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ABSTRACT

KEYWORDS: Low-light, Convolutional Recurrent Neural Networks, Gamma

correction, U-Net, audio signal processing

Images and videos make up a significant part of the digital world. Illumination is a

key factor in ensuring quality specifically for videos. Although significant research

exists for image enhancement, the quality suffers greatly when it comes to videos due

to lack of temporal consistency. This task hasn’t received much attention as collecting

pair-wise low and normal light videos is almost an impossible task.

In this project, we have looked at low-light image conversion algorithms and extend-

ing it to videos while ensuring temporal consistency using the idea of parameter sharing.

This was used to create a dataset of 143 paired low-light and normal light videos along

with their corresponding audio features as a wav file. Additionally, a RGB-to-RGB low

to normal light video conversion algorithm was implemented using existing 3D U-Net

architectures. The model took low-light videos as input and produced the corresponding

normal light videos as output while maintaining temporal consistency.

The last step of this research was to introduce another parallel branch to also allow

for audio signal processing. This was implemented using Convolutional Recurrent Neu-

ral Networks (CRNNs) in tandem with the existing U-Net architecture. The key idea is

to explore if audio signals add valuable information to the low-light video enhancement

task. Comparable results were produced both models warranting for further research

and studies into the topic.
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CHAPTER 1

INTRODUCTION

This chapter is an introduction about images and videos, specifically the low-light

videos and the current models that go into conversion from one to the other. The spe-

cific differences between low-light images and videos and ones in normal setting are

discussed along with challenges in converting one from the other. A quick review of

the previous works and an introduction to the idea proposed is also mentioned.

1.1 Introduction to Images and Videos

Images and videos are an integral part of the world we live in today. Most camera

systems in the world are looking to develop state of the art technologies in hardware

and software for camera and imaging models. However, there are many challenges that

go into creating a model that can produce clear and sharp visuals. The modern digital

camera uses an aperture that opens on the click of a button allowing light to pour into the

lens. Electronic equipments capture the incoming light rays and convert it into electrical

signals using either a charged coupled device (CCD) or a CMOS image sensor. There

are numerous challenges that come with this system like noise and blur, resolution,

etc. Specifically, here we are dealing with environments that have low-lights. In such

settings, image acquisition devices do not receive sufficient light sources resulting in

outputs with low brightness and contrast of images. This poses a great challenge for

other computer vision tasks that need to be performed. This has developed an entire new

area of computer vision that deals with low-light enhancement algorithms. Low-light

image enhancement (LLIE) and Low-light Video Enhancement (LLVE) deals with a set

of algorithms that aim at improving the perception, interpret-ability and visual appeal of

images and videos that were captured in settings where the illumination is significantly

poor. The next section deals with the specific challenges that are present in images and

videos that are shot in low-light settings.



1.2 Challenges with low-light settings

The main challenge with videos taken in extreme low-light conditions is the lack of

visibility. Illumination between a low-light night and a sunny day can vary by more

than 10 orders of magnitude. The obstacles are characterised by low dynamic range

and high amounts of noise. This prevents computer vision algorithms from performing

properly. In low-light settings, sensor noise cannot be ignored due to very poor SNR

(signal-to-noise ratio). Noise in itself can come primarily from 2 sources, the recorded

video and the measuring device. Enhancement algorithms attempt to model the signal

and the noise and consequently enhance the image.

Figure 1.1: Early works in low-light video enhancement that attempts to model signal
and noise without deep learning techniques.

However, recent data-driven attempts at enhancing algorithms using modern deep

learning techniques implicitly learn these signal and noise models and give satisfactory

results. A major challenge to training such algorithms is the lack of pixel-wise paired

training datasets for low-light and normal light videos as it is impossible to collect real

temporally consistent data under controlled settings with sufficient diversities and scale

and noise of identical characteristics. Most of the current research in this field use single

image methods that lead to results which are temporally inconsistent. Additionally, here

the final attempt is to try and incorporate audio from the original videos as an addition

to the feature space to see if that improves the performance of these models. Hence, the

dataset required would comprise of 3 things, a low-light video with low SNR, a normal

light video with high SNR and the corresponding audio files for these videos. Such a

dataset as expected is not available currently.
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1.3 Organization of Thesis

