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Abstract

SISR has seen a lot of progress in the recent past. However, most SISR methods are
trained by generating the LR by bicubically downsampling the HR images, hampering
their generalisability to real-world LR images. Blind SR is another domain which has
received attention in the recent past. Blind SR methods use internal learning to train a
network for each inference image. However, if there is a domain gap between the LR
and HR images, they need to be supported by a style transfer method to match the look
of the SRd images to those of the HR images. Reference-based SR is another area which
has received attention recently. Those methods take in a reference image along with the
LR image to try and recover the SR image. This report presents an upgradeable pipeline
that uses a Blind SR method followed by a style transfer method. When the throughput
is of paramount importance, we suggest ways to eliminate the dependence on Blind SR
methods, which are slow. In that case, we rely purely on domain transfer. We consider a
more challenging version of the previous problem where we do not assume the presence
of paired data and rely on unsupervised methods. The proposed method(s) produce near
realistic HR images, matching or even beating the performance of the previous method

in multiple cases while being a lot more interpretable and less hacky.
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The images presented in this report are not the actual images used for experiments
as they are an Intellectual Property of KLA. A dummy image has been presented in its
place. The dummy image can be downloaded here. The report with the actual images

can be accessed from the IPCV server
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Chapter 1

Introduction

Minor defects can greatly impact the safety and function of semiconductor devices.
Since component failure is often a direct result of numerous microscopic defects, their
multi-scale observation and quantification are the only way to determine the root cause
and accurately characterize these faults. Our electronic devices are getting smaller and
more complex, giving failure-inducing defects more places to hide. To make matters
worse, these failures often occur late in the fabrication process, resulting in high yield
losses and significant delays in time-to-market for semiconductor manufacturers. As a
result, researchers must identify failures as quickly and accurately as possible to resume
production and reduce the likelihood of such issues returning.

An SEM is an electron microscope that produces images of a sample by scanning the
surface with a focused beam of electrons. The electrons interact with atoms in the
sample, producing various signals containing information about the sample’s surface
topography and composition. The electron beam is scanned in a raster scan pattern,
and the beam’s position is combined with the intensity of the detected signal to produce
an image. SEMs are powerful, high-resolution tools that are widely used for a vast
range of failure analyses. They provide the magnification and depth of field required to
accurately analyze faults and identify failures.

With the progress in deep learning, object detection networks are often used to locate
faults within SEM captures of the semiconductor wafers. Given the massive increase in
the number of devices that need semiconductors, the fault detection process needs to be
efficient and accurate.

One way to make fault identification faster is to capture as little data as possible. This
is often achieved by capturing SEM images at lower and lower resolutions. However,
since the defect detection networks are trained to work with data at higher resolutions,
these LR images often need to be SRd before they are useful for the fault detection
networks. This project deals with the SR part of the problem. KLLA has been very kind
in providing us with four datasets. The focus has been constrained to dataset-2 as it is

the most challenging of the lot and still needs a satisfactory solution.



1.1 Dataset Description

We have been provided with multiple datasets from KLA. The goal is to be able to
super-resolve the LR images so that they can be used with the defect detection net-
works. We are blind to the defect-detection networks. The focus has been constrained
to dataset-2 and all results presented are on that dataset. The LR and HR images in that
dataset do not look similar due to the different scan rates. Any SR model hence must be
able to match this discrepancy apart from performing SR. A few samples from the LR

and HR images of the training set have been shown in figures 1.1 and 1.2 respectively.

Figure 1.2: HR Train Images

It is to be noted that the images are not to scale. In the real data, the HR images are
4x the LR image in each dimension. The HR images are of the size 960 x 960, whereas
the LR images are of the size 240 x 240. We have 20 such LR and HR images each.
They are not necessarily aligned. If paired data is needed for an experiment, we must
align them manually or write a script to align them automatically. Likewise, we have

64 test LR 1images of the same size as the train LR images. We also have 70 HR images
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(of the same size as the train HR images) provided with the test set. But, these must be
used only as a guide to see how good the model’s performance is on the LR images and
not used as ground truth data

In later experiments, when we talk about training networks with the LR images bicubi-
cally upsampled along with the HR images, we upsample both the LR and HR to be of
the size 1024 x 1024. This is because many domain transfer networks expect the input

image dimensions to be divisible by 4 and, in some cases, to be a power of 2 too.

1.2 Challenges

A few LR samples from the test set and their reference HR images have been shown
in figures 1.3 and 1.4. It is to be noted that the HR images correspond to a similar LR

image, and not the exact same LR image. Hence, there will not be structurally identical.

Figure 1.4: Reference HR Images for LR Test Images

As it would be apparent by now, the test set has deformities or defects which are

simply not present in the train set. In this report we constrain ourselves to challenges
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from an image processing perspective (losses, architectures, pipelines etc) and do not
delve into the optimization side of things; although we acknowledge that the latter too
is quite significant when working with such limited data.

Another thing which is apparent is the fact that this is not a simple SR problem. There
is a larger domain gap between the LR and HR images. Any proposed solution must
overcome this domain gap too apart from performing SR. It must do that while main-
taining the structure of the defects, as well as ensuring that the background looks natural
too. The latter point is necessary to ensure that the defect detection network does not
unnecessarily pick up false positives.

One obvious way to try and preserve structure is to get rid of the GAN loss. However,
given the textured nature of the background in the HR images, it is clear the without a
GAN loss, the output image will look unnaturally smooth. Hence, any solution must
preserve defects while not getting rid of the GAN loss.

Apart from all this, the amount of data available is very limited. So, we will occasion-
ally need to come up with data augmentation tricks too, even though we do not want to

go into that line too much trying to keep the solution elegant.



Chapter 2

Overview of Methods

In this chapter we provide descriptions of the methods used for the project. Techniques
have been adopted from blind SR, reference-based SR, image-restoration as well as
paired and unpaired domain transfer. Data augmentation methods based on previous
work on the same project has also been adopted. The exact configuration details along

with observations can be found in the chapter 3.

2.1 Blind SR

Deep Learning has led to a dramatic leap in Super-Resolution (SR) performance in the
past few years. However, being supervised, these SR methods are restricted to specific
training data, where the acquisition of the low-resolution (LR) images from their high-
resolution (HR) counterparts is predetermined (e.g., bicubic downscaling), without any
distracting artifacts (e.g., sensor noise, image compression, non-ideal PSF, etc). Real
LR images, however, rarely obey these restrictions, resulting in poor SR results by SotA
(State of the Art) methods.

Zero-Shot Super-Resolution (ZSSR) [ ( )] exploits the power of Deep
Learning, but does not rely on prior training. It exploits the internal recurrence of in-
formation inside a single image, and trains a small image-specific CNN at test time,
on examples extracted solely from the input image itself. As such, it can adapt itself
to different settings per image. This allows it to perform SR of real old photos, noisy
images, biological data, and other images where the acquisition process is unknown or
non-ideal. This was the first unsupervised CNN-based SR method.

The image-specific CNN in ZSSR combines the predictive power and low entropy
of internal image-specific information, with the generalization capabilities of Deep-
Learning. Given a test image /, with no external examples available to train on, an
Image-Specific CNN tailored to solve the SR task for this specific image is constructed.

The CNN is trained on examples extracted from the test image itself. Such examples



are obtained by downscaling the LR image [, to generate a lower-resolution version of
itself, I | s (where s is the desired SR scale factor). A relatively light CNN is trained
to reconstruct the test image / from its lower-resolution version / | s. The resulting
trained CNN is then applied to the test image /, now using I as the LR input to the
network, in order to construct the desired HR output / | s. Since the trained CNN is
fully convolutional, it can be applied to images of different sizes. The overall pipeline

is shown in figure 2.1

Loss
1, ugmented LR([(:uqm.(‘nf(’d) / SR(LR(IaungnfEd))
§ AUBMeNt e downscale — 7 o
E ¥ —_— 3 —_—
",..Ar.' P xuﬁ

Figure 2.1: Description of the overall pipeline for ZSSR. The network is trained on
the augmented dataset. After the training is done, the wanted HR image is
simply obtained by passing / through the trained network

Since the "training set" consists of one instance only (the test image), data augmen-
tation is employed on / to extract more LR-HR example-pairs to train on. The aug-
mentation is done by downscaling the test image / to many smaller versions of itself
(I = Iy, I1,...,I,). These play the role of the HR supervision and are called "HR fa-
thers". Each of the HR fathers is then downscaled by the desired SR scale-factor s to
obtain the "LR sons", which form the input training instances. The resulting training
set consists of many image-specific LR-HR example pairs.

The network can then stochastically train over these pairs. The training set is further
enriched by transforming each LR-HR pair using 4 rotations (0°,90°,180°,270°) and
their mirror reflections in the vertical and horizontal directions. This adds 8 times more
image-specific training examples.

For the sake of robustness, as well as to allow large SR scale factors s even from very

small LR images, the SR is performed gradually. The algorithm is applied for several
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intermediate scale-factors (si, so, ..., s, = s). At each intemediate scale s;, the gen-
erated SR image H R; and its downscaled/rotated versions are added to the gradually
growing training-set, as new HR fathers. Those are downscaled (as well as the previous
smaller "HR examples’) by the next gradual scale factor s;, 1, to generate the new LR-
HR training example pairs. This is repeated until reaching the full desired resolution
increase s.

In contrast to CNNs which train on large external datasets, the diversity of the LR-
HR relations within a single image is significantly smaller, and hence, can be encoded
by a much smaller and simpler image-specific network. A simple, fully convolutional

network, with 8 hidden layers, each having 64 channel is the network used.

2.2 Image Translation and Restoration

[ ( )] investigate conditional adversarial networks as a general-purpose
solution to image-to-image translation problems. These networks not only learn the
mapping from input image to output image, but also learn a loss function to train this
mapping. This makes it possible to apply the same generic approach to problems that
traditionally would require very different loss formulations. This approach is effective
at synthesizing photos from label maps, reconstructing objects from edge maps, and
colorizing images, among other tasks. It also suggests that we no longer need to hand-
engineer the mapping functions or the loss functions.

GANs [ ( )] are generative models that learn a mapping from
random noise vector z to output image y, G : z — y. In contrast, conditional GANs
[ ( )] learn a mapping from observed image = and random noise
vector z,toy, G : {z, z} — y. The generator G is trained to produce outputs that cannot
be distinguished from "real" images by an adversarially trained discriminator, D), which
is trained to do as well as possible at detecting the generator’s "fakes".

