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ABSTRACT

KEYWORDS Hardware prefetcher; I-Class; Core-side; Cache-side; Stride;

Linestride; BRAM; Offset; Microbenchmark tests; Benchmark tests

Hardware prefetching is a microarchitectural feature to anticipate addresses that a
processor may likely reference in future based on past access patterns and speculatively
fetch data or instructions from slow lower-level memories into faster upper-level memories
before the core requests them. Examples of this could be fetching from main memory
into last-level cache, fetching from unified L2 Cache into instruction cache etc. The
objective of this optimisation technique is to reduce the average memory access time
(AMAT). From the "memory wall" point of view, Hardware Prefetching is a latency

hiding technique that hides the off-chip memory access latency.

The aim of this project is to modify and optimise the existing core-side L1 data cache
prefetchers and also design new core-side and cache-side L1 data cache prefetchers, for
the out-of-order RISC-V processor, the Shakti I-Class core, in order to achieve speedup
and higher cache hits. The cache-side prefetchers could be adapted to work as the 1.2
data cache and instruction cache prefetchers. The implementation of the prefetchers has

been done in the Bluespec System Verilog (BSV) language.

The prefetchers are tested with microbenchmarks (assembly, C) and a subset of SPEC
2017 benchmarks. The performance of the processor with and without prefetchers is
analysed and the comparison of the different prefetchers in different configurations is
highlighted. Our results show that carefully selecting and tuning prefetchers can show
good performance improvement for L1 data prefetching. The cache-side offset prefetchers

may work better with the L2 cache.
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CHAPTER 1

INTRODUCTION

The gap between processor and memory performance has been increasing over the years.
The penalty of each memory access ranges from a few cycles to hundreds of processor
cycles, and thus, memory access becomes a crucial performance bottleneck for the
system. Prefetching is one of the techniques to break this “memory wall”. In this project,
we have designed, implemented, optimised and tested various hardware prefetchers for
the Shakti [-Class core. Bluespec SystemVerilog was used to implement the prefetchers.
The functional testing and performance analysis for the prefetchers was done using BSV
testbenches, directed assembly tests, microbenchmark and benchmark tests with RTL
simulation using PK and FESVR. The performance with the Shakti I-Class core of the
various prefetchers is analysed using parameters like speedup, number of prefetches,

cache hits etc.

1.1 HARDWARE PREFETCHERS

Processors use prefetching as a technique to enhance their execution performance. It
involves fetching instructions or data from where they are originally stored (usually
main memory) to local memory (like caches or external buffers) before they are actually
requested by the processor. From the memory wall point of view, it is a latency hiding
technique that hides the off-chip memory access latency. For hardware prefetching, the
idea is that specialised hardware observes load/store access patterns and prefetches data

based on past access behaviour. !’
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Figure 1.1: The Memory Wall Problem

Source: Mutlu (2020)

1.2 ABOUT SHAKTI I-CLASS PROCESSOR

The Shakti I-Class corel!! for which prefetchers have been implemented in this project, is
a super-scalar multi-wide out-of-order processor aimed at the compute, mobile, storage
and networking segments. It has potential applications in general-purpose computing

and high-end embedded markets with a target operating frequency range of 1.5-2.5 GHz.

The I-Class core can fetch/ dispatch/ commit 4 instructions per cycle. It can issue 7
instructions- up to 5 integer and 2 floating-point instructions in a cycle. It implements
RV64IMAFDC: multiplication and division, atomic, single and double-precision floating-
point, compressed instructions extensions of the RISC-V 64-bit base integer instruction
set. It is equipped with performance-oriented features like aggressive branch prediction,
deep pipeline stages, register renaming (which remove false dependencies along with
checkpointing), a reorder buffer that stores instruction metadata for all instructions
in flight, operand bypass, a memory dependence predictor and non-blocking caches

(both instruction and data caches) supporting multiple outstanding misses with Miss



Status Holding Registers (MSHRs). The I-Class core is under active development. It is

implemented in the BSV language.

1.3 WHY BLUESPEC VERILOG?

All the prefetchers in this project have been implemented in Bluespec SystemVerilog
(BSV) language!*. BSV is a high-level functional hardware description programming
language to handle chip design which comes with a SystemVerilog front-end. Concurrency
can be realised reliably in BSV since it is a rule-based language where hardware is
described as object-oriented modules. With all its features, BSV can greatly raise a
hardware designer’s productivity and is hence preferred for this project. The BSC
(Bluespec Compiler) is used to generate Verilog from the BSV code. After the Verilog
code is generated, it can be taken through the usual FPGA (Field Programmable Gate

Array) or ASIC (Application Specific Integrated Chip) development flows.

1.4 TESTING METHODOLOGY

BSV testbenches were used to debug and test the functional correctness of the prefetchers
at the module-level. After integrating the prefetchers with the processor, directed
assembly tests, microbenchmarks, and benchmarks were used to debug and analyse the

performance. All testing was done with simulation on Verilator3!.

1.5 THESIS CONTRIBUTIONS

This project aims to modify and optimise the existing core-side L1 D-Cache prefetchers
(Stride, Linestride, Stride BRAM), implement new core-side (Linestride BRAM, Complex
Stride BRAM) and L1 data cache-side prefetchers (Nextline Offset, Best Offset) for
the out-of-order RISC-V processor, the Shakti I-Class core. Thorough testing and
performance analysis has been done for the modified as well as new prefetchers using

testbenches, assembly, microbenchmark and benchmark tests.



1.6 ORGANISATION OF THE THESIS

The outline of the rest of the thesis is as follows. Chapter 2 dives deeper into the motivation
behind hardware prefetching, explains the design and key terms and parameters of a basic
hardware prefetcher and discusses the types of prefetchers we have implemented. Chapter
3 is an elaborate description of the design and functionality of the existing and newly
implemented core side prefetchers and their enhancements or optimisations. Chapter
4 describes the design, functionality and optimisation of the cache side prefetchers
which we have implemented. Next, in Chapter 5, the various tests written to check the
functional correctness and evaluate the performance of each prefetcher are discussed.
The experimental setup and the statistics and results from the performance analysis of
the prefetchers are also shown. Finally, towards the end, Chapter 6 concludes the thesis

with the future scope of this project and further work that can be done.



CHAPTER 2

HARDWARE PREFETCHERS

This chapter discusses the motivation behind hardware prefetching and explains the basic
idea of hardware prefetching. It also provides an overview of the major requirements of

a hardware prefetcher and some key parameters.

2.1 MOTIVATION

Cache prefetching is an optimization technique to anticipate addresses that a processor
may likely reference in the future based on past access patterns and speculatively fetch
data or instructions from slow lower-level memories into faster upper-level memories

before the core requests them.