The outline of the thesis is as follows. The second chapter deals with the an elabo-

rate description of the various methods explored to generate the dataset needed for this

project. In chapter 3, the model for low-light video enhancement that does not use the

audio files of the dataset is explored in more detail. Chapter 4 tries to explore adding

audio features to this dataset as an additional feature space to see if any significant

increase in output quality and SNR can be made. Finally, Chapter 5 concludes the the-

sis with the future scope of this project and further work that can be done. Appendix

contains some additional results that were obtained from the models. Images and over-

all comparisons of performance are all done for the relevant models in the concerned

chapters. References for this project have been cited at the end of the thesis.
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CHAPTER 2

DATASET

Creating a dataset curated for this experiment is a very big challenge. We require 3

modes of data to perform the experiments proposed. Low-light videos, their corre-

sponding normal light videos and the audio files. Another caveat is that the audio files

must match the action being performed in the video. For instance, a video of a race car

on track must have the audio of the race car’s motion and not that of the commentator

talking. This is because unless the audio has information relevant to the motion being

tracked in the video, the chances of presenting any useful information is very minimal.

2.1 Existing datasets

The dataset that is relevant to this project is the one that is used for multi-modal re-

search. Multi-modal research focuses on problems that involve both audio as well as

video aspects of the data to generate insights, create new videos and several other tasks.

Hence, they contain two of the required modes of input data. Here, we have used some

of the videos from the following datasets.

Table 2.1: Existing datasets in LLIE and LLVE research

Name Number Format Real/Syn Video Audio
LOL 500 RGB Real No No
SICE 4413 RGB Real No No

MIT-Adobe FiveK 5000 raw Real No No
SID 5094 raw Real No No
DRV 202 raw Real Yes No

SMOID 179 raw Real Yes No

The Audio-Visual Event (AVE) dataset Tian et al. (2018), that contains 4143 videos

covering 28 event categories and videos. The dataset covers a wide range of audio-

visual events (e.g., man speaking, woman speaking, dog barking, playing guitar, and

frying food etc.) from different domains, e.g., human activities, animal activities, music



performances, and vehicle sounds. Each event category contains a minimum of 60

videos and a maximum of 188 videos, and 66.4% videos in the AVE contain audio-

visual events that span over the full 10 seconds. Audioset Gemmeke et al. (2017) is

another very large dataset created and maintained by the Machine Perception group

at Google. It contains 632 audio event classes totalling 2,084,320 human-labeled 10-

second sound clips drawn from YouTube videos.

Since creating a real time database like this is not possible, the next step is to go for

synthetic creation of databases. Doing this would require to convert the normal light

settings videos from the databases mentioned above into low-light settings.

2.2 Previous works

There are ways in which people have tried to convert normal setting videos into low-

light. They are broadly in two categories, histogram based methods and data drive

approaches.

2.2.1 Histogram based methods

There are previous works on converting low-light images to normal settings and vice-

versa using methods like CLAHE (Contrast Limited Adaptive Histogram Equalization)

and Histogram matching Banik et al. (2018). There are two commonly seen challenges

with these methods that make them unsuitable for our task. Firstly, most of these meth-

ods work with black and white images. Significant results are not seen when applied to

RGB color images. Secondly, works that deal with extending these methods to videos

involve applying the same algorithm to each frame that fails to take into account any

temporal consistencies in the final output.

2.2.2 Data driven approaches

This is a relatively new area and there are very limited approaches available here. One

method proposed is shown in Triantafyllidou et al. (2020). The model proposed con-

verts normal setting videos into low-light with a high degree accuracy and visual cor-
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rectness.

Given the lack of available real short, long exposure video pairs the model uses a

two-step approach that leverages data synthesis. The first step, involves training a dual

CycleGAN model for the purposes of data synthesis. The dual CycleGAN maps video

frames to a domain characterised by short exposure images. A domain bridge (e.g. long

exposure images) is used to regularise the mapping with available paired supervision.

The trained CycleGAN permits videos ‘from the wild’ to be projected into the long and

then short exposure domains, thereby generating the necessary paired supervision. The

second step, utilises this synthetic data to train a forward model capable of mapping

low-light video RAW to long exposure RGB.

Figure 2.1: SIDGAN architecture that uses an intermittent domain to bridge the gap be-
tween the required input-output pair to generate synthetic low-light videos.