The objective of a conditional GAN can be expressed as
Leocan(G, D) =E, [log(D(z,y)] + E, .[log(1 — D(x,G(x, 2)))] (2.1)

where G tries to minimize this objective against an adversarial D that tries to maximize

it, i.e. G* = arg min, maxpL.gan (G, D).



Figure 2.2: Training a conditional GAN to map edges — photo. The discriminator, D,
learns to classify between fake (synthesized by the generator, () and real
{edge, photo} tuples. G learns to fool the discriminator.

Previous approaches [ ( )] have found it beneficial to mix the GAN
objective with a more traditional loss, such as L2 distance. The discriminator’s job
remains unchanged, but the generator is tasked to not only fool the discriminator but
also to be near the ground truth output in an L2 sense. Often the L1 loss is preferred

instead of the L2 loss as it causes less blurring. The L1 loss used is

L11(G) = Euy,:[lly — Gz, 2) 1] (2.2)

The final objective is

arg ming maxpL.gan(G, D) + ALp1(G) (2.3)

Without z, the net could still learn a mapping from z to y, but would produce deter-
ministic outputs, and therefore fail to match any distribution other than a delta function.
Past conditional GANs have acknowledged this and provided Gaussian noise z as an
input to the generator, in addition to z (e.g., [ ( )]). This strategy
was not found effective — the generator simply learned to ignore the noise. Instead, for
the final models, noise is provided only in the form of dropout, applied on several layers
of our generator at both training and test time. Despite the dropout noise, only minor
stochasticity is observed in the output of the networks.

A defining feature of image-to-image translation problems is that they map a high res-

olution input grid to a high resolution output grid. In addition, for the problems in



consideration, the input and output differ in surface appearance, but both are renderings
of the same underlying structure. Therefore, structure in the input is roughly aligned
with structure in the output. For many image translation problems, there is a great deal
of low-level information shared between the input and output, and it would be desirable
to shuttle this information directly across the net. To give the generator a means to cir-
cumvent the bottleneck for information like this, skip connections are added, following
the general shape of a U-Net [ ( )]. Specifically, skip connections
are added between each layer 7 and layer n — ¢, where n is the total number of layers.
Each skip connection simply concatenates all channels at layer ¢ with those at layer

n—1.

U-Net

K
W
W
W
v
W
J
<

Figure 2.3: U-Net network with skip connections

Although losses like the L1 or L2 fail to encourage high-frequency crispness, in many
cases they nonetheless accurately capture the low frequencies. This motivates restrict-
ing the GAN discriminator to only model high-frequency structure, relying on an L1
term to force low-frequency correctness. In order to model high-frequencies, it is suffi-
cient to restrict attention to the structure in local image patches. Therefore, a discrim-
inator architecture is designed — that only penalizes structure at the scale of patches
(PatchGAN). This discriminator tries to classify if each N x N patch in an image is
real or fake.

It is empirically found that /N can be much smaller than the full size of the image and
still produce high quality results. This is advantageous because a smaller PatchGAN

has fewer parameters, runs faster, and can be applied to arbitrarily large images. Such



a discriminator effectively models the image as a Markov random field, assuming inde-
pendence between pixels separated by more than a patch diameter. The PatchGAN can
hence be understood as a form of texture/style loss.

Recently, cross domain transfer has been applied for unsupervised image restoration
tasks. However, directly applying existing frameworks would lead to domain-shift prob-
lems in translated images due to lack of effective supervision. [ ( )] pro-
pose an unsupervised learning method that explicitly learns invariant presentation from
noisy data and reconstructs clear observations. To do so discrete disentangling repre-
sentation and adversarial domain adaption are introduced into general domain transfer
framework, aided by extra self-supervised modules including background and semantic
consistency constraints, learning robust representation under dual domain constraints,
such as feature and image domains.

The goal is to learn abstract intermediate representations from noise inputs and recon-
struct clear observations. In a certain way, unsupervised IR could be viewed as a spe-
cific domain transfer problem, i.e., from noise domain to clean domain. Therefore, the
method is injected into the general domain transfer architecture. In supervised domain
transfer, given samples (x, y) are drawn from a joint distribution Py y(x,y), where X
and ) are two image domains. For unsupervised domain translation, samples (x,y)
are drawn from the marginal distributions Py (z) and Py (y). In order to infer the joint
distribution from the marginal samples, a shared-latent space assumption is proposed
that there exists a shared latent code z in a shared-latent space Z, so that both images
can be recovered from this code. Given samples (z,y) from the joint distribution, this

process is represented as

2= Ex(z) = Ey(y) (24)
r==Gy(2),y = Gy(2) (2.5)

A key step is how to implement this shared-latent space assumption. To do so, an ef-
fective strategy is sharing high level representation by shared-weight encoder, which
samples the features from the unified distribution. However, it is unsuitable for IR
that latent representation only contains semantic meanings, which leads to domain shift
in recovered images, e.g., blurred details and inconsistent backgrounds. Hence, the
attempt is to learn more generalized representations containing richer texture and se-

mantic features from inputs, i.e., invariant representations. To achieve it, adversarial
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domain adaption based discrete representation learning and self-supervised constraint
modules are introduced into the method.

Discrete representation aims to compute the latent code z from inputs, where z contains
texture and semantic information as much as possible. To do so, two auto-encoders are
used to model { Ev, Gy} and { Ey, Gy} separately. Given any unpaired samples (x,y),
where x € X and y € ) separately denote noise and clean sample from different do-
mains, equation 2.4 is reformulated as zy = Fx(z) and zyy = Ey(y). Further, IR could
be represented as 7Y (z) = Gy (zx). However, considering noise always adheres to
high-frequency signals, directly reconstructing clean images is difficult due to varying
noise levels and types, which requires powerful domain generator and discriminator.
Therefore, disentangling representations are introduced into the architecture.
Disentangling Representation

For noise sample x, an extra noise encoder E¥ is used to model varying noise levels and
types. The self-reconstruction is formulated by z = Gy (zx, 2¥ ), where zy = Ex(7)
and 2§ = E¥(z) Assuming the latent codes zy and zy obey same distribution in
shared-space that {zy,2y} € Z, similar to image translation, unsupervised image
restoration could be divided into two stages: forward translation and back reconstruc-
tion.

Forward Cross Translation

First the representations {zy, zy} are extracted from (z,y) along with the extra noise

code z¥. Restoration and degradation could be then represented as

Y7 = Gy(zv) (2.6)

7Y = G2y © 2%) (2.7)

where 7YY represents the recovered clean sample, 4> ~*

represents the degraded
noise sample, & represents channel-wise concatenation operation. Gy and Gy are
viewed as specific domain generators.

Backward Cross Reconstruction

After performing the first translation, reconstruction could be achieved by swapping the

inputs Y and 77~ such that

& = Ca(By(# ) & EY (7)) 28)
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Figure 2.4: The method aims to learn invariant representations from inputs and align
them via adversarial domain adaption. The method is injected into general
domain-transfer framework

§=Gy(Ex(57")) (2.9)

where 2 and g represent reconstructed inputs. To enforce this constraint, the cross-cycle
consistency loss £C is added for X and )V domains. The overall architecture can be

seen in figure 2.4
LSC(G, Gy, Ex, By, EY) = Bx[||G(Ey(#) @ EY(577%)) — z],]  (2.10)

LS°(Gx, Gy, Ex, Ey, EY) = By[| Gy(Ex (7)) — yl1] (2.11)

Adversarial Domain Adaption
Another factor is how to embed latent representations zy and zy into shared space.
Inspired by unsupervised domain adaption, it is implemented by adversarial learning
instead of shared-weight encoder. The goal is to facilitate representations from inputs
obeying the similar distribution while preserving richer texture and semantic informa-
tion of inputs. Therefore, a representation discriminator Dy, is utilized in the architec-
ture. This feature adversarial loss £® 4, is expressed as
R 1 1
L"%waw(Ex, By, D) = Eyx [§logDR(zX) + —log(1 — DR(ZX»:|

2 (2.12)

+Ey | jlogDr(z5) + glog(1 - De(zy)]

Due to lack of effective supervised signals for translated images, only relying on fea-

ture domain discriminant constraints would lead to domain shift problems inevitably
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in generated images. To speed convergence while learning more robust representations,
self-supervised modules including Background Consistency Module (BCM) and Seman-
tic Consistency Module (SCM) are introduced to provide more reasonable and reliable
supervision.

BCM aims to preserve the background consistency between the translated images and
inputs. A multi-scale Gaussian-Blur operator is used to obtain multi-scale features re-

spectively. Therefore, a background consistency loss £ g¢ could be formulated as

Loc= Y, AlB(x) = B,(X)ll, (2.13)

0=5,9,15

Where B, denotes the Gaussian-Blur operator with blur kernel o, A, is the hyper-
parameter to balance the errors at different Gaussian-Blur levels. x and x denote origi-
nal input and the translated output, i.e., {z,7* 7Y} and {y, 7>~ }.

In addition, the features from the deeper layers of the pre-trained VGG-19 [

( )] model contain semantic meanings only, which are noiseless or
with little noise. Therefore, different from the general feature loss, which aims to re-
cover finer image texture details via similarities among shallow features, only deeper
features are extracted as semantic representations from the corrupted and recovered im-
ages to keep consistency, referred to as semantic consistency loss Lg¢ . It is formulated

as

Lso = [lonx) — a2 (2.14)

where ¢;(.) represents features from the [ layer of the VGG-19 model.
A few other losses are used along with the aforementioned losses.

Target Domain Adversarial Loss

domain
adv

Domain adversarial loss £ is imposed where Dy and D,y attempt to discrimi-
nate the realness of generated images from each domain. For the noise domain, the

adversarial loss £% .4, is defined as

‘Cade = ExNPX(x) [lOg DX<x>] +

Bx [log (1 — Dx (G (Ey(y), EX(2))))]
x~Px(x)

(2.15)
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Similarly for the clean image domain, the adversarial loss is defined as

Eg;dv :EyNPy(y) [log Dy(y)] +

Eorpy(@) [l0g (1 = Dy (Gy (Ex())))]

(2.16)

Self-Reconstruction Loss
In addition to the cross-cycle reconstruction, a self-reconstruction loss £ is also ap-
plied to facilitate the training. This process is represented as © = G y (E v(z) ® EY (x))
and § = Gy(Ey(y)).

