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ABSTRACT

KEYWORDS: Generative Adversarial Networks; Voice Converison; Non Par-

allel; Indian Languages.

Speech processing related applications have grown to ubiquitous adoption in the

past few years and have only been increased owing to the COVID-19 pandemic.

Applications such as Automatic Speech Recognition, Text to Speech Synthesis,

Speaker Identification and Voice Conversion are of particular interest. Although

the former three have been successful in some capacity, voice conversion is one

area which has still to see mainstream adoption. This is owing to the myriad of

problems which one encounters while trying to perform voice conversion.

In this work, we will set baselines for voice conversion using Generative Adver-

sarial Networks for Indian voices. We will propose some methods to improve the

current Generative Adversarial Network based models and provide some analysis

on the issues which hinder the performance.
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CHAPTER 1

INTRODUCTION

Voice conversion is formally defined as the process of converting a source speaker’s

utterance to the voice of a given target speaker without altering the linguistic

contents of the utterance. The process of voice conversion mainly involves the

conversion of two aspects of voice i.e. the prosody and the speaker characteris-

tics(Yegnanarayana et al. (1984)). In this work, we will be focusing on speaker

characteristics. Despite years of research, state of the art voice conversion models

still exhibit deficiencies while trying to accurately mimic the target speaker prosod-

ically, spectrally and at the same time maintaining high quality speech (Sisman

et al. (2021)). Some major impairments for these performance degradations can

be attributed to the fact that most models tend to over smooth the converted

utterances which give an effect of a mix of both the source and target voice rather

than that of the target voice alone(Hwang et al. (2013)).

In any voice conversion model, we have two phases namely, the training phase

and the inference phase. A general training phase framework can be seen in

Fig.1.1. During the training phase, we have two sets of utterances i.e. one from

the source and one from the target speaker. These utterances are passed into

the feature extractor. Models can use a variety of features such as the LPC

coefficients(O’Shaughnessy (1988)), Spectrograms, MCEP’s(Vergin et al. (1999)),

PPGs(Phonetic Posteriograms)(Sun et al. (2016)) and so on. The most widely

used feature in present day models is the MCEP. Once we extract the features,

based on the model we want to train, we have an optional step wherein we align

the two feature sets to account for the varying lengths. Once we have the aligned

feature sets, we train the voice conversion model.

During the testing phase, we have the source speaker utterance which is passed

through the feature extractor. Then, the features are converted to the target

speaker’s voice by the voice conversion model previously optimized in the training

phase. A general framework for this phase is as seen in Fig.1.2.



Figure 1.1: General Framework of a voice conversion model during the training
phase.
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Figure 1.2: General Framework for Voice Conversion model in Inference/Test
phase
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The use cases of voice conversion are manifold. It can be used for personalizing

TTS systems i.e. to obtain speech generation for new speakers with limited amount

of training data and with lack of transcriptions. Voice conversion models are

also used as a module in speech to speech translation systems wherein we would

want to convert one language utterance to another language with the speaker

characteristics intact. With the increasing demand for educational content in

regional languages, voice conversion is extremely helpful to retain the voice of

the instructor by first synthesizing the lecture in the desired language and then

adapting to the desired voice. It can also be used in dubbing of movies, TV

shows which greatly expedites the process, which otherwise is manually done.

Additionally, voice conversion can sometimes be used to modify the voice and

emotions of a given utterance so as to preserve privacy of the actual speaker.

Voice conversion systems can be classified on a variety of basis as seen in

Fig.1.3. Based on the type of dataset available i.e. parallel dataset or non-parallel

dataset. Parallel datasets are composed of pairs of utterances which have the same

linguistic content with the only disparity being the speaker’s voice. However, in

the case of non-parallel, we have a set of sentences for each speaker without any

common linguistic content which makes the problem of voice conversion much

harder compared to the parallel case. In real world use cases, we almost always

find the non-parallel case and seldom do we find the parallel case. Based on the

language of the source and target speaker i.e. monolingual and crosslingual. If

the source and target speaker utterances are in the same language, then it is a

monolingual scenario whereas if the source and target utterances are in different

languages, then it is a crosslingual scenario. Crosslingual voice conversion models

are often based on unsupervised training as in Dines et al. (2013) or provide explicit

linguistic information so as to allow the model to learn the linguistic mapping in

addition to the voice mapping as seen in Zhou et al. (2019). Based on the number

of speakers used to train the VC model i.e. one to one(Kaneko and Kameoka

(2018)) or many to many(Kameoka et al. (2018)). One to one VC models consist

of two speakers i.e. the source speaker and target speaker. The objective of the

model is to learn the mapping which converts the source utterance to the target

utterance. In case of many to many VC, we have a set of speakers and we want

to have the ability to convert a given source speaker’s utterance into any of the

4



Figure 1.3: Classification of voice conversion models based on various factors i.e.
dataset type, language of the various speakers, number of speakers
and the architecture of the voice conversion model
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other speakers in the set. Since the number of mappings which need to be learnt

in many to many VC is much larger compared to a one to one case, it requires

substantially more data compared to the one to one case. Based on the usage

of transcripts, VC models are classified as text dependent voice conversion and

text independent voice conversion. Text independent voice conversion models are

preferred owing to their independence on transcriptions.

1.1 Dataset

For all the experiments in this thesis, IndicTTS dataset(Baby et al. (2016)) has

been used. It is composed of native Indian language and Indian English utterances

from speakers belonging to various nativities. Table.1.1 consists of the informa-

tion about the various speakers and the corresponding time duration. From the

Table.1.1, the first column refers to the specific speaker dataset i.e. the first word

refers to the native language the speaker speaks, the second word is the gender

of the speaker and the third word is the language in which that specific set of ut-

terances are recorded in. So, Hindi Female Hindi refers to a female native Hindi

speaker and the utterances are recorded in Hindi. For testing, a set of parallel

utterances were extracted from all the utterances in IndicTTS dataset. All the

utterances were resampled to 16kHz and were normalized prior to training of the

models.

1.2 Evaluation Metrics

The types of objective evaluation metrics which can be used to quantify the per-

formance of a voice conversion model have not been extremely clear. Here, we will

be using MCD and x-vector based evaluation metrics to quantify the performance

of a voice conversion model. MCD can be considered to be measuring the natu-

ralness of the utterances whereas the X-vector based metrics act as a measure for

speaker similarity.

