
The k-experts Problem

A Project Report

submitted by

SOURAV SAHOO

in partial fulfilment of requirements

for the award of the dual degree of

BACHELOR OF TECHNOLOGY AND MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

May 26, 2022

THESIS CERTIFICATE

This is to certify that the thesis titled The k-experts Problem, submitted by Sourav

Sahoo, to the Indian Institute of Technology, Madras, for the award of the degree of

Bachelor of Technology and Master of Technology, is a bonafide record of the re-

search work done by him under our supervision. The contents of this thesis, in full or in

parts, have not been submitted to any other Institute or University for the award of any

degree or diploma.

Prof. Abhishek Sinha
Research Guide
Reader
School of Technology and Computer Science
TIFR, Mumbai, 400005

Place: Chennai

Date: May 26, 2022

ACKNOWLEDGEMENTS

I must begin by thanking my guide, Prof. Abhishek Sinha, for his continued guidance

and support throughout the project. My primary research interest in online learning

and optimization directly traces back to his class on theoretical machine learning. He

is easily one of the most brilliant, dedicated, and humble people I have met over my

five years at IIT Madras. Thank you for bearing me even when I asked the silliest of

questions and replying to my doubts even at one in the morning.

I would also thank Samrat Mukhopadhyay, my co-author and mentor, who helped me a

lot in the initial days of the project. I am also grateful to the professors and academic

and non-academic staff of the electrical engineering department. I am also thankful to

all my friends and seniors at IIT Madras, who made college life quite enriching and

enjoyable.

Most importantly, I am thankful to my parents, who have been a constant source of love,

support, and motivation since my childhood. Finally, I would like to thank my sister,

who is my first teacher, guide, and friend—all rolled in one. This thesis is dedicated to

her.

i

ABSTRACT

KEYWORDS: Online Learning; Learning Theory; Structured Prediction; Combi-

natorial Optimization.

We introduce and study the k-experts problem - a generalization of the classic Pre-

diction with Expert’s Advice framework in online learning. Unlike the classic version,

where the learner selects exactly one expert from a pool of N experts at each round, in

this problem, the learner can select a subset of k experts at each round (1 ≤ k ≤ N).

The reward obtained by the learner at each round is assumed to be a function of the k se-

lected experts. The primary objective is to design an online learning policy with a small

regret. To this end, we propose SAGE (Sampled Hedge) - a framework for design-

ing efficient online learning policies by leveraging statistical sampling techniques. We

show that SAGE either achieves the first sublinear regret guarantee or improves upon

the existing ones for a wide class of reward functions. Furthermore, going beyond the

notion of regret, we fully characterize the mistake bounds achievable by online learn-

ing policies for stable loss functions. We also establish a tight regret lower bound for

a couple of variants of the k-experts problem and conduct experiments with standard

datasets to verify our theoretical results.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF ALGORITHMS vi

LIST OF FIGURES vii

ABBREVIATIONS viii

NOTATION ix

1 INTRODUCTION AND BACKGROUND 1

1.1 The Problem Setting . 2

1.1.1 Literature Review . 3

1.1.2 Key Insights for SAGE . 5

1.2 Sampling without Replacement . 6

2 THE k-sets PROBLEM 8

2.1 Fundamental Limits on Online Prediction with k-sets 8

2.2 Learning Policies for the k-sets Problem 18

2.2.1 k-sets with Hedge . 19

2.2.2 k-sets with FTRL . 22

2.3 Numerical Experiments . 27

3 BEYOND THE k-sets PROBLEM 31

3.1 k-experts with Pairwise Reward 31

3.2 Learning Policies for Monotone Rewards 33

iii

3.2.1 Monotone Submodular Reward Functions 40

3.3 Lower Bounds . 42

3.4 Numerical Experiments . 49

3.4.1 k-experts with Pairwise-reward 49

3.4.2 k-experts with Max-reward 50

3.4.3 k-experts with Monotone-reward 51

4 CONCLUSION AND OPEN PROBLEMS 53

LIST OF TABLES

1.1 Variants of the k-experts problem 2

1.2 Performance comparison among different policies for the k-sets prob-
lem . 6

3.1 Performance comparison among different policies for Online Submod-
ular Maximization under cardinality constraints. 42

v

List of Algorithms

1 The Online Learning Framework 1
2 The Generic SAGE Meta-Algorithm 5
3 Madow’s Sampling Scheme . 7
4 k-sets via SAGE with πbase = Hedge 21
5 FTRL for the generalized k-sets problem with the Shannon entropic

regularizer . 24
6 Algorithm for Pairwise-rewards 32

vi

LIST OF FIGURES

2.1 Comparison among different k-set policies with
k

N
= 0.1, N ∼ 2400 for the

MovieLens Dataset. 28

2.2 Comparison among different prediction policies in terms of hit rates (fraction

of correct predictions) for different values of
k

N
,N ∼ 2400 for the MovieLens

dataset. 28

2.3 Comparison among different prediction policies in terms of normalized regret
RT

T
with

k

N
= 0.1, N ∼ 2500 for the Wiki-CDN dataset. 29

2.4 Comparison among different prediction policies in terms of hit rates (fraction

of correct predictions) for different values of
k

N
,N ∼ 2500 for the Wiki-CDN

dataset. 30

3.1 Performance of the SAGE policy for pairwise predictions with
k

N
= 0.02 for

the Reality Mining Dataset. 50

3.2 Performance of SAGE for the Max-Reward function, with
k

N
= 0.01 for the

MovieLens Dataset. 51

3.3 Performance of prediction policy in terms of fraction of total possible reward
(by selecting all the elements) obtained for N = 1000, v : x 7→ ∥x∥2 for the
MovieLens dataset. 52

3.4 Performance of prediction policy in terms of fraction of total possible reward
(by selecting all the elements) obtained for N = 1000, v : x 7→ ∥x∥∞ for the
MovieLens dataset. 52

vii

ABBREVIATIONS

SAGE Sampled Hedge

CH Component Hedge

OCO Online Convex Optimization

FTRL Follow The Regularized Leader

FTPL Follow The Perturbed Leader

viii

NOTATION

N Set of positive integers
R Set of real numbers
R≥0 Set of non-negative reals
Rd The d-dimensional Euclidean space
[N] {1, 2, 3, . . . , N}, N ∈ N
∥v∥p ℓp norm of v
∥v∥k,∞ Sum of top k elements of v

f(n) = O(g(n)) 0 < limn→∞
f(n)

g(n)
<∞

f(n) = Õ(g(n)) f(n) = O
(
g(n)logkn

)
for some k > 0

f(x) = Ω(g(x)) 0 < c ≤ limx→∞
f(x)

g(x)
, c ∈ R

ix

CHAPTER 1

INTRODUCTION AND BACKGROUND

Online learning is the method of answering a sequence of questions given informa-

tion (either full or partial) of the correct answers of the previous questions. Tradition-

ally, online learning has been studied in various research domains such as game theory,

information theory, operations research and machine learning. Some of the examples

of online prediction problems are online classification, online regression and prediction

with experts’ advice (which we discuss extensively in the next section). We provide a

general framework for online prediction in Algorithm 1.

Algorithm 1 The Online Learning Framework
1: Instance domain X , Target domain Y , Prediction domain D, Loss function L :
D × Y → R≥0.

2: for each round t do
3: Receive xt ∈ X .
4: Predict ŷt ∈ D.
5: Receive true answer yt ∈ Y .
6: Observe loss L(ŷt, yt).
7: end for

For example, in the online regression problem, X = Rd, Y = D = R and the loss func-

tion L(ŷ, y) = ∥ŷ − y∥22. In the online learning setting, we measure the performance of

an algorithm in terms of regret. Regret quantifies how “sorry” of the learner is, for de-

viating from the best fixed offline predictor in hindsight (Shalev-Shwartz et al., 2011).

Concretely, for an online learning algorithm A for running a sequence of T instances,

the regret is

RegretT (A) =
T∑
t=1

L(ŷt, yt)−
T∑
t=1

L(y∗, yt) (1.1)

where y∗ is the best fixed predictor in hindsight. We refer the reader to Orabona (2019)

for an excellent detailed introduction of online learning.

1.1 The Problem Setting

The classic Prediction with Expert’s Advice problem, also known as the Experts prob-

lem in the literature, is a canonical framework for online learning (Cesa-Bianchi and

Lugosi, 2006). This problem is usually formulated as a two-player sequential game

played between a learner and an adversary. Consider a set of N experts indexed by the

set [N] At each round t, the adversary secretly selects a reward vector rt ∈ [0, 1]N for

the experts1. At the same time (without knowing the rewards for the present round),

the learner selects an expert (possibly randomly) and then receives a reward equal to

the reward of the chosen expert. The goal of the learner is to design an online learning

policy that incurs a small regret. Recall that the regret of an online learning policy over

a given time horizon is defined as the difference between the reward accumulated by

the best fixed expert in hindsight and the total expected reward accrued by the policy

(see (1.2)). Many online learning policies achieving sublinear regrets in this setting are

known, most notably, Hedge (Vovk, 1998; Freund and Schapire, 1997).

In this work, we initiate the study of the k-experts problem - a generalization of the

above Experts framework. The k-experts problem arises in many settings, including

online ad placement, personalized news recommendation, adaptive feature selection,

and paging. In the k-experts problem, instead of selecting only one expert at each

round, the learner selects a subset St ⊆ [N] containing k experts at each round t (1 ≤
k ≤ N). The reward q(St) received by the learner at round t depends on the rewards of

the experts in the chosen set St. Table 1.1 lists some variants of the k-experts problem

considered in this work. In the Sum-reward variant, the reward accrued by the learner

Table 1.1: Variants of the k-experts problem

Function Name Expression

Sum-reward qsum(St) =
∑

i∈St
rti

Max-reward qmax(St) = maxi∈St rti
Pairwise-reward qpair(St) =

∑
i,j∈St

ritrjt
Monotone reward qmonotone(St) = ft(S)

at round t is given by the sum of the rewards of the experts in the chosen set St. In

particular, let pti denote the (conditional) marginal probability that the ith expert is
1We consider the rewards rather than losses throughout this work.

2

included in the set St, given the history Ft−1 of the game up to round t − 1. Then, we

can express the (conditional) expected reward for the tth round as E[qsum(St)|Ft−1] =

E[
∑

i∈St
rti|Ft−1] = ⟨rt,pt⟩.

However, unlike the Sum-reward variant, the expected accrued reward for other vari-

ants depends on higher-order joint inclusion probabilities as well (as opposed to only

marginals).

In our most general case, apart from monotonicity, we do not impose any other condi-

tion (e.g., submodularity (Streeter and Golovin, 2007)) on the reward function. For each

of the above variants, we consider the problem of designing an online expert selection

policy that minimizes the regretRT (or a variant of it) over a horizon of length T :

RT = max
S:|S|=k

T∑
t=1

q(S)−
T∑
t=1

E [q(St)] . (1.2)

In the above, the expectation in the second term is taken with respect to any randomness

of the learner.

1.1.1 Literature Review

A special case of the k-experts problem is Online N -ary prediction with k-sets, which

we briefly refer to as the k-sets problem (Koolen et al., 2010). In this problem, a

learner sequentially predicts the next symbol for an unknown N -ary sequence y =

(y1, y2, . . . , yT) chosen by an adversary. The symbols are revealed to the learner se-

quentially in an online fashion. However, instead of predicting a single symbol ŷt ∈ [N]

at each round, the learner is allowed to output a subset St, consisting of k symbols at

round t. The learner’s prediction for round t is considered to be correct if and only if

the predicted set St contains the true symbol yt. In the event of a correct prediction,

the learner receives unit reward, else, it receives zero rewards for that round. The goal

of the learner is to maximize its cumulative reward over a given time horizon. It is

easy to see that the above problem is a special case of the k-experts problem with the

Sum-reward variant, where the adversary’s actions are constrained as rti ∈ {0, 1} with∑N
i=1 rti = 1,∀t, i.

3

A quick-and-dirty approach can be used to reduce the problem to an instance of the clas-

sic Experts problem with a much larger set of experts, which we call meta-experts. In

this reduction, a meta-expert is identified with one of the
(
N
k

)
possible subsets of experts

of size k. One can then use any known low-regret prediction policy, such as Hedge, on

the meta-experts to design an online learning policy for the k-sets problem. Koolen

et al. (2010) referred to the resulting Hedge policy as Expanded Hedge. An obvious

challenge with this approach is to overcome the severe computational inefficiency of the

resulting online policy, which, apparently, needs to keep track of exponentially many

experts. To resolve this issue, Koolen et al. (2010) proposed the Component Hedge

(CH) algorithm and showed that the proposed policy yields a tight regret bound. How-

ever, the CH algorithm involves a projection and decomposition step, each of which

costs O(N2). Although the projection step was later shown to be implementable in

linear time (Herbster and Warmuth, 2001, Theorem 7), the best-known algorithm for

the decomposition step still takes O(N2) time (Warmuth and Kuzmin, 2008, Algorithm

2). Suehiro et al. (2012) speculate the existence of an O(N logN) algorithm for the

decomposition. However, their algorithm (Algorithm 4) and its analysis mentioned in

Theorem 10 of the paper still has O(N2) complexity. We refer the readers to Takimoto

and Hatano (2013) for an excellent survey of the efficient projection and decomposition

schemes for the k-sets and other online combinatorial optimization problems. The k-

sets problem has also been investigated by Daniely and Mansour (2019), as an instance

of the paging problem.