KL Divergence Loss

In order to model the noise encoder branch, a KL divergence loss is added to regularize
the distribution of the noise code z§ = E¥ () to be close to the normal distribution i.e.,
p(z¥) ~ N(0,1), where Dy, = — [ p(z) log (ZE

summarized as

2) dz. The full objective function is

min max = A\ LF, +
Ex,Eg,Ey,Ggg,Gy DXvDvaR

domain ccC Rec 2.17
Ao LT 4 N L€ 4 Ayeo Lo (2.17)

/\bc'CBC + /\SCLSC + )\KLLKL

The network follows the architecture as the one used in [ ( )], the differ-
ence is that an extra noise encoder branch is introduced and the shared weight encoder is
removed. Representation discriminator is a full convolutional network structure, which
stacks four convolutional layers with two strides and a global average pooling layer.
The domain-specific nature of losses like pixel-level cycle-consistency or feature-level
matching losses hinders translation across large domain gaps. [ ( )]
propose a novel spatially-correlative loss that is simple, efficient and yet effective for
preserving scene structure consistency while supporting large appearance changes dur-
ing unpaired image-to-image (I2I) translation. This loss exploits the spatial patterns
of self-similarity as a means of defining scene structure. The spatially-correlative loss
is geared towards only capturing spatial relationships within an image rather than do-
main appearance. A new self-supervised learning method to explicitly learn spatially-
correlative maps for each specific translation task is also introduced. An illustration of
this is shown in figure 2.5.

Given a collection of images X € R#*W*C from a particular domain, the main goal
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(c) Structure map (d) Structure map

Figure 2.5: An illustration of the spatial correlation loss. Despite vast appearance differ-
ences between the horse and zebra, when the scene structures are identical,
the spatial patterns of self-similarities are as well

is to learn a model ¢ that receives the image x € X as input and transfers it into the

target domain Y € R#*WxC

, iIn a manner that retains the original scene structure but
converts the appearance appropriately. The focus is on designing a loss function that
measures the structural similarity between the input image x and the translated image
g = ®(z). However, unlike most existing approaches that directly attempt to evaluate
the structural similarity between input and translated images at some deep feature level,
the idea is to instead compute the self-similarity of deep features within each image,
and then compare the self-similarity patterns between the images.

Two losses are investigated: fixed self-similarity (FSeSim) and learned self-similarity
(LSeSim). In the first instance, the self-similarity patterns of features extracted from a
fixed pretrained network (e.g. VGG16 [Simonyan and Zisserman (2014)]) are directly
compared. In the second instance, an additional structure representation model that
learns to correctly compare the self-similarity patterns is introduced. The contrastive
infoNCE loss [Van den Oord er al. (2018)] is used to learn such a network without label
supervision.

Fixed Self-Similarity (FSeSim)

Given an image z in one domain and its corresponding translated image ¢ in another,
the features f, and f; are extracted using a simple network (e.g. VGG16). Instead of

directly computing the feature distance || f, — f;]

p» the self-similarity is computed in
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the form of a map. This is called the spatially-correlative map, formally:

Ser = (fo) (f2.) (2.18)

where f,r € R is a feature of a query point z; with C channels, f,, € R*"»

d(Sy,Sy)

Feature f y
Image extractor Features Similarity map

Figure 2.6: Image x and corresponding translated image ¢ are first fed into the feature
extractor. Then the local self-similarity for each query point is computed

contains corresponding features in a patch of N, points, and S,, € R captures
the feature spatial correlation between the query point and other points in the patch.
An example is shown in figure 2.6, where the spatially-correlative map for the query
patch is visualized as a heat map. Unlike the original features that would still encode
domain-specific attributes such as color, lighting and texture, the self-similarity map
only captures the spatially-correlative relationships.

Next, the structure of the whole image as is represented a collection of multiple spatially-
correlative maps S, = [Sy,; Suy; - Swws] € RNs*No  where N, is the number of
sampled patches. This is a semi-sparse representation, but is more computationally effi-
cient. Then the multiple structure similarity maps between the input x and the translated

image y are compared as

L, =d(S,,S;) (2.19)

where S is the collection of corresponding spatially-correlative maps in the target do-
main. Two forms for d(-) are considered: the L1 distance ||.S, — S;| and the cosine
distance ||1 — cos(S;, S;)||. The former term strongly encourages the spatial similarity
to be consistent at all points in a patch, while the latter term supports pattern correlation

without concern for differences in magnitude.
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Learned Self-Similarity (LSeSim)

Although the FSeSim provides strong supervision for structure consistency, it does not
explicitly learn a structure representation for a specific translation task. As opposed
to existing feature-level losses [ ( ), ( )] that only
utilize the features from a fixed pre-trained network, the idea is to additionally learn a
structure representation network for each task that expresses the learned self-similarity,
or LSeSim.

In order to learn such a model without supervision, the self-supervised contrastive learn-
ing that associates similar features, while simultaneously dissociates different features
is considered. Following [ ( )], the contrastive loss is built at the patch
level. Except, here the pairs for comparison are the spatially-correlative maps, rather
than the original features.

To help generate pairs of similar patch features for self-supervised learning, aug-

Feature Sample positive
Image  extractor + K negatives Contrastive loss

Figure 2.7: Three images are fed into the feature extractor, in which two images, x
and 4,4, are homologous with the same structure but varied appearances,
and vy is another randomly sampled image. For each query patch in z, the
"positive" sample is the corresponding patch in x4, and all other patches
are considered as "negative" samples

mented images are created by applying structure-preserving transformations. Formally,
let v = S,, € R denotes the spatially-correlative map of the "query" patch. Let
vt = S; € RPN and v= € RE*Me be "positive" and "negative" patch samples,
respectively. The query patch is positively paired with a patch in the same position ¢
within an augmented image x,,, and and negatively paired to patches sampled from
other positions in x,,, or patches from other images y. The number of negative patches

used is iK' = 255. This is illustrated in figure 2.7.
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The contrastive loss is given by

esim(v,lﬁ)/‘r

L.= —log (2.20)

esimvwt)/r 4 K osim (v ) /7
where sim (v, v") = vTv™/||v||||vT]| is the is the cosine similarity between two spatially-
correlative maps and 7 is a temperature parameter. To minimize this loss, the network
encourages the corresponding patches with the same structure to be close even if they
have very different visual appearances, which fits in with the goal of image translation.
This contrastive loss is only used for optimizing the structure representation network.
The spatially-correlative loss for the generator is always the loss in equation 2.19.

Overall the networks are trained by jointly minimising the following losses.

Lp = —Eyp,llog D(y)] — Ejp,[log(1 — D())]
Lo=L, (2.21)

L =Eyp,[log(1 — D(3))] + Ad (S5, S)

where L is the adversarial loss for the discriminator D, g is the translated image, and
L is the contrastive loss for the structure representation network f. L is the loss for
the generation (translation) network (G, which consists of the style loss term and the
structure loss term. A is a hyperparameter to trade off between style and content.

The CycleGAN [ ( )] is used as the reference architecture, but only half of
that pipeline is used and the cycle-consistency loss is replaced with the F/LSeSim loss.

Specifically, the ResNet based generator is used along with the PatchGAN discriminator
[ (20171

2.3 Refence Based SR

Reference-based image super-resolution (RefSR) has shown promising success in re-
covering high-frequency details by utilizing an external reference image (Ref). In this
task, texture details are transferred from the Ref image to the low-resolution (LR) im-
age according to their point- or patch-wise correspondence. Therefore, high-quality
correspondence matching is critical. It is also desired to be computationally efficient.

Besides, existing RefSR methods tend to ignore the potential large disparity in distribu-
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tions between the LR and Ref images, which hurts the effectiveness of the information
utilization. In MASA-SR [ ( )] two novel modules are designed to address
these problems. The proposed Match and Extraction Module significantly reduces the
computational cost by a coarse-to-fine correspondence matching scheme. The Spatial
Adaptation Module learns the difference of distribution between the LR and Ref im-
ages, and remaps the distribution of Ref features to that of LR features in a spatially
adaptive way. This makes the network robust to handle different reference images.

The framework mainly consists of three parts: the encoder, Matching and Extrac-

Conv
Instance

Norm

Hir

Conv

Conv
e
OLR

(b) Spatial Adaptation Module (SAM)

I

MEM
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(a) The proposed MASA framework (c) Dual Residual Aggregation Module (DRAM)

Figure 2.8: (a) Framework of MASA-SR. It consists of an encoder, several MEM,
SAM, and DRAM. (b) Structure of the SAM. (c) Structure of the DRAM

tion Modules (MEM), and fusion modules that contain Spatial Adaptation Modules
(SAM) and Dual Residual Aggregation Modules (DRAM). A representation can be seen
in figure 2.8. LR, Ref| and Ref denote the low resolution image, the x4 bicubic-
downsampled reference image and the reference image, respectively. The encoder is
trained along with other parts of the network from scratch.

The encoder consists of three building blocks — the second and third blocks halve the
size of the feature maps with stride 2. After passing the Ref image into the encoder,
three Ref features with different scales are obtained as Fj,; where s = 1,2,4. The LR
image and the Ref| image only go through the first block of the encoder, producing F
and Fr.s. Afterwards, {F g, Frey|, .} are fed into MEM to perform coarse-to-fine
correspondence matching and feature extraction as shown as in figure 2.9. Though there
are three MEMs in figure 2.8(a), the matching steps are only performed once between
F1r and F.y|. The feature extraction stage is performed three times, each for one Ref

feature F7, ; of scale s. To generate the final SR output, the LR features and output
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Ref| block) pair. In Stage 3, Ref features are extracted according to the
similarity and index maps produced in the second stage. All the blocks are
denoted by solid squares in light blue and patches are denoted by dotted
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features from MEM are fused through the fusion module, where the proposed SAM is
used to align the statistics of Ref features to those of LR ones. The DRAM is used to
enhance high-frequency details. The MEM, SAM, and DRAM details are mentioned in
the following text.

Matching and Extraction Module (MEM)

It is known that in a local region of a natural image, neighboring pixels are likely to
come from common objects and share similar color statistics. Previous research on nat-
ural image priors also indicates that neighboring patches in one image are likely to find
their correspondence spatially coherent with each other. This motivates to use a coarse-
to-fine matching scheme, i.e., coarse block matching and fine patch matching. Note that
"block’ and ’patch’ are two different concepts in the current context. The size of block
is larger than patch (3 x 3 in experiments). As shown in figure 2.9, fine correspondences
are found in the feature space only for blocks. Specifically, the LR feature is unfolded
into non-overlapping blocks. Each LR block will find its most relevant Ref] block. By
doing so, the computational cost of matching is reduced significantly compared with
previous methods [ ( ), ( )]. To achieve enough preci-
sion, further dense patch matching is performed within each (LR block, Ref] block)
pair. In the last stage, useful Ref features are extracted according to the obtained corre-
spondence information.

