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ABSTRACT

KEYWORDS Waveguide QED, Multimode cQED Fault Tolerant, Measurement

Based Quantum Computing, Cluster State Quantum Computing,

Superconducting Circuits

One of the biggest challenges towards building a large-scale quantum computer is tackling

the component overhead involved in protecting qubits from errors. In this work, we

address this issue by working in a measurement based quantum computing paradigm,

or more specifically, by generating a 3D cluster state of bosonic modes. We present

two hardware designs to achieve this. The first uses propagating photonic modes for

the data qubits, while using transmons as auxiliary qubits to mediate the interactions

between the photons. This approach, based on waveguide quantum electrodynamics,

allows us to increase the number of qubits with minimal changes to the design: only the

effective length of the waveguide would have to change. The second design is based on

multimodal circuit quantum electrodynamics by coupling a superconducting qubit to a

multimodal resonator. This method presents a way to demonstrate generation of smaller

cluster states with currently achievable parameters for the hardware. We hope that these

designs may pave the way for the first experimental demonstrations of fault-tolerant

cluster state computing on the superconducting platform.
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CHAPTER 1

INTRODUCTION

Quantum computing has emerged as a solution to tackle problems which are beyond

the reach of conventional, classical methods of computation. Such problems include

quantum chemistry, combinatorial optimization tasks, cryptography, and even novel

machine learning tasks. Nevertheless, as with any nascent technology, there are a number

of challenges to overcome before quantum computers become practically useful. Among

these, a key challenge today is increasing the number of qubits that we can use on a

device. A major hurdle in doing so is the overhead associated with each qubit that we

add such as the wiring and calibration equipment for its measurement and control. This

work focuses on tackling this particular issue and aims to reduce such overhead as we

develop systems with more qubits.

1.1 MOTIVATION

But why do we want to increase the number of qubits? There are estimates (Greene,

2018) that 100 logical qubits could easily outperform all the current supercomputers in

the world combined. While there are devices now that host over a 100 physical qubits

such as IBM’s Eagle processor, there is a distinction to be made between physical qubits

and logical qubits. Each physical qubit is inherently affected by noise which makes it

extremely difficult to be used for practical scenarios as is. It is to protect them from noise

and make a logical qubit that the concept of quantum error correction was developed.

Quantum error correction has formalised the hardware requirements of a device based on

the logical representation of any given quantum algorithm. Using the tools of quantum

error correction, one can arrive at thresholds for the physical error rates and estimate the

number of qubits that would be required to represent a certain number of logical qubits.



The main idea behind quantum error correction is to encode the logical qubits in multiple

physical qubits so as to redundantly store the data. If we were to encode the data in a

single qubit, any local noise would adversely affect it. But by storing the data across

multiple qubits, only non-local noise can actually corrupt the data. This redundant data

storage comes at the additional overhead of extra qubits, which is why we need to scale

up.

If one can perform operations on qubits while dealing with the adverse affects of noise,

then we deem such qubits as "fault-tolerant." Of course, there are technicalities to this,

such as the the tolerance to the noise being only up to a certain threshold, but the point

here is that the error is lesser than what the operation would have if we simply used a

single physical qubit rather than a logical qubit.

1.2 PARADIGM CHOICE

Reaching such fault-tolerant regimes of operation is the motivation to develop systems

with more qubits. In fact, it is estimated that even for a single logical qubit to be

fault-tolerant, we would need about 400 physical qubits (Fowler et al., 2012). While there

are numerous ways of approaching this challenge of scaling up to fault-tolerance, the focus

of this thesis is to reduce the additional component overhead that was described earlier.

To this end, we make use of the measurement-based quantum computing paradigm, also

known as the cluster state quantum computing model.

But simply working in this formalism would not really do us any good. As we explain

in Chapter 2, even with cluster state quantum computing one would need atleast the

same order of number of qubits as in a surface code. What enables us to reduce

the overhead is our time-multiplexed approach, which is what the measurement-based

quantum computing model is especially suited towards. Since the qubits are to be

measured out sequentially, we can time-multiplex the measurement of the qubits such

that we require just one measurement chain. In our design what we will see is a train
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of pulses each representing a single data qubit, while we entangle these pulses together

using a constant number of stationary, auxiliary qubits.

1.3 CHOICE OF HARDWARE

Having chosen a particular paradigm, we now turn to our choice of hardware. There are

currently a number of competing hardware platforms which are viable candidates for

future quantum technologies. Of these, superconducting circuits have gained tremendous

traction in both academic and industrial research. Possibly the foremost reason is its

compatibility with existing CMOS fabrication technologies. This has allowed for great

design exploration and flexibility in parameter space. This in turn has enabled the

research community to reach regimes of light-matter interactions that are hard to reach

otherwise, and has also enabled fast gate speeds . Another important aspect of these

circuits is how simulations and analysis of such devices can also be done using a lot

of existing softwares. Broadly speaking, these circuits are simply microwave circuits

working in an extremely low-loss setting. This low loss regime is also the reason that

the coherence times of qubits on these devices are good enough to actually implement

small quantum circuits. Recently these values are being pushed to the limits and has

even reached the 1ms mark(Somoroff et al., 2021).

All these features of superconducting circuits have made it a promising candidate for large

scale quantum computation. Industry giants such as Google and IBM have demonstrated

the tremendous capabilities of such devices in the circuit model of quantum computation.

Recently, there has also been a growing interest in its applications for the measurement

based model by generating large entangled structures with microwave photons (eg: Besse

et al. (2020)).

A subtle point about the latter remark is how such research is beginning to use hybrid

architectures: using microwave modes, travelling or stationary, as data qubits while using

stationary auxiliary qubits, which are superconducting qubits, to enact gates between the

3



data qubits. This allows one to use the larger coherence times of photonic modes, while

enabling high-speed gates using superconducting qubits. This is, in fact, what we make

use of as well. Our data is stored in photonic modes which are travelling modes in the

case of the first design and resonant modes in the case of the second. We use transmons

to enact gates between the different modes in both the designs.

1.4 ORGANISATION OF THESIS

The remainder of this thesis is organized as follows:

• Chapter 2 goes over the basics of cluster state quantum computing. It also
describes the particular cluster state we are targeting, and then delves into a
particular algorithm for generating it in a fault-tolerant manner.

• Chapter 3 introduces the basic elements of superconducting circuits specifically
for our designs. This includes the transmon, and also how it couples to a resonator.
Here, we also introduce parametric flux modulation, a key component to both of
our designs.

• Chapter 4 looks at the first design that we propose, which makes use of concepts
developed in waveguide Quantum Electrodynamics (QED). We first introduce this
framework, then describe our design and present the simulations and calculations
done to verify the feasibility of this design.

• Chapter 5 describes our second design, which draws on concepts from multimodal
circuit QED. This design seems to be more realisable in the short term, and may
very well be the first proof-of-concept, experimental demonstration of 3D cluster
state generation with superconducting circuits.

• Chapter 6 concludes the thesis with implications of this work, comparison of the
two approaches, and a brief discussion on future directions.
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CHAPTER 2

CLUSTER STATE QUANTUM COMPUTING

The circuit model is probably the most well-known model for quantum computing,

especially popularized by industry giants like Google, IBM etc. This is not without

reason though: the circuit-like depiction is very reminiscent of conventional electrical

circuits and other visual tools such as the Bloch sphere further aid in understanding the

impact of a gate on qubits. Furthermore, there are many analogues that can be drawn

between quantum gates and classical gates, even though they work quite differently.

That being said, it is certainly not the only paradigm for quantum computing. Another

equivalent model, as proven by Raussendorf and Briegel (2001), is the cluster state

quantum computing model, also known as measurement based quantum computing

or the "one-way quantum computer," for reasons that will soon be apparent. They

are equivalent in the sense that one can perform any quantum algorithm within either

framework, and hence both are universal. Despite this, there are differences in the way

the actual computation is carried out in each.

2.1 BASICS OF CLUSTER STATE QUANTUM COMPUTING

In cluster state quantum computing, the starting resource is a specific entangled state of

qubits which is called a cluster state or a graph state. For any given undirected graph

𝐺 = (𝐸,𝑉) (𝐸 being the set of edges and 𝑉 the set of vertices) we can define a cluster

state as:

|𝜓𝐺⟩ :=
∏

(𝑖, 𝑗)∈𝐸
𝑍𝑖, 𝑗 ⊗𝑖′ |+⟩𝑖′ (2.1)

In the above equation, 𝑍𝑖, 𝑗 represents a controlled Z-gate between qubits 𝑖 and 𝑗 , with a

qubit being placed on every vertex of the graph. These states can be described in the



Figure 2.1: An example of generating a cluster state from an underlying graph. In
this case, we consider a graph in the shape of a triangle. To generate the
corresponding cluster state, consider each vertex to be a qubit initialised in
the |+⟩ state. Then apply Controlled-Z gates between each pair of qubits that
are connected by an edge. The resulting state is a cluster state.

stabilizer formalism too, as shown by Raussendorf et al. (2003).The set of stabilisers for

the graph 𝐺 defined above is given by {𝑆𝑖 : 𝑖 ∈ 𝑉}, with

𝑆𝑖 := 𝑋𝑖

∏
𝑗 :(𝑖, 𝑗)∈𝐸

𝑍 𝑗 (2.2)

Given that one can define a cluster state based on any graph, it is fairly obvious that there

an infinite number of cluster states that one may consider to use. Based on the graph,

cluster states can also be classified into different types. For example, cluster states can be

classified based on their dimensionality, and as it turns out, different dimensionalities

have different representative power in terms of what they can computer. A 1D cluster

state, i.e. a linear chain of qubits, is enough to perform the equivalent of any single qubit

operation in the gate circuit model. A 2D cluster state based on a grid on the other hand

is a universal quantum computational resource. Moving another dimension higher to a

3D lattice, Raussendorf and Briegel (2001) show that using the body-centred cubic (bcc,

see fig.2.2, 2.4 for unit cell) lattice as the graph state provides topological fault tolerance

along with universality. In fact, this is the exact state we are interested in and aim to

6



Figure 2.2: 3D cluster state for fault-tolerant quantum computation. The indices actually
indicate the order in which the qubits are generated in our scheme, as well as
in (Wan et al., 2021)

generate using our proposed architectures.

