
MEMORY ENCRYPTION TO PROTECT

PROCESSES AND DATA

A Project Report

submitted by

PRANJAL JAIN

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY AND BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

JUNE 2022

THESIS CERTIFICATE

This is to certify that the thesis titled MEMORY ENCRYPTION TO PROTECT

PROCESSES AND DATA, submitted by PRANJAL JAIN, to the Indian Institute of

Technology, Madras, for the award of the degree of MASTER OF TECHNOLOGY

AND BACHELOR OF TECHNOLOGY, is a bona fide record of the research work

done by him under our supervision. The contents of this thesis, in full or in parts, have

not been submitted to any other Institute or University for the award of any degree or

diploma.

Prof. Chester Rebeiro
Project Guide
Associate Professor
Dept. of Computer Science & Engi-
neering
IIT Madras, 600 036

Prof. Nitin Chandrachoodan
Project Co-Guide
Associate Professor
Dept. of Electrical Engineering
IIT Madras, 600 036

Place: Chennai

Date: 17 June 2022

ACKNOWLEDGEMENTS

I would firstly like to thank my project guide Prof. Chester Rebeiro for giving me the

opportunity to work in this field and explore it. His insights have been instrumental

in the completion of this project. I would also like to thank my co-guide Prof. Nitin

Chandrachoodan for his constant support. I would further like to extend my gratitude

to Arjun who has constantly guided me throughout the project. This project would not

have been possible without his patient explanations and help.

Lastly, I would like to thank my friends, for their help and support, and family, who

kept pushing me to work hard throughout.

i

ABSTRACT

KEYWORDS: Cloud computing, Prince, Memory encryption, Side channel, Cold

boot attack, ELF, SHAKTI, Key management.

The increasing popularity of cloud computing has led to a large number of users, busi-

nesses and organizations shift to cloud and web services in order to satisfy their re-

quirements for higher storage and computation power. This could, however, prove to

be a double edged sword which makes your data vulnerable to attacks from other users

as well as the service provider. In this thesis, I present Prince, a memory encryption

engine, to mitigate and prevent these risks so as to make the hardware more secure and

immune to various cyber attacks. Prince ensures that all the data leaving the L1 cache is

encrypted, thereby making it impossible for other users to make sense of the data, even

in case they gain access to it.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF FIGURES v

ABBREVIATIONS vi

1 INTRODUCTION 1

2 BACKGROUND 2

2.1 Side channel attacks . 2

2.1.1 Cold boot attacks . 2

2.2 Prince . 3

3 RELATED WORK 4

3.1 Encryption schemes . 4

3.2 Key management . 4

4 OVERVIEW 5

4.1 Prince encryption . 5

4.2 Changes to SHAKTI . 6

4.3 Advantages . 7

4.4 ELF encryption . 7

5 TESTING AND RESULTS 12

5.1 Running encrypted ELF on SHAKTI 12

5.1.1 Running normal programs on SHAKTI 12

5.1.2 Encrypting the ELF . 12

5.1.3 Issues . 13

5.2 Running encrypted ELF on SHAKTI with GDB 13

iii

5.2.1 Running procedure . 13

5.2.2 Issues with GDB . 13

5.3 Running encrypted code.mem on SHAKTI 14

5.3.1 Encrypting the code.mem 14

5.4 Running on Spike . 15

6 FUTURE SCOPE 16

6.1 Testing and verification . 16

6.2 Key management . 16

7 CONCLUSION 17

A CODE 18

A.1 Changes to cache modules in SHAKTI 18

A.2 Encryption script: ELF . 19

A.3 Encryption script: code.mem . 21

B PROCEDURES 23

B.1 Running files on SHAKTI . 23

B.2 princeutils.cpp . 23

B.3 Running SHAKTI on GDB . 23

B.3.1 Setup . 24

B.3.2 Running GDB . 24

LIST OF FIGURES

4.1 This figure shows the general concept of Prince. In SHAKTI, however,
we do not have a L2 cache and hence, Prince is placed directly between
the L1 cache and the memory . 6

