolution

of the input image. In the initial few scale spaces the stereo features do not align due
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Figure 5.1: Our hybrid U-net architecture restores extreme low-light stereo images
while preserving the epipolar geometry. It delivers high inference speed
because we only use 2D convolutions and enforce the epipolar constraints
by training it using the Epipole-Aware loss module. Our hybrid architecture
further reduces the computational overhead by jointly processing the stereo
features at lower resolutions which is possible due to the network’s large
receptive field and the reduced disparity between stereo features.

to large disparity. We thus process them independently by running the convolutional
kernels twice, once for each stereo feature. But as the feature dimensions reduces, due
to repeated down- sampling operations, the misalignment between the stereo features
also reduces and the network’s receptive field increases. For example, the maximum
pixel dis- parity in the KITTTI [2] dataset is between 200 to 256 and for CityScape [13]
itis even lower. So at the 1/8th resolution scale space, the maximum pixel disparity will
be 25 to 32. But our network’s receptive field just after the first convolu- tional layer
in this scale space is 36 x 36. Thus, at 1/8th resolution scale space we channel-wise
concatenate the stereo features and process them jointly for the remaining scale spaces.
This not only facilitates the exchange of information between the stereo features but
also avoids doing repeated convolutions. To save computations, we allot more convo-
lutional kernels to later scale-spaces and do not use too many convolutional kernels in

the initial scale spaces.
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5.3 Depth loss

Our hybrid U-net uses only 2D convolutions to achieve high-speed inference. We thus
train it using the Epipole-Aware Loss Module to better enforce the epipolar constraints.
The module has two components, namely the photometric loss denoted by £, and the
disparity consistency loss denoted by Lg;s,. £, computes the L1+SSIM loss between
enhanced stereo views and the ground-truth (GT) stereo views. L5, on the other hand
computes the L1 loss between disparity obtained from the enhanced views and disparity
obtained from the GT stereo views. The overall loss function £ can be thus summarised

as:

L = Eph+)\'£disp (5.1

Photometric loss: Let L., and R.,, denote the enhanced left and right stereo views,
and Lgr and Rer denote the GT stereo views. Further, let Ly (-, -) compute the dif-
ference between /; norm of the input tensors and dgg(-,-) = 1 — SSIM(-,-). The

photometric loss is thus computed as,

‘Cph = 05- [L1<LGT7 Len) + L1<RG’T7 Ren)]
+0.5- [dSSim(LGTa Len) + dssim(RGT7 Ren)} (5.2)

RHXWXS and

Differentiable E - Block: Given a pair of stereo rectified views L €
R € RPXWx3 the E - Block computes the disparity between the two views in a way

that allows back-propagation through it.

Given any pixel in the left view L we construct a M x M (in this work M = 31)
patch around it and compute a unit normalised dot product with every other patch of
same dimension in the right stereo view along the horizontal epipolar line. In this way

we construct C' € R7*W>W ‘such that each entry C; ; , in C’ is computed as:

, LP RP

.. = [ ]
e ILP[[,  [[RP][s

Vie[l,H]and ¥ j,k € [1,W] (5.3)

where, LP € RM*Mx3 ig 3 patch around the pixel (4, j) in L and RP € RM*Mx3 jg
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a patch around the pixel (i, k) in R. However, computing C; ;1 can be computationally
expensive and we prefer a lighter operation to not compromise the training of our hybrid
U-net architecture. For example, if we ignore the unit normalisation step for simplicity,
each C; ;, requires at least 3M ? multiplications. We however found that more than
the size of the chosen path, it is the context which matters more. We thus introduce
a dilation term d, wherein every d" rows and columns of the patch are considered to
compute C; k- This way only 3 (%)2 multiplications are required. In this work we set

d = 3 and experiment with this idea during the ablation studies.

C’ now has all the information required for computing a quick and coarse level

disparity. The disparity for any pixel (7, j) in L is computed as,

J — k', where k' = arg;nax(C;’j,k) (5.4)

Though argmax conventionally does not allow back-propagation, we make it dif-
ferentiable by forcing the gradients through (i, 7, £’) in C’ as 1 and all other gradient to
0. This simple workaround is also sometimes used to make the maxpooling layer differ-
entiable. More sophisticated methods like SGM [49] additionally enforce smoothness
constraints which definitely help in obtaining finer disparities. But for the extreme low-
light enhanced views, very fine textures are hard to recover and so we found coarse
level disparity good enough to train our network. This not only avoids the challenges
involved in making additional constraints differentiable but also keeps the operation

computationally light.