In all these scenarios, after having been given the cluster state as an initial resource,

computation is carried out by simply measuring out qubits sequentially in different bases.

Measuring in the 𝑍 basis simply removes the qubit from the cluster state, while actual

"gates" are applied by measuring in the 𝑋-𝑌 plane of the Bloch sphere. The exact basis

that a qubit is measured in depends on the outcome of the previous measurements. Note

that even two qubit gates do not require simultaneous measurements of different qubits;

sequential single qubit measurements suffice for universality. This is also the reason

it is called a "one-way quantum computer." Once the resource state is created, we can

sequentially measure out each qubit, at the end of which the resource state is lost. This

actually makes it very suitable for architectures that use time-multiplexed travelling

modes as qubits rather than stationary modes, since we no longer waste space on qubits

that are not needed.
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Figure 2.3: Circuit diagram of quantum half-teleportation. It can be seen that measuring
in a different basis effectively causes a rotation about the Z-axis of the Bloch
sphere. One can trace the evolution of the lower qubit to see that the final
state is 𝐻𝑍 𝑠𝑈𝑧 |𝜓⟩. 𝑠 is the measurement outcome. By applying the circuit
twice, i.e. applying the same circuit to the lower qubit again, one can achieve
a rotation about the X axis as well. Image from Raussendorf.

There is a nice, somewhat intuitive understanding of how such measurements produce a

gate on a qubit. Consider the case of the 1D cluster state. One can imagine a "simulated

axis of time" along the length of the chain (from left to right for example). What this

means is that as we keep measuring out qubits from left to right, the state that the next

qubit ends up in is some rotated version of the initial state. This can be understood by

the "half-quantum" teleportation circuit (see Fig. 2.3), which effectively does a rotation

about the X axis. Applying the same circuit twice leads to a rotation about the Z axis.

With rotations possible about 2 of the axis in the Bloch sphere, one can implement any

single qubit gate. Two qubit gate requires a more detailed analysis, but the essential idea

is the same (Raussendorf and Briegel (2001) provide more details on the implementation

of gates). A key point to note though is that even in the case of two qubit gates we only

need sequential single qubit measurements.

This analogy of one axis being that of time actually transfers to higher dimensional

cluster states as well. In the 2D case, one axis signifies that of time, and the other is

proportional to the total number of logical qubits being used in the circuit. In the 3D case,

one can imagine that a slice of the lattice, perpendicular to the direction of time, encodes

the logical qubits in some error corrected way, which can be considered a surface code.

This is why the 3D cluster state is also considered an exfoliated version of the surface

code.
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A feature of the cluster state quantum computing model that may be considered

disadvantageous is that it seems to require a lot more physical qubits to encode logical

qubits than the circuit model. The reason for this apparent flaw is that naively one may

expect that we need to store the entire cluster state at all times. For example in the 3D

cluster state, we might need to store the entire lattice at all times, including the

dimension along simulated time. But this is, in fact, not true and the reason is this

analogy of having one axis as that of simulated time. Once all the interactions of a qubit

are done with its neighbours in the lattice, which is to say that all the CZ gates on that

qubit are done to build the cluster state, we can in principle measure it out immediately.

Just before measuring out a qubit in a slice at time 𝑖, we can enact the CZ gates between

this qubit and its neighbours in the next slice for time 𝑖 + 1. By doing so, we only need to

store one slice at a time, which drastically reduces the number of physical qubits

required. In the 3D cluster state in fig. 2.2, this boils down to needing approximately the

same order of qubits as a surface code.

2.2 BUILDING THE CLUSTER STATE

Although a 3D cluster state is universal and fault tolerant, it is still a challenge to actually

build the state itself in a fault tolerant manner. This is what is addressed by Wan

et al. (2021). We make use of the algorithm they provide, but use a different hardware

architecture from what they propose. The scheme outlined in the paper envisions a

single quantum emitter interacting with travelling bosonic modes in a waveguide (see fig.

2.5). The bosonic modes are the actual "data" qubits, while the emitter is an "auxiliary"

qubit that enables the interactions between the data qubits. While our first architecture

seems similar in design to this, there are clear distinctions in how it operates, as we

will describe in Chapter 4. Our second design works with resonator modes rather than

travelling modes, so that is entirely different from the proposed scheme by Wan et al.

(2021). Nevertheless, the quantum circuit (in the circuit model representation, shown in

fig. 2.6) used in either case remains the same.
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Figure 2.4: BCC lattice elementary cell.
The bold lines indicate
cluster state edges, while the
spheres are qubits.

Figure 2.5: Schematic of proposal by
Wan et al. (2021). A single
quantum emitter interacts
twice with the photons after
it emits them to implement
a cluster state.

The paper lays out two possible algorithms to achieve the same final bcc lattice. The first

creates a simple cubic lattice and then measures out the unnecessary qubits to create the

final bcc lattice. This allows for a very uniform and periodic structure in the algorithm

without intermediate measurements. The second algorithm directly creates the final

states, but requires intermediate measurements. The authors also show that the second

algorithm has a higher tolerance to errors in the creation of the state. Yet, we focus on the

first algorithm because it would be easier to implement on a physical design. The circuit

for such a scheme would look as shown in fig. 2.6. Note that in this case we actually

create a cuboidal lattice, but to generate the lattice in fig. 2.2, we simply measure out, in

the Z basis, the qubits that are not required.

Figure 2.6: Circuit to implement the first algorithm as given by Wan et al. (2021). Circuit
shows implementation for a 2x3x2 lattice, shown in Fig. 2.7
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The main principle behind this circuit behaving fault tolerantly is that it maintains a

cluster state at all times. In this way, any errors that may occur doing the creation of the

circuit can be shown to be localised errors in the final state, which the underlying surface

code can correct.

Figure 2.7: Lattice generated by circuit shown in Fig. 2.6. Some additional connections
which are unwanted are created due to the nature of the circuit (including a
connection between qubits 6 and 7 which is not shown for sake of clarity).
These are taken care of by measuring out the qubits on the edges usually.
Hence, we usually generate a larger cuboidal lattice than the size of the actual
cluster state we want.

The authors of (Wan et al., 2021) also provide some proposals on how to realise the

necessary gates. They show that the two qubit Controlled-Not (CNOT) gate can be

implemented by simple emission after having initialised the emitter in the right state.

The exact pulse scheme depends on whether we choose to implement a single rail or dual

rail scheme. The Controlled-Z (CZ) gate is shown to be done with a resonant scattering

against the same emitter. This is where our first design distinguishes itself from their

proposal. The authors have assumed a chiral waveguide in their approach, but this does

not seem to be viable enough with current technologies. Without the chirality, there is in

fact no transmission of a photon that is resonant with the excitation of the emitter. This is

one challenge that we had to overcome while designing our first physical circuit, which

we elaborate upon in the Chapter 4.
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CHAPTER 3

SUPERCONDUCTING CIRCUITS

Before getting into the details of our designs, it is worth reviewing the basics of

superconducting circuits and circuit Quantum Electrodynamics (cQED). As mentioned

in Chapter 1, this particular platform has attracted a lot of attention in the past few years

and is a leading candidate for future quantum computers. Since its fabrication process is

CMOS compatible, it makes it easy to design fabricate the chips and provides flexibility

in design space. It has also been shown that quantum gates can be implemented very fast,

mostly due to the high interaction strengths that can be achieved. All this has made it a

popular choice for quantum computing hardware.

A superconducting circuit is actually not too different from a conventional microwave

circuit. By running the experiment in a superconducting regime, one essentially reduces

the loss to a level where we can observe quantum effects. A major component that

is more specific to quantum computing circuits is the Josephson junction which is a

non-linear element. It allows one to build a variety of components crucial to quantum

circuits, especially "artificial atoms." While there are numerous such artificial atoms that

are being researched, the most common of these is the transmon.