The authors alleviated the complexity of the naive Hedge implementation by reducing

it to a problem of sequential sampling from a recursively defined distribution. Unfortu-

nately, the resulting policy is still sufficiently complex (Ω(N2)). Recently, Bhattachar-

jee et al. (2020) studied the paging problem and proposed an efficient and regret-optimal

FTPL-style policy. Although simple to implement, their algorithm does not admit an

adaptive regret bound. Finally, the papers Krause and Golovin (2014); Streeter and

Golovin (2007); Harvey et al. (2020) studied online maximization of monotone sub-

modular reward functions. However, the problem of achieving sublinear regret for ar-

bitrary monotone reward functions has been wide open.

4

1.1.2 Key Insights for SAGE

We begin our discussion with the Sum-reward variant in the k-experts problem. As

pointed out earlier, the expected sum reward obtained by any policy depends only on

the first-order marginal inclusion probabilities and not on the higher-order joint distri-

bution. In particular, any two online prediction policies, that have the same conditional

marginal inclusion probabilities, yield exactly the same reward per round. This simple

observation leads to the SAGE meta-algorithm described in Algorithm 2.

Algorithm 2 The Generic SAGE Meta-Algorithm
1: Start with a low-regret base online prediction policy πbase (e.g., Hedge). We do not

require the base policy πbase to be computationally efficient.
2: for each round t do
3: Efficiently compute the first-order marginal inclusion probabilities (pt) corre-

sponding to the policy πbase. This step amounts to marginalizing the joint distri-
bution induced by the policy πbase.

4: Efficiently sample k elements according to the marginal distribution pt computed
above.

5: end for

From the pseudocode, it is clear that the SAGE meta-algorithm has the same regret as

the base policy πbase. However, unlike the base policy (which could be computationally

intractable), the SAGE policy can be efficiently implemented in many problems. For

example, we show in Section 2.2.1 that when Hedge is used as the base policy for

the k-sets problem, the marginalization in line 3 reduces to the evaluation of certain

elementary symmetric polynomials. These quantities can be efficiently computed using

Fast Fourier Transform techniques. Furthermore, an efficient sampler for line 4 can be

borrowed from the statistical sampling literature, reviewed in Section 1.2.

Note that SAGE is not necessarily regret-optimal for arbitrary monotone reward func-

tions where the expected reward depends on higher-order inclusion probabilities. How-

ever, in Section 3.2, we show that we can still use the SAGE framework in this case by

approximating the given reward function with modular reward functions. The approxi-

mation utilizes recent results from non-submodular set function optimization theory.

5

Table 1.2: Performance comparison among different policies for the k-sets problem

Policies Regret bound Complexity

FTPL (Gaussian perturbation) (Cohen and
Hazan, 2015)

2

√
2k2T ln

Ne

k
Õ(N)

Component Hedge (Koolen et al., 2010)

√
2kT ln

N

k
O(N2)

SAGE (with πbase = Hedge) (This work)

√
2kT ln

Ne

k
Õ(N)

SAGE (with πbase = FTRL) (This work) 2

√
2kT ln

N

k
Õ(N)

1.2 Sampling without Replacement

The proposed SAGE meta-algorithm makes critical use of certain systematic sampling

techniques from statistics (viz. line 4 of Algorithm 2).

Consider the problem of sampling without replacement where one needs to randomly

sample a k-set S from the universe [N] such that item i ∈ [N] is included in the set S

with a pre-specified marginal inclusion probability pi, ∀i ∈ [N]. Formally, if the k-set

S is sampled with probability P(S), we require that
∑

S:i∈S,|S|=k P(S) = pi,∀i ∈ [N].

Since the sampling is done without replacement, for any k-set S, we have:
∑

i∈[N] 1(i ∈
S) = k. Taking expectation of both sides with respect to the randomness of the sampler,

we conclude that any feasible marginal inclusion probability vector p must belong to

the set ∆k
N defined as follows:

∑
i∈[N]

pi = k, and 0 ≤ pi ≤ 1,∀i ∈ [N]. (1.3)

It turns out that condition (1.3) is also sufficient for designing efficient sampling schemes

that leads to the marginal inclusion probability vector p. Such sampling schemes have

been extensively studied in the statistical sampling literature under the heading of un-

equal probability sampling design (Tillé, 1996; Hartley, 1966; Hanif and Brewer, 1980).

In this work, we use a linear-time exact sampling scheme proposed by Madow et al.

(1949) as outlined below in Algorithm 3.

6

Algorithm 3 Madow’s Sampling Scheme

Require: A universe [N] of size N , cardinality of the sampled set k, and a marginal
inclusion probability vector p = (p1, p2, . . . , pN) satisfying condition (1.3)

Ensure: A random k-set S with |S| = k such that, P(i ∈ S) = pi,∀i ∈ [N]
1: Define Π0 = 0, and Πi = Πi−1 + pi,∀1 ≤ i ≤ N.
2: Sample a uniformly distributed random variable U from the interval [0, 1].
3: S ← ∅
4: for i← 0 to k − 1 do
5: Select the element j if Πj−1 ≤ U + i < Πj.
6: S ← S ∪ {j}.
7: end for
8: return S

The correctness of Madow’s sampling scheme is easy to establish. From the necessary

condition (1.3), it follows that Algorithm 3 selects exactly k elements. Furthermore,

the element j is selected if the random variable U ∈ ⊔Ni=1[Πj−1 − i,Πj − i). Since U is

uniformly distributed in [0, 1], the probability that the element j is selected is equal to

Πj − Πj−1 = pj,∀j ∈ [N].

7

CHAPTER 2

THE k-sets PROBLEM

2.1 Fundamental Limits on Online Prediction with k-

sets

In a seminal paper, Cover (1966) studied the fundamental limits of online binary pre-

diction, which is a special case of the k-sets problem with N = 2 and k = 1. Cover

gave a complete characterization of the set of all stable reward profiles achievable by

online policies. Fifty years later, Rakhlin and Sridharan (2016) generalized Cover’s

result to an arbitrary alphabet of size N , but still requiring k = 1. The characteriza-

tion of the prediction error for the k-sets problem for an arbitrary N and k has been a

long-standing open problem.

Consider the canonical binary prediction problem: assume that an adversary secretly

selects a binary sequence y = (y1, y2, . . . , yT). The sequence is revealed to the learner

one symbol at a time according to the following protocol - upon seeing the initial seg-

ment of the sequence yt−1
1 ≡ (y1, y2, . . . , yt−1) at time t, the learner makes a (ran-

domized) guess ŷt for the tth element of the sequence yt. The actual value of yt is

then revealed to the learner after the prediction. Let µA(y) denote the fraction of mis-

takes made by a randomized prediction algorithm A for the sequence y, i.e., µA(y) =

EA[T−1
∑T

t=1 1(yt ̸= ŷt)], where the expectation is taken with respect to the random-

ness of the prediction algorithm. In (2.3), we show that irrespective of the prediction

algorithm A, the average fraction of errors µA(·) over all possible 2T binary sequences

is precisely
1

2
.A loss function ϕ : {±1}T → [0, 1] is said to be achievable if there exists

an online prediction policy A such that the average prediction error under the policy A
for any sequence is upper bounded by the function ϕ, i.e., µA(y) ≤ ϕ(y),∀y.

An immediate question is to characterize the set of all achievable loss functions ϕ(·).
For a given sequence y, let ϕ(. . . , j, . . .) be a shorthand for the quantity ϕ(y1, . . . , yt−1, j, yt+1, . . . , yT).

We call a loss function ϕ : {±1}T → [0, 1] to be stable if it satisfies the following in-

equality for all y ∈ {±1}T and for all time index 1 ≤ t ≤ T :∣∣∣∣∣∣ϕ(. . . , +1︸︷︷︸
tth coordinate

, . . .)− ϕ(. . . , −1︸︷︷︸
tth coordinate

, . . .)

∣∣∣∣∣∣ ≤ 1

T
. (2.1)

Theorem 1 (Cover (1966)). Suppose the loss function ϕ : {±1}T → [0, 1] is stable.

Then ϕ(·) is achievable if and only if E [ϕ(z)] ≥ 1

2
, where the expectation is taken with

respect to the i.i.d. uniform distribution over {±1}T .

We emphasize that although the statement of Theorem 1 involves an expectation, no

probabilistic assumption was made on the sequence y. Rakhlin and Sridharan (2016)

extended Theorem 1 to the N -ary setting.

In this work, we generalize the result further to the k-sets setting where, instead of

predicting a single value ŷt, the learner is allowed to predict a (randomized) subset

St ⊆ [N] containing k elements. Thus, the average loss incurred by a prediction policy

A for the sequence y is given by:

µA(y) = EA

[
1

T

T∑
t=1

1(yt /∈ St)

]
, (2.2)

where the expectation is taken with respect to the randomness of the policy A. Uni-

formly averaging the loss function µA(·) over all NT possible N -ary sequences y

(equivalently, endowing the set of all sequences in [N]T the i.i.d. uniform probabil-

ity measure), we have

EµA(y) = EEA

[
1

T

T∑
t=1

1(yt /∈ St)

]
(Fubini’s Th.)

= EAE

[
1

T

T∑
t=1

1(yt /∈ St)

]
(a)
= 1− k

N
, (2.3)

where (a) follows from the fact that |St| = k,∀t. As in condition (2.1), we call a loss

function ϕ : [N]T → [0, 1] to be stable if for all sequences y ∈ [N]T and all coordinates

9

t of ϕ the following two conditions hold:

max
i∈[N]

ϕ(. . . , i, . . .)− 1

N

∑
j∈[N]

ϕ(. . . , j, . . .) ≤ k

NT
, (2.4)

1

N

∑
j∈[N]

ϕ(. . . , j, . . .)− min
i∈[N]

ϕ(. . . , i, . . .) ≤
(
1− k

N

)
1

T
. (2.5)

Our first result generalizes Cover’s theorem by showing that conditions (2.4) and (2.5)

together are also sufficient for the achievability.

Theorem 2. Suppose the loss function ϕ : [N]T → [0, 1] is stable. Then ϕ(·) is achiev-

able by some online policy if and only if E [ϕ(z)] ≥ 1 − k

N
, where the expectation is

taken w.r.t. the i.i.d. uniform distribution over [N]T .

Proof. The necessity part of Theorem 2 has already been established in (2.3). The proof

of sufficiency is constructive and proceeds in two phases.

Phase-I: Computation of the Marginal Inclusion Probabilities pt : Similar to the

treatment in Rakhlin and Sridharan (2016), we use a potential function-based argument

to derive a set of marginal inclusion probabilities at each time t that leads to the loss

function ϕ(·). Let {ϕt : [N]t → [0, 1]}Tt=0 be a sequence of potential functions satisfying

the boundary condition

ϕT (y) = ϕ(y). (2.6)

We define ϕ0 to be a suitable constant. In order to achieve the loss function ϕ(·), we

require the following equality to be valid for all sequences y ∈ [N]T :

E

[
1

T

T∑
t=1

1(yt /∈ St)

]
=

T∑
t=1

(
ϕt(y

t)− ϕt−1(y
t−1)

)
+ ϕ0, (2.7)

where the above equation follows from telescoping the summation and using the bound-

ary condition (2.6).

For a given initial segment of the sequence yt−1, consider an online policy that includes

10

the ith element in the predicted set St with the conditional probability pti(yt−1). Clearly

P(yt /∈ St|yt−1) = 1−
N∑
i=1

pti(y
t−1)1(yt = i). (2.8)

Hence, combining equations (2.7) and (2.8), the achievability is ensured if we can ex-

hibit a sequence of potential functions {ϕt(·)} and a randomized online strategy for se-

lecting the sets St, such that the following equality holds for every sequence y ∈ [N]T :

T∑
t=1

(
−

N∑
i=1

pti(y
t−1)1(yt = i)

T
+ ϕt−1(y

t−1)− ϕt(y
t) +

1

T
(1− ϕ0)

)
= 0. (2.9)

We now consider the following candidate sequence of potential functions:

ϕt(yt) ≡ Eϕ(yt, ϵ
T
t+1), ∀t, (2.10)

where the expectation is taken over a random sequence ϵTt+1 such that each component

ϵj, t + 1 ≤ j ≤ N is distributed i.i.d. uniformly over the set [N]. It is easy to see

that, the boundary condition (2.6) is satisfied. Furthermore, from the condition given in

the statement of the theorem, we have ϕ0 = E
[
ϕ(ϵT1)

]
= 1 − k

N
. Next, we exhibit a

prediction strategy with inclusion probabilities {pti(yt−1)} such that the equation (2.9)

is satisfied. For, this, we set each of the terms of the equation (2.9) identically to zero

for any sequence y ∈ [N]T . This yields the following conditional inclusion probability

of the ith element for any initial segment of the request sequence yt−1 ∈ [N]t−1 :

pti(y
t−1) = T

(
ϕt−1(y

t−1)− ϕt(y
t−1i)

)
+
k

N
, ∀i ∈ [N]. (2.11)

From the definition (2.10), we have that
1

N

∑N
i=1 ϕt(y

t−1i) = ϕt−1(y
t−1). Hence, sum-

ming equation (2.11) over all i ∈ [N], we have

N∑
i=1

pti(y
t−1) = k.