Main memory latency is high compared to cache access latency. The average time taken
to access data from the memory is referred to as Average Memory Access Time (AMAT).
AMAT has three parameters: hit latency, miss rate, and miss penalty. Hit latency (H) is
the time to hit in the cache. Miss Rate (MR) is the frequency of cache misses, while
Average Miss Penalty (AMP) is the cost of a cache miss in terms of time. AMAT can be

defined as follows!”!:

AMAT =H+ MR - AMP

The objective of prefetching is to reduce the AMAT. Prefetching is a latency-hiding
technique as prefetching data into faster memories like caches and then accessing it from
there is usually many orders of magnitude faster in comparison to directly accessing it
from the main memory. It helps to reduce the cache miss rate (MR) or miss penalty
(AMP) via parallelism. Hence, timely and accurate prefetching of data can result in an

improvement in performance.



2.2 HARDWARE PREFETCHERS

Hardware-based prefetching is typically accomplished by having a dedicated hardware
mechanism in the processor that watches the stream of instructions or data being requested
by the executing program, predicts the next few elements that the program might need

based on this stream and prefetches them into the processor’s cache.

Basic idea of Hardware Prefetching:
* Hardware monitors processor accesses
* Memorizes or finds patterns/strides

* Generates prefetch addresses automatically

Tradeoffs in Hardware Prefetching:

+ Can be tuned to system implementation

¢ + Does not waste instruction execution bandwidth

- Area/power for the prefetching logic

- Software can be more efficient when looking for more complex data access
patterns

2.3 PREFETCHING METRICS AND REQUIREMENTS
Accuracy
Accuracy is the fraction of total prefetches that were useful. Quantitatively, accuracy is

the ratio of the number of correct prefetches to the total number of prefetches, i.e.
Cache Misses eliminated by prefetching

Prefetch A =
refelch Accilacy (Useless Cache Prefetches) + (Cache Misses eliminated by prefetching)

Misprediction in prefetching does not affect correctness as the prefetched data at a
“mispredicted” address is simply not used. There is no need for state recovery, in contrast

to branch misprediction or value misprediction.

However, when the prefetchers become too aggressive it can cause an increase in traffic



on the memory interconnection network which can lead to an extra miss penalty for
genuine demand requests from the core. Apart from memory bandwidth, useless data
also wastes resources like cache or prefetch buffer space and energy consumption. If the
speculatively prefetched blocks evict or replace useful demand data or cache lines, it can
cause pollution of cache that could result in a net increase in the cache miss rate. In such
cases, prefetchers can degrade a processor’s performance. So, accurate prediction of

addresses to prefetch is important.

Coverage
Coverage is the fraction of total misses that are eliminated because of prefetching. It is

the ratio of the number of useful prefetches to the total number of cache misses, i.e.

Cache Misses eliminated by Prefetching
Total Cache Misses ’

Coverage =

where, Total Cache Misses = Cache misses eliminated by prefetching + Cache misses not

eliminated by prefetching

Timeliness

The qualitative definition of timeliness is how early a block is prefetched versus when it
is actually referenced. Prefetching too early might cause the prefetched data to be evicted
from the storage before it is used. On the other hand, prefetching too late is also futile.
the prefetcher can be made more timely by making it more aggressive: try to stay far

ahead of the processor’s access stream.

Access Pattern

A hardware prefetcher predicts what to prefetch based on past access patterns. These
patterns could be spatial or temporal, core-side load PC based or cache-side offset based,
and the observed pattern could be of cache hits and misses or of misses only (either in

L1, or L2 D-cache or I-cache).



Location
Prefetching can be done in various levels of caches such as memory to L2, memory to L1

and L2 to L1. It can be used for data as well as instruction caches.

2.4 PREFETCH PARAMETERS

Some of the key parameters in the design of prefetchers are:

* Prefetch Degree: Number of prefetch requests to issue at a given time.

Demand
Access X

~
Cal

\

Degree =1"' | X+1

|
|
I
I
Degree =2, | X+1 | X+2 |
|
:
|
|

Degree =41 | X+1 | X+2 | X+3 | X+4

Figure 2.1: Prefetch Degree

* Prefetch Distance: Determines how far ahead the estimated prefetch address are
from the prefetch requests issued. It is usually preferred to keep this value as a
power of 2.

* Stride (or Line stride) Width: Number of bits used to capture the stride (or line
stride) value. It is chosen based on the expected maximum stride (or line stride)
value that can be seen in most situations.

* Maximum Confidence: Maximum possible confidence value. The number of
bits used to capture the value of confidence in the stride (or line stride) pattern

depends on this value.

* Threshold Confidence: If the confidence value in the stride (or line stride) pattern
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Gecess prefetch

! oo |

; no

Prefetch-distance
Y=X+4
Y=X+8
Y=X+16

Figure 2.2: Prefetch Distance

seen is greater than or equal to this threshold value, prefetch requests can be
generated.

 Line Offset: logs(cache_line_size). It is equal to the log of the number of bytes
in a cache line. It is used to calculate line address in line stride prefetcher.

* N (as in N-way BRAM): The number of ways in the set-associative BRAM.
* Prefetch throttling: For all runs, prefetch throttling has been enabled. This
ensures that 2 MSHRs are always reserved for demand requests. This drops some

prefetch requests but helps avoid the situation of cache signalling busy due to
MSHRs getting full with the prefetch requests.
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CHAPTER 3

CORE-SIDE PREFETCHERS

In this chapter, we look at the design of various existing and newly implemented core-side

prefetchers.

Core-side prefetching refers to prefetching that is initiated by the core. The load PCs and
demand accesses observed by the core are used to train the prefetcher (see figure 2.4).
The prefetch request is sent to a cache, in our case the Level 1 Data Cache. In this project,
we have optimised, tested and analysed some of the existing core-side prefetchers as well

as designed some new ones for the Shakti [-Class processor.

NEXTLINE PREFETCHERS

The nextline prefetcher is a very basic load address-based core-side prefetcher which
simply prefetches the next cache line on a demand access. This existing prefetcher is
studied but not tested in our project. This prefetcher has been discussed in Somisetty
(2021). The nextline/previous-line prefetcher that was implemented for the I-Class core

works as follows for prefetch degree equal to ‘n’:

Case (1): If the current demand access address is greater than the previous address, the

prefetch requests will be issued for the next ‘n’ cache lines.

Case (i1): If the current address is lesser than the previous address, prefetch requests will

be issued for the previous ‘n’ lines.