Stage 1: Coarse matching

In this stage, the LR feature F 1 is unfolded into K non-overlapping blocks: {BY Ry o Bﬁg n.
For each LR block B ,.its most relevant Ref] block B, 7y 1s found. The center patch

of B} , is taken to to compute the cosine similarity with each patch of Fr., as

k
ko= (P i (2.22)
7 <HP’SH ;]|

where pf is the center patch of BY ., g, is the j—th patch of Fr,;,, and ry ; is their sim-
ilarity score. According to the similarity scores the most similar patch for p* in Fg. |
can be found. A block of size d, x d, is then cropped centered around this similar
patch, denoted as B, 71~ According to the local coherence property, for all patches in
B" . their most similar patches are likely to reside in this B, 71+ - On the other hand,
the corresponding sd, x sd, block from F7, ¢, denoted by B;’;f is cropped to be used
in the feature extraction stage.

Note that the center patch may not be representative enough to cover full content of the
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LR block if the size of the LR block is much larger than that of its center patch. This
may lead to finding the irrelevant Ref| block. To address it, center patches with differ-
ent dilation rates are used to compute the similarity. The details are shown in Stage 1 of
figure 2.9, where the dotted blue patch denotes the case of dilation = 1 and the dotted
orange patch denotes the case of dilation = 2. Then the similarity score is computed
as the sum of results of different dilations. After this stage, for each LR block, its most
relevant Ref| block and the corresponding Ref block are obtained, forming triples of
(B% ., B%, L B‘}”;f). The search space of B% , is limited to B, 7, in the fine matching
stage.

Stage 2: Fine matching

In this stage, dense patch matching is performed between each LR block and its corre-
sponding Ref| block independently. A set of index maps {D°, ..., D* '} and similarity
maps {R’, ...,R* ™'} are obtained. More precisely, taking the k—th pair (B% R,B'];ef 1)

for example, the similarity score is computed between each patch of Blz r and each patch

ko p_fq_f 223
<Hpﬂ’ q?||> o

where p! is the i—the patch of B, ¢¥ is the j—th patch of Bl , and r}; is their

of B’Eeﬂ as

similarity score. Then the i—th element of D" is calculated as

Df = arg maxrif ; (2.24)

J
The i—th element of R" is the highest similarity score related to the i—th patch of B} ,
as

R = maxr? (2.25)

PR

Stage 3: Feature extraction

In this stage, patches are first extracted from Bf;;];f according to the index map D", and
a new feature map Bf\’f is formed. Specifically, the Df—th patch of B;’(ff is cropped as
the 7:—th patch of Bf\;jk. Moreover, since Ref features with higher similarity scores are

more useful, Bf\f is multiplied with the corresponding similarity score map R to get
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the weighted feature block as
By =B ® (R") 1 (2.26)

where () 1 and ® denote bilinear interpolation and element-wise multiplication respec-
tively.

The final output of MEM is obtained by folding {B5;, ..., B3 '} together, which is
the reverse operation of the unfolding operation in Stage 1.

Spatial Adaptation Module (SAM) In many situations, the LR and the Ref images may
have similar content and texture. But color and luminance distributions diverge. Thus
the distribution of extracted Ref features may not be consistent with that of the LR fea-
tures. Therefore, simply concatenating the Ref and LR features together and feeding
them into the following convolution layers is not optimal. The Spatial Adaptation Mod-
ule (SAM) is proposed to remap the distribution of the extracted Ref features to that of
the LR features.

The structure of SAM is illustrated in figure 2.8(b). The LR feature and extracted Ref
feature are first concatenated before feeding into convolution layers to produce two
parameters 3 and « which are the same size as the LR feature. Then instance normal-
ization [ ( )] is applied to the Ref feature as
Fg. - KRe f

Fhrep < (2.27)

c
o.Ref

where p7,. ; and oy, ; are the mean and standard deviation of F . in channel ¢ as

c 1 C,Y,T
Wier = Ty > R (2.28)
Y,xr
R > (Fiuf — s )’ (2.29)
Ref — HW Ref l'l'Ref '
Y,T

H and W are the height and width of Fp.s. 3 and ~ are then updated with the mean

and standard deviation of the LR feature as

B <+ B+ purr (2.30)

Y <Y+ OoLr (2.31)
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Finally, v and 3 are multiplied and added to the normalized Ref feature in an element-
wise manner as

FRef<_FRef*'7+ﬁ (2.32)

Since the difference between the Ref features and LR features varies with respect to the
spatial location, while the statistics mu g, g, MUp.; and o g.¢ are of size C'x 1 x 1,
learnable convolutions are used to predict two spatial-wise adaptation parameter 3 and
~. The convolutions in SAM takes as the input both Ref and LR features to learn their
difference. Besides, after obtaining 3 and ~ from the convolutions, they are added with
the mean and standard deviation of the LR feature.

Dual Residual Aggregation Module (DRAM)

After spatial adaptation, the transferred Ref features are fused with the LR features us-
ing our the Dual Residual Aggregation Module (DRAM) as shown in figure 2.8 (c).
DRAM consists of two branches, i.e., the LR branch and the Ref branch.

The Ref branch aims to refine the high-frequency details of the Ref features. It first
downsamples the Ref feature F . by a convolution layer with stride 2, and the residual
Respg. s between the downsampled Ref feature and the LR feature F 1 is then upsam-

pled by a transposed convolution layer as

R.sref = Conv (Fres) — Frp

(2.33)
Fp.; = Fpey + Deconv (Respgey)
Similarly, the high-frequency details of the LR features are refined as
Respr = Frp — Conv (Fge
LR LR (FRey) 030

Fj ;, = Deconv (Frr + Respg)

At last, the outputs of two branches are concatenated and passed through another con-
volution layer with stride 1. In this way, the details in the LR and Ref features are
enhanced and aggregated, leading to more representative features.

The loss functions used are described next. The reconstruction loss L,.. is defined as

‘Crec: ||IHR_ISRH1 (235)
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where Iy and Igi denote the ground truth image and the network output. The Per-

ceptual loss L., is expressed as

Loer = ||0i(Tur) — ¢i(Isr)|2 (2.36)

where ¢; denotes the :—th layer of VGG-19 (in this case the layer used was convb_4.

The adversarial loss L4, is adopted from the Relativistic GANs [

(2018)].
Lp=—Er,, log (D (Igr,Isr))]
—FEy,, [log(1 =D (Igp, I
Isr [10g ( (Isr, Iur))] (2.37)
- D (IHR7 ISR))]

—Er,, [log (D (Isgr, Inr))]

Lo=—Er,,[log(1

The overall objective L is

L= )\TEC‘CT‘EC + /\perﬁper + Aadvﬁadv (238)

The encoder consists of 3 building blocks, each composed of 1 convolutional layer and 4
ResBlocks [ ( )]. The fusion module consists of 1 spatial adaptation mod-
ule, 1 dual residual aggregation module, several convolutional layers and ResBlocks.
The numbers of ResBlocks in 1x, 2x and 4 x fusion modules are 12, 8, and 4. The
number of all intermediate channels is 64. The activation function is ReLU. No batch

normalization (BN) layer is used.

12WRef\L
WLr

In MEM, the LR block size is set to 8 x 8. The Ref| block size is set to 122{5:‘ x
where Hypr, Wirr, Hgey |, Wres | are the height and width of the LR image and the
Ref] image respectively. The patch size is set to 3 x 3. The discriminator structure is

the same as that adopted in [ ( )].
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Chapter 3

Experiments

In this chapter we describe the different experiments conducted. The results are also
presented in this chapter. Apart from the configuration and results, we also present the
line of thought which led to that experiment in case that might come in handy for future

works.

3.1 ZSSR

A recurring issue with the given SR problem is the distortion of defects. This is a conse-
quence of the GAN loss as well as overfitting on the training data. Hence, we first start
experimenting with Blind SR methods to see what we can get. The idea is that since
such methods rely only on internal learning, which learns from the test image itself, the
defect distortion will be minimal. We use ZSSR [ ( )] as the Blind
SR model. We us a fully convolutional network, with 8 hidden layers, each having 64
channels. We use ReLLU activations on each layer. The network input is interpolated
to the output size. We only learn the residual between the interpolated LR and its HR
parent. We use L1 loss with ADAM optimizer. We start with a learning rate of 0.001.
We periodically take a linear fit of the reconstruction error and if the standard deviation
is greater by a factor than the slope of the linear fit we divide the learning rate by 10.
We stop when we get to a learning rate of 107°.

To accelerate the training stage and make the runtime independent of the size of the test
image /, at each iteration we take a random crop of fixed size from a randomly-selected
father-son (refer chapter 2) example pair. The crop is typically 128 x 128 (unless the
sampled image-pair is smaller). The probability of sampling a LR-HR example pair
at each training iteration is set to be non-uniform and proportional to the size of the
HR-father. The closer the size-ratio (between the HR-father and the test image [) is to
1, the higher its probability to be sampled. This reflects the higher reliability of non-

synthesized HR examples over synthesized ones.



Our problem is a case of 4x SR. Although [Shocher er al. (2018)] recommends using
a gradual increase in resolution, we do not see a performance difference between grad-
ually going from {1x,2x,4x} and directly performing a 4x SR. We use the latter for
the better efficiency.

A few results are shown in figures 3.1-3.7. The leftmost image is the LR image. It has

Figure 3.1: LR, SR, and HR Image

been bicubically upscaled to increase the visibility. The image on the center is the SRd
image. The right most image is an example HR image. We call it as an example HR
image as we do not have the ground truth HR images. We just have a reference image
containing the same type of defect as in the LR image to give us an idea of how good
is our SRd image. Unless otherwise mentioned, all results will be in this format. The
(upscaled) LR image on the left, the SRd image in the center, and the example HR im-
age on the rise. Also, we will be dropping the term "example HR" in favor of just "HR"
in the following sections of this report for the sake of brevity. It should be understood
that from this part of the report onward, unless otherwise mentioned, HR refers to the
example HR image. Also, figures 3.1-3.7 cover all types of defects which are of interest
to us. All of them have been presented to have a general idea of what each defect looks
like. From the next set of results, if a method performs poorly on a few types of defects,
we present its outputs only on those types of defects, instead of presenting on all seven.