The proposed model SIDGAN, is modelled as a set of two CycleGANs in a dual

configuration that learns the domain distributions for three domains; A, B and C. The

model architecture is shown in Figure 2.1 and the domain B-C CycleGAN is shown in

more detail in Figure 2.2. Domain A is characterised by a set of video frames defined

by probability distribution {Vi}Ni=1 ∼ pA. The set of N videos from this domain are

available for training. Similarly, they have considered M long exposure still images

6



Figure 2.2: Visualisation of the Domain B-C CycleGAN, a sub-component of the com-
plete dual CycleGAN architecture shown in Figure 2.1.

{Li}Mi=1 ∼ pB (domain B) and T short exposure still images {Si}Ti=1 ∼ pC (domain C).

2.2.3 Challenges with approach

While the above mentioned approach works very well for our purpose there are some

challenges with using this method. The first is that the entire code for implementing

this model is not currently made publicly available. Only excerpts and certain aspects

are the code are available which makes it unsuitable to be directly implemented.

The second challenge is with training the model itself. They have employed the

Vimeo-90K dataset Xue et al. (2019) to translate real-world videos into the low-light

sensor specific domain. The dataset has 91, 701 septuplet samples, each containing 7

video frames of resolution 448×255. For the sensor-specific long and short exposure

domains (i.e. domains B and C), they have used the Dark Raw Video (DRV) dataset

Chen et al. (2019), which contains 224 low-light raw video data and corresponding

long-exposure images. The intermediate domain B is represented by the long exposure

DRV RGB images while for domain C, the provided preprocessed DRV short exposure

RAW video frames were used. Since there are no pre-trained models available, re-

writing and then training these models from scratch is computationally very expensive

and not viable. Hence, this model could not be used directly for our purposes.

7



2.3 Proposed solution

As discussed earlier, low-light images differ from normal images due to two dominant

features: low brightness/contrast and the presence of noise. In the proposed low-light

synthesis pipeline, a transformation is fit onto the normal image to convert it into un-

derexposed low-light image. The combination of linear and gamma transformation can

approximate this job well.

2.3.1 Gamma correction

Gamma correction is a non-linear operation that is used to encode or decode luminance

in image systems. It controls the overall brightness of the image. In the simplest cases,

gamma correction is governed by the power-law expression

Vout = AV γ
in (2.1)

A gamma value γ < 1 is sometimes called an encoding gamma, and the process of

encoding with this compressing power-law non-linearity is called gamma compression;

conversely a gamma value γ > 1 is called a decoding gamma, and the application of

the expansive power-law non-linearity is called gamma expansion.

2.3.2 Pipeline for images

The proposed pipeline for images consists of two steps: the first is a transformation that

is applied on the image and the second is the noise function. This is shown clearly in

Figure 2.3.

The low-light image transformation can be described as

I
(i)
out = 255× β ×

(
α× I

(i)
in

255

)γ

, i ∈ {R,G,B} (2.2)

where α and β are linear transformations, the Iγ represents the gamma transforma-

tion. The values of α, β and γ and how changes in their values can affect the final out-
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come are discussed at a later section. The final values chosen are α from U ∼ [0.9, 1),

β from U ∼ [0.5, 1) and γ from U ∼ [2, 3.5).

As for the noise, the model takes this into account by using the Gaussian-Poisson

mixed noise model and simulate real low-light noise.

Figure 2.3: Pipeline used for generating low-light images.

2.3.3 Variation of α, β and γ

α, β and γ are the 3 parameters that control the low-light image transformation as

described in Equation 2.2. Since the image as a 3 channel RGB image, all the three

parameters are applied to the 3 channels without any change in value for a given pixel.

The variations in the alpha parameter can be seen in Figure 2.5. The best visual fit for

a low-light image appears at around α = 0.95. Hence alpha is sampled from a uniform

distribution within the limits [0.9, 1) to ensure diversity in output sample.

The variations for the β parameter can be seen in Figure 2.6. The parameter was

9



Figure 2.4: Variation of image quality with changes in α parameter keeping β at 0.75
and γ at 3. The best results are when α lies in the range of [0.9, 1).

Figure 2.5: Variation of image quality with changes in β parameter keeping α at 0.95
and γ at 3. The best results are when β lies in the range of [0.5, 1).

10



varied across 3 values in 0.5, 0.75 and 1.5. Again, it is clear that the values around 0.75

give the best fit for a typical low-light image. Similar to the α parameter, β parameter

was sampled from [0.5,1) to ensure diversity and scale in the output images.