6



1.2.1 Mel Cepstral Distortion (MCD)

MCD(Kubichek (1993)) scores can be computed directly on datasets wherein there

is some portion of parallel utterances. Mel Cepstral Distortion is defined as the

process of computing the difference between the target utterance cepstra and the

voice converted utterance cepstra. The formula for the same is shown below:

MCD(vSource, vTarget) =
α

T
ΣT−1

t=0

√
ΣD

d=s(v
Source
d (t)− vTarget

d (t))2

α =
10
√
2

log 10
= 6.148

In the equation above, vSource, vTarget refer to the time aligned cepstral coefficients

of source and target utterance respectively. For non-parallel test corpora, we

cannot use MCD as an evaluation metric. The lower the MCD value, the closer

the two utterances are in terms of similarity in spectrum. MCD as a metric for

voice conversion can help us identify the degree to which the spectrum of the

converted utterance matches with that of the target utterance. MCD is useful

as a metric to determine the naturalness of a given converted utterance rather

than the speaker similarity. This is owing to the fact that the cepstra will have

both speaker information and spectral information. However, it doesn’t explicitly

account for speaker information. Hence, a lower MCD would generally indicate a

better naturalness.

1.2.2 X-vectors

X-vectors(Snyder et al. (2018)) were primarily proposed in order to improve the

speaker identification task by producing speaker embeddings which were robust

to language changes, noise and prosody. Here, we would like to use these speaker

embeddings in order to evaluate the performance of the voice conversion system.

X-vector Cosine Similarity

After computing the x-vectors, we will compute the inner product of each of the

converted utterances with respect to the target utterance x-vectors and take the

7



Dataset Duration Average Duration Number of Utterances
Hindi Male English 709 2.36 300
Tamil Male English 716 2.38 300
Hindi Female English 715 2.38 300
Tamil Female English 713 2.37 300
Hindi Male Hindi 712 2.37 300
Hindi Female Hindi 713 2.37 300
Tamil Male Tamil 715 2.38 300
Tamil Female Tamil 716 2.38 300
Telugu Male Telugu 707 2.35 300
Telugu Female Telugu 1751 5.88 300
Telugu Male English 1241 4.14 300
Telugu Female English 1677 5.59 300

Table 1.1: Statistics of dataset

average. If the voice conversion model was ideal, we would get a cosine similarity

close to 1 for the same speakers and for dissimilar speakers, we would get a cosine

similarity close to 0. Based on these values, we can determine how well the model

is able to convert one speaker to the other.

X-vector tSNE Plots

T-distributed stochastic neighbour(van der Maaten and Hinton (2008)) embedding

is a statistical method to visualize higher dimensional data in a 2 or 3 dimensional

plot. This is a non linear dimensionality reduction technique wherein two points

in the high dimensional space close to each other are represented in the 2 or 3 di-

mensional space also closeby. Therefore, this gives us an idea of the clusters which

are formed in the higher dimensional space. Here, in terms of voice conversion, by

plotting the t-SNE plots for the x-vectors of the target and converted voices, we

can analyse on how well the conversion is being performed and determine if the

model is converting one voice to the other or if it is averaging both the voices i.e.

retaining some characteristics of the source voice.
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CHAPTER 2

Voice Conversion using CycleGAN

GANs(Goodfellow et al. (2014)) were introduced as deep generative models which

had the capability to model distributions and generate samples post training which

was an obstacle conventional neural networks couldn’t tackle. Following this,

an image to image translation network called CycleGAN(Zhu et al. (2017)) was

proposed which could convert one art style to the other. Now, one could redefine

voice conversion as the process of converting one style to the other with the style

here being the voice of the respective speaker. Based on this definition, CycleGAN-

VC(Kaneko and Kameoka (2018)) was one proposed GAN model to perform voice

conversion.

2.1 Architecture

CycleGAN is a non-parallel, one to one voice conversion model. It doesn’t require

the transcriptions for utterances in order to convert the voice of one speaker to

another.

CycleGAN converts the pitch of a source speaker to the target speaker using a

simple linear transform. The expression for the same is as follows:

f0y =
(f0x − µx)σy

σx

+ µy

Let us consider the two speakers to be X and Y. Each CycleGAN has two genera-

tors and two discriminators i.e. one generator to model distribution Y with inputs

as X and vice versa. The discriminators on the other hand try to determine if the

input given belongs to the actual distribution or is an output from the generator.

Architecture of the generator can be as seen in Fig.2.1 and the discriminator can

be as seen in Fig.2.2.



Figure 2.1: Architecture of a Generator in CycleGAN
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Figure 2.2: Architecture of a Discriminator in CycleGAN

2.1.1 Gated CNN

As we can see in Fig.2.1, the generator of a CycleGAN is composed of a variety

of layers among which one of them is a GatedCNN(Dauphin et al. (2017a)). We

are aware of the fact that speech consists of both sequential and hierarchical

components. In order to model the sequential components, we need to have layers

which are able to account for the neighbourhood such as RNN’sMedsker and Jain

(2001), LSTM’s(Hochreiter and Schmidhuber (1997)) or GLU’s(Dauphin et al.

(2017b)). However, these components are computationally expensive and cannot

be parallelized for training. Hence, CycleGAN makes use of GatedCNN which

allows for parallelism and at the same time can model some sequential aspects i.e.

segmental features. The expression for the Gated CNN is as shown below:

h(X) = (X ∗W + b)
⊗

σ(X ∗ V + c)

Where X is the input; W, V, b and c are the weights of the layer. Although these

layers do not have neighbourhood information beyond the present frame, they

are able to model sequential information within the frame which helps in better

modelling the voice.

11



2.1.2 Loss Function

The combined objective i.e. loss function of CycleGAN is as given below:

Ltotal = Ladv(GX−>Y , DY ) + Ladv(GY−>X , DX) + λcycLcyc(GX−>Y , GY−>X)

In the above equation, Ladv is the adversarial loss, Lcyc is the cyclo consistent loss

and λcyc is a hyperparameter to determine the relative importance of both the

losses.

Adversarial Loss

The adversarial loss plays an important role in the training of all GAN models.