This will prevent the report from being unnecessarily long and filled with bad results.

There are two observations to be made. The defect structure is preserved completely
as we expected. However, the overall look of the image is nowhere close to the HR
image. This is not a fault of ZSSR itself and more due to the fact that the problem is

not one of just SR but also involves a large domain shift. Internal learning alone cannot
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Figure 3.5: LR, SR, and HR Image
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Figure 3.7: LR, SR, and HR Image

take care of domain shift as that information just does not exist in the test image.

3.2 ZSSR + pix2pix

The idea here is that while ZSSR manages to successfully perform SR without affect-
ing the defects, there is a large domain gap which it fails to match. We can try to
overcome that domain gap by performing domain transfer on the SRd images. We use
pix2pix[lsola er al. (2017)] to perform the style transfer. The images in the two do-
mains are the LR train images SRd using ZSSR and the corresponding HR images. The
discriminator used is a PatchGAN discriminator. The loss used was a combination of

the L1 loss and the GAN loss, as mentioned in chapter 2.

3.2.1 ResNet Generator

We first start with a ResNet[He ¢7 /. (2016)] based generator. The generator is a cas-

cade of two downsampling layers, followed by 9 ResNet blocks, followed by two up-
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sampling layers. The network was trained on crops of size 256 x 256 for 400 epochs.
The Adam optimizer was used with a learning rate of 0.0002, and momentum parame-
ters §1 = 0.5, B2 = 0.999. A few results can be seen in figures 3.8 and 3.9. In this case
the SR image refers to pix2pix run on ZSSR SRd images.

It is clear that although the background looks very close to the HR images now, the

Figure 3.8: LR, SR, and HR Image

Figure 3.9: LR, SR, and HR Image

defects are completely distorted. This bring us back to the old problem of defects being
distorted at test time. We try to overcome this using data augmentation.

It is to be noted that now we are dealing with the ZSSR images along with the HR
images for the training. We do not really need the LR images for now for the domain
transfer application. For data augmentation, we use the the DIV2K dataset [Agustsson
and Timofte (2017)]. We convert the HR images from the dataset to black and white.
We then randomly select a div2k image and take n; random crops from it. The sizes
of the crops is chosen randomly from a set of predefined sizes which roughly cover the
sizes of all the defects. These n, crops are placed in random locations on both the HR
image as well as the ZSSR SRd image. We do this n, times for each training image.

The idea is that the network should know that if it comes across something which is not
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a background, it should leave it as it is. n; decides how many random patches appear on
an image, and n, decides the size of the augmented dataset. A few augmented images
are shown in figures 3.10 - 3.13. For a given value of n; and n», for each original image,
there are n, augmented images each with n; crops from the DIV2K dataset. Apart from

this, there is the original image with no augmentation.

Figure 3.12: Augmented ZSSR SR and HR for n; = 10

We start for the case of n; = 1 and ny = 1. The training configuration is maintained

the same as the previous section. Some results can be seen in figures 3.14 - 3.16.
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Figure 3.13: Augmented ZSSR SR and HR for n; = 10

Figure 3.15: LR, SR, and HR Image

The results are a lot better now with a much larger part of the defect structure pre-
served while retaining a good background. Clearly the data augmentation is helping.
This motivates us to increase the augmentation. We next try with n; = 10 and ny = 1

with everything else kept the same. The results are shown in figures 3.17 - 3.18.

Contrary to expectations, the results now are worse than the case with n; = 1. We

also tried the case with n; = 10 and ny = 10 whose results are shown in figures 3.19 -
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Figure 3.16: LR, SR, and HR Image

Figure 3.17: LR, SR, and HR Image

Figure 3.18: LR, SR, and HR Image
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3.20.

Figure 3.20: LR, SR, and HR Image

Strangely, the results are even more off this time. Although counter-intuitive, this
is what happened on repeated experimentation. We tried removing the GAN loss to
see if that helped preserve structure. Although it did help preserve structure, it defeats
the purpose of the experiment as the model trained with L1 loss only failed to do the
domain transfer accurately. The results also look over-smoothed. This motivates us to

look elsewhere.

3.2.2 U-Net Generator

Since the network must be such that the domain transfer is performed mostly on the
background, and anything which is not the background must be left as it is, we try with
a U-Net [Ronneberger er al. (2015)] generator instead of the ResNet based generator as
we feel the skip connections can help with letting the defects pass through as they are

without distorting them. We start with U-Net 256 with a crop size of 256 and augmented
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data with n; = 10 and ny = 1. The results are present in figures 3.21 - 3.23. We did try

the experiment without any data augmentation as well as for the case n; = landny = 1

but that led to complete distortion of the defects and hence they have not been presented.

Figure 3.23: LR, SR, and HR Image

The results are now much better than what we had for the ResNet based generator.
The defect structure is maintained a lot better while keeping the background looking
close to the HR image too. However, there are some artefacts present in the output

images (bottom left corner of figure 3.21). Apart from that, some of the defects span a
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larger area than they should. We experiment with different numbers of U-Net blocks to
see what effect does it have. We first try with U-Net 128 instead of U-Net 256 keeping

everything else the same. The results can be seen in figures 3.24 - 3.26.

Figure 3.26: LR, SR, and HR Image

The artefacts issue is gone but now the problem of some of the defects spanning a
larger area than they should is still there. What if we vary the crop size along with the
number of U-Net blocks? To see why this is relevant, we demonstrate an extreme edge

case with an U-Net 1024. For this case, we have no choice but to have a crop size of
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at least 1024 because of the repeated downsampling taking place in U-Net blocks. The

results are shown in figures 3.27 and 3.28 respectively.

Figure 3.28: LR, SR, and HR Image

Although the U-Net 1024 block has at least as much modelling capacity as the U-Net
256 block, it struggles with both the background as well as the defects. We hypothesize
that this is due to the fact that a larget U-Net block looks at a much larger window of
data for context, and such a large window does not necessarily always benefit. Hence,
training U-Net 128 with a different crop size might help as it might localise the defects
better. We try with a crop size of 128 now instead of 256 keeping everything else con-

stant. The results can be seen in figures 3.29 - 3.35.

The defects now do not have the problem of being larger than they are supposed to.
The background too looks natural. The only issue is that for a particular type of defect
(figure 3.31), the background looks much darker than it is supposed to.

This can be improved upon by using a U-Net 64 with a crop size of 64 as seen in figure

3.36 but that struggles with maintaining the structure of other types of defects as shown
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Figure 3.32: LR, SR, and HR Image
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Figure 3.36: LR, SR, and HR Image
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Figure 3.38: LR, SR, and HR Image

in figures 3.37 and 3.38.
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After this, we had a meeting with the KLA team. The feedback we got from them was
that the speed of the method is of utmost importance. Hence, Blind SR methods, or any
method which performs updates during inference is ruled out. Any suggested method

must have a high throughput. Hence, we do no proceed further with ZSSR.
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3.3 MASA-SR

After the feedback from the KLA team, we tried to see if we could make use of the
progress made so far in any manner. We got rid of ZSSR and tried to learn a domain
transfer between the bicubically upsampled LR images and the HR images. However,
no configuration of generators and training crop size in pix2pix gave us decent results.
It seems like the high frequency details maintained by ZSSR compared to plain bicu-
bically upsampling the image were vital for the domain transfer problem. The line of
research hence had to be scrapped and we had to start afresh.

Our next idea was to see if we could make use of the development in reference based
SR methods for our problem. However, there are two things to consider. First, refer-
ence based SR methods are usually slower than other deep-learning based methods as
they have to perform template matching between the LR image and the reference im-
age. Hence, we choose MASA-SR [ ( )], where the Match and Extraction
Module (MEM) significantly reduces the computational cost by a coarse-to-fine corre-
spondence matching scheme. The second issue is how to choose the reference image at
test time. If we use a reference image which contains the same type of defect as the test
image, albeit at a different spatial location, we are making the assumption that the wafer
already has a defect and we know which type of defect it is. This in indeed a problem.
However, for the time being, we assume we know the type of defect we have in the
test image, and provide a reference image containing the same type of defect as the test
image during inference too. This is a much easier setting than the actual problem, but
it can give us an idea of whether if it is worth to proceed with MASA-SR.

We train the MASA-SR with the same architecture as mentioned at the end of section
2.3. We train the model with the Adam optimizer by setting 5; = 0.9 and 5; = 0.999.
The learning rate is set to 10~%. We use crops from the LR image of size 40240 and the
corresponding 1602160 crops from the HR images. As per the recommendation of the
authors [ ( )], we first train masa-rec only with the reconstruction loss for
250 iterations. After getting masa-rec, we train masa with all losses, which is based on
the pretrained masa-rec for 50 more iterations. For now, we choose the reference image
to be same as the ground truth HR image. A few results can be seen in figures 3.39 and

3.40.
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Figure 3.40: LR, SR, and HR Image

Clearly, this did not work out very well. The defects are almost completely gone.
We felt this might be due to the fact that given the HR and reference image are the
same, which means the reference image is exactly aligned with the LR image. That
might cause the MEM to not train properly as it does not have to actually search for
best matches, as that is the same location in the reference image as the LR image.
Hence we decide to try with a different strategy for choosing the reference image. We
choose the reference image as a random patch of the same size as the HR image from

any of the different HR images. A few results can be seen in figures 3.41 and 3.42.

We do not see any sort of improvements at all. We could go about performing data
augmentation as we did in section 3.2. However, in this case, the network had access
to the exact same defect type even during inference. Yet, it did not translate into good
results. The actual problem is a lot harder where we will not have access to the defects
during inference. Given the method is not giving anything remotely promising, we did
not see it wise to proceed with it. We decided to scrap it completely and start fresh

again.
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Figure 3.42: LR, SR, and HR Image

3.4 Image Translation and Restoration

A major issue with all the methods discussed so far was that they need perfectly aligned
data. This is especially a problem in our case because the data that we got from the KLA
team was not aligned. We had to manually align the data before training the models. To
get rid of this limitation, we decided to experiment with methods which do not require
paired training data. We, hence, decided to focus on unsupervised domain transfer and
rectification methods which we felt would be useful for our problem statement.

We first tried with the method described in Learning Invariant Representation for Un-
supervised Image Restoration [Du ¢7 a/. (2020)] (we will refer to this work as LIR from
now on for simplicity). The method has been described in detail in section 2.2. The
overall method can be seen in figure 2.4 but we still show it here for the sake of conve-

nience of the reader. It has been shown in figure 3.43.