3.1 THE TRANSMON

The transmon is the most popular artificial atom used in the cQED setting. It is simple in

design, yet provides enough anharmonicity to allow us to selectively address the lowest

levels to implement a qubit. To understand the transmon, it is instructive to first consider

the LC oscillator. In the classical case the Hamiltonian of the system is simply given by:

𝐻 =
1
2
𝐶𝑉2 + 1

2
𝐿𝐼2 (3.1)



(a) (b)

(c) (d)

Figure 3.1: Schematics of an LC oscillator (a) vs. a Transmon(b). The QHO is the
quantized version of a normal LC oscillator and shows a quadratic potential
(c). The transmon has an anharmonicity which can be clearly seen in the
uneven level spacing (d). The lowest two levels of the transmon are generally
used as the computational |0⟩ and |1⟩. This anharmonicity is introduced by
the Josephson Junctiond(depicted by a box with a cross). The orange dotted
line represents the approximate quadratic potential of the transmon.

where 𝐿 and 𝐶 are the inductance of the inductor and capacitance of the capacitor,

respectively. 𝑉 and 𝐼 represent the voltage and current in the circuit as shown in figure

3.1. One can then move into the quantum limit and in this case the Hamiltonian turns out

to be:

�̂� = 4𝐸𝐶 �̂�
2 + 1

2
𝐸𝐿𝜙

2 (3.2)

with 𝐸𝐶 = 𝑒2/(2𝐶) and 𝐸𝐿 = (Φ0/2𝜋)2/𝐿 are representative of the capacitive and

inductive energies (Φ0 represents the superconducting flux quantum). �̂� is the reduced

charge operator (representative of the number of Cooper pairs), and 𝜙 is the reduced flux

operator (representative of the flux across the inductor). Performing second quantization
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using the creation (�̂�†) and annhilation (�̂�) operators with �̂� ∝ (�̂� − �̂�†) and 𝜙 ∝ (�̂� + �̂�†):

�̂� = ℏ𝜔𝑟 (�̂�†�̂� + 1
2
) (3.3)

where 𝜔 = 1/
√
𝐿𝐶. In this case we arrive at the usual quantum harmonic oscillator with

the energy spacing equal between every adjacent levels (see fig.3.1). Since they are

equally spaced, it is difficult to selectively address a transition from one state to the next.

This is where the josephson junction comes into play. It essentially acts as a non-linear,

nearly dissipationless inductor which changes the inductive part of the Hamiltonian:

�̂� = 4𝐸𝐶 �̂�
2 − 𝐸𝐽 cos(𝜙) (3.4)

with 𝐸𝐶 = 𝑒2/(2(𝐶𝑠 + 𝐶𝐽)) and 𝐸𝐽 = 𝐼𝑐Φ02𝜋. The josephson junction has a self-

capacitance𝐶𝐽 and a critical current 𝐼𝑐 (Krantz et al., 2019). This non-linear modification

of the Hamiltonian results in a energy spectrum which is no longer equally spaced like

the quantum harmonic oscillator (see fig.3.1). Instead, we see an anharmonicity which

is negative in the case of the transmon. This allows us to selectively drive transitions

between the lowest energy levels, the bottom two of which are used for the qubit in

general.

The preceding description is actually a generic description of the charge qubit. The

transmon is a charge qubit which is operated in the regime with 𝐸𝐽 >> 𝐸𝐶 . In the

case where these two quantities are comparable, as with the Cooper-pair box, the qubit

becomes very sensitive to charge noise (fluctuations in the cooper pair occupation) and

reduces the coherence times. Tackling charge noise turned out to be harder than doing so

for flux noise, and hence the community has moved towards this regime instead.

One can use equation 3.4, expand the cosine with a taylor expansion and then second

quantize the Hamiltonian after truncating the expansion. To fourth order the Hamiltonian
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resembles a Duffing oscillator:

�̂�/ℏ = 𝜔𝑞 �̂�
†�̂� + 𝛼

2
�̂�†�̂�†�̂��̂� (3.5)

where 𝜔𝑞 is the qubit frequency given by (
√︁

8𝐸 𝑗𝐸𝐶 − 𝐸𝐶)/ℏ, and 𝛼 = −𝐸𝐶 is the

difference between the transition frequencies from the ground to first excited level and

the first to second excited level. Typical values for these parameters include 3-6GHz for

the qubit frequency, and 100-300MHz of anharmonicity. This level of anharmonicity is

sufficient to individually address just the lowest two levels, though in our case we also

use the second excited level to implement gates.

3.2 SINGLE QUBIT GATES

In most superconducting devices, single qubit gates are applied using the charge drive.

We follow this same technique too for the Hadamard gate in 2.6. Applying a charge drive

is similar to using a voltage source capacitively coupled to the transmon (fig. 3.2). The

Hamiltonian of a transmon with a charge drive can be simplified to (Krantz et al., 2019):

�̂� = 𝜔𝑞 �̂�
†�̂� + 𝛼

2
�̂�†�̂�†�̂��̂� + 𝑖Ω𝑉𝑑 (𝑡) (�̂� − �̂�†) (3.6)

Figure 3.2: Circuit diagram equivalent of a charge drive connected to a transmon. 𝐶𝑑 is
a capacitor used to couple the charge line to the qubit, on-chip. The drive is a
signal generated at room temperature, which then travels through the wiring
in a dilution refrigerator to reach the chip.
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For the sake of simplicity let us consider just the lowest two levels of the transmon. We

can reduce the Hamiltonian in 3.6 to:

�̂� = −𝜔𝑞�̂�𝑧 +Ω𝑉𝑑 (𝑡)�̂�𝑦 (3.7)

𝑉𝑑 (𝑡) is the time dependent drive that is applied on the qubit, while Ω is a scaling factor

associated with the exact circuit being used. �̂�𝑧 and �̂�𝑦 are the Pauli 𝑍 and 𝑌 operators.

To clearly see the effect of the drive it helps to move into a rotating frame at the qubit

frequency. This takes care of the precession of the qubit about the bloch sphere and

leaves us with just the effect of the drive. The unitary to transform into this rotating

frame is �̂� = 𝑒𝑖𝜔𝑞�̂�𝑧 𝑡 . Now we can find the new Hamiltonian in this rotating frame:

�̂�′ = �̂��̂��̂�† + 𝑖( 𝜕
𝜕𝑡
�̂�)�̂�†

= Ω𝑉𝑑 (𝑡) (cos(𝜔𝑞 (𝑡))�̂�𝑦 − sin(𝜔𝑞 (𝑡))�̂�𝑥)
(3.8)

We can now decompose the drive into its I and and Q quadratures at the qubit frequency

𝜔𝑞. Let us assume the drive is of the form 𝑠(𝑡) sin(𝜔𝑑𝑡 + 𝜙), with 𝑠(𝑡) being an envelope

function, 𝜔𝑑 the frequency of the drive and 𝜙 is a phase. In this case 𝐼 = cos(𝜙) and

𝑄 = sin(𝜙). Equation 3.8 can then be written as:

�̂�′
𝑑 =

1
2
Ω𝑠(𝑡) (((−𝐼 cos(𝛿𝜔𝑡) +𝑄 sin(𝛿𝜔𝑡))�̂�𝑥 + ((𝑄 cos(𝛿𝜔𝑡) − 𝐼 sin(𝛿𝜔𝑡))�̂�𝑦)

(3.9)

with 𝛿𝜔 = 𝜔𝑞 − 𝜔𝑑 being the qubit-drive detuning. When the drive is resonant with the

qubit we simply get:

�̂�′
𝑑 = −Ω𝑠(𝑡) (𝐼�̂�𝑥 +𝑄�̂�𝑦) (3.10)

Equation 3.10 tells us that the two quadratures of the drive cause rotations about different

axes of the Bloch sphere: I causes rotations about the x-axis (𝑅𝑥 gate) while Q works

about the y-axis (𝑅𝑦 gate). With access to rotations about two of axes of the Bloch sphere,

one can in principle implement any single qubit gate. For example, the angle of rotation
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about the y-axis for a drive with just an Q component (fig. 3.3) is given by:

Θ(𝑡) = −Ω
∫ 𝑡

0
𝑠(𝑡′)𝑑𝑡′ (3.11)

In our specific case, we only need to implement the Hadamard gate. To this end, we note

that we can decompose a hadamard gate as H = 𝑅𝑦 (𝜋/2) Z, which is a Z gate followed

by a 𝜋/2 rotation about the y-axis. Hence, we only require the Q quadrature. We use the

virtual Z gate to implement rotations about the Z axis, which is simply advancing the

phase of all the consequent drives by the required angle (Krantz et al., 2019). We could

of course decompose the Hadarmard gate into rotations about the X-axis followed by

one about Y-axis, but by using the virtual Z gate we eliminate the need to send a second

pulse.