The adversarial loss plays a min-max optimization role wherein the discriminator

will try to minimize the loss i.e. increase the probability with which the discrimi-

nator is correctly able to predict the actual datapoints from that generated by the

generator. Whereas the generator will try to maximize the loss wherein it tried

to evade the detection of the discriminator and pass as actual datapoints. This

loss helps the generator to learn the characteristics of the distribution it needs to

model. The expression for the loss is as shown below:

Ladv(GX−>Y , DY ) = Ey∼PData(y)[logDY (y)] + Ex∼PData(x)[log(1−DY (GX−>Y (x))]

However, without imposing any specific constraints, the model will not be able to

preserve the linguistic content and will not be able to converge to an optimal set

of parameters.

Cyclo Consistent Loss

In addition to the GAN model learning the distribution of the target speakers voice

characteristics, we would also want the model to preserve the linguistic content

of the corresponding utterance at the same time. In order to incorporate this,

adversarial loss alone is not sufficient. Therefore, we have the cycle-consistency
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loss whose expression is as given below:

Lcyc = Ex∼PData(x)[||GY−>X(GX−>Y (x))−x||1]+Ey∼PData(y)[||GX−>Y (GY−>X(y))−y||1]

As we can see from the expression, the objective of this loss term is to ensure

that when a given utterance has been passed through both the generators i.e.

GX−>Y and GY−>X , the L1 distance between the output obtained and the original

utterance is as minimal as possible. This would help the model preserve the

linguistic content.

Identity Loss

Despite the inclusion of the Cyclo consistency loss parameter, in practice it was

found that the model was still not able to completely preserve the linguistic in-

formation. In order to further constrain the model, Identity loss was introduced

whose expression is as seen below:

Lid = Ex∼PData(x)[||GY−>X(x)− x||1] + Ey∼PData(y)[||GX−>Y (y)− y||1]

In the image to image translation papers as in Zhu et al. (2017), this loss parameter

was said to account for colour preservation. From the expression, we can see that

this establishes a constraint on the model to minimize the distance between the

target utterance Y and the output of GX−>Y while passing target utterance Y.

This loss parameter is used only for a few iterations during the beginning and is

then set to zero for the rest of the training.

2.2 Implementation Details

All the utterances were sampled at 16kHz and normalized. The CycleGAN uses

MCEP features as inputs. We use the WORLD package in order to compute the

fundamental frequency, spectral features and aperiodicities. The spectral features

are then converted to MCEP’s.

For all the experiments which follow, adam optimizer is used with paramemters

13



HinM/TamM-HinM TamM/HinM-TamM
MCD 7.486 8.267

Table 2.1: MCD scores for HinM-TamM experiment. In the table above, TamM-
HinM refers to the utterances which have been converted from Tamil
speakers voice to Hindi speakers voice.

Speakers Hin M Tam M
Tam M - Hin M 0.698 0.632
Hin M - Tam M 0.612 0.638

Table 2.2: Cosine Similarity Scores for HinM-TamM

β1 and β2 as 0.5 and 0.999 respectively. Unless mentioned, the number of MCEP

feautures used are 24. The frame period per speech frame is 5ms and the number

of speech frames used in one window of CycleGAN is 128. The values of λcyc and

λid are 10 and 5 respectively. λid is set to zero after the first 1e4 iterations. The

generator and discriminator learning rates are linearly decayed after the first 2e5

iterations.

2.3 Experiments on Indian English

Firstly, we trained models on Indian speakers with training utterances in En-

glish. The experiments performed are named as HinM-TamM, HinM-TamF, HinF-

TamF, HinF-TamM. For example, HinM-TamF refers to the training of CycleGAN

wherein the two speakers are Hindi native male speaker and Tamil native female

speaker. This training set gives us an exhaustive set of results in the possible com-

binations of genders i.e. male-male, male-female, female-female and female-male.

The results for the same are presented in the following subsections.

2.3.1 HinM-TamM

The MCD values for this experiment set is as shown in Tab.2.1 and the x-vector

cosine similarity score are as seen in Tab.2.2. X-vector based tSNE plot for the

same is as seen in Fig.2.3. From the cosine similarity scores and tSNE plot, we

can see that the model is not able to convert the voice from one to other extremely

well.
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Figure 2.3: tSNE plot for HinM-TamM experiment.

Figure 2.4: tSNE plot for HinM-TamF experiment.

2.3.2 HinM-TamF

The MCD values for this experiment set is as shown in Tab.2.3 and the x-vector

cosine similarity score are as seen in Tab.2.4. X-vector based tSNE plot for the

same is as seen in Fig.2.4. From the tSNE plot and cosine similarity scores, we can

see that the model is able to perform better compared to the male-male scenario.
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HinM/TamF-HinM TamF/HinM-TamF
MCD 10.408 7.142

Table 2.3: MCD scores for HinM-TamF experiment. In the table above, TamM-
HinF refers to the utterances which have been converted from Tamil
speakers voice to Hindi speakers voice.

Speakers Hin M Tam F
Tam F - Hin M 0.675 -0.03
Hin M - Tam F 0.026 0.688

Table 2.4: Cosine Similarity Scores for HinM-TamF

2.3.3 HinF-TamF

The MCD values for this experiment set is as shown in Tab.2.6 and the x-vector

cosine similarity score are as seen in Tab.2.5. X-vector based tSNE plot for the

same is as seen in Fig.2.5. The performance of the model is similar to the male-

male case wherein it is unable to perform well.

2.3.4 HinF-TamM

The MCD values for this experiment set is as shown in Tab.2.8 and the x-vector

cosine similarity score are as seen in Tab.2.7. X-vector based tSNE plot for the

same is as seen in Fig.2.6. The model performs well and is similar to the case of

HinM-TamF.

2.3.5 Observations

• From the experiments above, we can clearly see that CycleGAN is able to
perform better when there is conversion between the genders i.e. the two
speakers belong to the different gender.

• In the tSNE plots, we can see that in the case of HinM-TamM and HinF-
TamF, the points are scattered midway between both the actual speaker
points. This points to the fact that the features could be extremely similar

Speakers Hin F Tam F
Tam F - Hin F 0.73 0.68
Hin F - Tam F 0.737 0.702

Table 2.5: Cosine Similarity Scores for HinF-TamF
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Figure 2.5: tSNE plot for HinF-TamF experiment.