In the original work, X and ) denote the noisy and clean domains respectively.

Ex, Ey, EY represent the content encoder for the noisy domain, content encoder for
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Figure 3.43: LIR methodology

the clean domain, and the noise encoder respectively. Gy takes the encoded content
from the clean domain along with the encoded noise, and tries to generate a sample
which should ideally be indistinguishable from the real noisy images. Gy takes only
the content encoded from the noisy image and tries to generate a sample which should
ideally be indistinguishable from the real clean images. The second half of the photo
where the cross-translation happens is used only to add constraints to the networks
during training. During inference, only Ey and GGy, are needed for denoising.
For the initial experiments, we used the model as it is without changing any of the
losses. For domain X ,we used the LR images upscaled. For domain ), we used the
HR images. It is to be noted that there is no necessity of LR and HR images being
aligned as the method is unsupervised. During training, we did not perform any sort
of data augmentation. We used the trained Gy and Fy for inference. Although the
results were not that exceptional, especially the background not looking very natural,
the defect structure was mostly maintained. This gave us the hope that by modelling
the network better for our use case, we can get the defect structures maintained even
without paired data.
Modelling the network for our use case We model the network to our use case in the
following way.

* We choose X to be the domain of HR images and ) be the domain of the LR

images bicubically upsampled. We make this choice as we feel the LR upsampled

images have only the content information whereas the HR images also have a
different style apart from the content.

» We expect Ey to model the content information in the HR images and E¥ to
model the style of the HR images.

» Similarly, we expect £y to model the content information in the LR upsampled
images.
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* During inference, we use Ey along with Gx. It is to be noted that G » needs the
encoded style information along with the content information. For this, we use
one of the training HR images as a "reference" image and use Ey to encode the
style information from it. This is used as input to Gy for all of the test images.

* We remove some of the losses which do not make sense in our use case. To
be precise, we remove the Background Consistency Module (BCM) (equation
2.13) and Semantic Consistency Module (SCM) (equation 2.14). The former
is removed because the backgrounds of both the domains in our case is very
different and it makes no sense to force them to look the same. The latter is
removed because the perceptual loss was found to be rather harmful in a previous
project for our use case.

A few results can be seen in figure 3.44 and figure 3.45.

Figure 3.44: LR, SR, and HR Image

Figure 3.45: LR, SR, and HR Image

As it is clear, the defects are completely gone. But there is something even more
worrying. Both the results look exactly the same. On further investigation, it was found
that the output image is basically a copy of the reference HR image and has little to no
correlation with the input image. This was consistent on training the model multiple
times. Our idea was that the model was not adequately constrained. We wanted to

ensure that the output is correlated with the input LR upsampled image rather than the
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HR reference image. The latter must be used only to get the style features. To try and
achieve this, we added a new loss while training.

Now, instead of sampling a single = from domain X and we sample multiple z;, {i =
1,2,...,n} from X. Say the images in domain X produced by extracting the style
features from x; with the content features from y be z; ,{i = 1,2,...,n}. Ideally we
want these images to be very similar, as the final image must be closely related to the
content from the input image, and the reference image must be used only as a guide for

the styling. Hence, we introduce the following loss.
SIS e, — 2] (3.1)

Although this loss is a bit stringent, as we expect the output images for different ref-
erence images for the same input to be very similar and not exactly the same, for now
this is a good start as the model is not being constrained enough and is just copying the
output image to be the same as the reference image. A few results can be seen in figure

3.46 and figure 3.47.

Figure 3.47: LR, SR, and HR Image
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The same issue persists. Clearly the model needs to be constrained better. We need
to add modules to ensure that the output image is heavily correlated to the input image.
We look at the paper The Spatially-Correlative Loss for Various Image Translation
Tasks [Zheng er al. (2021)] (we will refer to this work as F-LSeSim for brevity) which
proposes a spatially-correlative loss that is simple, efficient and yet effective for pre-
serving scene structure consistency while supporting large appearance changes during
unpaired image-to-image (I2I) translation. Since the LIR model is heavy and takes a
long time to train, we decide to first try the loss on a simpler architecture to see if it
is worth proceeding in that direction. In this task, we use the CycleGAN as the ref-
erence architecture, but only use half of the pipeline and replace the cycle-consistency
loss with the FSeSim loss (refer section 2.2). We used the ResNet based generator with
PatchGAN discriminator (refer section 2.2). For the initial experiments, we use a crop
size of 256 for training and a patch size of 64 for the spatial correlation loss. A few

results are shown in figures 3.48 - 3.49.

Figure 3.48: LR, SR, and HR Image

Figure 3.49: LR, SR, and HR Image

Clearly, the results are promising. The defects are maintained to the extent they are
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recognisable. However, there is still a non-negligible distortion of the defects. Apart,
zooming into the background shows that it does not look as natural as the HR images.
For the defect distortion, we try data augmentation similar to that suggested in section
3.2. We keep the model same, except for training it on augmented data. A few results

are shown in figures 3.50 - 3.51.

Figure 3.51: LR, SR, and HR Image

The defects are clearly preserved much better now. However, the background still
does not look that natural on zooming in. We recall our observations in that the crop
size was vital for performance. A crop size of 128 gave the best results overall. In
this case, since the spatial correlation loss is calculated on patches on the crop taken
during training, we hypothesize using a patch size of 128 could probably help. We try
the same experiment with a crop size of 256 and a patch size of 128 without any sort of

data augmentation. The results are shown in figures 3.52 - 3.58.

Although there is minor defect distortion, it is nothing catastrophic. The background

now looks a lot better. This is important too as the defect detection network is trained
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Figure 3.55: LR, SR, and HR Image
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Figure 3.56: LR, SR, and HR Image

Figure 3.57: LR, SR, and HR Image

Figure 3.58: LR, SR, and HR Image
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on the HR images and a natural looking background ensures it does not detect too many
false positives.

We tried using different data augmentation methods as well as architectures for the gen-
erators (different U-Nets), however, we did not notice any significant improvement. We
also tried the learned spatial correlation loss, but it was extremely unstable. Hence, re-

sults from it have not been included.
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Chapter 4

Conclusion

In this report, we explore elegant solutions based on image-processing techniques for
super-resolving SEM images in face of limited data, especially when there is a large
domain shift between the LR and HR images. We show that Blind SR methods coupled
with domain transfer methods are an obvious solution. However, they are slow and
need paired data. We tackle an even more challenging version of the previous problem,
assuming that we do not have any paired data and reply completely on unsupervised
methods only. We hence explore different unpaired image to image translation tech-
niques. We show that the spatial correlation loss emerges as a powerful tool to maintain
structure while performing domain transfer, and can be used with the simplest of mod-
els to give very good results, with limited to no hackery needed.

The focus of this project was large on the image processing side of things: architectures,
losses, pipelines etc. However, moving forward we believe a significant focus must lie
on the optimization techniques too. Use of more modern and stable GANS is a direction
to proceed in to stabilize the training even further. Another manner in which optimiza-
tion comes into play is with regards to stabilising the learned spatial similarity loss. We
feel by using the fixed spatial self similarity loss on the pre-trained VGG model, we
are leaving performance on the table. However, we had no other choice as the former
loss was unstable to train with, especially on such a small dataset. MoNCE [

( )] can be a good place to start with stabilizing the learned spatial correlation loss.
Even from an image processing perspective, a lot more can be explored along the lines
of choosing better losses to compliment the spatial correlation loss. A direction to start
might be looking at the StyleGAN [ ( )] paper and works based on it.
Losses inspired from the StyleGAN paired with the spatial correlation loss may lead
to even more natural looking backgrounds while keeping the defects intact during in-
ference. Coordinate MLPs and Implicit Neural Representations are another exciting
domain of research in image super-resolution which may be looked at for ideas. Disen-

tanglement Representation Learning too may be used, either as a constraint, or even as



an independent architecture by itself. The regularization needed can be provided by the

spatial correlation loss.
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Appendix A

Interesting Ideas

In this section we describe a few more interesting ideas which look promising. They
have been mentioned here and not in the main section because of one or both of the
mentioned reasons. First, the idea looks promising for the problem statement but it does
not give good results yet. Second, the idea gives good results but more understanding

1s needed before conclusions can be made.

A.1 QS-Attention

Unpaired image-to-image (I2I) translation often requires to maximize the mutual infor-
mation between the source and the translated images across different domains, which
is critical for the generator to keep the source content and prevent it from unneces-
sary modifications. The self-supervised contrastive learning has already been success-
fully applied in the I2I. By constraining features from the same location to be closer
than those from different ones, it implicitly ensures the result to take content from the
source. However, previous work uses the features from random locations to impose the
constraint, which may not be appropriate since some locations contain less information
of source domain. Moreover, the feature itself does not reflect the relation with oth-
ers. [ ( )] deal with these problems by intentionally selecting significant
anchor points for contrastive learning. A query-selected attention (QS-Attn) module is
designed, which compares feature distances in the source domain, giving an attention
matrix with a probability distribution in each row. Queries are then selected according
to their measurement of significance, computed from the distribution. The selected ones
are regarded as anchors for contrastive loss. At the same time, the reduced attention ma-
trix is employed to route features in both domains, so that source relations maintain in
the synthesis.

Preliminaries on CUT

In the task of I2I, given an image I, € R¥*">3 from source domain X, an I2I trans-

lation model aims to translate it into G(I,) in the target domain Y , having no obvious



distinctions with the real image [, € R¥*W>*3 in that domain. Generally, there are
two auto-encoders, one G x_,y for X to Y and the other Gy _, x for the reverse. CUT
[ ( )] focuses on the single direction translation from X to Y, so it only
needs one generator G and one discriminator D, therefore, the subscript is omitted. The

objective of adversarial loss L4, can be computed as
Ladv = EIyEY log D (Iy) + ]EIZEX log (]_ — D (G ([x)) (Al)

CUT also takes advantage of the first half of G as an encoder E to provide the extra
constraint for the output from G. Basically, £ compares the feature similarities across
different domains. It extracts features from both 7, and G(I,.), and establishes the self-

supervised contrastive loss as

exp (q-k*/7)
exp (q- k+/7) + 31 exp (g k~/7)

Leon = —log (A.2)
where ¢ is the anchor feature from G (I,,), k™ is a single positive and k£~ are (N — 1)
negatives. Here 7 indicates a temperature hyper-parameter. The anchor ¢q always locates
in the fake image, and its positive k* is on the same location in the real image I,.
Besides, (N — 1) negatives k£~ are randomly selected in /,. The gradient of L, only
applies on the anchor g to train the parameters in GG, while it is detached on k™ and &,
so that G is guided for the single direction of domain translation.