3.1 STRIDE PREFETCHERS

Typically in programs with simple loops, addresses which are at a constant distance or
offset are referenced continuously in consecutive iterations. For example, when accessing
the elements of an array: if the addresses X, X+4, X+8, X+12 ... are referenced, the
difference between the addresses is a constant, 4. This difference is called stride. The
address pattern can be predicted and the next address to be fetched may be at a distance
of 4 from the previous address. Hence, we can prefetch the predicted address. This
is the idea behind a PC-based stride prefetcher. The distance between the memory
addresses referenced by a load instruction (i.e. stride of the load) as well as the last
address referenced by the load is observed and recorded. If the same stride is detected
multiple times for that load instruction, the confidence in that stride pattern increases and
when the confidence is above a certain chosen threshold value, the address [last address +

stride] is prefetched (accordingly changed if prefetch degree or distance are not equal to

1)_[6]

3.1.1 Stride Prefetcher with register array SPT

The first stride prefetcher implemented for the I-Class core uses a register array for the
SPT (Stride Prefetcher Table). The prefetcher observes the PC of the load instruction
and load addresses. The SPT keeps track of observed addresses and their stride patterns.
It is a PC-indexed direct-mapped table. The lower-order bits of PC become the index
used to locate a particular SPT entry and the higher-order bits of the PC are used for the
tag. Each entry of the SPT has the following components: tag, previous address, stride
and confidence counter. Each component/column of the SPT is represented by a vector
with Num_Entries number of entries. All the counters and widths are parameterisable
(Num_Entries, stride width, maximum confidence, confidence threshold, prefetch degree
and prefetch distance). Index width is logr(Num_Entries) and confidence counter

width is logy (M aximum_con fidence). Stride is calculated in bytes.

(Current stride) = (Current address) - (Previous address)

15



Index Tag | Previous address | Stride | Confidence counter

Num_Entries-1
Num_Entries

Table 3.1: Stride Prefetch Table

There are two phases in the stride prefetcher: the training phase and the generation phase.

The training segment is pipelined into two stages, one for reading the table and second
for updating the SPT. When the load address is received by the AGU, the prefetcher

training is triggered. In the second stage, the SPT is updated.

In the training phase, whenever a load instruction is seen, the SPT is read and one of the

following operations takes place:

1. Load PC hits in the SPT i.e. tag of the current load instruction matches with
the tag present in the SPT entry at that index. If current stride matches stride
previously-stored in SPT entry, increment confidence counter in SPT if (confidence
counter) < (maximum confidence) and update previous address in SPT.

2. Load PC hits in the SPT. If current stride does not match stride previously stored
in SPT entry and (confidence counter) > 0, then decrement confidence counter.

3. Load PC hits in the SPT. If current stride does not match stride previously stored
in SPT entry and (confidence counter) = 0, then update the stride field in SPT with
the current stride and update previous address.

4. Load PC misses in the SPT (tag mismatch). Check whether the confidence counter
= 0. If it is, it can be replaced by the information from the current load (tag and
previous address) and the stride field can be reset to the default value. If not,
decrement the confidence counter.

In the generation phase, if (confidence counter) >= (threshold confidence), prefetch

degree number of prefetch addresses are sent to the Prefetch Request Queue (PRQ).

The prefetch addresses generated depend on the prefetch distance value as:
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(Prefetch address) = (Current address) + (Stride)*(Prefetch distance)

A prefetch request will be generated only if the prefetch address falls in the same page
as that of the current load address. Also, a prefetch request will be issued only if the
prefetch address doesn’t fall in the same cache line as the demand address line or the

previous prefetch request generated.

Default values of parameters used:

¢ Maximum value of confidence = 15

Confidence_threshold = 7

Prefetch_degree = 1

Prefetch_distance = 2

Number of entries in SPT (Num_Entries) = 256

Stride_width = 12

3.1.2 Stride Prefetcher with BRAM SPT

For this version of the prefetchers, the SPT is designed as a PC-indexed n-way
set-associative mapped dual-ported Block Random Access Memory (BRAM). The
implementation uses the BRAMCore package of BSV. In BRAM, the read operation has
one cycle of extra latency (i.e. data is available one cycle after the read request is

initiated).

The components of the BRAM SPT entry are the same as the register array SPT. Each
entry in the BRAM contains a tag, a previous address (last seen address), a stride, and a
confidence counter. The Num_Entries in this case is equal to the number of entries in a
single set of the BRAM. The index width is still equal to log,(Num_Entries) and
confidence counter width is same as the register array SPT,

logo(Maximum_confidence). Since the BRAM SPT is n-way set-associative, the
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total number of entries in the SPT are now n*(Num_Entries). We will be referring to

this prefetcher as the Stride BRAM prefetcher henceforth.

Idx || TagO | Prv_addrO | StrideO | ConfO || Tagl | Prv_addrl | Stridel | Confl

Table 3.2: A BRAM based 2-way set-associative SPT

There are two phases in the stride BRAM prefetcher, the training phase and the generation

phase, same as in the stride prefetcher.

The training segment in the stride BRAM prefetcher is pipelined into three stages instead

of two.

In the first pipeline stage, the read index is latched onto the read port of the BRAM SPT

when the PC and address of a load generated in the AGU are received.

In the next cycle, the BRAM SPT entry data is available to be read and all "n" entries
of the index are stored in registers. For the case where the same load PC trains in

back-to-back cycles, bypassing is used in the second stage.

Bypassing : Bypassing is an optimization that is introduced to deal with the case where
the same load PC comes in to train the prefetcher in back-to-back cycles. In this case,
there is a PC that is writing the updated SPT entry to BRAM in stage 3 and in the same
cycle, the same PC from another load instance is trying to train again using the old
values read from SPT in stage 2. This problem is solved using bypassing. In stage 2, it is
checked if the stage 3 valid register is true in that cycle and if the PCs match, the updated
values computed by the previous load are used and if not, the SPT entry values read from

the BRAM are used.
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The training of the prefetcher is then performed in the same cycle and one of the following

operations takes place:

1. Load PC hits in the SPT i.e. the tag of the current load instruction matches with
one of the tags present in the SPT entries at that index. If current stride matches
stride previously stored in the same SPT set entry, increment confidence counter in
set entry if (confidence counter) < (maximum confidence) and update previous
address in set entry.

2. Load PC hits in the SPT (same as PC hit in previous case), if current stride does
not match stride previously stored in SPT set entry and (confidence counter) > 0,
then decrement confidence counter.

3. Load PC hits in the SPT (same as PC hit in previous case), if current stride does
not match stride previously stored in SPT set entry and (confidence counter) =
0, then update the stride field in SPT set entry with the current stride and update
previous address.

4. Load PC misses in the SPT (tag mismatch), i.e, none of the tags present in the
entries of the current index match the tag of the load PC. Here, an entry replacement
policy is necessary. Compare all the confidences in the entry (in all the sets at the
given index level) and select the entry with the least confidence as the target. If the
confidence of this entry is 0, replace it by the information from the current load
(tag and previous address) and the stride field can be reset to a default value (= 1).
If not, decrement the confidence counter of the entry.