4.2 This figure shows the placement of Prince in SHAKTI. 7

4.3 This figure shows an original ELF file 9

4.4 This figure shows an ELF file with first layer of encryption. The last
section is added in this step. 10

4.5 This figure shows an ELF file with both layers of encryption. 11

5.1 The error faced in this procedure. 13

5.2 The error faced in this procedure. 14

5.3 The error faced in this procedure. 15

v

ABBREVIATIONS

PT Plain Text

GCM Galois/Counter Mode

OS Operating System

ELF Executable Linker Format

RAM Random Access Memory

GDB GNU Debugger

L1 Level 1

FPGA Field Programmable Gate Array

PC Program Counter

vi

CHAPTER 1

INTRODUCTION

The last few years have seen a rapid movement towards cloud computing in various

spheres. Businesses like banking, IT and trading have found it more convenient to

shift to cloud services instead of housing their own data centers and servers due to the

reduction in cost, as a result of a pay-per-use model, scalability, wherein the amount of

computing power or space they have can be varied as per their need at a short notice,

and the overall benefit of avoiding the hassle of maintaining the infrastructure. Other

users on the other hand find cloud services an attractive alternative as it allows them to

access their data on the go from anywhere in the world.

However, while this solution does look cheap, easy and hassle free, it comes with

the possibility of an increased risk of others gaining access to your data. Since cloud

services effectively involve multiple users, isolated in different virtual environments,

using the same hardware, it opens them up to data leaks and breach of privacy. Further,

all the data could be vulnerable if the service provider itself is untrustworthy. To elim-

inate the possibility of side channel attacks from other users or cold boot attacks from

the service provider itself, in this work, I present a memory encryption engine and its

implementation.

CHAPTER 2

BACKGROUND

In this chapter we aim to explain a couple of attacks that users are more vulnerable to

in a cloud environment. We also explain where Prince comes in and how it is a part of

the solution.

2.1 Side channel attacks

Side channel attacks aim to gain information about the data or computations being

performed by another user through various observations and readings of the physical

state of the system or the signals produced by it. For example, while an adversary

sharing hardware resources with a victim can gain information about the cache by filling

it up repeatedly and noting the blocks which are emptied when the victim’s program

runs, an adversary in physical proximity to the victim’s system on the other hand can

monitor the power and radiation signals emitted by it and gain useful data.

These attacks usually aim at exfiltrating the information that the victim program has

rather than change the course of its execution. With gadgets of higher accuracy in their

readings being more readily available in recent times, these attacks have become easier

to carry out and hence, an important part of our threat model.

2.1.1 Cold boot attacks

Cold boot attack is a type of a side channel attack that involves an adversary that has

physical access to the victim’s RAM. While contents in the RAM are supposed to decay

within a few seconds, the charge can be made to stay on the capacitor for much longer

periods of time using freeze spray. Further, even once decayed, bits can be reconstructed

as they fade away in a predictable manner. The attacker is then free to dump the contents

of the memory in another system and analyze it to extract information from it.

2.2 Prince

Keeping in mind that adding software also adds to the area that is exposed and vul-

nerable to attacks, software solutions alone would not suffice to solve the problem.

Furthermore, while choosing hardware solutions, we need to be mindful that it does not

affect the overall performance of the processor, thereby, beating the purpose.

Hence, we propose Prince, a lightweight cipher that will be used to encrypt and

decrypt all the data leaving and entering the processor respectively. The basic concept is

such that all data leaving the L1 cache (which is private to a processor) will be encrypted

and any block of data being loaded into the L1 cache will be decrypted just before it.

Hence, only when the data is present in the processor, it is in decrypted/plain text form

and at all other times, it is encrypted. This ensures that even if an adversary was to get

their hands on the data, it would be encrypted and impossible to decipher without the

cipher itself.

3

CHAPTER 3

RELATED WORK

This chapter contains some brief details about similar concepts having been imple-

mented and documented in other papers. While some of them elaborate on the encryp-

tion itself, most of them provide details about the key management.

3.1 Encryption schemes

Yin et al. (2020) mentions the use of AES-GCM architecture. It uses 4KB blocks to

encrypt data to reduce the frequency at which the data needs to be encrypted. We,

however, will be encrypting data at a much smaller boundary to ensure more security.

Further, the paper also mentions usage of a random number generator and counters in

their encryption scheme.

3.2 Key management

Yin et al. (2020), Gueron (2016a) and Gueron (2016b) mention an integrity tree scheme

(a specific implementation of Merkel Trees) which is used to read and verify; and write

and update data as and when required with the help of the key stored on chip securely.