Once we have computed the disparity, we also compute a confidence map C €

RPXW as follows,

1 ifCl,, >V
CZ'J‘ - he (55)

0 otherwise

where W is the mean of all the entries in C’ where argmax in Eq. was obtained.

For most stereo setup we have a fair amount of idea on the maximum disparity,

diSpmaz, tequired because information such as baseline and camera focal length is gen-
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erally known. We incorporate this information to regularise C’. Specifically, we define

a new tensor C € REXWxW

szjk if 0 <j—k < dispmas
Cijk = 7 Vi€ [1,H] and j, k € [1,W{5.6)

invalid otherwise

and then use only the valid entries in C to compute the disparity and the confidence. For
all our experiments we only vary this single hyperparameter disp,,,.. Further, in the
ablation studies we show that in rare cases when disp,,.. 1S not known, it can be set to

diSpmar = 00 and the predicted disparity is still quite good.

Disparity Consistency Loss: Let, D., and C., be the disparity and confidence
map produced by the E - Block for the enhanced stereo views. Likewise, let Dgr
and Cgr be the disparity and confidence map for the GT stereo views. The disparity

consistency loss, L4, is thus computed as,

*Cdisp - Ll (DGT : Cen ' CG’T) Den ' Cen . CGT) (57)
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CHAPTER 6

Experimental results

6.1 Simulated Data results

Method Perceptual Depth Inference Speed

PSNR1SSIM{{RMSE| D1% ||CPU(s), GPU(ms), GFLOPs|

SID [77] 1632 0.696 | 7.78 222 | 2.23 30.49 200.50

SGN [26] 1630 0.692| 7.93 222

[\
p—

30.86 203.92

StereoSR* [46] 20.97 0.664 | 791 20.2 | 12.17 147.50  1101.86

PASSR* [41] | 14.86 0.699 | 6.69 189 | 38.31 473.82  2301.25

DASSR* [42] | 20.09 0.673 | 8.12 239 | 6.40 132.27 407.62

CFNet* [36] | 24.56 0.718 | 7.37 219 | 15.75 312.33  1278.44

Ours 25.16 0.726 | 5.70 17.7 | 0.35 7.47 13.12

Table 6.1: Quantitative comparisons on the KITTI dataset. The best scores are in bold
and second best underlined. Our method achieves the best performance on
all metrics while delivering real-time inference speed.

In we benchmark our method on 7 metrics: PSNR and SSIM for compar- ing vi-
sual enhancement; RMSE and D1 bad pixel percentage [2] for comparing depth com-
puted from enhanced views; and CPU time, GPU time and Floating- Point Operations
(FLOPS) for measuring inference computational complexity. For measuring compu-
tational overhead we considered the time/operations re- quired to enhance both left
and right views with full spatial resolution. We find that our method performs signifi-
cantly better than most methods while exhibiting real-time inference speed, necessary
for real-world applications. These quantitative results are also supported by the quali-

tative results shown in Fig. 3. For computing RMSE and D1 metric we have used the



(a) SID [[7] (b) SGN [26] (c) StereoSR* [46] (d) PASSR* [41]

(e) DASSR* [42] (f) CFNet* [36] (g) Ours (h) GT

Figure 6.1: The figure shows the left view enhanced by different methods, and the depth
computed using the low-light enhanced stereo views. Our method performs
significantly better than most methods. With respect to CFNet*, our visual
results are comparable but with 40x higher inference speed.