The values from stage 2 are written in pipeline registers. In the third pipeline stage, if
there is a need to update the table entry, the new entry is written in the BRAM SPT using
the write port. It is also in this stage that the computation and generation of prefetch
requests happen if the generate conditions are satisfied. The generation phase is the same
as that in the stride prefetcher. The prefetch addresses generated depend on prefetch

distance value as:

(Prefetch address) = (Current address) + (Stride)*(Prefetch distance)

A prefetch request will be generated only if the prefetch address falls in the same page
as that of the current load address. Also, a prefetch request will be issued only if the
prefetch address doesn’t fall in the same cache line as the demand address line or the

previous prefetch request generated.
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Default values of parameters used:

¢ Maximum value of confidence =7

Confidence_threshold = 3

Prefetch_degree = 1

Prefetch_distance = 2

Number of entries in SPT (Num_Entries) = 64

Number of sets in BRAM (n) = 4

Stride_width = 12

The advantage of a BRAM-based implementation of the SPT is that it uses Block RAMs
instead of on-chip registers. On-chip registers are limited and Block RAMs are a more
compact form of memory on a chip, making BRAMs better suited for bigger data storage.
Also, the BRAMs are dual-ported which allow us to perform 2 operations (1R,1W in our
case) on it in the same cycle. The n-way set associativity of the SPT ensures that same

indexed addresses are not as frequently replaced as in a direct-mapped table.

3.2 LINESTRIDE PREFETCHERS
Line

Line address offset
< > < >

< >

Full address

Figure 3.1: Extraction of line address from the full address.

The linestride prefetcher is a modification of the stride prefetcher. Here, the stride is
captured in multiples of cache lines instead of bytes. Though this may comparatively

be less accurate, it saves a lot of space in the SPT. Also, instead of storing the entire
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previous address, only the previous line address is stored i.e. only the higher-order bits
of the address are stored. In the stride prefetcher, it takes more space to store the stride
value and the complete previous address. Here, the space for storing stride and the
previous address reduces. If a cache line size is k (64 for this processor) bytes, then
the ‘line_offset’ parameter is logok (=6 here) and the line address then becomes (load
address » line offset) i.e. ignoring the ‘line_offset’ number of lower-order bits. Now, the
stride is computed as the difference between the previous line address and the current

line address, and this stride is called as linestride henceforth in the thesis.

(Current linestride) = (Current line address) - (Previous line address)

(Prefetch line address) = (Current line address) + (Linestride)*(Prefetch distance)

3.2.1 Linestride Prefetcher with register array SPT

The SPT is implemented as a PC-indexed direct-mapped table of registers. Each entry
contains a tag, a previous line address (last seen line address), a stride, and a confidence
counter. The working of the register array-based line stride prefetcher is the same as that
of the stride prefetcher except that the line stride replaces the stride in all computations

and the line addresses replace the full addresses.

Index Tag | Prev line addr | Linestride | Confidence cntr
0
1

Num_Entries-1
Num_Entries

Table 3.3: Stride Prefetch Table for Linestride Prefetcher

Default values of parameters used:

¢ Maximum value of confidence =7
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Confidence_threshold = 3

Prefetch_degree = 1

Prefetch_distance = 2

Number of entries in SPT (Num_entries) = 256

Stride_width =5

Line offset=6

3.2.2 Linestride Prefetcher with BRAM SPT

The SPT is implemented as a PC-indexed 4-way set-associative mapped dual-ported
BRAM. Each entry contains a tag, a previous line address (last seen line address), a stride,
and a confidence counter. The working of BRAM-based linestride prefetcher is the same
as that of the BRAM-based stride prefetcher except that the linestride replaces the stride
in all computations and the line addresses replace the full addresses. This prefetcher
also employs bypassing, has the 4 stages in the training stage and same prefetch generate

conditions as the other stride prefetchers.

Idx || TagO | Prv_line0O | LinestrideO | ConfO || Tagl | Prv_linel | Linestridel | Confl

Table 3.4: A BRAM based 2-way set-associative SPT for Linestride Prefetcher

Default values of parameters used:
¢ Maximum value of confidence = 7
¢ Confidence_threshold = 3

* Prefetch_degree = 1
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Prefetch_distance = 2

Number of entries in SPT (Num_entries) = 64

Number of sets in BRAM (n) =4

Stride_width = 5

Line_offset =6

3.3 COMPLEX STRIDE PREFETCHER

Complex Stride Prefetcher is a PC-based variable stride prefetcher. For this prefetcher,
we implement a PC-indexed stride prefetch table in a dual-ported BRAM (alternatively in
an array of registers), that can track up to N (=2, default) consecutive strides. The strides
are tracked at the byte-level in a stride history register (SHR) which is a component of
every entry in the table. Each stride is captured using M (=10, default) bits. There is a
status bit added to the SHR to track the last tracked stride. Hence, we use a 21-bit SHR

to capture the last two consecutive strides.

The indexing and learning are similar to the regular stride prefetcher. The new stride that
is computed on a load resolution is shifted into the SHR and the last seen address in the
table entry is also updated as in the original stride algorithm. The stride pattern that is

observed is a,b,a,b,a,b....

Index Tag | Prev addr | Stridel | Stride2 | Status | Conf cntr
0
1

Num_Entries-1
Num_Entries

Table 3.5: BRAM based SPT for Complex Stride Prefetcher with Stride History

When the confidence is high and a particular stride is seen, the next address to prefetch is
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computed based on the distance and the sum of the two strides.

(Prefetch address) = (Current address) + (Stridel + Stride2)*(Prefetch distance)

Default values of parameters used:
* Maximum value of confidence = 7
¢ Confidence_threshold = 3
* Prefetch_degree = 1
¢ Prefetch_distance = 2
e Number of entries in SPT (Num_Entries) = 64
e Number of sets in BRAM (n) =4
e Stride_width = 10

* SHR_width =21
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CHAPTER 4

CACHE SIDE PREFETCHERS

In this chapter, we look at the design of the newly implemented cache-side offset

prefetchers for the L1 D-Cache.

For cache-side prefetchers the training is based on cache misses at a cache level. In our
case, the demand misses and fills from the Level 1 Data Cache train the prefetcher. The
misses at this level initiate prefetching from the Level 2 Cache (see figure 2.5) or in
the current version of [-Class, the main memory. In this project, we have implemented
two offset prefetchers in the L1 data cache, the Nextline Offset prefetcher and the Best
Offset prefetcher. These prefetchers can be further used at the L2 level as well as for
the instruction cache. At the L2 level, the prefetchers can be more aggressive for better
coverage and timeliness without worrying about cache pollution, as the L2 cache sizes

are significantly higher.

Our prefetchers are adapted from the prefetcher proposed in the paper Michaud (2016).
In the paper, the prefetcher was designed for the L2 cache, but since the present I-Class
core does not have an L2 cache, we are implementing it on the L1 cache. The first
prefetcher, the Nextline Offset prefetcher, is a very basic version with no offset training.
The RR table (see section 4.2) is filled only with the L.1 access lines and not the fill lines.
The next prefetcher, the Best Offset prefetcher, is a simplified version of the prefetcher
implemented in the paper, with access lines not filling the RR table (and hence no delay

queue). Also, the RR table is not skewed-associative in our case.