Lastly, variations of the γ parameter can be seen in Figure 2.7. The parameter was

varied across 3 values in 1,3 and 5. The best fit was obtained for values around 3. The

γ parameter is varied between [2, 3.5) for the final output images generated.

Figure 2.6: Variation of image quality with changes in γ parameter keeping α at 0.95
and β at 0.75. The best results are when γ lies in the range of [2, 3.5).

2.3.4 Temporal consistencies in videos

When the above model was applied directly to videos, frame by frame, there was a

significant lack of temporal consistency. Lots of flickering was observed between the

frames. In order to avoid this, a parameter sharing was proposed between the frames

and applied pixel wise. It is governed by the equation

Pt = w0 ∗ Pt + w1 ∗ Pt−1 + w2 ∗ Pt−2 (2.3)

11



where Pt refers to the parameters α, β and γ for frame t, 1 ≤ t ≤ Nframes. Also,

w0 + w1 + w2 = 1. They were assigned as 0.5, 0.3 and 0.2 respectively.

2.3.5 Advantages of using this method for low-light conversion

There are some existing datasets for low-light image enhancement. However, these

datasets still have their own limitations. In this section, the differences between the syn-

thetic dataset and other low-light image enhancement datasets have been highlighted,

to show that this synthetic dataset is a good complement to existing datasets.

Low-light ranges: Covering a large range of low-light conditions is an important

factor for the generalization capabilities of the trained models. Given that the model

parameters, namely alpha, beta and gamma are taken from a uniform distribution ran-

domly, this generates sufficiently varying degrees of illumination and thus ensures that

the models trained on this dataset generalize well to all degrees of illumination condi-

tions.

Scale and diversity: Having a large dataset with diverse scenes and lighting con-

ditions is significant for training a model that can generalize well. Manually collecting

images or editing images as in other datasets is a costly and time consuming process,

which make it hard to acquire data at scale. Therefore, existing datasets are all rela-

tively small in size. In contrast, since this data generation is based on simulation, it can

synthesize paired low-light and normal light images as much as needed for different

scenes.

Compatibility Beside making the visual quality more appealing, improving the per-

formance of other vision systems under low-light conditions is another important appli-

cation for low-light enhancement. However, existing datasets do not contains manual

annotations as they are only designed for visual quality enhancement. In contrast, the

synthetic dataset can directly use existing public datasets to render low-light images and

keep their corresponding annotations, such as bounding boxes for object detection and

semantic segmentation masks. Thus, the synthetic dataset also has potential ability to

improve the performance of fundamental vision methods to handle low-light conditions,

such as object detection and semantic segmentation, etc.

12



Figure 2.7: Difference between converting without sharing any parameters and con-
verting with sharing parameters. The red bound boxes clearly indicate the
difference in quality seen.
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Figure 2.8: Another example of the difference between converting without sharing any
parameters and converting with sharing parameters.

14



CHAPTER 3

Basic video enhancement model without audio

This chapter of the report deals with the first part of video enhancement algorithms

that were tried out. Before directly moving to using audio features, first a direct video

enhancement using just the paired input, output features were tried out. The next chapter

deals with extending this architecture to incorporating audio features as well.

There are many research works that explore the applications of deep convolutional

neural networks for image-to-image restoration tasks (Shelhamer et al. (2017), Chen

et al. (2017)). Recent developments in the field of U-Net architectures (Chen et al.

(2018)) have shown very good results.

Based on this, the proposed architecture for this model was also taken to be a U-

Net architecture. The U-Net video enhancement pipeline proposed by Jiang and Zheng

(2019) was chosen as the basis on which the architecture was built.

3.1 Architecture used

The architecture initially proposed by Jiang and Zheng (2019) was used as the baseline

for this model. However, this architecture was initially proposed for conversion of RAW

sensor data in GRGB Bayer format into RGB color output as videos. Given, that here

we already have RGB images as input, the initial layers of the model were accordingly

modified to accommodate this change.

3.1.1 U-nets

Semantic segmentation, also known as pixel-based classification, is an important task

in which we classify each pixel of an image as belonging to a particular class. U-net

was originally invented and first used for biomedical image segmentation. Its architec-

ture can be broadly thought of as an encoder network followed by a decoder network.