(a) (b)

Figure 3.3: (a) I and Q quadratures of a drive pulse. The Q quadrature is gaussian-shaped,
with an area such that the pulse implements a rotation by 𝜋 about the y-axis.(b)
Evolution of a state on the Bloch sphere under the influence of the drive;
starts from |0⟩ and rotates about the y-axis to reach |1⟩

3.3 TWO QUBIT GATES USING PARAMETRIC FLUX MODULATION

In the preceding discussion, the qubit frequency was considered to be fixed. But this

can in fact be an in-situ tunable parameter. Physically this means using two josephson

junctions in parallel and controlling an external flux that flows through the loop between

them (Krantz et al., 2019). This tunable nature of the frequency of the transmon actually

17



lets us implement gates between a transmon and a mode coupled to it. Consider a single

mode coupled to a tunable frequency transmon (we omit the explicit time-dependence of

the operators):

�̂�/ℏ = 𝜔𝑞 (𝑡)�̂�†�̂� + 𝛼

2
�̂�†�̂�†�̂��̂� + 𝜔𝑟 �̂�

†�̂� + 𝑔(�̂�† + �̂�) (�̂�† + �̂�) (3.12)

�̂� is the annhilation operator for the mode at frequency 𝜔𝑟 that is coupled to the transmon,

and the bare coupling between the two is 𝑔. We use a time dependent qubit frequency by

modulating the flux with a mean value of 𝜔0, and an additional sideband with amplitude

𝜖 , frequency 𝜔𝑠𝑏, and phase 𝜙𝑠𝑏. Hence the qubit frequency looks like:

𝜔𝑞 (𝑡) = 𝜔0 + 𝜖 sin(𝜔𝑠𝑏𝑡 + 𝜙𝑠𝑏) (3.13)

In such a setting, if 𝑤𝑠𝑏 = 𝜔0 and 𝜔𝑟 , i.e. the sideband is at the difference frequency

of the mean qubit frequency and the mode, one can drive stimulated rabi oscillations

between the two. To see this, we can move into a rotating frame given by (Naik et al.,

2017):

�̂� = exp[−2𝜋𝑖(𝜔0𝑡 −
𝜖

2𝑤𝑠𝑏

cos(𝜔𝑠𝑏𝑡))�̂�†�̂� − 𝜔𝑟 �̂�
†�̂�] (3.14)

Hence the Hamiltonian transforms to:

�̂�′ = �̂��̂��̂�† + 𝑖( 𝜕
𝜕𝑡
�̂�)�̂�†

= ℎ𝑔𝐽0

(
𝜖

2𝜔𝑠𝑏

)
(𝑒−𝑖Δ𝑡 �̂�†�̂�) + ℎ𝑔�̂�†�̂�(

∞∑︁
𝑚=1

(−1)𝑚𝐽𝑚
(

𝜖

2𝜔𝑠𝑏

)
𝑒𝑖(𝑚𝜔𝑠𝑏−Δ)𝑡)) + ℎ.𝑐.

(3.15)

Δ is the detuning between the mean qubit frequency 𝜔0 and the mode frequency 𝜔𝑟 . 𝐽𝑛

represents the 𝑛𝑡ℎ order Bessel function. When 𝜔𝑠𝑏 = Δ, one obtains resonant first-order

transitions, where the Hamiltonian can be reduced to:

�̂�′ = ℎ𝑔𝐽1

(
𝜖

2𝜔𝑠𝑏

)
(�̂�†�̂� + �̂�†�̂�) (3.16)

This is within the rotating wave approximation as well, where we ignore the fast rotating

terms in the Hamiltonian (Naik et al., 2017).
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Figure 3.4: Stimualed Rabi oscillations between transmon and mode by sideband flux
modulation.

Using this we can implement gates between the mode and the transmon, with an effective

coupling rate of 𝑔𝐽1

(
𝜖

2𝜔𝑠𝑏

)
. Using this we can induce stimulated Rabi oscillations

between the mode and the transmon as shown in fig.3.4. This analysis can easily be

extended to a multimode structure, which is what we use in Chapter 5. We can also use

this parametric flux modulation to emit states from a transmon to a waveguide, which is

essentially an extension of the described theory to a continuum. By varying the envelope

of the sideband in the flux modulation, the pulse shape that is emitted into the waveguide

can be controlled. We use this in both of our designs, although we shall not go into the

details of this (refer to (Butler, 2022) for more details).
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CHAPTER 4

WAVEGUIDE QED BASED DESIGN

4.1 WAVEGUIDE QED

Waveguide QED is a field that has spiked some curiosity fairly recently. In stark contrast

to circuit QED approaches of using the bosonic modes of resonators, waveguide QED

uses the travelling wave modes of a transmission line or a waveguide as the case may be.

There are many applications of waveguide QED that have been proposed based on the

intriguing effects that take place when qubits are coupled to bath of such modes. The

demonstration of bright and dark states in a system with 3 transmons coupled to the same

transmission line by Kannan et al. (2020) clearly demonstrated the interference effects

that take place on such a scale. While this experiment largely focused on the states of the

transmons themselves, we need to focus on the travelling wave modes instead. There is a

lot of work on this particular aspect as well, beginning from the input-output formalism

laid out by Gardiner and Collett (1985). More recently, there is the quantum treatment

of the input and output pulses as shown by Kiilerich and Mølmer (2019), as well as the

temporal mode based treatment by Fischer et al. (2018).

What we want to focus on in particular is the scattering of a single photon pulse off of a

single emitter. For this purpose we use the master equation as used by Kannan (2018).

To start off we consider the transmon as a two-level system coupled to a bath of different

modes, which gives us the Hamiltonian:

�̂� = 𝐻𝑞 + 𝐻𝑤𝑔 + 𝐻𝑖𝑛𝑡 (4.1)

�̂�𝑞 = ℏ𝜔𝑞�̂�
+�̂�− (4.2)

�̂�𝑤𝑔 =

∫
𝑑𝜔ℏ𝜔(�̂�†𝑟 (𝜔)�̂�𝑟 (𝜔) + �̂�

†
𝑙
(𝜔)�̂�𝑙 (𝜔)) (4.3)



�̂�𝑖𝑛𝑡 = 𝑖ℏ𝑔�̂�𝑥

∫
𝑑𝜔

√
𝜔((�̂�†𝑟 (𝜔) − �̂�𝑟 (𝜔) + (�̂�†

𝑙
(𝜔) − �̂�𝑙 (𝜔)) (4.4)

These equations assume that we are only considering one qubit, at position 0 (the position

only matters in the case of multiple qubits). 𝐻𝑞 is the Hamiltonian for the qubit with a

resonant frequency of 𝜔𝑞 with lowering operator �̂�−, 𝐻𝑤𝑔 that of the waveguide with

destruction operator �̂�(𝜔) at frequency 𝜔 , and 𝐻𝑖𝑛𝑡 is the interaction Hamiltonian with a

coupling strength 𝑔, �̂�𝑥 being the standard Pauli 𝑋 operator. We explicitly consider the

right and left propagating modes, denoted by the subscript 𝑟 and 𝑙 respectively.

To go further, one must make some assumptions, namely the Born-Markov approximation.

This gives us the following Lindbladian master equation for the density operator �̂�:

¤̂𝜌 = − 𝑖

ℏ
[�̂�, �̂�] + Γ(�̂�− �̂��̂�+ − 1

2
{�̂�+�̂�−, �̂�}) (4.5)

�̂� = ℏ𝜔𝑞�̂�+�̂�
− + ℏ𝛼(𝑡)�̂�𝑥 (4.6)

Here, Γ defines the decay rate of the qubit into the waveguide, and 𝛼(𝑡) is dependent

on the drive seen by the qubit. We can assume that the drive is an input from only one

side(left) of the transmission line, and hence we assume the form:

𝛼(𝑡) = Ω

2
𝑠𝑖𝑛(𝜔𝑑 (𝑡 + 𝜃)) (4.7)

Note that additional dephasing terms can be added to the master equation, but we seek to

operate in a regime where this is much smaller than the decay into the waveguide Γ.

To keep track of the travelling wave modes, we turn to input-output theory. We can derive

the Heisenberg equations of motions from the above Hamiltonians as (we show just the

right propagating fields, but the same is true for the left propagating fields):

¤̂
𝑏𝑟 (𝜔) = −𝑖�̂�𝑟 (𝜔) + 𝑔

√
𝜔�̂�𝑥 (4.8)

We can then proceed to integrate both sides, and make the assumption that the dynamics

of the system are not fast on the time scale that is of interest to us. This lets us arrive at
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the following equation:

�̂�𝑜𝑢𝑡𝑟 (𝑡) = �̂�𝑖𝑛𝑟 (𝑡) +
√︂

Γ

2
�̂�−(𝑡) (4.9)

Here, �̂�𝑜𝑢𝑡𝑟 (𝑡) =
∫

𝑑𝜔√
2𝜋
�̂�𝑟 (𝜔, 0)𝑒−𝑖𝜔𝑡 , and �̂�𝑖𝑛𝑟 (𝑡) =

∫
𝑑𝜔√
2𝜋
�̂�𝑟 (𝜔, 𝑡 𝑓 )𝑒−𝑖𝜔𝑡 , with 𝑡 𝑓 the final

time of interest. Similar equations can be derived for the left propagating modes as well.

By taking an ensemble average on both sides, we can relate the state of the qubit to that

of that modes in the transmission line.

4.2 REFLECTION OFF TRANSMON

Based on these equations, one can calculate the reflection and transmission coefficients.