SHAKTI itself does have an integrity tree and the same concepts and resources can be

used for this purpose as well. This is one of the future scopes that can be implemented

along with Prince once it is completely ready and integrated. More on this is elaborated

in 6

CHAPTER 4

OVERVIEW

Here I will be elaborating on how Prince works, it’s placement within the processor, its

advantages and encryption of ELFs in detail.

4.1 Prince encryption

The Prince cipher targets low latency. It has a 128 bit key k divided into 2 parts k0 and

k1, and encrypts in blocks of 64 bits. The encryption is done as shown below:

k := k0||k1

α := k0,63k0,62...k0,0k1,63k1,62...(k1,1
⊕

k1,0)

k
′

0 := k0,0k0,63k0,62...(k0,1
⊕

k0,63)

k
′
:= k0||k

′

0||k1

Steps for encryption

1. XOR the input with k0

2. Apply the core function with k1

3. XOR its output with k
′
0

Steps for decryption

1. XOR the input with k
′
0

2. Apply the core function with (k1
⊕

α)

3. XOR its output with k0

Figure 4.1: This figure shows the general concept of Prince. In SHAKTI, however, we
do not have a L2 cache and hence, Prince is placed directly between the L1
cache and the memory

Core function

It has 3 parts

1. It consists of 5 forward rounds that take a cycle each.

2. It has one middle round which takes 2 cycles. This round uses a 4-bit sandbox

3. It again has 5 backward rounds which take a cycle each. This consists of mul-
tiplication by a 64x64 matrix M 0 and a shift row similar to the one in AES but
operating on 4-bit nibbles rather than bytes.

4. Overall it takes 12 cycles to encrypt or decrypt a block. This also means that if
we have 12 such modules in hardware, no block has to wait to get encrypted or
decrypted as there will always be a Cipher ready to service it.

4.2 Changes to SHAKTI

The Prince module is placed between the L1 cache and the memory in SHAKTI since

there is no L2 cache in SHAKTI. Appropriately, all the relevant cache modules were

modified so as to instantiate Prince modules within them. Then the rules were modified

6

Figure 4.2: This figure shows the placement of Prince in SHAKTI.

to encrypt any data leaving the cache module and decrypt any data just being loaded

into it. More details on this are given in A.1

4.3 Advantages

The Prince module being used for encryption and decryption has a few advantages as

compared to other MEEs.

• It is a lightweight and fast module.
– It requires no warm-up phase and hence, can start the encryption instanta-

neously.

– If implemented in modern chip technology, low delays resulting in moder-
ately high clock rates can be achieved.

• It is relatively compact and low cost.
– PRINCE circuit’s large parts of the implementation can be used both for en-

cryption and decryption, reducing the area of the circuit on chip and making
it favourable for small area chips.

– For the same time constraints and technologies, PRINCE uses 6-7 times less
area than PRESENT-80 and 14-15 times less area than AES-128.

• Prince cipher is quite robust against various attacks despite the fact of the same
circuit for encryption and decryption.

4.4 ELF encryption

Any program passing through to the L1 cache gets decrypted. Also, it is the job of the

ELF loader, which is also a program, to read the binary and make it ready for execution.

7

Since the ELF is the data for the loader program, which is decrypted at a layer before

it, if we supply a regular ELF file to the loader, it will read its decrypted version which

will be gibberish.

Hence, the loader as well as the nature of the ELF needed to be changed. The ELF

has a main encryption as well as a secondary encryption and one of these 2 layers of

encryption are decrypted by the Prince Cipher and the loader.

8

Figure 4.3: This figure shows an original ELF file

9

Figure 4.4: This figure shows an ELF file with first layer of encryption. The last section
is added in this step.

10

Figure 4.5: This figure shows an ELF file with both layers of encryption.

11

CHAPTER 5

TESTING AND RESULTS

In this chapter I will cover various methods through which we have tried to test and

verify the working of Prince with SHAKTI. I will also include the various issues and

challenges faced in the process.

5.1 Running encrypted ELF on SHAKTI

5.1.1 Running normal programs on SHAKTI

Usually the method to run programs on SHAKTI is as follows:

1. Compile the code, generate the boot files and link verilator.

2. Run make hello which compiles the hello.c, generates its elf and uses elf2hex to
generate a code.mem.

3. Copy over the code.mem to the folder that contains the SHAKTI executable and
run ./out.

Since SHAKTI does not have an OS, it is not possible to print anything on the

terminal using printf. It runs the code on bare metal, generates the output and stores it

in a file called app_log, which, in this case, will have the output “hello world”. More

information on the setup is given in B.1.