Thus, the scalars {pti}Ni=1 satisfy the requirement in equation (1.3). Hence, to guarantee

that (2.11) yields a valid prediction strategy, we only need to ensure that 0 ≤ pti ≤
1,∀i ∈ [N]. In the following, we show that this requirement is also satisfied, thanks to

11

the stability property of the loss function ϕ(·). For this, we are required to ensure the

following bound for all yt−1 :

− k

N
≤ T

(
1

N

N∑
i=1

ϕt(y
t−1i)− ϕt(y

t−1i)

)
≤ 1− k

N
. (2.12)

It immediately follows that the stability conditions, given by equations (2.4) and (2.5),

are sufficient to ensure the bound in (2.12).

Phase-II: Sampling the Predicted set We use the conditional marginal inclusion

probabilities pt, derived in (2.11), to construct a consistent randomized output set St

with |St| = k. Since the inclusion probabilities satisfy the feasibility constraints, we

can use the Algorithm 3 to construct the predicted set. Phase-I and Phase-II, taken

together, complete the proof of the theorem.

Discussion: It is to be noted that directly using the generic online policy appearing

in the achievability proof of Theorem 2 could be intractable in terms of computation

or memory requirements. A more serious issue with the generic prediction policy is

that it requires the loss function to be stable, which limits its applicability. Similar

to the treatment in Rakhlin and Sridharan (2016), it might be possible to work with

some relaxation of the loss function to derive a tractable policy. In the rest of the

work, we show that near-optimal inclusion probabilities may be efficiently computed

via alternative methods, which result in low-regret efficient online prediction policies.

For the sake of completeness, we also provide a general framework and an particular

example about designing such achievable loss functions.

Theorem 3 (Example of Achievable Loss Functions). Suppose the component of the

N -ary sequence requested at time t by the environment is represented as one-hot vector

yt ∈ {0, 1}N . Denote RT =
∑

t≤T yt. Then, for a differentiable convex regulariser

g(x) and weight η > 0, consider the loss function:

ϕη(y
T
1) =

1

1 + η

(
1− sup

x∈X

{〈
x,
RT

T

〉
− ηg(x)

})
(2.13)

12

where X = {x ∈ RN : 0 ≤ x ≤ 1,
∑N

i=1 xi ≤ k}.

Suppose g(x) =
1

2β
∥x∥22. Denote α = k/N and γ =

1

N

(
1− 1

T

)
+

1

T
∈
(

1

N
, 1

]
.

Then, ϕ is an achievable loss function if either of the following conditions hold:

(i) 0 < α ≤ 1

2
, η = α− ε, β =

2ε(α− ε)
γ

, γ ≤ 1− α, where ε satisfies:

α2

1

γ
− (1− α)

< ε ≤ α(1 + α)
2

γ
+ α

(2.14)

(ii)
1

2
≤ α < α0, η = α− ε, β =

2ε(α− ε)
γ

, γ ≤ 1− 3α2

1− α , where ε satisfies:

α2

1

γ
− (1− α)

< ε ≤ (1− α2)
2

γ
+ (1− α)

(2.15)

and α0 = max

{
α :

1− 3α2

1− α >
1

N

}
.

Notice that a constant loss function ϕ(·) = 1 − α for all N -ary sequences trivially

satisfies the stability conditions and the expectation lower bound. However, such a

loss function does not provide any information regarding the sequence itself. So, we

need that the loss function shows “sufficient” variation, i.e., ∃ reward sequences when

ϕ(yT
1) < 1− α along with the stability conditions and expectation lower bound.

Proof. I. Finding a closed form expression for loss function:

Observe that:

ϕη(y
T
1) =

1

1 + η

(
1− sup

x∈X

{〈
x,
RT

T

〉
− ηg(x)

})
=

1

1 + η

(
1− ηg∗

(
RT

ηT

))

where g∗(·) is convex conjugate function. As g∗(x) is differentiable:

g∗(x)− g∗(y) ≤ ⟨∇g∗(x), x− y⟩ ≤ ∥∇g∗(x)∥p ∥x− y∥q (2.16)

13

where
1

p
+

1

q
= 1. Now, g(x) =

1

2β
∥x∥22.

g∗(y) = sup
x∈X

(⟨x, y⟩ − g(x)) ≤ sup
x
(⟨x, y⟩ − g(x)) = β

2
∥y∥22 (2.17)

In the above inequality, equality holds if the global maxima of {⟨x, y⟩−g(x)}, x∗ ∈ X .

We need to find conditions for which x∗ ∈ X .

The global maxima of the function for chosen g(x) is attained at x∗ = yβ. Here,

y =
RT

ηT
. Clearly, x∗ ≥ 0. To ensure x∗ ≤ 1, we need

βRT,i

ηT
≤ 1,∀i. Note

βRT,i

ηT
≤ β

η
.

So, if η ≥ β, then 0 ≤ x∗ ≤ 1. Finally,
∑

i≤N x
∗
i =

∑
i≤N

βRT,i

ηT
=

β

η
≤ 1 ≤ k.

Hence, x∗ ∈ X =⇒ g∗
(
RT

ηT

)
=
β

2

∥∥∥∥RT

ηT

∥∥∥∥2
2

.

II. Stability of Loss Functions:

The required stability conditions for the loss functions is given as:

max
i∈[N]

ϕ(. . . , i, . . .)− 1

N

N∑
j=1

ϕ(. . . , j, . . .) ≤ k

NT
(2.18)

1

N

N∑
j=1

ϕ(. . . , j, . . .)− min
i∈[N]

ϕ(. . . , i, . . .) ≤
(
1− k

N

)
1

T
(2.19)

Consider the first stability condition for time step t. Denote R−t = RT − yt.

max
i∈[N]

ϕ(. . . , i, . . .)− 1

N

N∑
j=1

ϕ(. . . , j, . . .)

=
1

1 + η

(
max
i∈[N]

(
1− ηg∗

(
R−t + ei
ηT

))
− 1

N

N∑
j=1

(
1− ηg∗

(
R−t + ej
ηT

)))

=
η

N(1 + η)

N∑
j=1

g∗
(
R−t + ej
ηT

)
− g∗

(
R−t + ei∗

ηT

)

≤ η

N(1 + η)

N∑
j=1

∥∥∥∥∇g∗(R−t + ej
ηT

)∥∥∥∥
1

∥∥∥∥ej − ei∗ηT

∥∥∥∥
∞

=
1

NT (1 + η)

N∑
j=1

∥∥∥∥∇g∗(R−t + ej
ηT

)∥∥∥∥
1

=
1

NT (1 + η)

N∑
j=1

∥∥∥∥β(R−t + ej)

ηT

∥∥∥∥
1

=
β

Tη(1 + η)

14

To ensure LHS ≤ k

NT
, we need η(1 + η) ≥ Nβ

k
=⇒ η ≥

√
β

k/N
+

1

4
− 1

2
.

Similarly, for the second stability condition,

1

N

N∑
j=1

ϕ(. . . , j, . . .)− min
i∈[N]

ϕ(. . . , i, . . .)

=
1

1 + η

(
1

N

N∑
j=1

(
1− ηg∗

(
R−t + ej
ηT

))
− min

i∈[N]

(
1− ηg∗

(
R−t + ei
ηT

)))

=
η

N(1 + η)

N∑
j=1

g∗
(
R−t + ek∗

ηT

)
− g∗

(
R−t + ej
ηT

)

≤ η

N(1 + η)

N∑
j=1

∥∥∥∥∇g∗(R−t + ek∗

ηT

)∥∥∥∥
1

∥∥∥∥ek∗ − ejηT

∥∥∥∥
∞

=
1

NT (1 + η)

N∑
j=1

∥∥∥∥∇g∗(R−t + ek∗

ηT

)∥∥∥∥
1

=
1

NT (1 + η)

N∑
j=1

∥∥∥∥β(R−t + ek∗)

ηT

∥∥∥∥
1

=
β

Tη(1 + η)

To ensure LHS ≤ N − k
NT

, we need η(1+η) ≥ Nβ

N − k =⇒ η ≥
√

β

1− k/N +
1

4
−1

2
.

So, combining all the conditions for η and recalling α = k/N :

η = max

{
β,

√
β

min(α, 1− α) +
1

4
− 1

2

}
(2.20)

III. Finding the Expectation

E[ϕ(yT
1)] =

1

1 + η

(
1− ηE

[
g∗
(
RT

ηT

)])
=

1

1 + η

(
1− ηβ

2η2T 2
E
[
∥RT∥2

])

Observe that, the random vector RT = (X1, X2, . . . , XN) where Xi is identical but

NOT independent. Moreover, it is easily seen that Xi ∼ Bin(T, 1/N) (analogous to

15

the balls-in-bins problem (Raab and Steger, 1998)). So,

E[ϕ(yT
1)] =

1

1 + η

(
1− β

2ηT 2
E
[
∥RT∥2

])
=

1

1 + η

(
1− Nβ

2ηT 2
E
[
X2

1

])
=

1

1 + η

(
1− Nβ

2ηT 2
(V ar(X1) + E[X1]

2)

)
=

1

1 + η

(
1− Nβ

2ηT 2

(
T

N

(
1− 1

N

)
+
T 2

N2

))
=

1

1 + η

(
1− β

2η

(
1

T

(
1− 1

N

)
+

1

N

))
≥
(
1− βγ

2η

)
(1− η) ≥ 1−

(
η +

βγ

2η

)

To ensure RHS ≥ 1− α, we need η +
βγ

2η
≤ α.

Now, we provide some feasible values of η, β and γ for which the conditions mentioned

in this proof hold true.

Let η = α − ε and βγ = 2ε(α − ε) where ε is a small positive number, which we will

determine later. Clearly, ε < α. Now,

η +
βγ

2η
= α− ε+ 2ε(α− ε)

2(α− ε) = α ≤ α

Now, we substitute η in (2.20) to get bounds on ε.

η ≥ β =⇒ ε ≤ γ

2
(2.21)

η ≥
√
β

α
+

1

4
− 1

2
=⇒ α− ε+ 1

2
≥
√

2ε(α− ε)
αγ

+
1

4
(2.22)

(α− ε)2 + (α− ε) ≥ 2ε(α− ε)
αγ

=⇒ α− ε+ 1 ≥ 2ε

αγ

=⇒ ε ≤ α(1 + α)
2

γ
+ α

16

Similarly,

η ≥
√

β

γ(1− α) +
1

4
− 1

2
=⇒ α− ε+ 1

2
≥
√

2ε(α− ε)
γ(1− α) +

1

4
(2.23)

(α− ε)2 + (α− ε) ≥ 2ε(α− ε)
γ(1− α) =⇒ α− ε+ 1 ≥ 2ε

γ(1− α)

ε ≤ (1− α2)
2

γ
+ (1− α)

Observe that when α ≤ 1

2
,

γα(1 + α)

2 + γα
≤ γ(1 + α)

2(2 + γα)
≤ γ

2
,

γα(1 + α)

2 + γα
≤ γ(1− α2)

2 + γ(1− α) (2.24)

Furthermore if α ≥ 1

2
,

γ(1− α2)

2 + γ(1− α) ≤
γ

2
,

γ(1− α2)

2 + γ(1− α) ≤
γα(1 + α)

2 + γα
(2.25)

Hence, the bound ε ≤ γ

2
becomes redundant. So,

0 < ε ≤


γα(1 + α)

2 + γα
, α ≤ 1

2
γ(1− α2)

2 + γ(1− α) , α >
1

2

(2.26)

IV. Sufficient Variation in ϕ(·)

To verify that the loss function shows “sufficient variation” as RT changes, we show

that the minimum value of the loss function is less than 1−α for reward sequence. It is

easy to show that the minimum value occurs if
RT

T
is vector with zeros at all coordinates

except one which is 1.

ϕ(yT
1) =

1

1 + η

(
1− β

2η

∥∥∥∥RT

T

∥∥∥∥2
)

=
1

1 + η

(
1− ε

γ

∥∥∥∥RT

T

∥∥∥∥2
)

17

=
1

1 + α− ε

(
1− ε

γ

)

To ensure RHS < 1− α, we need

ε >
α2

1

γ
− (1− α)

(2.27)

Hence, if (2.27) is not satisfied, then ϕ(y) ≥ 1− α for all reward sequences.

It is easy to see that for γ ≤ 1 − α,
α2

1

γ
− (1− α)

≤ α(1 + α)
2

γ
+ α

. For α ≤ 1

2
, the upper

bound on γ is always valid as
1

N
< γ ≤ 1− α.

So, for 0 < α ≤ 1

2
, η = α− ε, β =

2ε(α− ε)
γ

, γ ≤ 1− α, where ε satisfies:

α2

1

γ
− (1− α)

< ε ≤ α(1 + α)
2

γ
+ α

(2.28)

we get an achievable loss function satisfying all required conditions.

Similarly, for γ ≤ 1− 3α2

1− α ,
α2

1

γ
− (1− α)

≤ (1− α2)
2

γ
+ (1− α)

. For upper bound on γ to be

valid, we need
1− 3α2

1− α >
1

N
. Let α0 be the largest α satisfying the preceding equation.

So, for
1

2
≤ α < α0, η = α− ε, β =

2ε(α− ε)
γ

, γ ≤ 1− 3α2

1− α , where ε satisfies:

α2

1

γ
− (1− α)

< ε ≤ (1− α2)
2

γ
+ (1− α)

(2.29)

we get an achievable loss function satisfying all required conditions.