In the absence of dephasing and non-radiative decay (decay into modes other than the

waveguide), an incoming photon that is resonant with the first excitation frequency 𝜔𝑔𝑒

of the transmon (ground to excited, |𝑔⟩-|𝑒⟩ transition) will be reflected perfectly. This

can be seen in figure 4.1, where we use QuTiP (Johansson et al., 2013) to simulate the

master equation for the transmon, and use the input-output relations to determine the

reflection and transmission coefficients.

Figure 4.1: Reflection and Transmittivity as a function of the detuning (Δ) of the drive
frequency 𝜔𝑑 from the qubit frequency 𝜔𝑞 in the absence of nonradiative
decay. As can be seen, the reflection becomes reaches unity as we approach
resonance, that is 0 detuning. There is also a phase shift of 𝜋 in this case
(shift shown for transmitted pulse but also exists for reflected pulse)

As we also show, there is a 𝜋 phase change upon reflection for a resonant photon. This is
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what we use for implementing the CZ gate. We can observe the same dynamics using the

first and second excited level of a transmon, |𝑒⟩ and | 𝑓 ⟩, instead of |𝑔⟩ and |𝑒⟩. In this

case too, if the incoming photon is resonant with the |𝑒⟩-| 𝑓 ⟩ transition frequency 𝜔𝑒 𝑓 , it

will be reflected with an additional phase change. Moreoever, since a transmon is an

anharmonic oscillator, 𝜔𝑔𝑒 and 𝜔𝑒 𝑓 are well separated. Hence, for a photon at the 𝜔𝑒 𝑓

frequency the reflection will only occur when the transmon is in the |𝑒⟩ state: when the

transmon state is |𝑔⟩ there is no associated resonant transition with the frequency of the

incoming photon, i.e. 𝜔𝑒 𝑓 . Hence, the reflection and the phase shift happen only when

the transmon is in state |𝑒⟩ and when there is a photon, which encodes the computational

|11⟩ state. In contrast, the state |00⟩, has the transmon in the state |𝑔⟩ and an absence

of an incoming photon. The phase change of 𝜋 causes this state |11⟩ to become − |11⟩,

while all the other states have no change. This is essentially the CZ gate, as can be

verified by its truth table (shown in table 5.1 in the next chapter).

4.3 EMISSION

For the emission of the pulses into the waveguide we again make use parametric flux

modulation. In particular we use a high-pass filter between the waveguide and the

emitting transmon. This prevents unwanted decay of the transmon into the waveguide.

Additionally, simply letting a transmon decay into the waveguide will produce an

exponential pulse shape, which is not ideal for the CZ gate described above. By using

parametric flux modulation and shaping the sideband pulse one can emit a gaussian

wavepacket instead at a desired frequency (Butler, 2022). The symmetric nature of the

wave-packet makes the reflection off the transmon more efficient in practice (Kiilerich

and Mølmer, 2019).

As mentioned in Chapter 2, we require that the emission process also be the CNOT gate

in our design. This can be done as follows:

1. Excite the transmon from |𝑒⟩ to | 𝑓 ⟩.
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2. Emit a photon at𝜔𝑝 by driving a sideband at𝜔𝑒 𝑓 −𝜔𝑝. This will cause the transmon
to drop back to |𝑒⟩ while having emitted a photon at the required frequency 𝜔𝑝.
Shape the sideband pulse to create a gaussian wavepacket.

This ensures that only the computational |1⟩ of the transmon, i.e. the physical |𝑒⟩,

emits a photon. If the transmon is |𝑔⟩, which is the computational |0⟩, there will be no

photon emitted (|0⟩). Additionally, since the excitation in the transmon is preserved (but

entangled with the photon) we have created a CNOT gate. Note that this is specific to our

design: it is a CNOT gate between the transmon and the waveguide, with the waveguide

always starting in the computational |0⟩. At the end of such a sequence, we map a state

(𝛼 |0⟩ + 𝛽 |1⟩) |0⟩ to 𝛼 |00⟩ + 𝛽 |11⟩ (first qubit is transmon, second is photon). We use a

similar scheme in our multimode cQED setting, so the reader is encouraged to look at

Chapter 5 where we present some results as well.

4.4 THE DESIGN

Using these properties of waveguide QED and the circuit we wish to implement, we

arrive at the design shown in 4.2.

Figure 4.2: Design based on Waveguide QED. 𝐿 indicates the length of the lattice that
we are trying to generate, and is indicative of the total number of logical
qubits we are trying to realise. The numbers next to the arrows indicate the
sequence of steps a single photon would go through.

The first transmon (Transmon 1) will act as the main emitter for our circuit, while the

remaining two (Transmon 2 and 3) will act as tunable "mirrors". The emitter will emit

photons at its 𝜔𝑒 𝑓 frequency. We design the remaining mirrors such that their first

transition frequency is 𝜔𝑔𝑒,2,3 = 𝜔𝑒 𝑓 ,1 where the index represents the transmon number.
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This allows us to use the mirrors without implementing the CZ gate, but reflection off

of Transmon 1 will cause a CZ gate as shown earlier in section 4.2 . Flux modulation

provided to the other two transmons will be what provides the control over the reflection.

From the waveguide QED results, we can clearly see that the off resonant photons do

not get reflected. Hence by changing the flux of the transmons to push them off or

on resonance with the frequency of the photons (𝜔𝑒 𝑓 ,1), we will be able to control

transmission and reflection of the incoming photons.

The delays may be implemented via long transmission lines, or for a more scalable

approach, tunable delay lines (Ferreira et al., 2021). The lengths of the delay line are

dependent on the size of the cluster state. Each qubit in the cluster state has neighbours

in 3 different dimensions. The emitter emits photons in succession which creates

entanglement in one dimension (such as between qubits 1 and 2 in fig.2.7). The first delay

line’s length must be such that when a photon returns to interact with the emitter for the

first time, the emitter must be in the process of emitting the photon that is entangled in the

second dimension with the incoming photon(such as between qubits 1 and 4 in fig.2.7).

Similarly, the longer delay line implements the entanglement in the third dimension (such

as between qubits 1 and 7 in fig.2.7).

We encode the data in the absence (|0⟩) or presence (|1⟩) of a photon at frequency 𝜔𝑒 𝑓 ,1.

This is the single rail encoding. The sequence of interactions of the photon are as shown

by the numbers in 4.2:

1. Each photon is first emitted by Transmon 1 (CNOT gate). Note that photons are
emitted one after another, with a Hadamard gate (2) applied to Transmon1 between
each emission. The following steps describe the trajectory of any single photon.

2. After being emitted by Transmon 1, the photon travels towards Transmon 2, at
which point, we maintain the flux to make it resonant. Hence, the photon gets
reflected and travels back to Transmon 1.

3. Once it reaches Transmon 1, it gets reflected, then travels back to Transmon 2 (first
CZ gate).
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4. This time we modulate the flux of Transmon 2 to keep it off resonance, and hence
the photon just passes through.

5. Then it impinges on Transmon 3, where we again cause it to reflect

6. The photon then travels back to Transmon 1 (Transmon 2 is kept off resonant at
this point).It is again reflected (second CZ Gate).

7. The photon passes past Transmon 2 and Transmon 3 since both are kept off resonant
at this point.

8. Lastly, we measure out the photon in the required basis.

The implementation of the various gates have been discussed before. By following the

evolution of a single photon, one can see that this scheme implements the exact same

circuit as shown in 2.6. The advantage of our a scheme is that we only require a few

transmons even for larger number of qubits: all that would need to change is the delay

length of the transmission lines.

4.5 DUAL-RAIL SCHEME

The above discussion was entirely on a single-rail implementation wherein the absence

or presence of a photon denotes the computational |0⟩ or |1⟩, respectively. Just as

in communication technologies, it would be much better to use what is known as a

"dual-rail" scheme, where the states |0⟩ or |1⟩ are each encoded in different frequencies.

This way photon-loss during the travel through the measurement chain can be detected

and faulty measurements can be prevented to some extent.

The dual-rail scheme is definitely harder to implement, but we have investigated ways of

modifying our design to do it. In particular, we considered ways of making a tunable

mirror for two different frequencies. We use parametric flux modulation to achieve this,

by driving a sideband at the difference frequency of the second frequency we wish to

reflect. Performing simulations of this requires modifications to the input-output relations

presented in 4.9 which we show in appendix A. Some preliminary results on this are

shown in figure 4.3.
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Figure 4.3: Use of a parametric flux drive to cause reflection at a frequency that is
detuned from the qubit frequency. In this case, the decay rate of the qubit
into the waveguide was 10MHz, while the detuning of the sideband was
at 100MHz. As can be seen, there are some fluctuations which arise due
to certain approximations made to the integral shown in the appendix A.
The reflection is also not perfect which is something we are looking into to
correct.

4.6 FEASIBILITY DISCUSSION

So far we’ve focused on the individual units of our design which are the transmons. What

is just as important are the delay lines along which the pulses travel. As we describe

below, this is currently the main impediment for the implementation of this design.