L1 access line X
(miss/prefetch hit)

@x |
|

Recent
Requests

Lookup X-1 Hit/Miss?

Prefetch

@X+1
L2 ._@.7 Offset = 1

Figure 4.1: Block diagram of Next Line Offset Prefetcher implemented in the project

4.1 NEXTLINE OFFSET PREFETCHERS

The Nextline Offset prefetcher prefetches one line (the next line) into the L1 cache on
every cache miss or hit on a prefetched line. The prefetch line address is generated by
adding one to the demand access address line. It is a simplified version of the Best Offset
(BO) prefetcher discussed in section 4.2. We have chosen a single fixed offset, 1, because

it is a common offset value for many applications.

In the training phase, the demand access lines (misses or prefetched hits) from L1 are
stored in the RR (recent requests) table. If there is a hit in the RR table, the confidence
of the prefetcher is incremented. Whenever there is a new demand access line (X), the
prefetch address line X+1 is sent out to the L2 cache, if the confidence of the prefetcher

is above the threshold.

4.2 BEST OFFSET PREFETCHERS
The Best Offset (BO) prefetcher prefetches one line into the L1 cache on every cache

miss or hit on a prefetched line. The prefetch line address is generated by adding an
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offset to the demand access address. The BO prefetcher tries to automatically find an
offset value that yields timely prefetches with the highest possible coverage and accuracy.
It evaluates an offset value by maintaining a table of recent requests addresses (RR table)
and by searching these addresses to determine whether the line currently requested would

have been prefetched in time with that offset.

L1 access line X L1 fill line ¥
(miss/prefetch hit) (prefetched)
@Y
@Y-0
Recent
@X Requests

Lookup X-O'| | Hit/Miss?

Prefetch

@X+0 0 Best Offset
2 T2 (). Beof
Learning

Test O’

Figure 4.2: Block diagram of Best Offset Prefetcher implemented in the project

Source: Michaud (2016)

We store in a Recent Requests (RR) table the base address of each recent prefetch, that is,
the address of the demand access that generated the prefetch. Whenever a prefetched line
Y is entered into the L1 cache, we write the address Y — O into the RR table, where O is
the prefetch offset, i.e., the offset currently used for prefetching. We consider a list of
possible offsets. This list is fixed at design time. In our case, we have chosen a list of 16
five-bit offsets. We associate a score with every offset in the list. On every L2 miss or
prefetched hit for a line address X, we test the n'" offset O, from the list by searching if
the line address X — O,, is in the RR table. If address X — O,, is in the RR table, this

means that line X would likely have been prefetched successfully with offset O, and the
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score for offset O,, is incremented. The next L2 access tests offset O, and so on. A
round corresponds to a number of accesses equal to the offset list size. Immediately after
a round is finished (i.e., all the offsets have been tested once), n is reset and a new round
starts. The prefetcher counts the number of rounds. In our project, we constantly train
the prefetcher. The offsets are continuously evaluated, with the prefetch offset tracking

the program behaviour.

Default values of parameters used:

¢ Confidence threshold = 4

RR Width = 10

RR Number of Entries = 64

RR Ways =2

Offset Width = 5

Offset Number Entries = 16

Offset Index Width = 4
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CHAPTER 5

TESTING AND PERFORMANCE ANALYSIS

This chapter contains the testing configurations, methodologies and results, as well as an
analysis of the results and insights. There are some tables and graphs to better visualize

the results.

5.1 I-CLASS CONFIGURATION

5.1.1 I-Class Default Core Configuration

The Shakti I-Class core is highly parameterizable but the default configuration is being
used for the experiments for performance analysis of the prefetchers. The I-Class core is
continuously under development, hence the different tags for different tests throughout
the timeline of the project. The values of some of the important parameters of the default

configuration of the core are as follows:

Parameter Value
Fetch stage width (instructions per cycle) 4
Decode stage width (instructions per cycle) 4
Issue stage width (instructions per cycle) 7
Commit stage width (instructions per cycle) 4
Load_buffer_size in LSU 16
Store_buffer_size in LSU 16
Number of integer registers in physical register file 128
Number of floating point registers in physical register file | 64
Number of entries in Re-order buffer 120

Table 5.1: Values of parameters in the default configuration of I-Class core.

5.1.2 I-Class L1 Data Cache Configuration

Details about the data cache and some of the important cache parameters are as follows:

* Cache type: 4-way set associative, Virtually Indexed Physically Tagged, non-
blocking cache

* Cache size: 16 Kilobytes



Cache line size: 64 bytes
* Maximum number of requests accepted by cache per cycle: 1

* Maximum number of responses sent by the cache to the core per cycle: 1

DMSHR size: 12

Additional MSHR secondary entries: 3 per line (1 primary, 2 secondary)

DTLB size: 16

5.1.3 Parameters Varied for Testing
To understand the effects of various parameters and evaluate the performance of prefetchers
better, directed tests were run with I-Class default core and cache while varying the

following parameters:

* Additional memory latency cycles: In the current implementation of I-Class, an
L2 cache is not yet present. A load hit in the L1 data cache would return the data
in 2 cycles. A miss will go to the DRAM whose latency is typically over 100-200
cycles in a real-time system. To realise this long latency of a miss in simulation
too, we can enforce additional memory latency by increasing the value of that
parameter. A prefetcher primarily helps in hiding the memory latency and hence
the impact of a prefetcher in improving the performance is expected to be higher in
these long latency simulations. Tests were run for 3 values of additional memory
latency = 0 and 100 cycles to observe the effects.

* Prefetch distance: Timeliness of the prefetch requests can be observed by varying
the prefetch distance parameter. A higher prefetch distance value can result in
more timely prefetches. However, if the value is too large, the prefetch addresses
generated may be too far and the program is less likely to require the data at those
addresses which may result in lower accuracy of the prefetches. Values 2, 4 and 8
have been considered for the experiments for prefetch distance in this project.

* Prefetch degree: The value of prefetch degree was set to 1 for all the runs. Higher
prefetch degree could worsen performance as cache accepts only one request per
cycle and more number of prefetch requests would lead to the MSHR getting full
and the cache getting busy.

* Prefetch throttling: For all runs, prefetch throttling has been enabled. This
ensures that 2 MSHRs are always reserved for demand requests. This drops some
prefetch requests but helps avoid the situation of cache signalling busy due to
MSHRs getting full with the prefetch requests.
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5.2 BSV TESTBENCHES
For debugging and functional testing of the prefetcher codes, BSV testbenches were used.
Using these testbenches, module-level testing of the prefetchers is done by calling input

interface methods and sampling the outputs.