HinF/TamF-HinF TamF/HinF-TamF
MCD 10.282 9.05

Table 2.6: MCD scores for HinF-TamF experiment. In the table above, TamF-
HinF refers to the utterances which have been converted from Tamil
speakers voice to Hindi speakers voice.

Figure 2.6: tSNE plot for HinF-TamM experiment.

Speakers Hin F Tam M
Tam M - Hin F 0.74 0.01
Hin F - Tam M 0.09 0.575

Table 2.7: Cosine Similarity Scores for HinF-TamM
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HinF/TamM-HinF TamM/HinF-TamM
MCD 8.03 9.75

Table 2.8: MCD scores for HinF-TamM experiment. In the table above, TamM-
HinF refers to the utterances which have been converted from Tamil
speakers voice to Hindi speakers voice.

HinM/HinF-HinM HinF/HinM-HinF
English 10.211 8.43
Hindi 9.21 7.903

Table 2.9: MCD scores for HinM- HinF experiment for both english and Hindi. In
the table above, HinM-HinF refers to the utterances which have been
converted from Hindi male speakers voice to Hindi female speakers
voice.

to each other and the CycleGAN model is unable to find the mapping of one
speaker to the other.

• From the MCD tables, we can see that when the target speaker is male,
the MCD values are consistently lower than that when the target speaker is
female.

2.4 Experiments on Native Indian Languages

In these set of experiments, we will pick a male and female speaker from each

of Hindi, Tamil and Telugu languages. For each of the pair of speakers, we will

train an Indian English and native language CycleGAN model. This will help us

determine if the model is able to perform equally well irrespective of language or

if there are some difficulties with specific languages. Ideally, we would expect a

language agnostic behaviour.

2.4.1 Hindi

From the Tab.2.9, we can see the MCD scores for both the English and Hindi

experiments. The x-vector based cosine similarity plots for the same are as seen

in Tab.2.10 and Tab.2.11 for English and Hindi respectively. The figure for the

tSNE plot of the experiment can be seen in Fig.2.7
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Figure 2.7: tSNE plots for the HinM-HinF experiment, The plot on the left is the
English dataset plot and the one on the right is the Hindi dataset plot.

Speakers Hin M Hin F
Hin F - Hin M 0.692 0.03
Hin M - Hin F 0.01 0.725

Table 2.10: Cosine Similarity Scores for HinM-HinF English

Speakers Hin M Hin F
Hin F - Hin M 0.63 0.142
Hin M - Hin F 0.07 0.703

Table 2.11: Cosine Similarity Scores for HinM-HinF Hindi
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TamM/TamF-TamM TamF/TamM-TamF
English 9.9 7.26
Tamil 10.4 7.73

Table 2.12: MCD scores for TamM- TamF experiment for both english and tamil.
In the table above, TamM-TamF refers to the utterances which have
been converted from Tamil male speakers voice to Tamil female speak-
ers voice.

Speakers Tam M Tam F
Tam F - Tam M 0.59 0.06
Tam M - Tam F 0.05 0.67

Table 2.13: Cosine Similarity Scores for TamM-TamF English

2.4.2 Tamil

From the Tab.2.12, we can see the MCD scores for both the English and Tamil

experiments. The x-vector based cosine similarity plots for the same are as seen

in Tab.2.13 and Tab.2.14 for English and Tamil respectively.

2.4.3 Telugu

From the Tab.2.15, we can see the MCD scores for both the English and Telugu

experiments. The x-vector based cosine similarity plots for the same are as seen

in Tab.2.16 and Tab.2.17 for English and Telugu respectively.

2.4.4 Observations

• Firstly, we must note that the Indian language experiments perform better
than the English experiments in terms of MCD.

• However, when we look at the cosine similarity scores, Indian language ex-
periments perform slightly poorer compared to their English counterparts.

• These experiments prove the point that the performance of both the Indian
languages and English is not extremely far apart. Hence, we can arrive at
the conclusion that the CycleGAN is language agnostic.

Speakers Tam M Tam F
Tam F - Tam M 0.69 0.07
Tam M - Tam F 0.02 0.68

Table 2.14: Cosine Similarity Scores for TamM-TamF Tamil
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TelM/TelF-TelM TelF/TelM-TelF
English 11.55 10.7
Telugu 8.49 8.63

Table 2.15: MCD scores for TelM- TelF experiment for both english and tamil. In
the table above, TelM-TelF refers to the utterances which have been
converted from Telugu male speakers voice to Telugu female speakers
voice.

Speakers Tel M Tel F
Tel F - Tel M 0.646 0.17
Tel M - Tel F 0.29 0.75

Table 2.16: Cosine Similarity Scores for TelM-TelF English

2.5 Experiment on Crosslingual Voice Conversion

Although CycleGAN doesn’t provide any explicit mechanism for modelling the

language information, we try out an experiment with Hindi male and Telugu Fe-

male speaking their respective native languages i.e. Hindi and Telugu respectively.

This would be crosslingual voice conversion. For this experiment, we have tried

two variations. One of the experiments being the vanilla experiment with no

changes to the input features. The other being the case wherein some of the input

features were masked. Considering that the datasets are cross lingual, we will not

be able to compute the MCD since we don’t have parallel corpora.

2.5.1 Vanilla Features

The cosine similarity scores for the experiment with 24 MCEP features can be

seen in Tab.2.18.

Speakers Tel M Tel F
Tel F - Tel M 0.587 0.203
Tel M - Tel F 0.107 0.727

Table 2.17: Cosine Similarity Scores for TelM-TelF Telugu
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Speakers Hin M Tel F
Tel F - Hin M 0.653 0.005
Hin M - Tel F 0.09 0.722

Table 2.18: Cosine Similarity Scores for HinM-TelF Cross lingual vanilla features

Speakers Hin M Tel F
Tel F - Hin M 0.42 0.3
Hin M - Tel F 0.28 0.35

Table 2.19: Cosine Similarity Scores for HinM-TelF Cross lingual masked features

2.5.2 Masked Features

In the MCEP features, the higher coefficients are responsible for the speaker char-

acteristics whereas the lower coefficients are responsible for containing the linguis-

tic information. Hence, since we want to preserve the linguistic information of

the utterance we set the first 8 coefficients of the MCEP to zero and train the

model. During inference, we convert the unmasked MCEP coefficients using the

trained model and pass the maked coefficients without any transform. The cosine

similarity scores for this experiment are as seen in Tab.2.19.