2.2 Learning Policies for the k-sets Problem

In this section, we propose two different efficient online policies for the k-sets problem.

The first policy uses Hedge as the base policy and the second policy utilizes the standard

18

FTRL framework.

2.2.1 k-sets with Hedge

For the simplicity of exposition, we use the the standard Hedge policy as our base policy

in conjunction with the SAGE meta-algorithm. It will be clear from the sequel that any

other Experts policy, such as Squint (Koolen and Van Erven, 2015) or AdaHedge

(Erven et al., 2011), may also be used as the base policy, leading to more refined regret

bounds.

1. The Base Policy: Define a collection of
(
N
k

)
experts, each corresponding to a dis-

tinct k-subset of the set [N]. Assume that the learner predicts the set S with probability

pt(S),∀S ∈
(
[N]
k

)
. The expected reward accrued by the learner when the adversary

chooses symbol yt at time t is given by:

E

 ∑
S:yt∈S

1× 1(St = S) +
∑

S:yt /∈S

0× 1(St = S)

 = P(yt ∈ St) = pt(yt), (2.30)

where pt(i) :=
∑

S:i∈S pt(S) is the marginal inclusion probability of the ith element

in the predicted k-set S. We now use the Hedge policy as our base policy for the

resulting Experts problem. Let the indicator variables rτ (i) := 1(yτ = i),∀i encode

the symbol chosen by the adversary at round τ . Furthermore, let the variable rτ (S) :=∑
i∈S rτ (i) denote the reward accrued by the expert S at round τ . The cumulative

reward accumulated by the expert S up to the round t − 1 is given by Rt−1(S) =∑t−1
τ=1 rτ (S).Overloading the notations a bit, let the variableRt−1(i) denote the number

of times the ith element appears in the sub-sequence yt−1
1 . The Hedge policy with

learning rate η > 0 chooses the expert S at round t with the following probability

(Freund and Schapire, 1997; Vovk, 1998):

pt(S) =
wt−1(S)∑

S′⊆[N]:|S′|=k wt−1(S ′)
, ∀S ∈

(
[N]

k

)
, (2.31)

where wτ (S) := exp(ηRτ (S)).

19

2. Efficient Computation of the Inclusion Probabilities: The marginal inclusion

probabilities for each of the N elements can be obtained by marginalizing the joint

distribution given by (2.31). Let wt−1(i) := exp(ηRt−1(i)). We have

pt(i) =
∑

S:|S|=k,i∈S

pt(S) =
wt−1(i)

∑
S⊆[N]\{i}:|S|=k−1wt−1(S)∑

S′⊆[N]:|S′|=k wt−1(S ′)
, (2.32)

where we have used the fact that for any S ⊆ [N] \ {i}, we have wt−1(i)wt−1(S) =

wt−1(S ∪ {i}).

Clearly,

∑
i∈[N]

pt(i) =

∑
i∈[N]wt−1(i)

∑
S⊂[N]\{i}:|S|=k−1wt−1(S)∑

S′⊂[N]:|S′|=k wt−1(S ′)

(a)
= k, (2.33)

where step (a) follows from the fact that for any k-set S, the term wt−1(S) appears in

the numerator exactly k times. Therefore, the marginal inclusion probabilities in (2.32)

satisfy the feasibility condition (1.3). Hence, given the marginal inclusion probabilities,

Algorithm 3 may be used to efficiently sample the predicted k-set. However, naively

computing the marginal inclusion probabilities using (2.32) requires evaluating sums

of
(
N−1
k−1

)
terms, which is computationally intractable. This difficulty can be alleviated

upon realizing that both the numerator and denominator of (2.32) can be expressed

in terms of elementary symmetric polynomials as shown below. For any vector w =

(w1, w2, . . . , wN) ∈ RN , define the associated elementary symmetric polynomial (ESP)

of order l as:

el(w) =
∑

I⊆[N],|I|=l

∏
j∈I

wj. (2.34)

Furthermore, for any index i ∈ [N], let w−i ≡ (w1, . . . , wi−1, wi+1, . . . , wN) ∈ RN−1

denote the sub-vector with its ith component removed. Then, from (2.32), it follows

that pt(i) =
wt−1(i)ek−1(wt−1,−i)

ek(wt−1)
. Hence, the marginal inclusion probabilities can

be expressed in terms of symmetric polynomials that can be efficiently computed in

O(N ln2(k)) time via Fast Fourier Transform methods (see, e.g., Shpilka and Wigder-

son (2001)).

20

3. Sampling the predicted set: Upon computing the marginal inclusion probabilities,

we use Madow’s systematic sampling scheme outlined in Algorithm 3 to sample a k-set.

The overall prediction policy is summarized in Algorithm 4.

Algorithm 4 k-sets via SAGE with πbase = Hedge
Require: w ← 1, learning rate η > 0.

1: for every time t do
2: wi ← wiexp(η1(yt−1 = i)),∀i ∈ [N].

3: p(i)← w(i)ek−1(w−i)

ek(w)
, ∀i ∈ [N],

4: Sample a k-set with the marginal inclusion probabilities p using Algorithm 3.
5: end for

Regret Bounds: Recall that, in expectation, the performance of Algorithm 4 and the

base policy Hedge are identical. It is well-known that by adaptively tuning the learning

rate η, the Hedge policy with n experts admits the following data-dependent small-loss

regret bound (Koolen et al., 2010; Erven et al., 2011)

RegretT ≤
√

2l∗T lnn+ lnn, (2.35)

where l∗T denotes the cumulative loss incurred by the best fixed expert in hindsight for

the given loss matrix. In the case of the k-sets problem, the total number of experts is

given by n =
(
N
k

)
≤
(
Ne

k

)k

. Hence, the SAGE prediction framework with Hedge as

the base policy yields the following adaptive regret bound:

RegretT (y) ≤
√
2kl∗T (y) ln(Ne/k) + k ln(Ne/k), (2.36)

where l∗T (y) is the number of mistakes incurred by the best fixed k-set in hindsight for

the sequence y. Since l∗T (y) ≤ T , the regret upper bound (2.36) is sublinear in the

horizon-length. However, the bound could be much smaller if the offline oracle incurs

a small number of mistakes for a particular sequence.

Discussion: Algorithm 4 offers a new projection and decomposition-free approach

to break the existing O(N2) complexity barrier for the k-sets problem (Herbster and

Warmuth, 2001). The work by Uchiya et al. (2010) studies a bandit version of the

21

k-sets problem and proposes Exp3.M policy, which incurs O(
√
kNT lnN/k) regret.

However, this bound cannot be compared with our (smaller) regret bound, applicable in

the full-information setting. Furthermore, they use dependent rounding method, which

is more complex than Madow’s sampling that we use here.

2.2.2 k-sets with FTRL

It is also possible to design efficient online policies for the k-sets problem with a base

policy other than Hedge. In this section, we show how the standard FTRL framework

can be augmented with the systematic sampling schemes to design an efficient online

prediction policy for a generalized version of the k-experts problem with the Sum-

reward function. A drawback of the FTRL approach is that, unlike Hedge, this policy

does not admit an adaptive regret bound.

Consider the generalized version of the k-sets problem where the reward per round is

modulated using a non-decreasing concave function ψ : R≥0 → R, called the link

function. In particular, the reward of the learner at round t is defined to be ψ(rt ·
pt). In the special case when ψ(·) is the identity function, we recover the standard k-

sets problem. The notion of link functions is common in the literature on Generalized

Linear Models (Filippi et al., 2010; Li et al., 2017). Note that, although the reward

function could be non-linear, it still depends only on the marginal inclusion probabilities

of the elements, and hence the SAGE framework applies. Formally, the objective of the

learner is to design an efficient online learning policy to minimize the static regret with

respect to an offline oracle (the best fixed k-set in the hindsight), i.e.,

RT := max
p∗∈∆(CN

k)

T∑
t=1

ψ(rt · p∗)−
T∑
t=1

ψ(rt · pt), (2.37)

We augment the well-known FTRL framework with the Systematic Sampling scheme

in Algorithm 3 to design an efficient online policy for the generalized k-sets problem

with a sublinear regret. Interestingly, we will see that, when specialized to the k-sets

problem, the FTRL-based approach yields a different policy from the Hedge-based

Algorithm 4. The problem of finding the optimal marginal inclusion probabilities to

22

minimize the regret in (2.37) is an instance of the OCO problem (Hazan, 2019). We

use the standard FTRL paradigm to design an online prediction policy with sublinear

regret. We refer the reader to Hazan (2019) for an excellent introduction to the OCO

framework in general, and the FTRL policy in particular.

Recall that, in the general FTRL paradigm, the learner’s action at time t is obtained by

maximizing the sum of the cumulative rewards (or a linear lower bound to it) upto time

t − 1 and a strongly concave regularizer g : Ω → R, where Ω is the set of all feasible

actions of the learner. For the Generalized k-sets problem, the vector of marginal

inclusion probabilities is constrained to be in the set Ω = ∆N
k , where ∆N

k = {p ∈
[0, 1]N :

∑N
i=1 pi = k.}

In the following, we choose the usual (Shannon) entropic regularizer as our regular-

ization function, i.e., we take g(p) = −∑N
i=1 pi ln pi. This choice is motivated by the

well-known fact that the entropic regularization yields the Hedge policy for the Experts

problem (where k = 1) (Hazan, 2019). Choosing the entropic regularizer leads to the

following convex program for determining the marginal inclusion probabilities pt at the

tth round:

pt = arg max
p∈∆N

k

(t−1∑
s=1

∇s

)⊤

p− 1

η

N∑
i=1

pi ln pi,

 (2.38)

where ∇s,i ≡ rs,iψ
′(r⊤

s ps) denotes the ith component of the gradient vector. Using

convex duality, the optimal solution to (2.38) may be quickly determined in Õ(N) time

as shown in Algorithm 5 below.

Interestingly, although for k = 1, the Algorithm 5 is identical to 4, for k > 1, the

algorithms are quite different. The regret guarantee for the FTRL policy (2.38) for

the Generalized k-sets problem follows immediately from the standard results on the

regret bound for the FTRL policy for general OCO problems. The simplified regret

bound is given in the following theorem.

Theorem 4 (Regret Bound). With the learning rate η > 0, the FTRL policy for the

23

Algorithm 5 FTRL for the generalized k-sets problem with the Shannon entropic reg-
ularizer
Require: R← 0, learning rate η > 0

1: for every time step t: do
2: R← R+∇t−1.
3: Sort the components of the vector R in non-increasing order. Let R(j) denote the

j th component of the sorted vector j ∈ [N].
4: Find the largest index i∗ ∈ [N] such that (k − i∗)exp(ηR(i∗)) ≥∑N

j=i∗+1 exp(ηR(j)).
5: Compute the marginal inclusion probabilities as pi = min(1, Kexp(ηRi)),

where K ≡ k − i∗∑N
j=i∗+1 exp(ηR(j))

.

6: Using Algorithm 3, sample a k-set with the marginal inclusion probabilities p.
7: end for

generalized k-sets problem with the entropic regularizer ensures that

RegretT ≤
k lnN/k

η
+ 2η

T∑
t=1

∥∥∇2
t

∥∥
k,∞ ,

where ∇2
t is obtained by squaring the vector∇t component wise.

Proof. Recall the following general regret bound for the FTRL policy from Theorem

5.2 of Hazan (2019). For a bounded, convex and closed set Ω and a strongly convex

regularization function g : Ω→ R, consider the standard FTRL updates, i.e.,

xt+1 = argmax
x∈Ω

[(
t∑

s=1

∇⊤
s

)
x− 1

η
g(x),

]
(2.39)

where ∇s = ∇ft(xs), ∀s. Then, as shown in Hazan (2019), the regret of the FTRL

policy can be bounded as follows:

RegretFTRL
T ≤ 2η

T∑
t=1

∥∇t∥2∗,t +
g(u)− g(x1)

η
, (2.40)

where the quantity ∥∇t∥2∗,t denotes the square of the dual norm of of the vector induced

by the Hessian of the regularizer evaluated at some point x
t+
1

2

lying in the line segment

connecting the points xt and xt+1. In the Generalized k-set problem, the Hessian of

24

the entropic regularizer is given by the following diagonal matrix

∇2g(pt+1/2) = diag([p−1
1 , p−1

2 , . . . , p−1
N]).

So, ∥∇t∥2∗,t =
∑N

i=1 pi∇2
t,i ≤ ∥∇2

t∥k,∞ because 0 ≤ pi ≤ 1 and
∑

i pi = k.

To bound the second term in (2.40), define a probability distribution p̃ = p/k.

0 ≥ g(p) =
∑
i

pi ln pi = −k
∑
i

p̃i ln
1

pi

(Jensen’s inequality)
≥ −k ln

(∑
i

p̃i
pi

)
= −k ln N

k
.