Unlike classification where the end result of the the deep network is the only important

thing, semantic segmentation not only requires discrimination at pixel level but also a

mechanism to project the discriminative features learnt at different stages of the encoder

onto the pixel space.

The encoder is the first half in the architecture diagram. It usually is a pre-trained

classification network like VGG/ResNet where you apply convolution blocks followed

by a maxpool downsampling to encode the input image into feature representations at

multiple different levels.

The decoder is the second half of the architecture. The goal is to semantically

project the discriminative features (lower resolution) learnt by the encoder onto the

pixel space (higher resolution) to get a dense classification. The decoder consists of

upsampling and concatenation followed by regular convolution operations.

There were multiple reasons for adopting this particular architecture as the baseline.

First and foremost was the ease with which a parallel audio processing encoder architec-

ture could be added to a U-Net. More on this topic will be discussed in Chapter 4, when

audio features spaces will be talked about. Secondly, low-light image enhancement al-

gorithms directly applied to each frame of a video can easily cause flickering problems.

To avoid such drawbacks and take advantage of temporal information, 3D convolution

layers were adopted in this particular network to substitute for traditional 2D ones. All

the layers were not directly upgraded to 3D convolutional layers. As shown in the

paper, 2D pooling and deconvolution layers help networks perceive abstract elements

in feature maps whereas 3D versions of them could mishandle sequential temporal in-

formation. Hence this particular modified U-Net combined 3D convolutions and 2D

pooling/deconvolutions together to better integrate spatial-temporal information.

3.1.2 Model summary

Figure 3.1 illustrates the U-net architecture that was used. Like the standard u-net, it

has an analysis and a synthesis path each with four resolution steps. In the analysis

path, each layer contains 3 × 3 × 3 convolutions each followed by a rectified linear unit

(ReLu), and then a 2 × 2 × 2 max pooling with strides of two in each dimension. In the

synthesis path, each layer consists of an up-convolution of 2 × 2 × 2 by strides of two in
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Figure 3.1: The standard 3D U-Net architecture as used in the model. The number of
channels is mentioned above each block.

each dimension, followed by 3 × 3 × 3 convolutions each followed by a ReLu. Shortcut

connections from layers of equal resolution in the analysis path provide the essential

high-resolution features to the synthesis path. In the last layer a 1×1×1 convolution

reduces the number of output channels to the number of labels which is 3 in our case.

3.2 Implementation

This model was trained on videos taken from the AVE dataset mentioned above. Since

there are currently no constraints on the audio present in these videos and the content

within the videos as well, this model was trained on 10 sec clips at 25fps. Learning

rate was set to 10−4 initially and dropped to 10−5 after 15 epochs, 10−6 after 30 epochs.

Training process proceeded for 70 epochs. The model used the L1 loss (see Equation

3.1).

L1loss =
H∑
i=1

W∑
j=1

C∑
k=1

T∑
t=1

|yi,j,k,t − ˆyi,j,k,t| (3.1)

where H x W represents the dimensions of the image, C refers to the three R,G,B

channels and T refers to the total number of frames within the given video clip.

The Adam optimizer was chosen for this particular problem. Adam (Kingma and Ba

(2015)) is an adaptive learning rate optimization algorithm that’s been designed specif-

ically for training deep neural networks. Adam can be looked at as a combination of
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RMSprop and Stochastic Gradient Descent with momentum. It uses the squared gra-

dients to scale the learning rate like RMSprop and it takes advantage of momentum by

using moving average of the gradient instead of gradient itself like SGD with momen-

tum.

mt = β1mt−1 + (1− β1)

[
δL

δwt

]
(3.2)

vt = β2vt−1 + (1− β2)

[
δL

δwt

]2
(3.3)

m̂t =
mt

1− βt
1

(3.4)

v̂t =
vt

1− βt
2

(3.5)

wt+1 = wt − m̂t

(
αt√
v̂t + ϵ

)
(3.6)

where mt represents aggregate of gradients at time t, wt represents weights at time

t, αt represents learning rate at time t, represents derivative of loss function and δwt

represents derivative of weights at time t. β1 and β2 are generally constants fixed at 0.9

and 0.99.