2.5.3 Observations

• From the cosine similarity scores of the vanilla crosslingual conversion, we
can see that the cosine similarity is being established.

• Although the outputs of the masked features do not have high speaker simi-
larity scores, we see that these outputs do not have as much noise. Hence, if
we are able to obtain source content seperation, we can perform better cross
lingual conversion with CycleGAN.

• We can conclude that CycleGAN can be used. for crosslingual voice conver-
sion. However, there are some artefacts and noise introduced into the con-
verted audio files which are undesirable. This working could be attributed
to the residual layers which better help the model select the dimensions it
wants to keep unchanged and the ones which need to be changed.
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HinM/TamM-HinM TamM/HinM-TamM
MCD 7.83 7.31

Table 2.20: MCD scores for HinM-TamM Histogram Cascade experiment using
CycleGAN.

Speakers Hin M Tam M
Tam M - Hin M 0.711 0.602
Hin M - Tam M 0.621 0.634

Table 2.21: Cosine Similarity Scores for HinM-TamM Histogram Equalization cas-
cade with CycleGAN

2.6 Experiment on cascaded Histogram Equaliza-

tion

Histogram Equalization(Zhihong and Xiaohong (2011)) is an image processing

technique primarily employed in order to enhance the contrast of a given image.

This has been shown to improve the performance of HTS based text to speech

synthesis(Murthy et al. (2020)). Here, we would want to verify if the cascade of

CycleGAN followed by Histogram Equalization can improve the voice conversion

performance. For this, we will perform the experiments HinM-TamM and HinM-

TamF both in Indian English.

2.6.1 HinM-TamM

The MCD scores for HinM-TamM can be seen in Tab.2.20. Cosine similarity scores

of x-vectors can be seen in Tab.2.21.

2.6.2 HinM-TamF

The MCD scores for HinM-TamM can be seen in Tab.2.22. Cosine similarity scores

of x-vectors can be seen in Tab.2.23.

HinM/TamF-HinM TamF/HinM-TamF
MCD 7.1 9.9

Table 2.22: MCD scores for HinM-TamF Histogram Cascade experiment using
CycleGAN.
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Speakers Hin M Tam F
Tam F - Hin M 0.66 0.02
Hin M - Tam F 0.05 0.70

Table 2.23: Cosine Similarity Scores for HinM-TamF Histogram Equalization cas-
cade with CycleGAN

HinM/TamF-HinM TamF/HinM-TamF
12 MCEP 7.345 10.59
24 MCEP 7.142 10.4
40 MCEP 7.02 10.1

Table 2.24: MCD scores for HinM-TamF for varying MCEP values.

2.6.3 Observations

• From the plots, we can see that the Histogram Equalization cascade has
lesser MCD values compared to using the CycleGAN alone.

• With respect to the cosine similarity scores, we do not see any perceivable
improvement when cascading with histogram equalization.

• We can conclude that the usage of histogram equalization can help reduce
the amount of noise present in the converted utterance. However, in terms
of improving the speaker similarity, Histogram Equalization doesn’t help.

2.7 Experiment on the number of MCEP Features

In this experiment, we vary the number of MCEP features used during the training

of the CycleGAN to determine the optimal value of the number of MCEP features.

Here, we will use 12 and 40 MCEP feature numbers in order to compare it to 24

MCEP features. The speakers chosen for this experiment are HinM and TamF

English dataset. The MCD scores for the various MCEP Features are as shown

in the Tab.2.24. The cosine similarity scores for 12 MCEP and 40 MCEP are as

shown in Tab2.25 and Tab.2.26 respectively.

From the MCD values, we can see that as the number of MCEP features are

increased, the MCD values decrease. Also, we see that the cosine similarity scores

Speakers Hin M Tam F
Tam F - Hin M 0.626 0.03
Hin M - Tam F 0.11 0.6

Table 2.25: Cosine Similarity Scores for HinM-TamF for 12 MCEP.
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Speakers Hin M Tam F
Tam F - Hin M 0.68 0.06
Hin M - Tam F 0.01 0.72

Table 2.26: Cosine Similarity Scores for HinM-TamF for 40 MCEP.

are not affected to a large extent with the MCD scores. Hence, the number of

MCEP features doesn’t majorly affect the speaker similarity.

2.8 Experiment on using LPC features

Until now, we used MCEP features in order to train the CycleGAN. However,

we know that MCEP doesn’t model the pitch extremely well which is important

for tasks such as voice conversion. Hence, CycleGAN model was trained using

LSF(Kabal and Ramachandran (1986)) coefficients and the corresponding residual.

2.8.1 Procedure

Firstly, we compute the LPC(O’Shaughnessy (1988)) coefficients and residual for

the dataset utterances. Following this, we convert the LPC coefficients into LSF

coefficients. This is because, LSF coefficients are less prone to be affected by

noise than LPC coefficients. Once we have the LSF and residuals, we train the

CycleGAN for LSF and residual.

2.8.2 Observation

• The outputs in this experiment are extremely noisy and do not retain the
linguistic information.

• CycleGAN is unable to effectively convert one residual coefficient to the
other. This is owing to the fact that the residuals have both voiced and
unvoiced parts. The unvoiced parts are mostly modelled by random noise.
This prevents the CycleGAN from learning the exact conversion from one
speaker to the other.
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CHAPTER 3

Voice Conversion using StarGAN

StarGAN(Kameoka et al. (2018)) is a many to many, non parallel voice conversion

model. This model is a modified version of CycleGAN so as to allow for many

to many conversion unlike CycleGAN which is one to one. Similar to CycleGAN,

this model doesn’t require transcriptions in order to convert one voice to the other

which is important since the availability of good quality transcribed data is limited

to few languages.

3.1 Architecture

Unlike CycleGAN, StarGAN has a single generator, discriminator and a domain

classifier in order to convert from any of the source speakers to the target speakers.

Hence, we require an embedding in order to identify a given source or target

speaker. The embedding could be as simple as one hot encoding or it could be the

output of any speaker embedding model. As can be seen in Fig.3.1, StarGAN as

well employs GateCNN. Let us denote the generator by G, discriminator by D and

domain classifier by C. Akin to CycleGAN, StarGAN uses a linear transformation

for the conversion of pitch from source speaker to target speaker.