Hence, the regret bound in (2.40) can be simplified as follows:

Regretk-set
T ≤ k

η
ln
N

k
+ 2η

T∑
t=1

∥∥∇2
t

∥∥
k,∞ . (2.41)

Derivation of Algorithm 5

Recall that, via Pinsker’s inequality (Fedotov et al., 2003), the entropic regularizer is

strongly concave with respect to the ℓ1 norm. Thus, strong duality holds and the optimal

solution to the problem (2.38) can be obtained by using the KKT conditions (Boyd

and Vandenberghe, 2004). To simplify the notations, denote the cumulative sum of

the gradient vectors
∑t−1

s=1∇s by the vector Rt−1. Thus, the problem (2.38) may be

explicitly rewritten as follows:

max
N∑
i=1

piRt−1,i −
1

η

N∑
i=1

pi ln pi

subject to,

N∑
i=1

pi = k (2.42)

pi ≤ 1, ∀i (2.43)

pi ≥ 0, ∀i. (2.44)

25

By associating the real variable λ with the constraint (2.42) and the non-negative dual

variable νi with the ith constraint in (2.43), we construct the following Lagrangian func-

tion:

L(p, λ,ν) =
∑
i

(
piRt−1,i −

1

η
pi ln pi − λpi − νipi

)
(2.45)

For a set of dual variables (λ,ν), we set the gradient of L w.r.t. the primal variables p

to zero to obtain:

pi = exp(ηRt−1,i)exp(λη − ηνi − 1)

= Kexp(ηRt−1,i)ζi,

where K ≡ exp(λη − 1) ≥ 0 and ζi ≡ exp(−ηνi) ≤ 1. Let us fix the constant K. To

ensure the complementary slackness condition corresponding to the constraint (2.43),

we choose the dual variable νi ≥ 0 such that pi = min(1, Kexp(ηRt−1,i)),∀i. Finally,

we determine the constant K from the equality constraint (2.42):

N∑
i=1

min(1, Kexp(ηRt−1,i)) = k. (2.46)

For any k < N , we now argue that the equation (2.46) has a unique solution for K > 0.

The LHS of the equation (2.46) is a continuous, non-decreasing function of K and

takes value in the interval [0, N]. Hence, by the intermediate value theorem, the equa-

tion (2.46) has at least one solution. Furthermore, at the equality, at least one of the

constituent terms will be strictly smaller than one. Since this term is strictly increasing

with K, the proposition follows.

To efficiently solve the equation (2.46), we sort the cumulative request vector Rt−1 in

non-increasing order. Let Rt−1,(i) denote the ith term of the sorted vector. Let i∗ be the

largest index for which Kexp(ηRt−1,(i∗)) ≥ 1. Then, the equation (2.46) can be written

as:

i∗ +K

N∑
j=i∗+1

exp(ηRt−1,(j)) = k.

26

i.e.,

K =
k − i∗∑N

j=i∗+1 exp(ηRt−1,(j))
. (2.47)

where i∗ is the largest index to satisfy the following constraint:

(k − i∗)exp(ηRt−1,(i∗)) ≥
N∑

j=i∗+1

exp(ηRt−1,(j)). (2.48)

Hence, the optimal index i∗ may be determined in linear time by starting with i∗ = N

and decreasing the index i∗ by one until the condition (2.48) is satisfied. Once the

optimal i∗ is found, the optimal value of the constant K may be obtained from equation

(2.47). The overall complexity of the procedure is dominated by the sorting step and is

equal to O(N lnN). However, since only one index changes at a time, in practice, the

average computational cost is much less.

2.3 Numerical Experiments

Assume that there is a collection of N movies. The user may request any of the N

movies at each round. The learner sequentially predicts (possibly randomly) a set of

k movies that the user is likely to watch at a given round. At each round, the learner

receives a unit reward if the movie chosen by the user is in the predicted set; else, it

receives zero rewards for that round. The learner’s goal is to maximize the total number

of correct predictions over a given time interval.

In our experiments, we use the MovieLens 1M dataset (Harper and Konstan, 2015) for

generating the sequence of movies chosen by the user. The dataset contains T ∼ 105

ratings for N ∼ 2400 movies along with the timestamps. We assume that a user rates a

movie immediately after watching it. The plot in Figure 2.1 compares the normalized

regrets of the proposed SAGE policy (with πbase = Hedge), the FTPL policy proposed

by Bhattacharjee et al. (2020), and two other baseline prediction policies - LFU and

LRU, which treat the prediction problem as a paging problem (Geulen et al., 2010).

In Figure 2.2, we plot the hit rates (i.e., the fraction of correct predictions) of various

27

0 20000 40000 60000 80000 100000

Time (T)

10−2

10−1

100

101

102

103

104

T
im

e-
av

er
ag

ed
R

eg
re

t
(R

T
/T

)

SAGE (Hedge)

Bhattacharjee et al.

LFU

LRU

O(
√
T) Regret Upper Bound

Small Loss Bound

Figure 2.1: Comparison among different k-set policies with
k

N
= 0.1, N ∼ 2400 for the

MovieLens Dataset.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

k/N ratio

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
it

R
at

e

SAGE (Hedge)

LRU

Bhattacharjee et al.

LFU

Figure 2.2: Comparison among different prediction policies in terms of hit rates (fraction of

correct predictions) for different values of
k

N
,N ∼ 2400 for the MovieLens

dataset.

prediction policies for the k-sets problem for the MovieLens dataset. From the plots,

we observe that by selecting only 30% of the elements (i.e.,
k

N
= 0.3), the SAGE

policy with πbase = Hedge achieves a hit rate of at least 60%.

28

We also measure the performance of the proposed policy for the k-sets problem on

Wiki-CDN dataset (Berger et al., 2018). This dataset contains publicly available Wikipedia

CDN request traces from a server located in San Francisco. It contains trace for T ∼ 105

time stamps and N ∼ 2500 files.

0 20000 40000 60000 80000 100000 120000

Time (T)

10−2

10−1

100

101

102

103

104

T
im

e-
av

er
ag

ed
R

eg
re

t
(R

T
/T

)

LRU

Bhattacharjee et al.

LFU

SAGE (Hedge)

O(
√
T) Regret Upper Bound

Small Loss Bound

Figure 2.3: Comparison among different prediction policies in terms of normalized regret
RT

T

with
k

N
= 0.1, N ∼ 2500 for the Wiki-CDN dataset.

We compare the performance of different policies in terms of the normalized regret and

hit rates in Figure 2.3 and 2.4 respectively. From the plots, we observe that the SAGE

policy outperforms other benchmarks by a large margin.

29

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

k/N ratio

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

H
it

R
at

e

SAGE (Hedge)

LRU

Bhattacharjee et al.

LFU

Figure 2.4: Comparison among different prediction policies in terms of hit rates (fraction

of correct predictions) for different values of
k

N
,N ∼ 2500 for the Wiki-CDN

dataset.

30

CHAPTER 3

BEYOND THE k-sets PROBLEM

In this chapter, we adapt the SAGE policy for reward functions different from the Sum-

reward problem. SAGE is not necessarily regret-optimal or even exact for some reward

functions. However, as we detail in this chapter, it is possible to use it to get sublinear

regret bounds for various reward functions.

3.1 k-experts with Pairwise Reward

In this section, we design an online prediction policy for a special case of the k-experts

problem with the Pairwise-reward function and binary rewards (see Table 1.1)1. Re-

call that, in the k-sets problem, the adversary chooses a single item at each round (so

that only one component of the reward vector rt is one and the rest are zero). On the

contrary, in this problem, the adversary secretly selects a pair of items at each round

(so that exactly two components of the reward vector rt are one and the rest are zero).

If both the items chosen by the adversary are included in the predicted k-set, the learner

receives a unit reward; else, it receives zero rewards for that round. The following

hardness result is immediate.

Proposition 5. The offline version of the k-experts problem with Pairwise-rewards is

NP-Hard.

Proof. The proof follows from a simple reduction of the NP-Hard Densest k-subgraph

problem (Sotirov, 2020) to the offline optimization problem. Consider an arbitrary

graph G on N vertices and T edges denoted by e1, e2, . . . , eT . Construct an instance

of the k-experts problem with Pairwise-rewards such that, at round t, the adversary

chooses the pair of items corresponding to the vertices of the edge et, 1 ≤ t ≤ T. Then

1The general case with arbitrary rewards can be handled using a similar FTRL approach as in Section
2.2.2.

the problem of finding a subgraph of k vertices such that the number of edges in the in-

duced subgraph is maximum (i.e., the Densest k-subgraph of G) reduces to the offline

problem of selecting the most rewarding k items to maximize the cumulative reward in

the k-experts problem with Pairwise-rewards.

In principle, we can use the SAGE framework to obtain the optimal pairwise inclusion

probabilities and then sample k items accordingly. However, there are two main diffi-

culties with this approach - (1) unlike (1.3), there is no known succinct characterization

of the feasible set of pairwise inclusion probability vector when k items are chosen

from N items without replacement, and (2) given a feasible pairwise inclusion proba-

bility vector, it is not known how to efficiently sample k items accordingly. The above

roadblocks are not surprising given the hardness of the offline problem. This prompts

us to propose the following approximate policy described in Algorithm 6.

Algorithm 6 Algorithm for Pairwise-rewards
1: Treat each pair of items as a single super-item.
2: Use SAGE to sample k distinct super-items from

(
N
2

)
super-items per round.

Since any particular item may be a part of k − 1 super-items, it is possible that the set

of sampled super-items in Algorithm 6 includes an item multiple times. However, it

is easy to see that the number of items contained in the union of any k super-items is

bounded between
√
2k and 2k. Hence, replacing N with

(
N
2

)
(the number of super-

items) in (2.36) yields the following performance guarantee for Algorithm 6: Offline

oracle reward with at most
√
2k items - the reward accrued by Algorithm 6 with at most

2k items is upper bounded by:

2
√
kl∗T ln(N2e/2k) + 2k ln(N2e/2k),

where l∗T is the loss incurred by the optimal offline oracle using 2k items. Algorithm 6

is an instance of improper learning algorithm where the online policy competes with a

weaker oracle.

32

3.2 Learning Policies for Monotone Rewards

In this section, we use the SAGE framework to design an efficient online policy to

learn any smooth monotone reward function. Recall that a set function f : 2[N] → R is

monotone if f(S1) ≥ f(S2),∀S2 ⊆ S1 ⊆ [N]. A set function f is modular if for any

subset S ⊆ [N], we have: f(S) =
∑

i∈S f({i}).

Our starting point is the following fundamental result, which approximates any set func-

tion by modular functions.

Theorem 6 (Iyer and Bilmes (2012)). For a given set X and any set function f : 2X →
R and any set Y ⊆ X , there are two modular functionsmu : 2X → R andml : 2

X → R

such that ml ≤ f ≤ mu and ml(Y) = f(Y) = mu(Y). Furthermore, the functions ml

and mu can be expressed explicitly in terms of the function f .

Proof. We outline the main steps involved for proving Theorem 6 (see also Wu et al.

(2019) for an exposition). For any two sets A,B ⊂ 2X , define f(A|B) := f(A ∪B)−
f(B). Recall that a set function f : 2X → R is called submodular if for all A,B ⊆ 2X ,

we have

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B).

The following two lemmas provide modular upper and lower bounds for any submodu-

lar function.

Lemma 7 (Upper bound (Iyer and Bilmes, 2012)). For any submodular function f :

2X → R, and Y ⊆ X , there exists a modular function mu(A) such that mu ≥ f and

mu(Y) = f(Y). One such candidate modular function mu is given as follows:

mu(A) = f(Y) +
∑

j∈A\Y

f(j|∅)−
∑

j∈Y \A

f(j|Y \ j). (3.1)

Lemma 8 (Lower bound (Iyer and Bilmes, 2012)). For any submodular function f :

2X → R, and Y ⊆ X , there exists a modular function ml(A) such that ml ≤ f and

ml(Y) = f(Y). One such candidate modular function ml is given as follows:

Define any permutation (ordering) of the elements of X = {x1, x2, . . . , x|X|}. Subse-

33

quently define Y = {x1, x2, . . . , x|Y |} and sets Si = {x1, x2, . . . , xi}. Define ml(∅) =
f(∅). Then, for ∅ ≠ A ⊆ X ,

ml(A) = ml(∅) +
∑
xi∈A

(f(Si)− f(Si−1)). (3.2)

Finally, the following result shows that any arbitrary set function can be expressed as

the difference of two submodular functions.

Lemma 9 (Difference of Submodular functions (Narasimhan and Bilmes, 2012)). Ev-

ery set function f : 2X → R can be expressed as the difference of two monotone

nondecreasing submodular functions g and h, i.e., f = g − h.

Iyer and Bilmes (2012) gives an exact characterization of the functions g and h as

follows: let h be any strictly submodular function. Compute

β = min
Y⊂Z⊆X\j

(h(j|Y)− h(j|Z)) . (3.3)

For example, by taking h(Y) :=
√
|Y |, we have β = 2

√
N − 1 −

√
N −

√
N − 2 =

O(N−3/2), where N = |X|. Similarly, define

α(f) = min
Y⊂Z⊆X\j

(f(j|Y)− f(j|Z)) . (3.4)

By definition α ≥ 0 ⇐⇒ f is submodular. In that case, we can take g = f, h = 0 and

we get the result.

In case α < 0, consider any α′ ≤ α. Then, f can be expressed as f = ĝ − ĥ where

ĝ = f +
|α′|
β
h, and ĥ =

|α′|
β
h, (3.5)

where ĝ and ĥ can be easily seen to be submodular.