5.3 DIRECTED ASSEMBLY TESTS

Directed tests in our context, are small assembly language programs written to test the
functionality and performance of a particular feature that we are interested in. They help
in realising if the feature works in the way that we expect it to i.e. perform well in certain
expected scenarios and show degraded performance in certain other scenarios. They can
also be used to tune the various parameters involved in the design. These tests also serve
as a basis for the performance analysis. Throughout the project, these tests were run on
the prefetchers with different versions of I-Class. Below are results with selected tags
of I-Class (mentioned in the captions). Some of the tests used have been explained in

Chapter 3 and Appendix A of Somisetty (2021).

Results and Analysis

Core-side: We observe that in the SAXPY Line test, there is approximately a 1.25x
speedup with all the four stride prefetchers. This speedup is almost 2x in the higher
latency case. In the SAXPY Word test, the Stride reg and Stride BRAM prefetchers show

a slight speedup in the high memory latency scenario.

The other stride and linestride tests either show a very slight speedup or a slight slow

down. This can be due to less cycles in the tests or lack of stride patterns.

Cache-side: In the SAXPY test statistics tabulated in tables 5.6 and 5.7, some speedup
is observed, although it is much lesser than PC-based core-side prefetchers. Best offset

prefetcher produces higher prefetcher than nextline offset.
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Table 5.2: Saxpy Word test results with I-Class 5.8.4 - mem latency =10, prefetch dist =2

Test_saxpy_word No prefetcher ~ Stride reg ~ Stride BRAM  Linestride reg  Linestridle BRAM
Total instr 45095 45095 45095 45095 45095
Core Cycles 84200 70054 70216 84202 84200
Speedup 1 1.2019 1.1992 1 1
Prefetch requests generated 0 5038 4808 1 0
Prefetch requests enqueued 0 5038 4808 1 0
DCache_prefetches_mshr_allocated 0 128 129 0 0
DCache_load_hits 8070 8196 8197 8070 8070

Table 5.3: Saxpy Line test results with [-Class 5.8.4 - mem latency =10, prefetch dist =2

Test_saxpy_line No prefetcher ~ Stridereg ~ Stridle BRAM  Linestride reg  Linestride BRAM
Total instr 45094 45094 45094 45094 45094
Core Cycles 383471 196981 189279 195545 189050
Speedup 1 1.9467 2.026 1.961 2.0284
Prefetch requests generated 0 4823 3603 4822 3623
Prefetch requests enqueued 0 4823 3603 4822 3623
DCache_prefetches_mshr_allocated 0 4791 3586 4786 3596
DCache_load_hits 7 2200 1905 2147 1907

Table 5.4: Saxpy Word test results with [-Class 5.8.4 - mem latency =100, prefetch dist

=4
Test_saxpy_word No prefetcher ~ Stride reg ~ Stride BRAM  Linestride reg  Linestride BRAM
Total instr 45095 45095 45095 45095 45095
Core Cycles 84200 70295 70152 84202 84200
Speedup 1 1.1978 1.2003 1 1
Prefetch requests generated 0 4929 4762 1 0
Prefetch requests enqueued 0 4929 4762 1 0
DCache_prefetches_mshr_allocated 0 128 128 0 0
DCache_load_hits 8070 8196 8197 8070 8070

Table 5.5: Saxpy Line test results with I-Class 5.8.4 - mem latency =100, prefetch dist =4

Test_saxpy_line No prefetcher ~ Stridereg ~ Stridle BRAM  Linestride reg  Linestride BRAM
Total instr 45094 45094 45094 45094 45094
Core Cycles 383471 212964 184119 216262 184341
Speedup 1 1.8006 2.0827 1.7732 2.0802
Prefetch requests generated 0 3811 3798 4189 3779
Prefetch requests enqueued 0 3811 3798 4189 3779
DCache_prefetches_mshr_allocated 0 3771 3778 4151 3784
DCache_load_hits 7 2094 1969 2151 1972
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Stride & Saxpy Tests

1.3
1.2
a 1.1
=
@ 1 @__.
o .
o
” 0.9
0.8
0.7
No prefetcher Stridereg Stride BRAM Linestride reg  Linestride
BRAM
== Stride —@—"Stride2 Stride3
== Striced =@=SAXPY_word SAXPY_line

Figure 5.1: Stride and SAXPY tests speedups with I-Class tag 5.8.4

Table 5.6: Saxpy Word test results with Cache-side prefetchers - I-Class 6.1.3, mem
latency =10, prefetch dist =2

Test_saxpy_word2 No prefetcher ~ Nextline offset ~ Best offset
Total instr 180263 180263 180263
Core Cycles 222964 221144 220098
Speedup 1 1.0082 1.013
Prefetch requests generated 0 181 1936
Prefetch requests enqueued 0 181 1936
DCache_prefetches_mshr_allocated 0 181 617
DCache_load_hits 27928 28170 29645

Table 5.7: Saxpy Line test results with Cache-side prefetchers - I-Class 6.1.3, mem
latency =10, prefetch dist =2

Test_saxpy_line2 No prefetcher ~ Nextline offset ~ Best offset
Total instr 180262 180262 180262
Core Cycles 456625 434610 422423
Speedup 1 1.0507 1.081
Prefetch requests generated 0 9811 11072
Prefetch requests enqueued 0 9811 11072
DCache_prefetches_mshr_allocated 0 2759 7857
DCache_load_hits 3 2732 10397

5.4 FESVR TESTS
We have run C microbenchmark tests on the I-Class RTL simulation with RISCV-PK

and FESVR and have used Spike to verify the results. The microbenchmark tests include

programs like linked list manipulation, matrix add and matrix multiplication.
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Linestride Tests
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Figure 5.2: Linestride tests speedups with I-Class 5.8.4

Proxy Kernel
Proxy Kernel (PK) is an abstraction of a kernel that provides system services through
FESVR running on the host. Together with FESVR, it provides an application binary

interface (ABI) and an application execution environment (AEE).

Front-end Server
The front-end server facilitates communication between a host machine and a RISC-V
target. It loads the ELF and emulates the peripheral device over the Host Target Interface

(HTIF).

Spike
Spikel?, a RISC-V ISA Simulator, implements a functional model of one or more
RISC-V harts. It is a Golden Reference Functional ISA Simulator. It could be used for

full system emulation or proxied emulation with HTIF.

Results and Analysis
Core-side: In tables 5.8 and 5.9, we can see a significant number of prefetches generated
and enqueued, but a very small fraction of this translates to allocated MSHRs. The

speedup we see is almost negligible.
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Stride & Saxpy Tests
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Figure 5.3: Stride and SAXPY tests speedups with I-Class 5.8.4 - mem latency = 100,
prefetch dist = 4

Cache-side: The obtained results of testing show that cache-side prefetchers show very

less or no speedups for the C microbenchmark tests.