3.1.1 Generator

The Generator can be seen in Fig.3.1. It consists of GatedCNN layers which take

care of the sequential modelling. Unlike CycleGAN, we do not have residual layers.

We have upsampling and downsampling layers which consist of convolution and

de-convolution layers respectively. In the upsampling layers, the target attribute

is provided so as to enable the conversion to that specific speaker.



Figure 3.1: StarGAN generator architecture

Figure 3.2: StarGAN discriminator architecture
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Figure 3.3: StarGAN domain classifier architecture

3.1.2 Discriminator

The discriminator takes the output of the generator or the actual speaker utterance

as input and tries to classify them apart. As can be seen in Fig.3.2, it is composed

of several downsampling modules with convolution and GatedCNN layers. The

output of the discriminator is a single bit. The attribute of the speaker whom the

utterance is supposed to belong to is provided. This enables the discriminator to

model multiple such distributions for multiple speakers.

3.1.3 Domain Classifier

The domain classifier takes an input and predicts the attribute which the utterance

belongs to i.e. the speaker of the utterance. In Fig.3.3, we can see that the ar-

chitecture is composed of several downsampling modules composed of convolution

and GatedCNN layers.

3.1.4 Loss Function

The Loss functions in the case of StarGAN is as follows:

LG = LG
adv(G) + λcycL

G
cyc(G) + λclsL

G
cls(G) + λidL

G
id(G)
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LD = LD
adv(D)

Lcls(C) = LC
cls(C)

In the equations above, LG, LD, Lcls refer to the generator loss, discriminator loss

and domain classifier loss respectively.

3.1.5 Cyclo Consistent Loss

This is akin to the loss in CycleGAN. This loss encourages the model to preserve

the linguistic information. The expression for the same is as given below:

Lcyc(G) = Ec′∼p(c),x∼p(x|x′ ),c∼p(c)[||G(G(x, c), c
′
)− x||ρ]

In the expression above, c, c′ are the attributes of the target speaker.

3.1.6 Domain Classifier Loss

The domain classifier loss for Generator and classifier are as below:

LC
cls(C) = −Ec∼p(c),y∼p(y|c)[log pC(c|y)]

LG
cls(G) = −Ec∼p(c),x∼p(x)[log pC(c|G(x, c))]

From the equations above, we can see that the domain classifier loss for classifier

is trying to minimize the loss when it predicts the correct attribute for a given

utterance, whereas in the case of generator, it incentivises the generator to produce

outputs similar to the given attribute.

3.2 Implementation Details

All the training utterances were samples at 16kHz and normalized. WORLD

package is used to extract the fundamental frequency, spectral features and aperi-

odicities. For all the experiments, adam optimizer was used with β1 and β2 with

values 0.5 and 0.999 respectively. The number of dimensions of MCEP features
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HinM/TamM-HinM TamM/HinM-TamM
MCD 7.88 7.95

Table 3.1: MCD scores for HinM-TamF for 4 speakers StarGAN.

HinM/TamF-HinM TamF/HinM-TamF
MCD 8.13 10.02

Table 3.2: MCD scores for HinM-TamF for 4 speakers StarGAN.

used is 36. The attribute ’c’ used is a one hot encoding vector. The hyperpa-

rameters λcyc and λcls are set to 10 and 10 respectively. The learning rate decays

linearly after the first 2e5 iterations.

3.3 Experiments on Indian English

In the following experiments, we will train the StarGAN on varying number of

speakers on Indian English.

3.3.1 4 speakers

The speakers which we will use include male and female native Hindi and Tamil

speakers. We will include the results for one inter-gender pair i.e. HinM-TamF and

one intra-gender pair i.e. HinM-TamM which will give us an idea of the general

trend. The MCD values for HinM-TamM are present in Tab.3.1 and HinM-TamF

are present in Tab.3.2. The cosine similarity scores for HinM-TamM and HinM-

TamF are present in Tab.3.3 and Tab.3.4 respectively.

3.3.2 10 speakers

The speakers used include male and female native Hindi, Tamil, Telugu, Kanada

and Gujarathi speakers. Similar to the 4 speaker case, we will include the re-

Speakers Hin M Tam M
Tam M - Hin M 0.63 0.5
Hin M - Tam M 0.59 0.6

Table 3.3: Cosine Similarity Scores for HinM-TamM for 4 speakers StarGAN.

30



Speakers Hin M Tam F
Tam F - Hin M 0.75 0.05
Hin M - Tam F 0.08 0.76

Table 3.4: Cosine Similarity Scores for HinM-TamF for 4 speakers StarGAN.

HinM/TamM-HinM TamM/HinM-TamM
MCD 10.24 10.11

Table 3.5: MCD scores for HinM-TamF for 10 speakers StarGAN.

sults for HinM-TamF and HinM-TamM in order to compare the performance with

CycleGAN. The MCD values for HinM-TamM are present in Tab.3.5 and HinM-

TamF are present in Tab.3.6. The cosine similarity scores for HinM-TamM and

HinM-TamF are present in Tab.3.7 and Tab.3.8 respectively.

3.3.3 Observations

• We see that when the number of speakers are increased from 4 to 10, the
MCD values increase considerably. This points to the fact that StarGAN
though theoretically is a many to many voice conversion model, is unable to
learn the mappings for extremely large number of speakers.

• When compared to CycleGAN, we see that the cosine similarity scores are
better in the case of HinM-TamF.

• However, similar to CycleGAN, StarGAN too is unable to perform well in
the case of same gender speakers such as in HinM-TamM case. This could
be owing to the averaging effect which is amplified in the intra-gender case
since the voice characteristics are much similar than the inter-gender case.

3.4 Experiment on cascaded Histogram Equaliza-

tion

Similar to the CycleGAN case, we will perform Histogram Equalization after we

obtain the outputs of the StarGAN. Here, we will provide results for HinM-TamM

and HinM-TamF cases. StarGAN is trained on 4 speakers i.e. male and female

HinM/TamF-HinM TamF/HinM-TamF
MCD 7.06 10.23

Table 3.6: MCD scores for HinM-TamF for 10 speakers StarGAN.
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Speakers Hin M Tam M
Tam M - Hin M 0.68 0.56
Hin M - Tam M 0.6 0.62

Table 3.7: Cosine Similarity Scores for HinM-TamM for 10 speakers StarGAN.