In the design above, we mentioned that the larger of the delay lines must have a time delay,

or length, proportional to O(𝐿2) with 𝐿 being the size of the cluster state we are trying

to generate. The exact time delay of the longer delay line is given by (𝐿2 − 𝐿) ∗ 𝜏𝑝−𝑝

where 𝜏𝑝−𝑝 is the pulse-to-pulse separation, determined by how fast we can sequentially

emit photons from the first transmon. Recent research has demonstrated this value

to be in the range of 50-100ns in the optimistic case (Kjaergaard et al., 2020). Now,

assume we want just a 3D cluster state of size 3, which means we will have 9 pulses

in our circuit at any given time (remember that one dimension of the cluster state is

"simulated-time"). Additionally assume that the speed of microwave propagation in
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superconducting waveguides or transmission lines is 2 × 108m/s. Even for such a small

cluster state, the required length of the delay line then turns out to be 120m. This is

obviously too large to fit on chip, and is also quite large to fit in a dilution refrigerator.

Moving out of the dilution unit would incur additional losses.

One possible way to reduce the length required would be to use "slow-light" metamaterials

such as in (Ferreira et al., 2021). But even then, some of the best devices in such a case

provide a slow down by a factor of ≈ 400 (Kuzmin et al., 2019). The required length,

even for a size 3 cluster state, is still 30cm. This is something we could possibly fit on

chip, but it would require great engineering efforts.

Another factor to consider is the loss in the waveguide. As the authors of Wan et al.

(2021) show, the cluster state can correct for photon-loss, but there is a threshold for

this value. The larger the loss in the waveguide, the larger the cluster state needs to be.

Wan et al. (2021) calculate the required cluster state size for the break-even point (where

the logical error rate is lower than the physical error rate) and also the corresponding

waveguide loss that the model can handle. This turns out to be 30 qubits (totally requires

900 pulses at a time) with a waveguide loss of 7.4× 10−4 per time step of their algorithm.

They also mention that this loss factor is currently lower than what can be achieved

experimentally in the microwave regime.

All these factors made us reconsider our short-term goals and come up with another

design. We decided to focus not on reaching a fault-tolerant regime just yet, but instead

on the generation of small 3D cluster states as a proof-of-concept. For the delay lines,

we started thinking of "catch-and-release" schemes which is where the multimode cQED

design was inspired from. We explain this design in more detail in the following chapter.
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CHAPTER 5

MULTIMODE CQED DESIGN

While the design in the previous chapter would work, the long lengths of delay lines

currently prove to be an impediment. To demonstrate the generation of a 3D cluster

state in the short term with a few modes, we resorted to multimode circuit quantum

electrodynamics and came up with a second design.

5.1 MULTIMODE CIRCUIT QUANTUM ELECTRODYNAMICS

Multimode Circuit Quantum Electrodynamics is an extension of cQED wherein we

couple transmons (or any other superconducting qubit) to multimodal resonators. This

allows the transmon to individually access the various standing modes of the resonator,

sort of in a "random memory access" fashion (Naik et al. (2017)). Each such mode can

be considered an independent qubit (in the single excitation manifold of each mode), with

some coupling to the transmon. In our case, we drive interactions between the modes

and the transmon using parametric flux modulation, described earlier in Chapter 3.

Coupling the transmon to a multimode resonator gives us a Hamiltonian that looks like:

�̂� = 𝜔𝑞 (𝑡)�̂�†�̂� + 𝛼

2
�̂�†�̂�†�̂��̂� +

𝑁∑︁
𝑘=1

{𝜔𝑘 �̂�
†
𝑘
�̂�𝑘 + 𝑔𝑘 (�̂�†𝑘 + �̂�𝑘 ) (�̂�† + �̂�)} (5.1)

Where 𝑘 indexes the different modes and the remainder of the notation is the same as in

Chapter 3.

Since the modes reside in the same resonator, they are spaced apart in frequency by the

FSR of the resonator. This spacing is what allows us to individually access each mode.

As the difference frequency between each transmon and the modes are unique (again

spaced apart by the FSR), we can parametrically drive the flux of the transmon to access



specific modes without interacting with the others. Of course, this requires that the FSR

be more than the bandwidth of the flux drive signal, but this can be achieved in practice.

Note that in equation 5.1 the bare couplings 𝑔𝑘 may be different for each mode: they

usually follow a certain dispersive relation based on the resonator. In our case the

values are fairly similar for the modes we consider (verified by simulations of dispersion

relations of a particular chip in the lab), so the simulations assume the same bare coupling

for all the modes.

Going back to the circuit we wish to implement (fig. 2.6), it can be seen that the single

qubit gates are required only on the transmon (which is the emitter), and the two qubit

gates required are the CNOT and the CZ. Furthermore, the CNOT is only applied to the

modes once at the beginning, when they are in the vacuum state. This simplified things

for the first design, and does so here as well.

We implement the single qubit gates on the transmon in the standard way using a charge

drive as discussed in Chapter 2. The two qubit gates are done by using the 2nd excited

level of the transmon and the exact procedure is described below (Naik et al., 2017).

5.1.1 CZ Gate

To implement the CZ gate between the transmon and a mode we first note that the only

state that causes a change is where the both the transmon and the mode are in the first

excited state (Table: 5.1). Hence, we only need to selectively map |𝑒1⟩ to − |𝑒1⟩ to

implement the CZ gate. We do so by using the flux drive to cause a stimulated Rabi

oscillation between the states |𝑒1⟩ and | 𝑓 0⟩. By driving such an oscillation for one whole

period, a phase of 𝜋 is picked up in the process. This can be understood by considering

the evolution between these two states on the Bloch sphere. The phase accumulated is

related to the solid angle swept during the process, and since we drive for one whole

cycle, this is 𝜋.
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(a)

(b)

Figure 5.1: (a) CZ Gate dynamics, starting from the state |𝑔0⟩+|𝑒1⟩
2 . Transmon states

are |𝑔⟩ , |𝑒⟩ , | 𝑓 ⟩ and mode states are |0⟩ , |1⟩. The state |𝑒1⟩ is selectively
made to transition to | 𝑓 0⟩ and back using the parametric flux drive, which is
why the populations expected values follow the dynamics shown.(b)Density
matrix of final state. Final state reached is |𝑔0⟩−|𝑒1⟩

2 , beginning from |𝑔0⟩+|𝑒1⟩
2 .

This clearly shows that the gate being implemented is working as needed
(truth table in table 5.1).

5.1.2 CNOT Gate

As mentioned earlier, the CNOT gate only needs to be implemented between the transmon

in an arbitrary state, and the mode under consideration in the vacuum state (|0⟩). Hence

we only need to take care of a few transitions (Table: 5.2). Taking this into account, we

can perform a CNOT gate by simply creating a photon when the transmon is in the first

excited state, while maintaining the excitation in the transmon. Hence, we first drive the

transmon from the first excited level (|𝑒⟩) to the second (| 𝑓 ⟩) using a charge pulse, and

then drive a stimulated Rabi oscillation between the | 𝑓 0⟩ state and the |𝑒1⟩ state for half

a period. In doing so, we must take into account the extra phase accumulated during the

oscillation, and drive the flux accordingly.
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(a)

(b)

Figure 5.2: (a) CNOT Gate dynamics, starting from the state ( |𝑔⟩+|𝑒⟩) |0⟩
2 . Transmon states

are |𝑔⟩ , |𝑒⟩ , | 𝑓 ⟩ and mode states are |0⟩ , |1⟩. We first cause a |𝑒⟩ to | 𝑓 ⟩
transition in the transmon using the charge drive. Then we transition from
the | 𝑓 0⟩ level to the |𝑒1⟩ level.(b) Density matrix of final state. Final state
reached is |𝑔0⟩+|𝑒1⟩

2 , beginning from ( |𝑔⟩+|𝑒⟩) |0⟩
2 . This clearly shows that the

gate being implemented is working as needed (truth table in table 5.2).

Initial State Final State

|00⟩ |00⟩

|01⟩ |01⟩

|10⟩ |10⟩

|11⟩ − |11⟩

Table 5.1: Truth table of CZ gate

Initial State Final State

|00⟩ |00⟩

|10⟩ |11⟩

Table 5.2: Truth table of implemented
CNOT gate for relevant states.
First qubit is the transmon and
second is the resonator mode

5.2 THE DESIGN

Now that we have the basic ingredients ready to implement the circuit, we can put them

all together and come up with a design to implement the scheme. The proposed design is

shown in figure 5.3. It consists of two transmons, a multimode resonator, and a filter

between one of the transmons and the transmission line to the measurement unit.
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Figure 5.3: Proposed design based on multimode cQED.

The first transmon (the one on the left in figure 5.3) is what is used to enact the gates

on the different modes and actually create the cluster state. We follow the same circuit

shown in Figure 2.6 by implementing the gates as mentioned above. The Hadamard

gate on the transmon is implemented using a charge drive followed by a virtual-z gate as

explained in Chapter 2.

The second transmon is primarily for measurement. To send out a mode for measurement

we first swap the mode’s excitation onto this transmon using parametric flux modulation.