Table 5.8: Statistics of Matrix Multiplication microbenchmark test on I-Class 5.9.9
FESVR with input matrices of size 100x100, memory latency =10, prefetch

dist =2

Test Statistics/Prefetcher No prefetcher ~ Stride BRAM ~ Complex Stridle BRAM
Matrix Mult

Core Cycles (Total) 562348867 562311271 562347255
Total instr 729160351 729210400 729315010
Core Cycles 562036736 562036736 562036736
User Cycles 548861699 548869823 548775289
Speedup 1 1.0001 1
Prefetch requests generated 0 278392 309372
Prefetch requests enqueued 0 278392 309364
DCache_requests_total 207366948 207667329 207934556
DCache_prefetches_mshr_allocated 0 1556 2295
DCache_load_hits 115438228 115460640 £3£3f3115709117
DCache_store_hits 91041235 91047809 £3£3£391042466
DCache_fill_requests 105395 105782 £3f3£3106120

35



Table 5.9: Statistics of Matrix Multiplication microbenchmark test on I-Class 5.9.9
FESVR with input matrices of size 100x100, memory latency = 100, prefetch
dist =8

Test Statistics/Prefetcher No prefetcher ~ Stride BRAM  Complex Stridle BRAM

Matrix Multiplication

Core Cycles (Total) 573369119 573375447 572929159
Total instr 728082606 728089971 728371999
Core Cycles 572522496 572522496 572522496
User Cycles 557608900 557805907 557893282
Speedup 1 1 1.0008
Prefetch requests generated 0 794192 1065465
Prefetch requests enqueued 0 794192 1065312
DCache_requests_total 206882983 207648628 207961519
DCache_prefetches_mshr_allocated 0 3727 4132
DCache_load_hits 115071893 115081870 115052522
DCache_store_hits 90949594 90951028 91025169
DCache_fill_requests 105555 106545 107359

Table 5.10: Statistics of Matrix Multiplication microbenchmark test with Cache-side
prefetchers on I-Class 6.1.3 FESVR with input matrices of size 100x100,
memory latency = 100, prefetch dist = 8

Test Stats/Prefetcher No prefetcher Nextline offset - fixed Best offset
Core Cycles (Total) 574033179 572316835 574826559
Total instr 728350686 727675999 728887291
Core Cycles 573571072 571473920 574619648
User Cycles 558820749 556923464 560200978
Speedup 1 1.003 0.9986
Speedup - user cycles 1 1.0034 0.9975
Prefetch requests generated 0 41989 78436
Prefetch requests enqueued 0 41138 75974
DCache_requests_total 206823456 207073312 207133586
DCache_prefetches_mshr_allocated 0 37845 68268
DCache_load_hits 114986591 115297011 115195140
DCache_store_hits 91015371 90959980 91079582
DCache_fill_requests 106943 124228 149337
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Figure 5.4: Linestride tests speedups with I-Class tag 5.8.4 - mem latency = 100, prefetch
dist =4

5.5 SPEC BENCHMARK TESTS

For further analysis, we have run SPEC benchmark tests on I-Class RTL simulation
with RISCV-PK and FESVR. In this project, we have run the following benchmark tests:
Imagick, Xalan, Perl and Povray. These particular tests have been chosen considering the
simulation times, which range from a few days (for Imagick) to a couple of weeks (for

Povray). All of these tests were run with test inputs only but to completion.

Results and Analysis

Core-side: For Imagick benchmark tests with an additional memory latency 100, a
speedup of around 2% is observed for stride BRAM and complex stride prefetchers, with
a significant number of prefetches generated and enqueued. For the Povray benchmarks
tests, the number of prefetchers generated is significantly lesser, and the speedup is

minimal.

Cache-side: The obtained results of testing show that cache-side prefetchers show a
good speedup for the Imagick benchmark test in the additional memory latency equal
to 100 case. The nextline offset prefetcher shows a speedup of 4.8% and the best offset

prefetcher shows a speedup of 8.75%.

37



Table 5.11: Statistics of Imagick benchmark test on I-Class 5.9.9 FESVR - memory
latency =10, prefetch dist =2

Test Statistics/Prefetcher No prefetcher ~ Stridle BRAM  Complex Stride BRAM
Imagick

Core Cycles (Total) 207993799 207341319 207312531
Total instr 248864144 248254078 248974203
Core Cycles 207618048 206569472 206569472
User Cycles 107868001 107302254 107136697
Speedup 1 1.0031 1.0033
Prefetch requests generated 0 124521 136831
Prefetch requests enqueued 0 124512 136808
DCache_requests_total 93478700 93345255 93730238
DCache_prefetches_mshr_allocated 0 70443 74782
DCache_load_hits 79032120 78970113 79361609
DCache_store_hits 8406829 8405939 8409461
DCache_fill_requests 1523587 1523629 1526431

Table 5.12: Statistics of Imagick benchmark test on I-Class 5.9.9 FESVR
latency = 100, prefetch dist = 8

- memory

Test Statistics/Prefetcher No prefetcher ~ Stride BRAM ~ Complex Stride BRAM
Imagick

Core Cycles (Total) 319780095 312900579 313746307
Total instr 240807462 243377429 242144055
Core Cycles 318767104 312475648 313524224
User Cycles 203678312 197323359 198083782
Speedup 1 1.022 1.0192
Prefetch requests generated 0 273881 260474
Prefetch requests enqueued 0 272780 255630
DCache_requests_total 89364478 90948824 90312046
DCache_prefetches_mshr_allocated 0 111087 95666
DCache_load_hits 74896078 76468953 75815073
DCache_store_hits 8175222 8178532 8177994
DCache_fill_requests 1524894 1531691 1537733

Table 5.13: Statistics of Povray benchmark test on [-Class 5.9.9 FESVR - memory latency

= 100, prefetch dist = 8

Test Statistics/Prefetcher No prefetcher ~ Stride BRAM  Complex Stridle BRAM
Povray

Core Cycles (Total) 8787517339 8782018615 8785119331
Total instr 2301634498 2302600819 2302396958
Core Cycles 8787066880 8781824000 8784969728
User Cycles 8676799994 8671219925 8674504337
Speedup 1 1.0006 1.0003
Prefetch requests generated 0 67135 26770
Prefetch requests enqueued 0 67076 26707
DCache_requests_total 1242747033 1242498771 1243153941
DCache_prefetches_mshr_allocated 0 32360 17066
DCache_load_hits 699578378 699356715 699926605
DCache_store_hits 307365844 307392274 307380387
DCache_fill_requests 73272722 73262966 73268745
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Figure 5.5: Stride & SAXPY tests speedups with [-Class 5.9.9 - mem latency =10,
prefetch dist =2

Table 5.14: Statistics of Imagick benchmark test with Cache-side prefetchers on I-Class
6.1.3 FESVR - memory latency=100, prefetch dist=8