Speakers Hin M Tam F
Tam F - Hin M 0.73 0.1
Hin M - Tam F 0.09 0.72

Table 3.8: Cosine Similarity Scores for HinM-TamF for 10 speakers StarGAN.

native Hindi and Tamil speakers on Indian English.

3.4.1 HinM-TamM

The MCD scores for HinM-TamM can be seen in Tab.3.9. Cosine similarity scores

of x-vectors can be seen in Tab.3.10.

3.4.2 HinM-TamF

The MCD scores for HinM-TamF can be seen in Tab.3.11. Cosine similarity scores

of x-vectors can be seen in Tab.3.12.

3.4.3 Observations

• Akin to the case in CycleGAN, we see that there is a slight reduction in the
MCD values as compared to vanilla StarGAN. However, we do not see any
improvement in the cosine similarity scores.

• This shows that Histogram Equalization is not effective in terms of improving
the speaker similarity in CycleGAN or StarGAN.

HinM/TamM-HinM TamM/HinM-TamM
MCD 7.72 7.33

Table 3.9: MCD scores for HinM-TamM Histogram Cascade experiment using
StarGAN.
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Speakers Hin M Tam M
Tam M - Hin M 0.7 0.545
Hin M - Tam M 0.48 0.59

Table 3.10: Cosine Similarity Scores for HinM-TamM Histogram Equalization cas-
cade with StarGAN

HinM/TamF-HinM TamF/HinM-TamF
MCD 7.98 9.67

Table 3.11: MCD scores for HinM-TamF Histogram Cascade experiment using
StarGAN.

Speakers Hin M Tam F
Tam F - Hin M 0.73 0.01
Hin M - Tam F 0.08 0.69

Table 3.12: Cosine Similarity Scores for HinM-TamF Histogram Equalization cas-
cade with StarGAN
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CHAPTER 4

Inferences

• In both CycleGAN and StarGAN, the model can’t alter the duration of
the converted utterance i.e. the converted utterance is the same duration
as that of the source utterance. This is because the models process at a
window level and not at an utterance level. However, we know that different
speakers will have different speaking rates. Therefore, in order to improve
the performance, the models must have the capability to produce variable
length converted utterances.

• From the experiments on Indian languages, we can see that the models are
able to perform relatively well irrespective of the language of the source and
target speakers.

• In both CycleGAN and StarGAN, the use of Histogram Equalization helps
in reduction of MCD scores but doesn’t help in terms of improving the cosine
similarity scores which is indicative of speaker similarity.

• The GAN models handle the datasets wherein the speakers are of opposite
genders relatively well. However, when the two speakers belong to the same
gender, the speaker similarity takes a hit. This could be owing to the fact
that when the two speakers are of the same gender, both the MCEP distri-
butions are similar to each other and the GAN model is unable to convert
one to the other.

• We have observed that the converted utterances rather than having the
characteristics of the target speaker alone, have the characteristics which
are a mix of both the source and target speaker resulting in a different voice
altogether.

• Modelling pitch using a linear transformation is not desirable since it pro-
vides a linear shift to the source pitch. However, the delta pitch is not
followed as is seen in Fig.4.1. Hence, it would be a good idea to include
pitch as a trainable parameter i.e. one of the inputs.

• We see that CycleGAN is able to perform crosslingual voice conversion. Al-
though this was proposed and tested only on monolingual voices, we observe
that the model is able to preserve the linguistic information and convert one
voice to the other. However, the converted utterances have a large number
of artefacts and are filled with noise. The CycleGAN may be able to model
the crosslingual voices due to the presence of residual blocks which enable
the model to learn identity extremely well. Hence, the model will be able
to preserve linguistic content and change the parts which are responsible for
voice characteristics.



Figure 4.1: Pitch plots for the GAN models as we can see, the converted pitch
and the target pitch are around the same mean as is expected from
a linear transformation. However, they do not follow each other in
terms of delta and delta delta features.

• In the MCEP masking experiment, we see that the performance is inferior
compared to vanilla MCEP. This could be owning to the fact that including
those masked features could help the model learn associations between cer-
tain linguistic features and the corresponding feature conversions, whereas
in the case of the masked MCEP case, the model must learn the mapping
based on the higher MCEP features alone.

• When comparing the performance of both the CycleGAN and StarGAN, we
observe that the StarGAN performs better in terms of the cosine similarity
scores but only marginally.

• We see that the increase in the number of speakers from 4 speakers to 10
speakers adversely affects the StarGAN performance. Although the MCD
scores increase, the cosine similarity scores remain unchanged.

• Although GatedCNNs are found to work extremely well for language mod-
elling tasks, in terms of speech they may not translate extremely well owing
to their inability to capture the entire utterance prior to generation of the
output i.e. the outputs are generated by looking at the windowed neigh-
bourhood of an utterance whereas this is not the case in language modelling
wherein the required window length for sentences is typically low i.e.(number
of words in a sentence).
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CHAPTER 5

Conclusion

Firstly, we see that GAN models are able to translate equally well to Indian

languages. However, we see that GAN’s suffer from inherent issues such as the

inability to train well when the two distributions are extremely close in terms

of distributions. Also, CycleGAN works well in the case of images owing to their

fixed size whereas in the case of speech we would desire variable length outputs. In

this report, we have established some baselines for GAN based voice conversion in

Indian voices and have pointed out some deficiencies of GANs which are necessary

to improve their performance further.



REFERENCES

1. Baby, A., A. L. Thomas, N. Nishanthi, T. Consortium, et al., Resources
for indian languages. In Proceedings of Text, Speech and Dialogue. 2016.

2. Dauphin, Y. N., A. Fan, M. Auli, and D. Grangier, Language modeling with
gated convolutional networks. In Proceedings of the 34th International Conference
on Machine Learning - Volume 70 , ICML’17. JMLR.org, 2017a.

3. Dauphin, Y. N., A. Fan, M. Auli, and D. Grangier, Language mod-
eling with gated convolutional networks. In D. Precup and Y. W. Teh
(eds.), Proceedings of the 34th International Conference on Machine Learning ,
volume 70 of Proceedings of Machine Learning Research. PMLR, 2017b. URL
https://proceedings.mlr.press/v70/dauphin17a.html.