Note that computing the parameter α(f) for any arbitrary set function f could be in-

tractable (Iyer and Bilmes, 2012). However, we can readily obtain a lower bound α′ to

34

α for monotone reward functions. We have

α = min
Y⊂Z⊆X\j

(f(j|Y)− f(j|Z))

≥ min
Y⊆X

f(j|Y)−max
Z⊆X

f(j|Z)
(a)

≥ −max
Z⊆X

f(j|Z) =: α′,

where the inequality (a) follows from the monotonicity of the function f . In other

words, |α′| is largest marginal gain of adding an element to any set Z ⊆ X for the func-

tion f . Under the smoothness assumption, we can set |α′| = G. Finally, by combining

Lemma 7, Lemma 8, and Lemma 9, we can now explicitly write down the expressions

for the modular functions ml and mu appearing on Theorem 6 as follows:

ml = mg
l −mh

u (3.6)

mu = mg
u −mh

l . (3.7)

We assume that the reward function ft, chosen by the adversary at any round t ∈ [T],

is monotone with ft(∅) = 0,∀t ∈ [T]. We also assume that the reward functions are

“smooth”, i.e., there exists a finite constant G such that ∀S ⊆ [N], x ∈ [N], we have:

|ft(S)− ft(S \ {x})| ≤ G, ∀t ≥ 1. (3.8)

In the k-experts setting, the online prediction policy can select only a subset of k experts

at each round. We consider an improper learning setup where our objective is to design

a prediction policy that attains at least a
k

N
fraction of the total cumulative rewards

obtained by taking all N experts at each round up to an O(
√
T) term. Note that the

comparator in this section is different from that of the standard regret metric (1.2),

where the reward accrued by the online policy is compared against the optimal k-set in

hindsight. We now provide the following performance guarantee in this scenario:

Theorem 10 (Performance guarantee for Monotone-rewards). For any sequence of

35

arbitrary monotone smooth reward functions {ft}, t ∈ [T],

k

N

∑
t≤T

ft([N])−
∑
t≤T

E[ft(St)] ≤ 2B
√
2kT ln(N/k). (3.9)

where B = O(GN3/2
√
k). Furthermore, if ft is submodular, then the bound can be

improved to B = O(G
√
k).

Hence, for arbitrary monotone reward functions, the prediction policy asymptotically

achieves a
k

N
fraction of the maximum possible cumulative reward.

Proof. Using Theorem 6, we can construct a modular set function mt
l corresponding to

the function ft such that:

ft ≥ mt
l , and ft([N]) = mt

l([N]). (3.10)

Consider a Sum-reward variant of the k-sets problem, where the reward gt(i) for the

ith expert at round t is set to be equal to mt
l({i}), i ∈ [N]. We now use a prediction

policy that minimizes the static regret (1.2) with respect to the linearized reward vectors

{gt}t≥1:

RT = max
p∗∈∆k

N

∑
t≤T

⟨gt, p∗⟩ −
∑
t≤T

⟨gt, pt⟩. (3.11)

Now observe that:

E[ft(St)] =
∑
St

pt(St)ft(St) ≥
∑
St

pt(St)m
t
l(St) =

N∑
i=1

pt(i)gt(i) = ⟨gt, pt⟩. (3.12)

Furthermore, we also have:

∑
t≤T

ft([N])
(a)
=
∑
t≤T

N∑
i=1

gt(i) ≤
N

k
max
p∗∈∆k

N

∑
t≤T

⟨gt, p∗⟩, (3.13)

where we have used (3.10) in equality (a). Substituting the bounds from (3.12) and

36

(3.13) into the regret bound (3.11) yields the following performance guarantee:

k

N

∑
t≤T

ft([N])−
∑
t≤T

E[ft(St)] ≤ RT (3.14)

From (2.40), it follows that the FTRL policy with entropic regularizer and a learning

rate η, guarantees the following regret bound for the Sum-reward problem:

RT ≤
k ln(N/k)

η
+ 2η

∑
t≤T

∥∥g2
t

∥∥
k,∞ ,

Suppose, we have ∥g2
t ∥k,∞ ≤ B2. Then, with the optimal tuning of the learning rate η,

the FTRL policy achieves the following regret bound:

RT ≤ 2B
√
2kT ln(N/k). (3.15)

Combining (3.14) and (3.15) gives the required result.

Proposition 11. If the reward functions are smooth according to the smoothness as-

sumption (3.8), then, ∥g2
t ∥k,∞ ≤ B2, where B = O(GN3/2

√
k) for arbitrary reward

functions. Furthermore, the bound can be improved to B = O(G
√
k) for submodular

functions.

Proof. Expression for the function ml: For a given ordering π of the elements, let

σ(i) ≡ π−1(i) denote the position of the element i in the ordering. Setting Y = [N] and

choosing h(S) =
√
|S| in Lemma 7 and Lemma 8, we have the following expression

for the function ml:

mĝ
l (i) = ĝ(Sσ(i))− ĝ(Sσ(i)−1)

= f(Sσ(i))− f(Sσ(i)−1) +
|α′|
β

(
h(Sσ(i))− h(Sσ(i)−1)

)
= f(Sσ(i))− f(Sσ(i)−1) +

|α′|
β

(√
|Sσ(i)| −

√
|Sσ(i)−1|

)

37

Furthermore, we have

mĥ
u(i) =

|α′|
β

h([N]) +
∑

j∈i\[N]

h(j|∅)−
∑

j∈[N]\i

h(j|[N] \ j)


=
|α′|
β

h([N])−
∑

j∈[N]\i

h(j|[N] \ j)


=
|α′|
β

(√
N − (N − 1)(

√
N −

√
N − 1)

)
=: C

Hence, the ith component of the function ml is given by:

g(i) ≡ ml(i)

= mĝ
l (i)−mĥ

u(i)

= f(Sσ(i))− f(Sσ(i)−1) +
|α′|
β

(√
|Sσ(i)| −

√
|Sσ(i)−1|

)
− C. (3.16)

(3.16) gives an explicit and efficiently computable expression for the lower modular

function ml which we use in our online learning policy.

Define a “centered" gradient vector g̃(i) = g(i) + C, ∀i ∈ [N]. Now for any feasible

inclusion probability vector p, we have

⟨g̃(i), p⟩ = ⟨g, p⟩+ Ck,

where we have used the feasibility constraint (1.3). Hence, the online policy and the

regret bound in (3.11) remain unchanged if we replace the vectors {gt}t≥1 with their

centered counterparts {g̃t}t≥1.

Using triangle inequality, we can bound the individual components of the centered vec-

tor g̃ as:

|g̃(i)| ≤ |f(Sσ(i))− f(Sσ(i)−1)|+
|α′|
β

∣∣∣√|Sσ(i)| −
√
|Sσ(i)−1|

∣∣∣
(a)

≤ G+
G

β
= O(GN3/2) (3.17)

where (a) holds because by assumption f is smooth with parameter G, β ∼ O(1/N3/2)

38

for the particular choice of the h function above, and |α′| ≤ G. So,

∥∥g̃2
∥∥
k,∞ ≤ O((

√
kGN3/2)2).

Note that the upper bound in (3.17) holds for any set function f. As shown below, the

above bound can be improved in the special case when the function f is known to be

submodular.

Submodular f : As discussed above, if the function f is restricted to be submodular,

we can directly use Lemma 8 to obtain an expression for the modular function ml as

follows: Fix any permutation of the elements of [N].

g(i) = ml(i) = f(Sσ(i))− f(Sσ(i)−1).

This gives the following bound |g(i)| ≤ G,∀i ∈ [N]. Hence, proceeding as above, we

have:

∥∥g2
∥∥
k,∞ ≤ O((

√
kG)2).

Discussion: Note that in the above proof, the choice of h(·) is crucial for deciding

the upper bound of ∥g̃2∥k,∞ and consequently the regret bound. Observe that h(X) =

|X|p, 0 < p < 1 is strictly submodular. Let |X| = N . So,

β = min
Y⊂Z⊆X\j

(h(j|Y)− h(j|Z))

= 2(N − 1)p −Np − (N − 2)p

≈ Np

(
2

(
1− p

N
+
p(p− 1)

2N2

)
− 1−

(
1− 2p

N
+

2p(p− 1)

N2

))
= O(Np−2).

Choose p = 1 − δ, δ > 0. So, β ∼ O(1/N1+δ) =⇒ ∥g̃2∥k,∞ ≤ O((
√
kGN1+δ)2).

Hence, as δ → 0, B is almost linear in N .

39

3.2.1 Monotone Submodular Reward Functions

In this section, we use the ideas discussed in the previous section to obtain regret upper

bounds for monotone submodular reward functions. Note that, the results discussed

earlier are more general as they are valid for all monotone set functions.

The total curvature, κf of a submodular function and curvature κf (S) with respect to

S ⊆ X as follows (Conforti and Cornuéjols, 1984; Vondrák, 2010):

κf = 1−min
j∈X

f(j|X \ j)
f(j)

, κf (S) = 1−min
j∈S

f(j|S \ j)
f(j)

(3.18)

Lemma 12 (Lemma 3.1, Iyer et al. (2013)). For a monotone submodular function f , it

holds that:

f(S) ≤
∑
j∈S

f(j) ≤ |S|
1 + (|S| − 1)(1− κf (S))

f(S) (3.19)

Let, |St| = k,∀t ∈ [T] and let κ0 = maxt∈[T] maxSt⊆Ω:|St|=k κft(St). By rearranging,

we get:

ft(St) ≥
1 + (|St| − 1)(1− κft(St))

|St|
∑
j∈St

ft(j) (3.20)

=

(
1− κft(St)

(
1− 1

|St|

))∑
j∈St

ft(j)

≥
(
1− κ0

(
1− 1

k

))∑
j∈St

ft(j)

Define κ :=

(
1− κ0

(
1− 1

k

))
. In this scenario, our objective is to design an α-regret

algorithm where α = 1 − κ. At each time step t ∈ [T], the reward vector is given as

gt(i) = ft(i),∀i ∈ [N], t ∈ [T]. Observe,

E[ft(St)] =
∑
St

qt(St)ft(St)

(3.20)
≥ (1− κ)

∑
St

qt(St)
N∑
i=1

ft(i) · 1(i ∈ St)

40

= (1− κ)
N∑
i=1

∑
i∈St

qt(St)ft(i)

= (1− κ)
N∑
i=1

pt(i)ft(i)

= (1− κ)⟨gt, pt⟩ (3.21)

Deploying the FTRL policy with entropic regularizer, we obtain:

(1− κ)
∑
t≤T

ft(S)−
∑
t≤T

E[ft(St)] = (1− κ)
[∑
t≤T

ft(S)−
1

1− κ
∑
t≤T

E[ft(St)]

]
(3.21)
≤ (1− κ)

[∑
t≤T

ft(S)−
∑
t≤T

⟨gt, pt⟩
]

(3.19)
≤ (1− κ)

[∑
t≤T

∑
i∈S

ft(i)−
∑
t≤T

⟨gt, pt⟩
]

≤ (1− κ)
[∑
t≤T

⟨gt,1S⟩ −
∑
t≤T

⟨gt, pt⟩
]

≤ 2B(1− κ)
√
2Tk ln(N/k)

where the last inequality follows from the regret bound of the previous section.

Observe that the sum-rewards problem is a special case of the submodular rewards when

ft(S) =
∑

i∈S rti, i.e, ft’s are indeed modular. This implies that κ = 0. Substituting

κ = 0 in the above analysis, we recover the regret bound for the exact regret case.

Comparison with existing methods: In context of online submodular maximization,

several works have proposed methods for computing approximate regret bounds for

different problem settings. For the sake of brevity, we only discuss online submodular

maximization with cardinality constraints.

In this context, Streeter and Golovin (2007) designed an algorithm that obtains a (1 −
1/e)-approximate regret of O(

√
Tk lnN). This result was further improved by Harvey

et al. (2020) who proposed a method which attained also attained (1−1/e)-approximate

static regret O(
√
Tk ln(N/k)). Matsuoka et al. (2021) consider a more generalized

version of the problem and propose a (1− 1/e)-approximate tracking (dynamic) regret

41

Table 3.1: Performance comparison among different policies for Online Submodular
Maximization under cardinality constraints.

Policies α Regret bound Complexity

Online greedy (Streeter and
Golovin, 2007)

1− 1/e O(
√
Tk lnN) O(Nk)

Continuous-time greedy (Harvey
et al., 2020)

1− 1/e O
(√

Tk ln N
k

)
O
(

N4

ϵ3
ln N3T

ϵ

)
+

O(N
3

ϵ
) · SFM

SAGE (πbase = FTRL) (This pa-
per)

1− κ O
(√

Tk ln N
k

)
Õ(N)

Here, ϵ is the accuracy parameter and SFM denotes the time complexity of the
submodular function minimization for each call (Harvey et al., 2020).

bound of Õ(
√
Tk(P + k lnN)) where P is the path length (for static case, P = 0).

The proposed algorithm significantly improves over the time complexity of the continuous-

time greedy algorithm (Harvey et al., 2020). We also attainO(k) improvement over (Streeter

and Golovin, 2007; Harvey et al., 2020) by circumventing the need of maintaining k

different experts algorithms and maintaining only one experts algorithm subroutine.

3.3 Lower Bounds

In this section, we lower bound the achievable regret for different variants of the k-

experts problem.

To begin with, consider the setting where the adversary chooses binary rewards with

exactly one non-zero reward per round. In this setting, Bhattacharjee et al. (2020)

established the following regret lower bound for the Sum-reward variant of the k-

experts problem:

Theorem 13 (Regret Lower bound for Sum-reward). For any online policy with
N

k
≥

2 and T ≥ 1, we have

RSum-reward
T ≥

√
kT

2π
−Θ

(
1√
T

)
.