Then we send out the mode into the transmission line from the transmon, again using

parametric flux modulation. The high-pass filter in between is to prevent the transmon

from spontaneously decaying into the waveguide. This also allows us to shape the pulse

that we emit as we did in the first design. The cutoff frequency of the filter is well above

the transmon’s frequency (by about 2GHz) which prevents this. The pulse then goes

onto the measurement chain, which generally includes a parametric amplifier before the

actual measurement.

One may ask why we use such an elaborate scheme for measurement rather than just a

dispersive readout of the transmon. The main reason is the time it takes for such a readout.

In the case of one of the chips being designed in our lab, this time period is around 2us.

Since the lifetimes of the resonator modes are only around 15us, this greatly limits the

number of modes we would be able to measure before the states decohere. Hence, we

"convert" these standing modes into traveling modes using the second transmon, which

takes much lesser time ( 0.5us, limited by about twice the gate speeds of transmon-mode
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gates). Once the transmon has emitted one mode, it can immediately start converting

another one. Note that we also make use of the fact that we only need to store one "slice"

of the cluster state at a time as described in Chapter 2, so we pretty much only need to

generate 2D cluster states in this case.

5.3 RESULTS

Using the scheme elaborated above, we perform simulations on a transmon coupled to a

multimode resonator using QuTiP (Johansson et al., 2013). For the density matrix plots

shown in fig. 5.4, we readout the states of the resonator modes at the end of our circuit.

Table 5.3 lists the quantum state fidelities of most of the generated states.

State Fidelity State Fidelity

2 Qubit cluster 0.992 4 Qubit, square lattice 0.88

3 Qubit, triangle 0.946 3 Modes, triangle 0.74

4 Qubits, 1D 0.901 4 Modes, square 0.72

Table 5.3: Fidelities of different generated states, named based on number of qubits/modes
and the shape of the underlying graph."x" modes indicates that the graph
mentioned is only between "x" resonator modes: the transmon is connected to
only one other node in the graph and is not part of the shape mentioned."y"
qubits means the transmon is included in the shape mentioned.

As can be seen, for higher number of modes in the cluster state, the fidelity gets worse.

One can also notice that there is residual excitation in the | 𝑓 ⟩ level of the transmon in

fig. 5.4a. Both of these issues seem to arise from dispersive effects: as the modes get

populated the qubit frequency shifts slightly. Due to this, there is a mismatch between the

driving frequency and the required excitation frequencies. This difference is small and

hence the populations are nearer to the values expected, but there is a phase accumulation

over time because of this as well. Since the circuit depth is larger with more qubits, this

phase accumulation increases with the number of qubits, and that’s what we see.
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(a) Hinton plot of the density matrix for a 1D
cluster state with 3 modes and the transmon. (b) Ideal plot of (a)

(c) Density matrix plot of a 4 mode cluster state,
with the underlying graph being a square. (d) Ideal plot of (c)

Figure 5.4: Examples of generated states and their ideal states.(a) and (b) include the
second excited level of the transmon. The last 8 rows/columns in figure (a)
represent the second excited state of the transmon. To generate (c) and (d),
we measure out the transmon from the cluster state. Values used for the
simulations are well within range of experimental possibilities: transmon
frequency of 2.8GHz, anharmonicity of 200MHz, lowest resonator mode
frequency of 6.2GHz, FSR of 170MHz, bare coupling rate of 10MHz.

These simulations assume the same bare coupling rate between the transmon and all

the modes. This, along with the phase accumulation issue described above, are what

currently hinder us from generating larger lattices. As one starts using higher modes of

the multimode resonator, the bare coupling grows weaker and hence the transmon-mode

gates take longer. This affects the fidelity and also limits how many modes we could

operate on before they decohere.
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CHAPTER 6

CONCLUSION AND OUTLOOK

The future of quantum computing seems bright as both, industry and academia, have

demonstrated great advancements in the field and are continuing to push the limits. A

majority of these effort are indeed towards building larger and larger quantum systems

to reach the fault tolerant regime described in Chapter 1. As we mentioned then, it

is important for us to think about how best scale up while not making the system too

complex to control and measure.

This was the fundamental driving factor for both of our designs; there are numerous ways

to implement the scheme mentioned in Wan et al. (2021), but we feel that our particular

approach to the problem will minimize the overhead of introducing new qubits. The

control in either design is limited to 3 or lesser transmons and there is only a single

measurement chain. In particular, compare this to some of the largest existing systems

such as IBM’s Eagle processor (127 qubits) or Google’s Sycamore processor (53 qubits)

where each qubit requires a separate control line. There are also numerous measurement

chains, even though the readout is multiplexed (each line can usually only multiplex

around 15 qubits at most). What allows us to get rid of this issue in particular is that

we time-multiplex the readout of the different modes instead. This is an approach also

followed by Deshpande et al. (2022) in their experiments, which has proven to be one of

the biggest achievements in the field so far.

Another important aspect of our approach is the hybrid nature of our hardware. We use a

superconducting platform, while storing our data in photonic qubits. This allows us to

take the best of both worlds an is definitely worth considering while scaling up. Focusing

on one kind of hardware will almost always have some limitation: some may have large



coherence times, but will also be difficult to manipulate, while others may have fast gate

speeds, but lower coherence times. By using hybrid architectures such as ours it may

be possible to have both, large coherence times and high speed quantum gates. This

will enable us not only to increase the system size, but also to cross the fault-tolerant

thresholds. This too is an approach that is being investigated thoroughly in the academic

community, such as for Continuous-Variable computing (eg. Grimm et al. (2020) and

Reuer et al. (2021)).

The above points are what made it possible for us to demonstrate, albeit only in simulations

for now, the creation of cluster states with our design. The cluster states shown in this

thesis are definitely on the smaller side, but the important fact is the dimensionality.

There have been demonstrations of 1D cluster states (Besse et al., 2020) but none of 3D

yet. In fact, 2D cluster states too have only very recently been demonstrated (conference

presentation:Butler (2022) during the creation of this thesis) and is still not a published

topic. Hence, our designs could very well be one of the first to demonstrate a 3D cluster

state, even if it is just a smaller unit cell.

To the best of our knowledge, the idea of using parametric flux modulation to cause a

reflection at a frequency well detuned from the bare qubit frequency has also not been

investigated before on superconducting circuits. Such uses of parametric flux modulation

may help in other areas of quantum information processing as well, such as in quantum

routers. Our hope is that this work will encourage more research in this direction.

Since we’ve presented two different designs, there are a few advantages and disadvantages

of both. Table 6.1 lists the features of both the designs. There are also various points to

improve upon in both the designs that we list as future work:

• For the waveguide QED based design, design slow-light metamaterials which
could help reduce the length of the delay lines.

• For design based on multimode cQED, the size of the cluster state that we can
generate can be increased by taking into account dispersive shifts in all the gates.
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Waveguide QED Design Multimode cQED Design
Extensible architecture: only the length of
delay line changes

Flexible architecture: can also generate
states other than cluster states very easily

Gate times for each mode are the same Calibration of gates is simple since we have
control over the phase using the different
drives

Propagating bosonic modes have low
dephasing errors which may make it easier
to reach the fault-tolerant regime

Can be implemented-on chip with existing
technologies

Table 6.1: Comparison between the two proposed designs

• For either design, the pulse shape emitted into the waveguide must be controlled
through parametric flux modulation. The pulse shape determines the measurement
efficiency, as well as the reflection efficiency in the waveguide QED design. The
optimal pulse shape depends largely on the parameters of the system, such as the
coupling rates and frequencies. Looking into this and coming up with an optimal
sideband pulse for the parametric flux modulation is definitely worth researching.

• Dual-rail schemes for either design requires further consideration. This would
help in detecting photon-loss that may have occured during the generation or in
the measurement chain.

Of course, we are also looking into a possible experimental demonstration of our schemes.

In particular, the multimode approach is one that we may be able to perform on some of

the chips that the lab is already designing. The parameters of this chip are expected to be

able to create atleast small 3D cluster states, as verified by simulations.

In conclusion, we hope that this work will motivate further research into hybrid

architectures for designing quantum systems that scale better to help develop the

novel and exciting field of quantum computing.
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APPENDIX A

INPUT OUTPUT THEORY EQUATIONS

In this section we briefly derive the input-output theory relations shown in Chapter 4.