4. Dines, J., H. Liang, L. Saheer, M. Gibson, W. Byrne, K. Oura,
K. Tokuda, J. Yamagishi, S. King, M. Wester, T. Hirsimäki, R. Karhila,
and M. Kurimo (2013). Personalising speech-to-speech translation: Unsuper-
vised cross-lingual speaker adaptation for hmm-based speech synthesis. Com-
puter Speech Language, 27(2), 420–437. ISSN 0885-2308. URL https://www.
sciencedirect.com/science/article/pii/S0885230811000441. Special Issue
on Speech-speech translation.

5. Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, Generative adversarial nets. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger
(eds.), Advances in Neural Information Processing Systems , volume 27. Curran
Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/
file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

6. Hochreiter, S. and J. Schmidhuber (1997). Long short-term memory. Neural
Computation, 9(8), 1735–1780.

7. Hwang, H., Y. Tsao, H. Wang, Y. Wang, and S. Chen, Alleviating the over-
smoothing problem in gmm-based voice conversion with discriminative training. In
F. Bimbot, C. Cerisara, C. Fougeron, G. Gravier, L. Lamel, F. Pellegrino,
and P. Perrier (eds.), INTERSPEECH 2013, 14th Annual Conference of the
International Speech Communication Association, Lyon, France, August 25-29,
2013 . ISCA, 2013. URL http://www.isca-speech.org/archive/interspeech_
2013/i13_3062.html.

8. Kabal, P. and R. Ramachandran (1986). The computation of line spectral fre-
quencies using chebyshev polynomials. IEEE Transactions on Acoustics, Speech,
and Signal Processing , 34(6), 1419–1426.

9. Kameoka, H., T. Kaneko, K. Tanaka, and N. Hojo (2018). Stargan-vc: non-
parallel many-to-many voice conversion using star generative adversarial networks.
2018 IEEE Spoken Language Technology Workshop (SLT), 266–273.

37

https://proceedings.mlr.press/v70/dauphin17a.html
https://www.sciencedirect.com/science/article/pii/S0885230811000441
https://www.sciencedirect.com/science/article/pii/S0885230811000441
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://www.isca-speech.org/archive/interspeech_2013/i13_3062.html
http://www.isca-speech.org/archive/interspeech_2013/i13_3062.html


10. Kaneko, T. and H. Kameoka, Cyclegan-vc: Non-parallel voice conversion using
cycle-consistent adversarial networks. In 2018 26th European Signal Processing
Conference (EUSIPCO). 2018.

11. Kubichek, R., Mel-cepstral distance measure for objective speech quality as-
sessment. In Proceedings of IEEE Pacific Rim Conference on Communications
Computers and Signal Processing , volume 1. 1993.

12. Medsker, L. R. and L. Jain (2001). Recurrent neural networks. Design and
Applications , 5, 64–67.

13. Murthy, H., R. Mohan, S. Srivastava, and A. P. Karaiyan (2020). A hybrid
hmm-waveglow based text-to-speech synthesizer using histogram equalization for
low resource indian languages.

14. O’Shaughnessy, D. (1988). Linear predictive coding. IEEE Potentials , 7(1),
29–32.

15. Sisman, B., J. Yamagishi, S. King, and H. Li (2021). An overview of voice con-
version and its challenges: From statistical modeling to deep learning. IEEE/ACM
Transactions on Audio, Speech, and Language Processing , 29, 132–157.

16. Snyder, D., D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur,
X-vectors: Robust dnn embeddings for speaker recognition. In 2018 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). 2018.

17. Sun, L., K. Li, H. Wang, S. Kang, and H. Meng, Phonetic posteriorgrams
for many-to-one voice conversion without parallel data training. In 2016 IEEE
International Conference on Multimedia and Expo (ICME). 2016.

18. van der Maaten, L. and G. Hinton (2008). Visualizing data using t-sne.
Journal of Machine Learning Research, 9(86), 2579–2605. URL http://jmlr.
org/papers/v9/vandermaaten08a.html.

19. Vergin, R., D. O’Shaughnessy, and A. Farhat (1999). Generalized mel fre-
quency cepstral coefficients for large-vocabulary speaker-independent continuous-
speech recognition. IEEE Transactions on Speech and Audio Processing , 7(5),
525–532.

20. Yegnanarayana, B., J. M. Naik, and D. G. Childers, Voice simulation:
Factors affecting quality and naturalness. In ACL. 1984.

21. Zhihong, W. and X. Xiaohong, Study on histogram equalization. In 2011
2nd International Symposium on Intelligence Information Processing and Trusted
Computing . 2011.

22. Zhou, Y., X. Tian, H. Xu, R. K. Das, and H. Li, Cross-lingual voice conver-
sion with bilingual phonetic posteriorgram and average modeling. In ICASSP 2019
- 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2019.

23. Zhu, J.-Y., T. Park, P. Isola, and A. A. Efros, Unpaired image-to-image
translation using cycle-consistent adversarial networks. In 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV). 2017.

38

http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	Dataset
	Evaluation Metrics
	Mel Cepstral Distortion (MCD)
	X-vectors


	Voice Conversion using CycleGAN
	Architecture
	Gated CNN
	Loss Function

	Implementation Details
	Experiments on Indian English
	HinM-TamM
	HinM-TamF
	HinF-TamF
	HinF-TamM
	Observations

	Experiments on Native Indian Languages
	Hindi
	Tamil
	Telugu
	Observations

	Experiment on Crosslingual Voice Conversion
	Vanilla Features
	Masked Features
	Observations

	Experiment on cascaded Histogram Equalization
	HinM-TamM
	HinM-TamF
	Observations

	Experiment on the number of MCEP Features
	Experiment on using LPC features
	Procedure
	Observation


	Voice Conversion using StarGAN
	Architecture
	Generator
	Discriminator
	Domain Classifier
	Loss Function
	Cyclo Consistent Loss
	Domain Classifier Loss

	Implementation Details
	Experiments on Indian English
	4 speakers
	10 speakers
	Observations

	Experiment on cascaded Histogram Equalization
	HinM-TamM
	HinM-TamF
	Observations


	Inferences
	Conclusion