Note that with the above rewards structure, the Sum-reward, the Max-reward, and the

Pairwise-reward variants of the k-experts problem become identical. Hence, Theorem

42

13 also yields a lower bound to all of the above variants of the k-experts problem.

However, from the standard Hedge achievability bound applied to the meta-experts

(see (2.36)), it can be readily observed that the upper and lower regret bounds differ by

a logarithmic factor. Our main result in this section is the following tight regret lower

bound for the Max-Reward variant of the k-experts problem, that removes the above

logarithmic gap.

Theorem 14 (Regret Lower Bound for Max-reward). For any online policy with T ≥
16k ln

(
N

k

)
and

N

k
≥ 7, we have

RMax-reward
T ≥ 0.02

√
kT ln

N

k
.

Compared to the standard lower bounds (Cesa-Bianchi and Lugosi, 2006), a distin-

guishing feature of the above regret lower bound is its non-asymptotic nature.

Proof Outline: We seek to obtain a tight lower bound to the regret of the k-experts

problem with the Max-reward variant. Before we delve into the technical details, we

first outline the main steps behind the proof. We define an i.i.d. reward structure where

the reward of any expert at each slot is distributed as i.i.d. Bernoulli with parameter

p =
1

2k
. Next, we compute a lower bound to the expected cumulative reward accrued

by the static offline oracle policy by constructing a set S∗ consisting of k experts, as

outlined next. First, we divide the set of N experts into k disjoint partitions, each

consisting of
N

k
experts 2. Denote the set of experts in the ith partition by Pi, 1 ≤ i ≤ k.

Let e∗i ∈ Pi be the expert from the ith having the highest cumulative reward up to

time T in hindsight. Finally, we define the set S∗ ≡ {e∗i , 1 ≤ i ≤ k}. Trivially, the

cumulative reward accrued by the optimal offline oracle is lower bounded the reward

accrued by the set of experts in S∗. Furthermore, since the experts e∗i , 1 ≤ i ≤ k are

identically distributed and independent of each other, the computation of the reward

accrued by the set S∗ becomes tractable. In the following, we show that the expected

reward accumulated by the set S∗ is given by the expectation of the maximum of k i.i.d.

2For ease of typing, we assume that the number of experts N is divisible by k. If that is not the case,

consider the first Ñ = k

⌊
N

k

⌋
experts only.

43

Binomial random variables. The regret lower bound in Theorem 14 finally follows

from a tight non-asymptotic lower bound to this expectation, which we believe, has not

appeared in this form before.

Proof. We use the standard “randomization trick” to obtain a lower bound to the worst-

case regret:

max
{rt}Tt=1

RT ≥ Er [RT] , (3.22)

where we use the symbol Er to convey that the expectation is taken over a random binary

input reward sequence {rt,i}i∈[N],1≤t≤T , where the random rewards rt,i’s are taken to be

i.i.d. ∼ Bern(p), for some parameter p ∈ [0, 1], that will be fixed later. Using the

definition of the regret in Eq. (1.2), we obtain:

max
{rt}Tt=1

RT ≥ OPT−
T∑
t=1

Er

[
max
i∈St

rt,i

]
, (3.23)

where we denote

OPT = Er

[
max

S⊂[N]:|S|=k

T∑
t=1

max
i∈S

rt,i

]
. (3.24)

Since the rewards rt,i, i ∈ [N] are i.i.d.∼ Bern(p), for any choice of the set St, we

have:

Er

[
max
i∈St

rt,i

]
= P

(
max
i∈St

rt,i = 1

)
= 1− (1− p)k. (3.25)

It now remains to establish a lower bound to the quantity OPT. In order to do that, we

first make the trivial observation that, for any subset S ⊆ [N] with cardinality k, the

following holds true:

OPT ≥
T∑
t=1

E
[
max
i∈S

rt,i

]
. (3.26)

Note that in the above, we can allow random S, that might depend on the particular

realizations of the random reward sequence. Using this observation, we now use the

44

bound (3.26) with the set S⋆ as defined below: Divide the set N experts into k disjoint

partitions B1, · · · , Bk, each of size b = N/k, such that

Bl = {(l − 1)b+ 1, · · · , lb}, 1 ≤ l ≤ k. (3.27)

Finally, we construct the set S⋆ ≡ {i1, · · · , ik}, where, il = argmaxj∈Bl
XT,j, 1 ≤ l ≤

k, where XT,j =
∑T

t=1 rt,j . In other words, il is the (random) index of the expert in the

lth partition such that it has the highest cumulative reward in hindsight. By construction,

the random indices i1, · · · ik are independent of each other. Hence, the random rewards

rt,i, i ∈ S⋆ are independent Bernoulli random variables with some parameter q, that we

will determine shortly. Using the observation that for a fixed 1 ≤ l ≤ k, the random

variables rt,il for t = 1, · · · , T , are identically distributed, it follows that E(rt,il) is

identical for all t for a fixed l, so that

q ≡ E[rt,il] =
1

T
E[XT,il] =

1

T
E
[
max
j∈Bl

XT,j

]
. (3.28)

Hence, using the lower bound (3.26), we have

OPT ≥
T∑
t=1

(
1− (1− q)k

)
= T (1− (1− q)k). (3.29)

Hence, combining (3.23), (3.25) with the lower bound in (3.29), we have the following

regret lower bound in terms of the yet undetermined parameter q:

max
{rt}Tt=1

RT ≥ T
(
(1− p)k − (1− q)k

)
. (3.30)

Since the function (1 − p)k is convex in p, linearizing the function around the point q

yields the following lower bound for regret:

max
{rt}Tt=1

RT ≥ kT (q − p)(1− q)k−1. (3.31)

To proceed further, we need to estimate q by finding tight upper and lower bounds for

45

it.

1. Upper bounding q: Since the random variables XT,j, j ∈ B1 are i.i.d. Binomial,

and hence subGaussian with mean µ = EXT,1 = Tp and variance σ2 = Tp(1 − p), it

follows from Massart’s maximal lemma for Gaussians (Massart, 2007) that:

q − p = 1

T

(
E
[
max
j∈B1

XT,j

]
− pT

)
≤
√

2p(1− p) ln(N/k)
T

.

In particular, for a large enough horizon-length T ≥ 8

(
1

p
− 1

)
ln

(
N

k

)
, from the

above we have the following upper bound for q:

q ≤ 3p

2
. (3.32)

2. Lower bounding q: We have

q − p = 1

T
E
[
max
j∈B1

(XT,j − Tp)
]

=
1

T
E
[
max
j∈B1

(XT,j − Tp)1
(
max
j∈B1

XT,j < Tp

)]
+

1

T
E
[
max
j∈B1

(XT,j − Tp)1
(
max
j∈B1

XT,j ≥ Tp

)]
(def.)
=

I1 + I2
T

. (3.33)

Now, we separately lower bound each of the quantities I1 and I2 as defined above.

2.1. Lower bounding I1: We have the following inequalities:

I1 ≡ E
[
max
j∈B1

(XT,j − Tp)1
(
max
j∈B1

XT,j < Tp

)]
(a)

≥ max
j∈B1

E

[
(XT,j − Tp)1(XT,j < Tp)

∏
i∈B1,i ̸=j

1(XT,i < Tp)

]
(b)
= E [(XT,1 − Tp)1(XT,1 < Tp)] (P(XT,1 < Tp))b−1

(c)

≥ −E |XT,1 − Tp| (P(XT,1 < Tp))b−1

46

(d)

≥ −
√
Tp(1− p) (P(XT,1 < Tp))b−1

(e)

≥ −
(
3

4

)b−1√
Tp(1− p). (3.34)

in the above,

1. inequality (a) follows from Jensen’s inequality and the trivial fact that 1(maxj∈B1 XT,j <
Tp) = 1(XT,j < Tp)

∏
i∈B1,i ̸=j 1(XT,i < Tp)

2. inequality (b) follows from the fact that the collection of r.v.s {XT,j, j ∈ B1} are
independent and identically distributed

3. inequality (c) follows because: (XT,1 − Tp)1(XT,1 < Tp) ≥ − |XT,1 − Tp| ,

4. in inequality (d), we have used Jensen’s inequality with the fact that XT,1 ∼
Binomial(T, p)

5. finally, in inequality (e), we have used Theorem 1 from Greenberg and Mohri

(2014) which states that for p >
1

T
we have P(XT,1 ≥ Tp) ≥ 1

4
.

2.2. Lower bounding I2: Using Markov’s inequality, we have for any s ≥ 0 :

I2 ≥ sP
(
max
j∈B1

XT,j > s+ Tp

)
(a)
= s

(
1− (P (XT,1 ≤ s+ Tp))b

)
(b)

≥ s

1−
(
Φ

(
s√

Tp(1− p)

))b
 . (3.35)

where in step (a), we have used the independence of the r.v.s XT,j, j ∈ B1 and in step

(b), we have used Slud’s inequality (Cesa-Bianchi and Lugosi, 2006). Note that in the

above, we use the standard notation where Φ(·) denotes the CDF of the standard Normal

variable. Observe that for any u > 0, we can upper bound the normal CDF as:

Φ(u) = 1− 1√
2π

ˆ ∞

u

e−x2/2dx

≤ 1− 1√
2π

ˆ 2u

u

e−x2/2dx

≤ 1− ue−2u2

√
2π

. (3.36)

47

By making a change of variable u ← s√
Tp(1− p)

in (3.35), the quantity I2 can be

lower bounded as:

I2 ≥
√
Tp(1− p)

u
1−

(
1− ue−2u2

√
2π

)b
 . (3.37)

Choosing u =

√
ln b

2
and using the standard inequality 1−x ≤ e−x,∀x, from the above

we have:

I2 ≥ c1
√
Tp(1− p) ln b, (3.38)

where c1 ≡
1√
2
(1− e−

√
ln b/4π).

Combining the bounds for I1 and I2 from (3.34) and (3.38), we obtain the following

lower bound for q from (3.33) valid for b ≡ N

k
≥ 7:

q − p ≥ c2
T

√
Tp(1− p) ln N

k
, (3.39)

where c2 ≥ 0.1 is an absolute constant.

3. Lower bounding the regret: Finally, we choose p =
1

2k
. Substituting the bounds

(3.32) and (3.39) into the regret lower bound (3.31), for T ≥ 16k ln

(
N

k

)
and

N

k
≥ 7,

we obtain:

max
{rt}Tt=1

RT ≥ c2k

√
T

2k

(
1− 1

2k

)
ln
N

k

(
1− 3

4k

)k−1

≥ c3

√
kT ln

N

k
, (3.40)

where c3 ≥ 0.02 is an absolute constant.

Corollary 14.1 (Regret Lower Bound for Monotone-reward). The above result also

holds true for the Monotone-reward problem.

Proof. Define ut(S) = maxi∈S rt,i and ft(S) =
|S|
k
· ut(S). Clearly, ft and ut are

monotone increasing. Recall the definition of regret for Monotone-reward problem

48

considered in (3.9). Hence,

k

N

∑
t≤T

ft([N])−
∑
t≤T

E[ft(St)] =
∑
t≤T

ut([N])−
∑
t≤T

E[ut(St)]

≥
∑
t≤T

ut(S
∗)−

∑
t≤T

E[ut(St)] (3.41)

as ut is a monotone set function. Here, S∗ is the best fixed subset of k elements chosen

in hindsight. Note that computing S∗ explicitly is intractable. Now, the proof for lower

bound for Max-reward follows directly since (3.41) is the exact definition of regret for

the Max-reward case. Hence, we get a tight lower bound (upto constant factors, which

can be removed be appropriate scaling) for regret for the Monotone-reward variant.

3.4 Numerical Experiments

3.4.1 k-experts with Pairwise-reward

In this experiment, we use the MIT Reality Mining dataset (Eagle and Pentland, 2006)

to understand the efficacy of the prediction policy for pairwise rewards proposed in

Section 3.1. The dataset contains timestamped human contact data among 100 MIT

students collected using standard Bluetooth-enabled mobile phones over 9 months. In

our experiments, we consider a subset of N = 20 students with
(
20
2

)
= 190 potential

contact pairs. The learner’s task is to predict a sequence of k-sets that include both

the students involved in the contact for each timestamp. As described in Section 3.1,

we design an approximate prediction policy by considering each pair of students as a

super-item and use the SAGE framework with πbase = FTRL. The normalized regret

achieved by this policy is shown in Figure 3.1. To compute the optimal static offline

reward, we used a brute-force search. From the plots, we see that the normalized regret

of this policy approaches zero for long-enough time-horizon.

49

0 1000 2000 3000 4000 5000 6000 7000

Time (T)

10−2

10−1

100

101

102

T
im

e-
av

er
ag

ed
R

eg
re

t
(R

T
/T

)

SAGE (FTRL)

O(
√
T) Regret Upper Bound

Small Loss Bound

Figure 3.1: Performance of the SAGE policy for pairwise predictions with
k

N
= 0.02 for the

Reality Mining Dataset.