The full objective is expressed as

LG = Lagw + Ly, + L,

con

(A.3)

where L is the contrastive loss defined in equation A.2, and LY  is the identity loss,
in which the positive £* and negatives £~ are from a real target domain image I,,, and
the anchor ¢ is from G (/,,). This identity loss guarantees the features from G (I,) are
similar with features from /,,, preventing G from making changes on the target domain

images.

0S-Attn for Contrastive Learning
QS-Attention [ ( )] keeps the simple setting like CUT. E is applied to

extract features from [, and G (I,)). These features are supposed to establish the con-
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Figure A.1: The overall structure of QS-Attention. The source domain image [, is
translated by the generator GG into a target domain image G(I,). The en-
coder F extracts features from these two images, then the Q.S — Attn mod-
ule selects significant features to establish the contrastive loss. A discrimi-
nator D is also used to construct the adversarial loss
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Figure A.2: The details of QS-Attn. The encoder £ extracts features I, and F), from
I, and G (I,), then F, is reshaped and computed to derive the attention
matrix A,. Each row in A, is sorted by its metric of the significance, and
the selected N rows forming the Ags. Agg is further applied to route
both source and target domain value features, and obtain positive, negative
and anchor features to construct the contrastive loss L.,,. Positive and
negatives are from the real image /,, while anchors are from the translated
image G (I,). The patches in orange, blue and green indicate the positive,
negative and anchor, respectively.
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trastive loss L, defined in equation A.2. The key module QS-Attn, setting up Lcon

across two domains, is illustrated in figure A.2. Instead of the simple random strategy,
the idea of attention is employed, which first compares a given query with keys, and
then selects the query based on the comparison result. However, any separated projec-
tion head for query, key and value are not used like the common attention, therefore,
without adding extra model parameters in both G and D.

Attention for query selection

CUT randomly selects the anchor ¢, positive £ and negatives k~ to compute the con-
trastive loss in equation A.2, which is potentially inefficient, because their correspond-
ing patches may not come from the domain-relevant region. Note that some features do
not reflect the domain characteristics, they tend to be kept during the translation. There-
fore, the L.,, imposed on them is not vital for G. The intention is to choose the anchor
¢, and compute L., on the significant ones which contains more domain-specific in-
formation. Two forms of attention are to be noted, global attention and local attention.

Global Attention

Based on the above observation, the aim is to define a quantitative value for each po-
tential location, which reflects the significance of the feature. The quadratic attention
matrix is adopted, since it exhaustively compares each feature with all other locations,
it accurately reflects the similarities with others, as is shown in figure A.2. Particu-

larly, given a feature F, € R#>*WxC

in the source domain, it is first reshaped into a 2D
matrix Q € R¥"W*Y and then multiplied by its transposed K € RE*#W  Then each
row of the matrix is input to the softmax function, leading to a global attention matrix
A, € REWXHW " Consequently, significant features can be measured according to the

entropy H, of each row in Ay, which is computed as in

HW
Hy(i) = = Ay(i, j) log Ay(i, j) (A.4)
j=1

Here ¢ and j are the indices of the query and key, corresponding to the row and column
in A,. When H,(7) approaches to 0 , it means that in the i-th row, only a very few key
locations are similar with the ¢-th query. Hence it is assumed that it is distinct enough
and is important to be constrained by L.,,. To select all the significant queries, the rows

of A, are sorted by the entropy H, in the ascending order, and the smallest /N rows are
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selected as the QS-Attn matrix Ags € RV*#W . Note that Agg is fully determined by
the features in I, and has no relation with G ().

Local Attention

Though non-local attention can obtain the global context, it smooths out the detailed
context surrounding the queries. Local attention measures the similarity between a
query and its neighboring keys within a constant window of w X w and stride of 1,
which can capture the spatial interactions in local regions, and reduce the computation
cost. Given a reshaped query matrix Q; € R¥"W*¢ it is multiplied by the local key
matrix K; € R? Wxw?xC gnd input to the softmax function, leading to a local attention

matrix A; € REW*v* The local entropy H; is computed in each row as

w2

Hy(i) = = Ai(i, j)log Ay(i, j) (A5)

Jj=1

Here 7 and j are the indices of the query and key. The smallest NV rows in A, are selected
by sorting /; in the ascending order to form Agg. For the value routing, the selected
value matrix Vj, € RV*%**C ig obtained by selecting the N indices in local value ma-
trix V; € RHEWxw?xC,

Cross domain value routing for contrastive learning

The reduced Agg is used as the attention matrix to route the value features from both
source and target domains. Here it is emphasized that Agg captures the global or local
relation by comparing the query with keys, and it provides useful high-order descrip-
tions about the shape and texture of /. Using it to route features helps to enlarge the
receptive field of the selected queries, so that better features, which consider the con-
text of I, can be formulated. Moreover, the relation defined by A is also required to
be kept during the image translation. So Agg is imposed on the features from both I,
and G (I,,), routing the corresponding value to form the anchor, positive and negatives.
One positive and (N — 1) negative features are located in the real image . N anchors
are from the fake image G (/). The self-supervised contrastive loss is established as

equation A.2, using these features to constrain the translation.
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A.2 MoNCE

Perceiving the similarity between images has been a long-standing and fundamental
problem underlying various visual generation tasks. Predominant approaches measure
the inter-image distance by computing pointwise absolute deviations, which tends to
estimate the median of instance distributions and leads to blurs and artifacts in the gen-
erated images. MoNCE [ ( )] is a versatile metric that introduces image
contrast to learn a calibrated metric for the perception of multifaceted inter-image dis-
tances. Unlike vanilla contrast which indiscriminately pushes negative samples from
the anchor regardless of their similarity, it proposes to re-weight the pushing force of
negative samples adaptively according to their similarity to the anchor, which facilitates
the contrastive learning from informative negative samples. Since multiple patch-level
contrastive objectives are involved in image distance measurement, optimal transport
is introduced in MoNCE to modulate the pushing force of negative samples collabora-
tively across multiple contrastive objectives.

Given images in two domains, image translation aims to translate images from the in-
put domain to appear like images from the output domain. The datasets for training
translation model could be unpaired (i.e., unpaired image translation) and paired (i.e.,
paired image translation), and different loss terms are entailed for image translations
with different dataset setting. GAN loss is usually shared across unpaired and paired
image translation to fight against artifacts in translated images, and other loss terms
are usually designed specifically to fulfill various objectives, e.g., the cyclic consisteny
loss [ ( )] for content preservation or the perceptual loss [

( )] for assessing human perceptual similarity. However, most metrics are designed
by computing the absolute mean error which tends to minimize the average deviation
to all possible instances and leads to blur in the generated images.

MOoNCE formulates the contrastive loss as a versatile metric in various translation tasks,
just by properly selecting the positive and negative pairs. For unpaired image transla-
tion, the previously proposed PatchNCE [ ( )] has validated the effective-
ness of contrastive learning for the preservation of content. PatchNCE aims to maximize

the mutual information between patches in the same spatial location from the generated
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image X and the ground truth Y as

N
eviyi/T
LX,Y)=-=S"lo (A.6)
( ) 12:1: & eTiyi/T 4 Zévzl eri'yi/T
J#i
where X = [x1,29, -+ ,zn]and Y = [y1, 42, - - - , yn] are encoded image feature sets,

7 is the temperature parameter, /V is the number of feature patches. Normally, mul-
tilayer features (1st, 4th, 8th, 12th and 16th layers of the encoder) are employed in
PatchNCE, which is formulated as £™(X,Y) = 7, £ (X;,Y;), where X; and Y; de-
note the corresponding feature sets in [ layer of the encoder.

Considering the superior performance of PatchNCE for image translation tasks, con-
trastive learning can serve as a versatile metric in various image translation tasks. How-
ever, the vanilla objective of PatchNCE will repel all negative samples indiscriminately
regardless of their similarity to the anchor, which tends to be sub-optimal as the inher-
ent information of negative samples is not equal.

Weighted Contrastive Objective (WeightNCE)

As each negative sample poses different similarity to anchor, the pushing force of each
negative sample should be accordingly adjusted for better contrastive learning [

( )]. To adjust the pushing force of a negative samples, a simple yet feasible
approach is to adjust its weight in the contrastive objective. According to equation A.6,
a higher weight of a negative pair indicates a higher importance in contrastive objec-
tive, i.e., enlarged pushing force for this negative pair. Thus, the weighted version of

equation A.6 (denoted by WeightNCE) can be formulated as

N eTii/T

— log
Z en /T 4 QN — 1) Y50 wi - il
J#i

(A7)

=1

where () denotes the weight of negative terms ((Q = 1 by default) in the denominator,
w;;(j # i) denotes the weight between sample y; and anchor z; and is subjected to
Sibiwi; =10 € [1,N].

Thé#\jveighting strategy could essentially boil down to two categories: assigning higher
weights to hard negative samples (referred as hard weighting w;; ) and assigning higher
weights to easy negative samples (referred as easy weighting w;;). For the contrastive

objective of a single patch, hard weighting weights w;; and easy weighting weights w;;
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are determined with a positive and negative relation to the similarity between sample y;

and anchor z; as

N e@i-vj)/B B e(1—zi-y;)/B (A8)
wi = — ’LUZ. . = .
J Z;V:I e(@iy;)/B J z;‘le e(1—zi-y;)/B
f is a temperature parameter. [ ( )] conclude that for unpaired image

translation, there is few overlap between the similarity histograms of positive and neg-
ative pairs after contrastive learning, which indicates that positive and negative pairs
can be easily pushed apart. In this end, the hard weighting strategy may help to boost
the performance, as the model can focus on learning from more informative negative
samples (hard negative samples) which has been proved to be beneficial for contrastive
learning [ ( ), ( )].

However, for paired image translation, there is severe overlap for the similarity his-
togram of positive and negative pairs, which indicates many negative samples are hard
to be distinguished from the positive samples. In this case, hard weighting may not
make for contrastive learning as naively using too hard negative samples may degrade
the contribution of moderate ones, yielding worse representation [ ( )].
[ ( )] conjecture that easy weighting may contribute to the contrastive
learning in this scenario by assigning lower weights to these hard negative samples
which reduces their effects in the contrastive objective. The complete details of validat-
ing the above conjecture is beyond the scope of this report and can be found in [

( )] for those interested.