3.2.1 Results

Figures 3.2 and 3.3 show the results of running this model on two low-light videos

from the synthetic dataset that was generated. The first column shows the low-light

video and the right side shows the normal setting video produced as output from the

model. Visually, the model seems to do a fair job at enhancing the video. Metrics for

comparing the outputs of this model using parameters like SNR (signal-to-noise ratio),

SSIM (Structural Similarity) and MSE of MABD (Mean square error of Mean Absolute

Brightness Differences) have been discussed in the next section.
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Figure 3.2: Example of low light video frame and the converted normal light video
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Figure 3.3: Another example of low light video frame and the converted normal light
video
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CHAPTER 4

LLVE with Audio features

There is currently no research that has been done on enhancing low-light videos using

the audio features as information to augment the modelling. This is for varied rea-

sons. The concept of low-light video enhancement as a topic has still not gained wide

popularity. There are not many datasets available to do this kind of processing. The ar-

chitectures that do perform low-light video enhancement either work with RAW sensor

data Chen et al. (2019) or work with doing this operation frame by frame rather than

taking temporal consistency into account Lv et al. (2018).

4.1 Dataset

Details about the dataset that has been used for this problem has been discussed at length

in the first chapter. However, not all videos can be used directly for this application.

4.1.1 Assumptions

There are some assumptions that need to be kept in mind before attempting to include

audio features in this kind of a problem.

Firstly, the audio itself needs to be related to motion that is happening within the

video. For example, in a video that illustrates a car on a race track, audio about the

car’s motion as it passes by is acceptable but some other overlapping audio, for instance

that of a commentator talking about the driver’s speed or performance would not be

acceptable. This constraint poses a major challenge on the nature and kind of videos

that can be used for this experiment.

Secondly, the video itself should have only one central object whose motion we are

tracking. A video of plane or a car or a person walking or kicking a ball is acceptable

but if there are multiple objects within the video, then it would not be possible to track

which object is causing the sound and which motion we should track.



4.2 Overall architecture

As mentioned earlier here, we have two kinds of inputs that need to be processed, the

video files and also the corresponding audio inputs. Additionally, given the limited

amount of training dataset available, the aim was try to utilise transfer learning from the

previously trained U-Net architecture to better utilise the weights learned.

Figure 4.1: Overall multi-modal architecture for Low-light video enhancement using
audio features as well

Figure 4.1 shows the overall architecture for how the system works. The U-Net

architecture from the previous model is borrowed. The same trained final weights have

also been used to introduce some amount of transfer learning into the model. The

analysis part of the previous U-Net remains the same. After the last max pooling,

the output feature map is flattened. Parallely, another branch converts the audio files

into a Mel spectrogram (this is not part of the model and is actually done separately

and the Mel spectrogram is directly fed into the model). The Mel spectrogram passes

into a CRNN (Convolutional Recurrent Neural Network) explained later that is simply

concatenated to the existing flattened U-Net. Rest of the architecture again remains the

same as the U-Net with the filter sizes modified to accommodate the changes in the

feature shape and size.
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4.2.1 Spectrograms

Spectrograms are a means of using CNNs to work with audio data. A spectrogram of a

signal plots its spectrum over time. It plots time on the x-axis and Frequency on the y-

axis. It is as though, the spectrum is taken again and again at different instances in time,

and then joined all together into a single plot. It uses different colors to indicate the

amplitude or strength of each frequency. The brighter the color the higher the energy

of the signal. Each vertical ‘slice’ of the spectrogram is essentially the spectrum of the

signal at that instant in time and shows how the signal strength is distributed in every

frequency found in the signal at that instant. Spectrograms are produced using Fourier

Transforms to decompose any signal into its constituent frequencies.

Figure 4.2: Samples of spectrograms of the audio signal that is present

Figure 4.2 shows the spectrogram of some of the signals present in the dataset that

was collected. It is very clearly evident that no clear information can be found from
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this image. The spectrograms all look very highly correlated and running these through

any CNN model would not yield any conclusive results. Hence, there is a need for Mel

spectrograms.

4.2.2 Mel spectrograms

Mel spectrograms are essential the same as the spectrograms but are viewed on the Mel

scale. The Mel scale mimics how the human ear works, with research showing humans

don’t perceive frequencies on a linear scale. Humans are better at detecting differences

at lower frequencies than at higher frequencies.

Figure 4.3: Corresponding Mel spectrograms of the audio signals shown in Figure 4.2.
It is evident that a lot more differentiation and features can be seen.