5.1.2 Encrypting the ELF

Our approach here was to encrypt a simple hello world ELF using a cpp script and then

run it on the modified SHAKTI to verify if the entire setup works. More details on this

script are included in A.2 and B.2.The approach would have been the following:

1. The script only performs one level of encryption on the ELF, i.e., it only encrypts
the sections and adds another note section. This is because we are directly going
to be loading this on SHAKTI instead of fetching it from the RAM where it would
be in double encrypted form.

Figure 5.1: The error faced in this procedure.

2. Using this encrypted ELF, we would generate a code.mem through elf2hex.

3. This would then be run on SHAKTI the same way as mentioned above.

5.1.3 Issues

Ultimately we were not able to use this method to completion since we faced errors in

step 2 which involves generating the code.mem. Changing the parameters and debug-

ging the ELF also did not reveal the reason for the error. Hence, this procedure had to

be abandoned since it was not possible to continue the testing without the code.mem.

5.2 Running encrypted ELF on SHAKTI with GDB

Since the generation of the code.mem from the encrypted ELF was causing the prob-

lem, our second approach involved running the encrypted ELF directly on the modified

SHAKTI using gdb.

5.2.1 Running procedure

Various parameters need to be changed before compiling the SHAKTI code to include

support for debugging with GDB. In the end, while linking verilator, we need to link it

with GDB as well. More information on this is present in the B.3.

5.2.2 Issues with GDB

One of our first observations was that GDB was not able to run the encrypted ELF as it

is. This was because GDB uses the section names which had all been encrypted while

13

Figure 5.2: The error faced in this procedure.

encrypting the contents of the ELF. Leaving the last section of the ELF (apart from the

note section) unencrypted solved this issue since it contained all the section names.

However, with all the function names and contents encrypted, it was still not pos-

sible to debug the ELF effectively since GDB was not able to identify the functions

or display the instructions that would be executed. Further, the PC jumps to 0x0 after

the first instruction executes and then gets stuck there. Again, this method had to be

abandoned since it did not yield any information.

5.3 Running encrypted code.mem on SHAKTI

5.3.1 Encrypting the code.mem

The third approach used to try and test Prince with SHAKTI is as follows:

1. Remove the encryption part from the script used above. This ensures that the
script just generates a copy of the ELF with all sections size aligned to 8 byte
boundary.

2. Use this ELF to generate a code.mem. Then use another script to encrypt the
code.mem by taking 8 bytes at a time. Snippets from this code can be found in
A.3

3. Run this code.mem on SHAKTI as mentioned above.

Running this code.mem directly on SHAKTI does not yield the expected result and

it goes into an infinite loop. Running it on GDB did not yield the desired results either.

14

Figure 5.3: The error faced in this procedure.

The procedure to do the same are given in B.3.

5.4 Running on Spike

While some work on this had been done by previous students, we discovered quite a

few issues with setting up Spike to run the ELFs for our purpose.

Firstly Spike does not have a cache memory. The architecture is quite direct and

adding cache to it is not straightforward. Further, the ELF alignment would also cause

issues in Spike. To top it off, as has been reported by previous students, running the

entire setup on Spike would be quite slow and inefficient. It would become significantly

different from the original environment that we would want to run it in. Hence, this

method was abandoned after elaborate discussions.

15

CHAPTER 6

FUTURE SCOPE

This chapter will go over the work that can be carried forward with respect to Prince

and how the design and implementation can be improved further.

6.1 Testing and verification

Currently the testing of Prince is yet to be completed in verilator. The next step would

be to test it and run the same on FPGA. Once this is done, the testing can be deemed

completed and work can be done on improving the design and verifying it against at-

tacks.

6.2 Key management

Currently one single key is being used to encrypt and decrypt all the data. Once this can

be verified to be working, work would need to be done on different programs having

different keys. The storage and security of keys also needs to be looked at and improved.

CHAPTER 7

CONCLUSION

In conclusion, the concept of a memory encryption engine can be absolutely vital as far

as mitigation techniques are concerned with respect to side channel attacks. While new,

there has been a significant amount of work done in this field in the recent years.

While a memory encryption engine does improve the overall safety of the system,

the challenge arises when trade-offs between security and performance are considered.