3.4.2 k-experts with Max-reward

Here we use a subset of the MovieLens dataset with T ∼ 7000 ratings for N =

200 movies. We assume that the movies are sorted according to genres so that if

the movie i is chosen by the user at each round, the learner receives a reward of

maxj∈S

(
1− 1

N
|j − i|

)
for predicting the set S. This reward function roughly em-

ulates the practical requirement that if the requested movie is not in the predicted set,

then it is preferable to recommend a similar movie than a completely different one. In

Figure 3.2, we plot the normalized regret of the SAGE policy with πbase = FTRL,

along with the lower bound given in Theorem 14. From the plot, we can see that the

normalized regret shows a downward trend with T even with the FTRL policy, albeit

there is a non-trivial gap with the lower bound. This gap is expected as the FTRL pol-

icy is optimal for the Sum-reward function, but not necessarily so for the Max-reward

function.

50

0 1000 2000 3000 4000 5000 6000 7000

Time (T)

10−3

10−2

10−1

100

101

102

103

T
im

e-
av

er
ag

ed
R

eg
re

t
(R

T
/T

)

SAGE (FTRL)

O(
√
T) Regret Upper Bound

Small Loss Bound

Lower Bound

Figure 3.2: Performance of SAGE for the Max-Reward function, with
k

N
= 0.01 for the

MovieLens Dataset.

3.4.3 k-experts with Monotone-reward

In our experiments for the general monotone reward functions, we use a subset of the

MovieLens dataset with T ∼ 200 and N = 100. Similar to Chapter 2, we assume

that the movies are sorted according to genres so that if movie i is chosen by the user at

round t, then the reward vector, rt ∈ [0, 1]N , is given as rt,j = 1− 1

N
|j−i|. For a reward

vector rt and real-valued function v : RN → R≥0, we define a monotone set function

ft : 2[N] → R≥0 as ft(S) = v(rt(S)), ∀S ⊆ [N] where [rt(S)]i = rt,i · 1(i ∈ S).

According to the k-experts setting, we assume that the learner receives a reward of

ft(St) for predicting the set St. In our experiments, we consider two different reward

functions v : x 7→ ∥x∥p, with p = 2 and p =∞.

In Figure 3.3 and 3.4, we plot the rewards obtained by the learner as a fraction of the

total possible rewards (when all the elements are selected). From the plots, it is clear that

the proposed policy has excellent performance for both reward functions, as it achieves

a large fraction of the total possible reward by using only a small fraction of the experts.

The codes for all the numerical experiments in Chapter 2 and Chapter 3 are made avail-

able at: https://github.com/sourav22899/k-sets-problem.

51

https://github.com/sourav22899/k-sets-problem

0.002 0.003 0.004 0.005 0.006 0.007

k/N ratio

0.05

0.06

0.07

0.08

R
ew

ar
ds

O
bt

ai
ne

d
(a

s
a

fr
ac

ti
on

of
to

ta
l

re
w

ar
ds

)
SAGE (FTRL)

Figure 3.3: Performance of prediction policy in terms of fraction of total possible reward (by
selecting all the elements) obtained for N = 1000, v : x 7→ ∥x∥2 for the Movie-
Lens dataset.

0.002 0.003 0.004 0.005 0.006 0.007

k/N ratio

0.84

0.86

0.88

0.90

0.92

0.94

0.96

R
ew

ar
ds

O
bt

ai
ne

d
(a

s
a

fr
ac

ti
on

of
to

ta
l

re
w

ar
ds

)

SAGE (FTRL)

Figure 3.4: Performance of prediction policy in terms of fraction of total possible reward (by
selecting all the elements) obtained for N = 1000, v : x 7→ ∥x∥∞ for the Movie-
Lens dataset.

52

CHAPTER 4

CONCLUSION AND OPEN PROBLEMS

In this thesis, we formulated the k-experts problem and designed efficient learning

policies for some of its variants using the SAGE framework. We also derived a tight

regret lower bound for the Max-reward and Monotone-reward variant. Furthermore,

we characterized the set of all mistake bounds for the k-sets problem achievable by

online policies.

One interesting future research direction is to design policies focusing on online sub-

modular maximization and recover a
(
1− 1

e

)
-approximate regret upper bound using

the SAGE framework, which has been proven tight in existing literature (Streeter and

Golovin, 2007; Harvey et al., 2020). Such a result will be an Õ(k) improvement of the

time complexity of the current state-of-the-art algorithm for this problem.

REFERENCES

1. Berger, D. S., N. Beckmann, and M. Harchol-Balter (2018). Practical bounds on
optimal caching with variable object sizes. Proceedings of the ACM on Measurement
and Analysis of Computing Systems, 2(2), 1–38. 29

2. Bhattacharjee, R., S. Banerjee, and A. Sinha (2020). Fundamental limits on the regret
of online network-caching. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 4(2), 1–31. 4, 27, 42

3. Boyd, S. P. and L. Vandenberghe, Convex optimization. Cambridge university press,
2004. 25

4. Cesa-Bianchi, N. and G. Lugosi, Prediction, learning, and games. Cambridge univer-
sity press, 2006. 2, 43, 47

5. Cohen, A. and T. Hazan, Following the perturbed leader for online structured learning.
In International Conference on Machine Learning. PMLR, 2015. 6

6. Conforti, M. and G. Cornuéjols (1984). Submodular set functions, matroids and
the greedy algorithm: tight worst-case bounds and some generalizations of the rado-
edmonds theorem. Discrete applied mathematics, 7(3), 251–274. 40

7. Cover, T. M. (1966). Behavior of sequential predictors of binary sequences. Trans-
actions of the Fourth Prague Conference on Information Theory, Statistical Decision
Functions, Random Processes, Prague, 263–272. URL https://isl.stanford.
edu/people/cover/papers/paper3.pdf. 8, 9

8. Daniely, A. and Y. Mansour, Competitive ratio vs regret minimization: achieving the
best of both worlds. In Algorithmic Learning Theory. PMLR, 2019. 4

9. Eagle, N. and A. Pentland (2006). Reality Mining: Sensing complex social systems.
Personal Ubiquitous Comput., 10(4), 255–268. 49

10. Erven, T., W. M. Koolen, S. Rooij, and P. Grünwald (2011). Adaptive hedge. Ad-
vances in Neural Information Processing Systems, 24, 1656–1664. 19, 21

11. Fedotov, A., P. Harremoes, and F. Topsoe (2003). Refinements of pinsker’s inequality.
IEEE Transactions on Information Theory, 49(6), 1491–1498. 25

12. Filippi, S., O. Cappe, A. Garivier, and C. Szepesvári, Parametric bandits: The gen-
eralized linear case. In NIPS, volume 23. 2010. 22

13. Freund, Y. and R. E. Schapire (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55(1), 119–139. 2, 19

14. Geulen, S., B. Vöcking, and M. Winkler, Regret minimization for online buffering
problems using the weighted majority algorithm. In COLT . Citeseer, 2010. 27

54

https://isl.stanford.edu/people/cover/papers/paper3.pdf
https://isl.stanford.edu/people/cover/papers/paper3.pdf

15. Greenberg, S. and M. Mohri (2014). Tight lower bound on the probability of a bino-
mial exceeding its expectation. Statistics & Probability Letters, 86, 91–98. 47

16. Hanif, M. and K. Brewer (1980). Sampling with unequal probabilities without replace-
ment: a review. International Statistical Review/Revue Internationale de Statistique,
317–335. 6

17. Harper, F. M. and J. A. Konstan (2015). The movielens datasets: History and context.
Acm transactions on interactive intelligent systems (tiis), 5(4), 1–19. 27

18. Hartley, H. O. (1966). Systematic sampling with unequal probability and without
replacement. Journal of the American Statistical Association, 61(315), 739–748. 6

19. Harvey, N., C. Liaw, and T. Soma (2020). Improved algorithms for online submodular
maximization via first-order regret bounds. Advances in Neural Information Processing
Systems, 33. 4, 41, 42, 53

20. Hazan, E. (2019). Introduction to online convex optimization. arXiv preprint
arXiv:1909.05207. 23, 24

21. Herbster, M. and M. K. Warmuth (2001). Tracking the best linear predictor. Journal
of Machine Learning Research, 1(281-309), 10–1162. 4, 21

22. Iyer, R. and J. Bilmes (2012). Algorithms for approximate minimization of
the difference between submodular functions, with applications. arXiv preprint
arXiv:1207.0560. 33, 34

23. Iyer, R. K., S. Jegelka, and J. A. Bilmes (2013). Curvature and optimal algorithms
for learning and minimizing submodular functions. Advances in Neural Information
Processing Systems, 26. 40

24. Koolen, W. M. and T. Van Erven, Second-order quantile methods for experts and
combinatorial games. In Conference on Learning Theory. PMLR, 2015. 19

25. Koolen, W. M., M. K. Warmuth, and J. Kivinen, Hedging structured concepts. In
COLT . Citeseer, 2010. 3, 4, 6, 21

26. Krause, A. and D. Golovin (2014). Submodular function maximization. Tractability,
3, 71–104. 4

27. Li, L., Y. Lu, and D. Zhou, Provably optimal algorithms for generalized linear contex-
tual bandits. In International Conference on Machine Learning. PMLR, 2017. 22

28. Madow, W. G. et al. (1949). On the theory of systematic sampling, ii. The Annals of
Mathematical Statistics, 20(3), 333–354. 6

29. Massart, P. (2007). Concentration inequalities and model selection. 46

30. Matsuoka, T., S. Ito, and N. Ohsaka, Tracking regret bounds for online submodu-
lar optimization. In International Conference on Artificial Intelligence and Statistics.
PMLR, 2021. 41

55

31. Narasimhan, M. and J. A. Bilmes (2012). A submodular-supermodular procedure
with applications to discriminative structure learning. arXiv preprint arXiv:1207.1404.
34

32. Orabona, F. (2019). A modern introduction to online learning. arXiv preprint
arXiv:1912.13213. 1

33. Raab, M. and A. Steger, “balls into bins”—a simple and tight analysis. In Interna-
tional Workshop on Randomization and Approximation Techniques in Computer Sci-
ence. Springer, 1998. 16

34. Rakhlin, A. and K. Sridharan (2016). A tutorial on online supervised learning with
applications to node classification in social networks. arXiv preprint arXiv:1608.09014.
8, 9, 10, 12

35. Shalev-Shwartz, S. et al. (2011). Online learning and online convex optimization.
Foundations and trends in Machine Learning, 4(2), 107–194. 1

36. Shpilka, A. and A. Wigderson (2001). Depth-3 arithmetic circuits over fields of char-
acteristic zero. Computational Complexity, 10(1), 1–27. 20

37. Sotirov, R. (2020). On solving the densest k-subgraph problem on large graphs. Opti-
mization Methods and Software, 35(6), 1160–1178. 31

38. Streeter, M. and D. Golovin (2007). An online algorithm for maximizing submodular
functions. Technical report, Carnegie-Mellon Univ. Pittsburgh PA School of Computer
Science. 3, 4, 41, 42, 53

39. Suehiro, D., K. Hatano, S. Kijima, E. Takimoto, and K. Nagano, Online prediction
under submodular constraints. In International Conference on Algorithmic Learning
Theory. Springer, 2012. 4

40. Takimoto, E. and K. Hatano, Efficient algorithms for combinatorial online prediction.
In International Conference on Algorithmic Learning Theory. Springer, 2013. 4

41. Tillé, Y. (1996). Some remarks on unequal probability sampling designs without re-
placement. Annales d’Economie et de Statistique, 177–189. 6

42. Uchiya, T., A. Nakamura, and M. Kudo, Algorithms for adversarial bandit problems
with multiple plays. In International Conference on Algorithmic Learning Theory.
Springer, 2010. 21

43. Vondrák, J. (2010). Submodularity and curvature: The optimal algorithm (combina-
torial optimization and discrete algorithms). RIMS Kokyuroku Bessatsu, 23, 253–266.
40

44. Vovk, V. (1998). A game of prediction with expert advice. Journal of Computer and
System Sciences, 56(2), 153–173. 2, 19

45. Warmuth, M. K. and D. Kuzmin (2008). Randomized online pca algorithms with
regret bounds that are logarithmic in the dimension. Journal of Machine Learning
Research, 9(Oct), 2287–2320. 4

46. Wu, W.-L., Z. Zhang, and D.-Z. Du (2019). Set function optimization. Journal of the
Operations Research Society of China, 7(2), 183–193. 33

56

LIST OF PAPERS BASED ON THESIS

1. Mukhopadhyay, S., Sahoo, S. &; Sinha, A. (2022). k-experts - Online Poli-
cies and Fundamental Limits. Proceedings of The 25th International Confer-
ence on Artificial Intelligence and Statistics, in Proceedings of Machine Learn-
ing Research 151:342-365. Available from https://proceedings.mlr.
press/v151/mukhopadhyay22a.html.

57

https://proceedings.mlr.press/v151/mukhopadhyay22a.html
https://proceedings.mlr.press/v151/mukhopadhyay22a.html

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF ALGORITHMS
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	INTRODUCTION AND BACKGROUND
	The Problem Setting
	Literature Review
	Key Insights for SAGE

	Sampling without Replacement

	THE k-sets PROBLEM
	Fundamental Limits on Online Prediction with k-sets
	Learning Policies for the k-sets Problem
	k-sets with Hedge
	k-sets with FTRL

	Numerical Experiments

	BEYOND THE k-sets PROBLEM
	k-experts with Pairwise Reward
	Learning Policies for Monotone Rewards
	Monotone Submodular Reward Functions

	Lower Bounds
	Numerical Experiments
	k-experts with Pairwise-reward
	k-experts with Max-reward
	k-experts with Monotone-reward

	CONCLUSION AND OPEN PROBLEMS