Modulated Contrastive Objective (MoNCE) As re-weighing strategies are being ex-
plored, the total weight associated with a feature (z; or y; ) is expected to be constant,

thus yielding below constraints

N N
Swi=1, Y wy=1 ije1,N] (A.9)
i=1 Jj=1

Considering the contrastive objective as illustrated in figure A.3, a feature y; serves as
negative sample for multiple sub-objectives. As the total weights associated with y; is
constant (i.e., ZZN:1 w;; = 1), there may be conflicts for the weighting strategies of y;
in different sub-objectives, e.g., several sub-objectives all expect a higher weight for

y; while the total weights of y; is constrained. Therefore, the aim is to modulate the
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assignment of weights w;; (i, j € [1, N|, i # j) across multiple sub-objectives with the
constraint of constant total weight.
Targeting to modulate the weights assignment for all negative pairs, a weight modu-

e
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Figure A.3: Framework of MoNCE. There are multiple sub-objectives for the con-
trastive learning between feature set X = [z1,29,23, -+ ,2y] and YV =
[Y1,Y2,Y3, -+, yn]|. To modulate the weights of negative pairs across mul-
tiple sub-objectives, optimal transport with a cost matrix C' (defined by
Cij = e¥ivi /8 for unpaired translation, Cij = e(1=i:93)/8 for paired transla-
tion) is conducted between feature sets X and Y to minimize the total trans-
port cost, yielding an optimal transport plan which serves as the weights of
the corresponding negative pairs.

lation goal shared across all contrastive sub-objectives should be determined. The easy
weighting strategy is taken as an example to derive the final weight modulation goal.
By assigning higher weights to negative pairs with low similarity, the easy weighting
strategy for a contrastive sub-objective in equation A.7 is equivalent to reducing the
negative term Zévzl Wjj - e®'¥%/7_ As the contrastive objectives of all image patches are
summed to formjf}ie final objective, the shared modulation goal across multiple con-
trastive objectives can be regarded as reducing the total loss of negatives terms. To

derive the expression mathematically, the objective of the modulation goal is formu-

lated as minimizing the total loss of negative terms with regards to w;;,7,7 € [1, N]

as
N N
min E g Wjj - e®iYilT (A.10)
wijvlde[lvN] i=1 ]:1
J#i

The formation of equation A.10 with constraint in equation A.9 can be regarded as
an optimal transport (OT) [ ( )] problem between [z1, xo, - -+, xy] and
[y1, Y2, ,yn] with a cost matrix C' defined by C;; = e*¥/# fori # j and C;; = inf

for ¢« = j. Similar to weighting temperature in equation A.8, [ in the cost matrix C
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serves as a cost temperature that indicates the smoothness of the optimal transport. A
smaller 3 tends to assign higher weights for small cost entries C;; and a large /3 tends
to assign equal weights for all cost entries. Detailed parameter study of 3 can be found
in the experiment part of [Zhan er al. (20220)].

The optimal transport aims to retrieve a transport plan 7" which minimizes the total

transport cost as formulated below.
min(C,T), st (T7) =1, (TT?) ~1 (A.11)

where (C,T') denotes the inner product of C' and 7. Thus, solving the transport plan
T'is equivalent to solve the weight parameters as w;; = T;;. The Sinkhorn algorithm
[Cuturi (2013)] can be applied to equation A.11 for approximating optimal transport
solution, yielding the desired optimal transport plan 7". With the derived transport plan
matrix 7' as the weights of negative pairs, the modulated objective for easy weighting
strategy is accordingly determined. For hard weighting strategy, the modulated objec-
tive can be derived similarly, just redefining the cost matrix C' in equation A.11 as C;; =
e==w3)/8 for i = j and Cy; = inf fori = j.

Preliminary Results We paired the MoNCE loss along with the spatial correlation loss
as described in section 3.4. We use the authors’ code [Zhan er al. (2022a)] with the
only change being the added spatial correlation loss. Since we are considering unpaired
image translation, we use the "CUT_MoNCE" code. The parameters are the default
ones as present in [Zhan er al. (2022a)]. The weight used for the spatial correlation loss

is 10. The results are shown in figures A.4 - A.10.

Figure A.4: LR, SR, and HR Image

These are some of the best results we have had so far. In fact, the defects in figure
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Figure A.8: LR, SR, and HR Image
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Figure A.10: LR, SR, and HR Image

A.10 looks a lot more natural than what we got using only the spatial correlation loss.
However, the reason this is included in the appendix and not the main text is due to
the fact that adding this MoNCE loss to the spatial correlation loss makes the training
relatively unstable. A few examples of this can be seen in figures A.11 and A.12, where
the results on repeating the exact same training again led to a lot worse results. Although
the structure of defects is mostly preserved, the background looks really unnatural.

More work is needed to stabilise the training of MoNCE. Another idea is to try and use

Figure A.11: LR, SR, and HR Image

MOoNCE to stabilise the training of the learned self-similarity loss. As of now, MoNCE
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Figure A.12: LR, SR, and HR Image

is a very promising addition but nothing conclusive can be drawn from it yet.
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Appendix B

New Set of Images

We obtained a new set of images from KLA on June 3, 2022. There are two folders with
names kla_AEI_2x_2FA_p5m and kla_CuCMP_2x_4FA_Ip75um. Each folder has two
sub folders with names 5/2PD and 1024PD. The former is a 2x SR dataset whereas the
latter is a 4 x dataset. The HR images in the folders /024PD are of the size 976 x 976
and the corresponding LR images are of the size 244 x 244. The HR images in the
folders 512PD are of the size 464 x 464 and the corresponding LR images are of the
size 232 x 232. The kla_AEI_2x_2FA_p5m folder contains 18 LR and HR images for
each scale factor. The kla_CuCMP_2x_4FA_Ip75um folder contains 42 LR and HR
images for each scale factor. Unlike the dataset we had been working with so far, there
is no obvious domain shift between the LR and HR images in the new dataset for both

the folder.

B.1 Visualization

Figure B.1: 1024PD LR images from the folder kla_AEI_2x_2FA_p5m

A few 1024PD HR images and the corresponding LR images from the folder
kla_AEI 2x_2FA_p5m can be seen in figures B.2 and B. 1 respectively. Similarly, /024PD
HR and LR images from the folder kla_CuCMP_2x_4FA_Ip75um can be seen in fig-
ures B.4 and B.3 respectively. On a first inspection, although there is no obvious do-

main shift between the LR and HR images, there are obviously differing noise levels



Figure B.2: 1024PD HR images from the folder kla_AEI 2x 2FA_p5m

Figure B.3: 1024PD LR images from the folder kla_CuCMP_2x_4FA_Ip75um

Figure B.4: 1024PD HR images from the folder kla_CuCMP_2x_4FA_Ip75um
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and sharpness between them. Also, on cycling through a few images, the data looks
to be aligned. Although, this will need to be properly verified. It should be noted that
the images are not to scale. Given that the HR images are 4x the LR images in both

dimensions, it is impossible to represent them to scale

B.2 Preliminary Results

We show results on images from the kla_CuCMP_2x_4FA_Ip75um dataset. We also
restrict to the 4x SR case, as it is easier to spot the difference between a bicubically
upsampled image and the HR image at higher SR scales. This will let us know how
well is our model doing compared to simply upscaling. Another thing to be noted that,
we do not utilise all of the images in the folder under consideration. The reason being
one type of image (see the middle images in figures B.4 and B.3) look very different
from the rest of the images in the dataset, and we suspect they might throw off an un-
supervised domain transfer network. These images have the word CMPTop as a part of
their names. Excluding these images, we are left with 28 images. We use 21 of these
for training and 7 for validation.

As we had been working with image translation methods, we upscale the LR images to
be of the same size as the HR images, and train an unsupervised SR network between
the LR and HR images. We use the same experiment setting as mentioned in the exper-
iments part of A.2. A few results can be seen in figures B.5 - B.7. We follow the usual
format for results: LR image upscaled on the left, the output image in the center, and

the ground truth or reference image on the right.

It is clear that the SR image is not the best approximation of the ground truth image.
However, is it doing any better than simple upscaling? It does look like that to the naked
eyes, but it is hard to quantify. Hence, we use the gradient maps of the LR upscaled, SR,
and HR images to explain the observations in a more quantifiable manner. The gradient
maps are shown in figures B.8 - B.10. Please zoom into the PDF to view the number on

the bar.
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Figure B.8: Gradient maps of LR, SR, and HR Image
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Figure B.10: Gradient maps of LR, SR, and HR Image

We now have something quantifiable. The gradient maps of the ground truth images
have thin but strong edges. This is not the case in the input images. The gradient maps of
the output images are somewhere in between: better than the input images in general,
but not as good as the HR ones. Also, the input image’s gradient map has a lot of
artefacts which is not present in the gradient map of the HR image, and significantly

reduced in the gradient map of the output image.

B.3 Moving Forward

We feel like the performance of the model on part of the new data it was trained and
tested on is not adequate. It is better than a plain upscaling, sure. But, the output im-
ages have fairly lesser sharpness than the ground-truth images. We feel that given the
availability of paired data, an unsupervised image to image translation method might
not be the best way to approach this data. There is little to no obvious shift between the
LR and HR images. The only difference are the lack of details and difference in noise

levels due to data being captured at a different sampling rate. This is similar to other
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SR problems which the lab has experience with and for which a well trained SR model
sufficed without the need for much hackery.

We feel that for this dataset too, a paired SR model is the way to go. This will also allow
the training of the entire dataset together without removal of images which appeared to
be from a different domain. We say this because given the unsupervised nature of the
training, having images from two domains along with the spatial correlation loss and
discriminator loss can confuse the model about what to do with the style of the image.
For the discriminator, both styles will be equally valid as it would have seen both styles
in the training data. For the spatial correlation too, a change in color while keeping the
structure does not increase the loss, hence both are equally valid solutions with regards
to this loss too.

A paired SR training additionally constrained with a pixelwise loss like the L1 loss or
perceptual loss can prevent the aforementioned issue. The discriminator then has to dif-
ferentiate between LR and SR samples from the same image, forcing it to differentiate
based on blur and noise levels only, and not based on color or domain. The presence
of a pixelwise loss also prevents the generator from needlessly flipping the style of the
image while keeping the structure intact. Given the presence of a pixelwise loss, we do
not see the necessity for the spatial correlation loss; however, we see no reason as to

why it should hurt performance.
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