Test Stats/Prefetcher No prefetcher ~ Nextline offset ~ Best offset
Imagick

Core Cycles (Total) 319855059 305206267 294122935
Total instr 242627375 241347265 243869903
Core Cycles 319815680 305135616 293601280
User Cycles 203844965 190816927 183423383
Speedup 1 1.048 1.0875
Speedup - user cycles 1 1.0683 1.1113
Prefetch requests generated 0 583094 1032825
Prefetch requests enqueued 0 565481 982392
DCache_requests_total 90261178 90215012 91913436
DCache_prefetches_mshr_allocated 0 533395 946352
DCache_load_hits 75766094 75472683 76949321
DCache_store_hits 8202595 8537734 8867244
DCache_fill_requests 1526342 1789905 2023392

5.6 INSIGHTS

The BRAM versions of the Stride prefetchers perform as well or even better than
the register versions. They are also better to implement on hardware, and have a
set-associative SPT. Overall, the Stride BRAM has the best performance in the tests,

with Linestride BRAM also performing almost as well.

The data cache-side offset prefetchers do not improve the performance significantly for

the shorter tests. This could be because at the L1 level, the prefetcher could potentially
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Figure 5.6: Linestride tests speedups with I-Class 5.9.9 - mem latency =10, prefetch dist

=2

be too aggressive, and might not have enough training period in the short tests performed.
But for a longer test like the imagick benchmark, the speedups are high showing that a

proper training period could train the offset prefetcher well.
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Figure 5.7: Stride & SAXPY tests speedups with I-Class 5.9.9 - mem latency =100,
prefetch dist =4
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Figure 5.8: Linestride tests speedups with I-Class 5.9.9 - mem latency =100, prefetch
dist =4
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Figure 5.9: PK (proxy kernel) & FESVR (front-end server) placement in the system.
PK runs on target CPU, while FESVR runs on host computer. In our setup,
Verilator simulation of the benchmark is done on top of PK and FESVR all
on the host machine. For system call emulation, PK communicates with the
FESVR thread which then runs the system calls on the host machine and
returns the results.

Source: https://phdbreak99.github.io/riscv-training/12-demo.syscall/
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CHAPTER 6

CONCLUSION

In this project, we have experimented with various prefetchers, including core side and
cache side prefetchers. We have tested them using various assembly and benchmark
tests. We have learnt that prefetching, when working accurately and timely, can improve
the performance of the processor. The advantage of the hardware prefetchers we have
implemented for the Shakti I-Class processors is that the designs are simple enough to be
implemented with a few bytes of storage and there is no degradation to the processor’s

performance.

We have seen that different prefetchers (nextline, stride, complex stride, offset etc)
perform well in different scenarios. Based on the requirements of the application that the
processor is used for, the most suitable prefetcher can be implemented. In the cases where
the memory latencies are high, the prefetchers did help bring down the cycle counts
more often than not. However, several factors affect the performance of the prefetchers,

including smaller training period in tests, low MSHR counts etc.

6.1 FUTURE SCOPE

In the future, further testing could be performed with longer tests to train the prefetchers,
to observe higher speedups. Further modifications or optimisations could be done to the
prefetchers implemented. The complex stride prefetcher could further be modified to
detect more complex stride patterns. In the future, a "hybrid prefetcher" could also be
designed such that an assortment of any of the prefetchers required for an application

could be chosen at once.

We have currently implemented the cache side prefetchers on the L1 level. This could be
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extended to the L2 Cache as well as the Instruction cache of the processor. Additionally,
other types of hardware prefetchers can also be explored, for example prefetchers that
can adapt to the application using machine learning, and post synthesis programmable

prefetchers.

44



10.

11.

12.

13.

14.

REFERENCES

Gitlab I-Class repository. URL https://gitlab.com/shaktiproject/cores/
i-class.git.

Spike. URL https://github.com/riscv-software-src/riscv-isa-sim.
Verilator. URL https://www.veripool.org/verilator/.
Bluespec SystemVerilog Reference Guide, Bluespec Inc.. Revision 2014.

Chen, T.-F. and J.-L. Baer (1995). Effective hardware-based data prefetching for
high-performance processors. IEEE Transactions on Computers, 44(5), 609-623.

Fu, J. W. C., J. H. Patel, and B. L. Janssens, Stride directed prefetching in
scalar processors. In Proceedings of the 25th Annual International Symposium on
Microarchitecture, MICRO 25. IEEE Computer Society Press, Washington, DC, USA,
1992. ISBN 0818631759.

Hennessy, J. L. and D. Patterson, Computer Architecture: A Quantitative Approach.
2011, 5" edition.

Michaud, P., Best-offset hardware prefetching. In 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA). 2016.

Mutlu, O. (2020). Lecture 18: Prefetching. Computer Architecture Notes from ETH
Ziirich, Fall 2020.

Pakalapati, S. and B. Panda, Bouquet of instruction pointers: Instruction pointer
classifier-based spatial hardware prefetching. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). 2020.

Panda, B. (n.d.). Lecture 12: Hardware prefetching. Modern Memory Systems Notes
from IIT Kanpur.

SHAKTI, Shakti Processors. URL https://shakti.org.in/.

Somisetty, M. (2021). Performance analysis and enhancement of hardware prefetchers
for shakti i-class processor. IIT Madras.

Wikipedia, Cache Prefetching. URL https://en.wikipedia.org/wiki/Cache_
prefetching.

45


https://gitlab.com/shaktiproject/cores/i-class.git
https://gitlab.com/shaktiproject/cores/i-class.git
https://github.com/riscv-software-src/riscv-isa-sim
https://www.veripool.org/verilator/
https://shakti.org.in/
https://en.wikipedia.org/wiki/Cache_prefetching
https://en.wikipedia.org/wiki/Cache_prefetching

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Hardware Prefetchers
	About Shakti I-Class Processor
	Why Bluespec Verilog?
	Testing Methodology
	Thesis Contributions
	Organisation of the Thesis

	Hardware Prefetchers
	Motivation
	Hardware Prefetchers
	Prefetching Metrics and Requirements
	Prefetch Parameters

	Core-Side Prefetchers
	Stride Prefetchers
	Stride Prefetcher with register array SPT
	Stride Prefetcher with BRAM SPT

	Linestride Prefetchers
	Linestride Prefetcher with register array SPT
	Linestride Prefetcher with BRAM SPT

	Complex Stride Prefetcher

	Cache Side Prefetchers
	Nextline Offset Prefetchers
	Best Offset Prefetchers

	Testing and Performance Analysis
	I-Class Configuration
	I-Class Default Core Configuration
	I-Class L1 Data Cache Configuration
	Parameters Varied for Testing

	BSV Testbenches
	Directed Assembly Tests
	FESVR Tests
	SPEC Benchmark Tests
	Insights

	Conclusion
	Future Scope

	References