We use the same notation as used in the main text. We start with the hamiltonians for the

waveguide, the two-level system and their interaction (Kannan, 2018):

�̂� = 𝐻𝑞 + 𝐻𝑤𝑔 + 𝐻𝑖𝑛𝑡 (A.1)

�̂�𝑞 = ℏ𝜔𝑞�̂�
+�̂�− (A.2)

�̂�𝑤𝑔 =

∫
𝑑𝜔ℏ𝜔(�̂�†𝑟 (𝜔)�̂�𝑟 (𝜔) + �̂�

†
𝑙
(𝜔)�̂�𝑙 (𝜔)) (A.3)

�̂�𝑖𝑛𝑡 = 𝑖ℏ𝑔�̂�𝑥

∫
𝑑𝜔

√
𝜔((�̂�†𝑟 (𝜔) − �̂�𝑟 (𝜔) + (�̂�†

𝑙
(𝜔) − �̂�𝑙 (𝜔)) (A.4)

Using the Hamiltonians above, we can derive the Heisenberg equations of motion for the

waveguide operators:

¤̂
𝑏𝑟 (𝜔) =

𝑖

ℎ
[�̂�, �̂�𝑟 (𝜔)] = −𝑖�̂�𝑟 (𝜔) + 𝑔

√
𝜔�̂�𝑥 (A.5)

We can integrate the above expression from time 𝑡 = 0 to 𝑡,as well as from 𝑡 = 𝑡 to 𝑡 𝑓 to

yield:

�̂�𝑟 (𝜔, 𝑡) = �̂�𝑟 (𝜔, 0)𝑒−𝑖𝜔𝑡 + 𝑔
√
𝜔

∫ 𝑡

0
𝑒−𝑖𝜔(𝑡−𝜏)𝜎𝑥 (𝜏)𝑑𝜏 (A.6)

�̂�𝑟 (𝜔, 𝑡) = �̂�𝑟 (𝜔, 0)𝑒−𝑖𝜔𝑡 − 𝑔
√
𝜔

∫ 𝑡 𝑓

𝑡

𝑒−𝑖𝜔(𝑡−𝜏)𝜎𝑥 (𝜏)𝑑𝜏 (A.7)

In writing our master equation in the Lindbladian form in 4.6, we have already made

an implicit assumption that the system dynamics are not too fast. Quantitatively, since

most of our dynamics occur in the GHz range (superconducting qubits are usually of this

range), we are restricted to dynamics where t» 0.1ns. We can now use the above two



equations and arrive at:

�̂�𝑜𝑢𝑡𝑟 (𝑡) = �̂�𝑖𝑛𝑟 (𝑡) +
∫ ∞

0

𝑑𝜔
√

2𝜋
𝑔
√
𝜔

∫ 𝑡 𝑓

0
𝑒−𝑖𝜔(𝑡−𝜏)�̂�𝑥 (𝜏)𝑑𝜏 (A.8)

Where �̂�𝑜𝑢𝑡𝑟 (𝑡) and �̂�𝑖𝑛𝑟 (𝑡) are as defined in the main text. Intuitively, they are the fourier

transforms of the frequency modes in the waveguide before and after interaction with the

qubit.

What remains is the integral in 4.9. To this end we can write the Pauli X operator at time

𝜏 in terms of its value at time 𝑡:

�̂�𝑥 (𝜏) =𝑖�̂� (𝜏−𝑡)/ℏ �̂�𝑥 (𝑡)−𝑖�̂� (𝜏−𝑡)/ℏ (A.9)

One can further ignore the contributions of the interaction hamiltonian in �̂� since its

contribution would be lesser than that of the bare qubit hamiltonian. This means that the

Pauli X operator will evolve just due to the precession of the qubit about the Bloch sphere

at the qubit frequency, i.e. �̂�𝑥 (𝜏) ≈ �̂�(𝑡)𝑒−𝑖𝜔𝑞 (𝜏−𝑡) . Additionally, in the long time limit

(after sufficient interaction), 𝜔𝑞 (𝜏 − 𝑡) → ∞. Using these approximations we arrive at

the input output relation shown in the main text:

�̂�𝑜𝑢𝑡𝑟 (𝑡) = �̂�𝑖𝑛𝑟 (𝑡) +
√︂

Γ

2
�̂�−(𝑡) (A.10)

A.1 INPUT OUTPUT THEORY IN PRESENCE OF PARAMETRIC FLUX

MODULATION

In the above derivation, we’ve assumed that the qubit frequency remains fixed, and more

importantly that the bare qubit hamiltonian is not time dependent. In the presence of a

parametric flux drive this is not the case and one needs to include additional terms in the

final input output relations. Most importantly, the assumption of �̂�𝑥 (𝜏) ≈ �̂�𝑥 (𝑡)𝑒−𝑖𝜔𝑞 (𝜏−𝑡)

breaks down.

If we assume the qubit frequency to be modulated as 𝜔𝑞 (𝑡) = 𝜔0 + 𝜖 sin(𝜔𝑠𝑏𝑡), we can
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approximate the time dependence of the qubit Pauli X operator as:

�̂�𝑥 (𝜏) ≈ �̂�(𝑡)𝑒−𝑖𝜔𝑞 (𝜏−𝑡)𝑒
−𝑖 𝜖

𝜔𝑠𝑏
(cos(𝜔𝑠𝑏 (𝑡))−cos(𝜔𝑠𝑏𝜏)) (A.11)

This can then be substituted in A.8 to arrive at the final relations. The integral is quite

difficult, and hence analytic methods must be used in this case instead. For the results

shown in the main text, we use approximate methods to show the reflection at the sideband

frequency. Of course, as can be seen there, the approximations used are quite crude and

evaluating this integral better is part of future work.
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APPENDIX B

CHIP DESIGN AND EXPERIMENTAL CALIBRATION

B.1 EM SIMULATIONS

Apart from all the simulations done in QuTiP for the two designs described in the main

content, we have also worked on electromagnetic simulations in ANSYS Q3D and Sonnet

EM. These were done for parts of a chip that is being designed at the lab.

The Sonnet EM simulations were done to optimize the parameters the Purcell filter for

the readout of this chip. In particular, we had a target frequency of the Purcell filter and a

target coupling to the transmission line. These parameters can be estimated from the S11

response of the filter at the input. A screenshot of the design of the filter in Sonnet EM is

shown below in fig.B.1. To achieve these values, we had to change the lengths of the

resonator being used, as well as change the parameters (finger length, number of fingers

etc.) of the interdigitated capacitor used to couple to the transmission line.

Figure B.1: Purcell filter simulation in Sonnet.

We also performed simulations to extract the coupling capacitances of the transmon



to the readout resonator, its self-capacitance, as well as its coupling to a multimode

resonator. These were done using ANSYS Q3D, where we simulated just a section of the

chip that contribute to these values the most (see fig.B.2). By adjusting the lengths of

various parts we were able to reach the desired capacitances.

Figure B.2: Simulated design in ANSYS Q3D. Different sections are labelled in the
figure. The majority of the blue region surrounding the transmon node is the
ground plane.

B.2 CALIBRATION OF IQ MIXER FOR MEASUREMENTS

To perform measurements on the devices that will soon be fabricated, we have been

working towards setting up the necessary equipment, including the dilution refrigerator

and the IQ mixers. In this appendix, we outline the approach we have followed towards

minimising the image sideband that arises due to imbalances in our IQ mixers. We

largely follow the work done by Jolin et al. (2020) and model the imbalance in a similar

fashion.
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(a) Up-conversion (b) Down-conversion

Figure B.3: Imbalance modelling

As can be seen in figure B.3, the imbalance is modelled as a phase and amplitude

imbalance in the I and Q arms of the mixer. We also need to calibrate for the LO leakage

(not shown in the model) which arises due to diode imperfections of the mixer circuit.

This results in the up-converted spectrum with an image sideband(include an image of

this), as well as a component at the LO frequency. The LO leakage can be fixed by

simply sweeping through the DC offsets of the I and Q inputs. Hence we shall focus on

correcting the imbalance. The result of such an imbalance gives the following I and Q

components to the up converted signal:

𝐼 = (𝑧𝐼 − 𝑧𝑄𝐺𝑢𝑝 sin(𝜙𝑢𝑝)) cos(Ω𝑡) (B.1)

𝑄 = 𝑧𝑄𝐺𝑢𝑝 sin(Ω𝑡) cos(𝜙𝑢𝑝) (B.2)

It is straightforward to see that simple modulations on the I and Q components

independently is not enough to correct for this imbalance. Hence the pre-distortion

applied before the up converter is of the form shown in figure B.4. Hence we need to

calibrate for these two parameters 𝛼 and 𝛽. Ideally, we would want 𝛼 = 𝐺𝑢𝑝 cos(𝜙𝑢𝑝)

and 𝛽 = 𝐺𝑢𝑝 sin(𝜙𝑢𝑝), which perfectly cancels out the imbalance.
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Figure B.4: Pre-distortion applied before going into mixer to counter the imbalance

Since the down-converter also has an imbalance, we need to account for that too. It

would indeed be best if both the up-converter and downconverter could be calibrated

independently, in-situ. Jolin et al. (2020) do this by applying a Kalman filter for the

down-converter to filter out noise, then calibrating the up-converter based on estimates for

the Image Leakage Ratio(ILR). To decouple the down-converter’s imbalance from that of

the up-conversion stage, the Kalman filter is applied to the output of the down-converter

when there is no input. Since the input is now uncorrelated, we can derive quantities

that help correct the imbalance in the down-converter. Using these estimates, we then

provide an input to the up-converter as well, and proceed to reduce the ILR.

Figure B.5: Signal at 20MHz on a carrier frequency which was ≈ 5 G Hz, and we
demodulate to 100 MHz. Left: uncalibrated received signals. We want
to eliminate the lower sideband at 80MHz. Right: After calibration of
pre-distortion. Lower sideband is suppressed.
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