LiDAR GT available in the KITTI dataset. But as LiDAR outputs semi-dense depth,
for visual comparison in Fig. 3 we have shown the dense depth map obtained from GT
stereo views. In general, we observe that stereo methods perform better than SID and
SGN monocular methods. This is expected as monocular methods do not benefit from
the corresponding views. Further, SID uses max-pooling for downsampling which suf-
fers from gradient sparsity and transposed convolution for upsampling, which has been
reported to lower the performance [S5]. Stereo models like PASSR* and StereoSR*
do feature matching for final restoration. Contrary to their approach CFNet* uses 3D
convolutions for enhancement and thus achieves the best results compared to existing

stereo models. This is because, using attention modules or

feature correlation is beneficial for well-lit images but not for extremely low- light
images having poor contrast and large amount of noise. This fact is also evident from
Fig. 3, where the enhancement done by all previous methods except for CFNet* and
ours, suffers from the ‘Halo Artifacts’ resulting from incorrect color restoration in the
small vicinity of saturated pixels [S6, 19, 57]. This is the main reason for superior
PSNR of CENet* and our method. Finally, CFNet* and DASSR* estimate intermedi-
ate disparity to warp the views. We, however, do not leverage such ideas in our model
because view warping using disparity computed from intermediate low-light features is
prone to errors. We rather simply channel-wise concatenate the features and let the net-
work implicitly learn using 2D convolutions by enforcing epipolar constraints using the
Epipole-Aware loss module over enhanced views. Doing so not only helps our method

achieve better visual enhancement and depth estimates than all previous methods in
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both Tab. 1 and Fig. 3 but also keeps the memory footprint low.

6.2 Real Data Results

As mentioned earlier in the thesis, we collected a real light stereo paired dataset. As
we only showed results on simulated data, here to further check the applicability on
real data we show the results and both enhancement and subsequent disparity are fairly

good. We are thus quite confident that our n/w generalises to real data as well.

Real Left Our Enhanced 10sec high exp. Depth from Depth from
midnight view Left view Left view enhanced stereo high exp stereo

Figure 6.2: Real low light data results

6.3 Abalation studies

Independent Our A Perceptual Depth
Feature Extraction Feature Extraction L4, weight| (PSNR) (RMSE)
Net-I v X 0 25.26 7.82
Net-1I X 4 0 25.17 6.00
Net-III X 4 1 24.90 5.38
Proposed X v 0.1 25.16 5.70

Table 6.2: Ablation Study on the proposed method using the KITTI dataset. Our style
of feature extraction benefits epipolar constraints while only slightly lower-
ing the PSNR for visual enhancement. The table also shows the trade-off
between perceptual enhancement and depth estimation.

Tab. [6.2] reports the quantitative comparison for stereo enhancement by re-training
different versions of our method on the KITTI dataset. Results on Net-I and Net-II
demonstrates the benefit of our hybrid architecture. For Net-I throughout our U-net the

features for left and right views were processed independently. For Net-II our hybrid
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style of feature extraction, as shown in Fig. was used. Compared to Net-1, the depth
prediction metric is much better by 1.82 units while experiencing only a tiny drop of
0.09 dB PSNR. Moreover, Net-II also has computational advantages. For example, for
a 2MP image Net-I requires 77.08 GFLOPS while Net-1I only requires 57.42 GFLOPS.
We next train Net-II by including our disparity consistency loss, L5, With weightage
of A = 1. This improves the depth metric RMSE but lowers the PSNR. This perception-
depth trade-off was also noticed in [42]]. Since we wish to have both good enhancement

as well as good depth, we choose A = 0.1.
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CHAPTER 7

Conclusion

In this thesis, we propose a stereo low light paired dataset consisting of 2000 short ex-
posure stereo images, each with a corresponding long exposure stereo images. There
are 200 distinct long exposure outdoor colour stereo images ,100 distinct long exposure
indoor color and monochrome stereo images. We faced numerous challenges while
collecting the dataset, which necessitated solutions from both software and hardware
domains. With basic experiments, we also demonstrated qualitatively that our hypothe-

sis of improving night time depth estimation can be done with our dataset.

Following this, we address extreme low-light stereo enhancement which has been
almost unexplored in low light image enhancement literature. We proposed a hybrid
U- net architecture which faithfully restores the stereo images belonging to various
datasets, while preserving the epipolar geometry. The inference speed of our network
is much better than existing stereo methods because we use only 2D convolutions and
enforce the epipolar constraints during training by using the epipole-aware loss module.
We showed that this module can be used out-of- the-box for training on different types
of datasets such as KITTI and our proposed dataset.Our network is close to real-time
and offers 4 to 60x speedup with 15 to 100x lower floating-point operations compared

to existing strategies.
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