Figure 4.3 shows the same samples as that seen in Figure 4.2 but this time, the spec-

trograms are computed on the Mel scale. The images now have a clear distinction and
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feature maps with significant information can be generated from this images. Hence

these were used as inputs into the CRNN model instead of directly using the spectro-

grams.

4.2.3 CRNNs

The Convolutional Recurrent Neural Networks is the combination of two of the most

prominent neural networks: CNN(convolutional neural network) followed by the RNN

(Recurrent neural networks). They have been shown to generate optimal results in

audio signal processing tasks where temporal information is important Nasrabadi et al.

(2014).

The architecture used here for audio signal processing has been borrowed from Nas-

rullah and Zhao (2019) with minimal changes to the pipeline except the last layer which

has been flatten to combine with the U-Net semantic part. Figure 4.4 shows the pipeline

for the same.

Figure 4.4: The audio processing part as shown in Nasrullah and Zhao (2019). Only
modification is done to the last layer to flatten out the feature space.

The model has been trained on the synthetic dataset created as part of this project. It

has 143 pairs of low-light and normal settings videos and their corresponding audio files

which have been converted into Mel spectrograms as illustrated above. The same Adam

optimizer and L1 loss with same training parameters were used to ensure comparability

between the two models.
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4.3 Results

The results for the two runs can be seen in Figure 4.5 and Figure 4.6. Visually it is quite

difficult to discern any differences between the two outputs. Hence, some performance

metrics were used to evaluate these video based tasks.

4.3.1 Performance metrics

Three performance metrics were used to evaluate the results obtained on the models.

The first two are PSNR (peak signal-to-noise ratio) and SSIM (Structural Similarity).

They are commonly used metrics for evaluating performance on video based tasks.

Additionally a third metric called MSE of MABD (Mean square error of Mean Absolute

Brightness Differences) Jiang and Zheng (2019) was also used as it directly correlates

to the task at hand

Peak signal-to-noise ratio (PSNR): The term peak signal-to-noise ratio (PSNR) is

an expression for the ratio between the maximum possible value (power) of a signal

and the power of distorting noise that affects the quality of its representation. Because

many signals have a very wide dynamic range, (ratio between the largest and smallest

possible values of a changeable quantity) the PSNR is usually expressed in terms of

the logarithmic decibel scale. There are multiple ways of calculating PSNR (Nasrabadi

et al. (2014)) for a video sequence as shown in this paper. Here, the first method of

calculating the PSNR of individual frames is used. The final PSNR is the average of all

individual frames.

PSNRvid =
1

N
∗ 10

N∑
i=1

log
2552

MSEi

(4.1)

MSEi =
H∑
i=1

W∑
j=1

3∑
k=1

(xi,j,k − yi,j,k)
2 (4.2)

Structural Similarity (SSIM): Structural Similarity Index compares images on 3

key metrics: luminance, contrast and structure. The comparison between the two im-

ages is performed on the basis of these 3 features. This system calculates the Structural

Similarity Index between 2 given images which is a value between -1 and +1 where a
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value of +1 indicates that the 2 given images are very similar or the same (often adjusted

to [0,1] scale). Similar to PSNR, SSIM is calculated as average over all frames.

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4.3)

where µx and µy are averages of x and y image intensities and σ2
x and σ2

y are cor-

responding variances. σxy is the covariance between x and y. C1 = (K1L)
2 and

C2 = (K2L)
2 where L is the dynamic range (255 for RGB space) and K1 = 0.01 and

K2 = 0.03.

Mean Absolute Brightness Differences (MABD): As described in the paper Jiang

and Zheng (2019), MABD can be viewed as a general level of time derivatives of bright-

ness value on each pixel location. It is calculated by the following equation for an RGB

image.

MABD(t) =
1

3MN

M∑
i=1

N∑
j=1

3∑
k=1

|brt+1(i, j, k)− brt(i, j, k)| (4.4)

where (M,N) are the frame dimensions, brt(i, j, k) is the brightness of the pixel at

location (i, j, k) at frame t with t being in the range of 1 ≤ t ≤ Nframes.

The metric can be directly plotted as a vector over the frames or its MSE can be

computed over all frames and used as a quantitative parameter to evaluate the outputs.

4.3.2 Frame wise comparisons

Given that there is very limited data to observe the results, two things were considered.

One, the weights from the previous model were used as priors while training this model.

Secondly, the model was evaluated using a stratified 6-fold approach as shown in Yi-

were and Rhee (2019). The entire dataset was split into test and train (120 videos and

their audio files for training and the rest for testing).

Figure 4.5 and Figure 4.6 show the outputs obtained from the two models. It can be

seen that there is a small improvement in the color and sharpness of images in some of

the frames. But visually the improvement is not very clear.
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Figure 4.5: Results on the two models. First column shows the low-light video, the sec-
ond column shows the converted video frames without using audio features
and the third shows with audio features
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Figure 4.6: Another example of the results on the two models. First column shows
the low-light video, the second column shows the converted video frames
without using audio features and the third shows with audio features
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Given that visually, the outcome of the two models is not very clear, some perfor-

mance metrics mentioned above were evaluated. The Table 4.1 shows the final perfor-

mance metrics as evaluated over the original LLVE U-Net architecture as well as the

modified one using audio features. Individual metrics for each fold are shown included

in the Appendix.

Table 4.1: Overall performance comparision between the two models

Metric Used LLVE without Audio LLVE with Audio
PSNR 22.16 23.24
SSIM 0.72 0.73

MSE(MABD) 21.67 23.28

As can be seen from the table above, there is a slight improvement in the PSNR and

SSIM for LLVE with Audio features when compared to those without using the Audio

features. However, the MSE(MABD) is better for the first case. The improvement,

however, is very small. This can be attributed to two factors, first the lack of diversity

in training data. (Refer appendix for information on event classes of synthetic data

generated). Secondly, the architecture used to process the audio files is quite simple.

More complex architectures using optical flow can be experimented with to generate

greater increase in PSNR and SSIM.
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CHAPTER 5

Conclusions and Future Work

Through this project, the aim has been to look at whether adding audio features to low-

light video enhancement can improve the performance of these algorithms.

We have looked at a new way of generating synthetic low-light videos that takes care

of the flickering problem by modifying existing low-light image synthesis pipelines that

use gamma correction. This has been used to generate new videos for the project.

The first model is adapted from existing U-Net architecture that directly converts

low-light RGB videos to normal light. This was used as the benchmark to compare

with adding an additional branch in parallel that takes care of the audio input. The

audio input was fed into the network by converting it into Mel spectrograms and using

CRNNs to generate feature maps. There seems to be some improvement in the final

output as a result of using audio features as well. However, the improvement is quite

small due to constraints on the kind of videos that can be processes as well as the

diversity present within the videos.

Future works could include generating and expanding over the dataset using the

method proposed. More complicated architectures that utilise optical flows and/or more

deeper CRNN architectures to analyze audio spectrograms can generate a greater in-

crease in PSNR and SSIM. Future works could also include looking at dual and spatial

audio which would contain more information. The network could also be modified

for very specific applications including re-animating damaged video files, improving

CCTV footages taken at night, etc.



APPENDIX A

Tables

Table A.1: Synthetic Data distribution

Event name Number of videos
Car 46
Bus 22

Train 18
Plane 15
Bike 14
Ball 10

Kicking 10
Animal 8
Total 143

Table A.2: Results for 1st fold in the stratified 6-fold training

Metric Used LLVE without Audio LLVE with Audio
PSNR 22.35 22.39
SSIM 0.712 0.721

MSE(MABD) 22.61 24.18

Table A.3: Results for 2nd fold in the stratified 6-fold training

Metric Used LLVE without Audio LLVE with Audio
PSNR 24.14 25.1
SSIM 0.732 0.74

MSE(MABD) 20.04 21.24



Table A.4: Results for 3rd fold in the stratified 6-fold training

Metric Used LLVE without Audio LLVE with Audio
PSNR 21.26 21.64
SSIM 0.707 0.707

MSE(MABD) 24.67 25.32

Table A.5: Results for 4th fold in the stratified 6-fold training

Metric Used LLVE without Audio LLVE with Audio
PSNR 22.18 22.34
SSIM 0.721 0.733

MSE(MABD) 21.67 25.35

Table A.6: Results for 5th fold in the stratified 6-fold training

Metric Used LLVE without Audio LLVE with Audio
PSNR 19.69 21.12
SSIM 0.693 0.706

MSE(MABD) 18.51 20.91

Table A.7: Results for 6th fold in the stratified 6-fold training

Metric Used LLVE without Audio LLVE with Audio
PSNR 23.34 26.85
SSIM 0.755 0.773

MSE(MABD) 22.52 22.68
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