A fine grained encryption might lead to a higher latency or more number of clock cycles

which might beat the purpose altogether. A design that can strike a balance between the

two is the need of the hour.

While Prince, our choice for the memory encryption engine, is designed, tested

standalone and integrated with SHAKTI, the testing yet remains. Testing Prince in this

environment and vetting it against side channel attacks created by us is the way to move

forward.

APPENDIX A

CODE

Here I will be including code and other important information. All the code for this

project can be found here.

A.1 Changes to cache modules in SHAKTI

This section explains the changes made to the SHAKTI cache code and how to under-

stand them.

1 ‘ifdef MEM_ENC_1

2 //module instantiations and temporary value declaration/

instantiation //CLEAN LATER

3 //for Prince cipher

4 Reg#(int) encr_write_pending <- mkReg(0);

5 Reg#(int) dec_read_pending <- mkReg(0);

6 Reg#(int) dec_read_ctr <- mkReg(0);

7 Reg#(int) dec_read_get_ctr <- mkReg(0);

8 Integer my_blocksize = valueOf(‘dblocks);

9 //Integer my_blocksize = blocksize;

10 Modular_prince_ifc #(‘paddr, TMul#(‘dblocks, TMul#(‘dwords, 8)))

prince <- mkmodular_prince;

11 Modular_prince_ifc #(‘paddr, ‘respwidth) prince_read[

my_blocksize];

12

13 for(Integer i=0;i<my_blocksize;i=i+1) begin

14 prince_read[i]<-mkmodular_prince;

15 end

16 ‘endif

17

18 ‘ifdef MEM_ENC_1

19 //rule to send data to be written for encryption to Prince module

20 rule rl_encr_put ;

21 let x = ff_write_encr_request.first;

https://drive.google.com/drive/folders/1EXntXJf3IYIR8Fnk4wliJ0Vwl41EY8t6?usp=sharing

22 ff_write_encr_request.deq;

23 prince.encrypt_block_d(x,’h084c2a6e195d3b7f0000000000000000’);

24 endrule

25

26 //rule to receive data to be written to next level memory after

encryption

27 rule rl_encr_get ;

28 let x <- prince.get_encrypt_block_d();

29 ff_write_mem_request.enq(x);

30 endrule

31 ‘endif

This is a snippet of the dcache1rw module in SHAKTI.

Here the parameter MEM_ENC_1 tells us which changes are specific to Prince

and memory encryption. As can be seen, among other instantiations, we make one

instantiation of Prince for encrypting purpose and 12 for decrypting. This is because

writes can be issued to the memory with delay but read requests must be serviced as

quickly as possible.

Upon searching for the same parameter, other such changes made can also be found

which were summarized in the diagram in the section.

Lastly, similar changes were also made to the icache module in SHAKTI.

A.2 Encryption script: ELF

This section explains the script used to encrypt the hello world ELF.

1 void encrypt(std::string filename) {

2 create_elf();

3

4 ELFIO::note_section_accessor *note_reader = create_note_section();

5

6 for(auto *section : writer.sections) {

7 size_t new_size = ((section->get_size() + req_align - 1) /

req_align) * req_align;

8 uint8_t *new_data = copy_data((const uint8_t *)section->get_data

(), new_size);

19

9

10 if(section->get_index() != writer.sections.size() - 1) {

11 ELFIO::Elf_Word type, descSize;

12 std::string name;

13 uint8_t *desc;

14

15 note_reader->get_note(section->get_index(), type, name, (void

*&)desc, descSize);

16

17 uint64_t key_high = *(uint64_t *)&desc[0];

18 uint64_t key_low = *(uint64_t *)&desc[8];

19

20 encrypt_data(new_data, new_size, key_high, key_low);

21 }

22

23 section->set_data((const char *)new_data, new_size);

24 }

25

26 writer.save(filename);

27 }

28

29 void encrypt_data(uint8_t *data, size_t size, uint64_t key_high,

uint64_t key_low) {

30 Prince prince_side = Prince_new(key_high, key_low);

31

32 uint64_t message, ciphertext;

33

34 for(size_t i = 0; i < size; i += 8) {

35 memcpy(&message, &data[i], 8);

36 ciphertext = prince_encrypt(&prince_side, message);

37 ciphertext = prince_decrypt(&prince_main, ciphertext);

38 memcpy(&data[i], &ciphertext, 8);

39 }

40 }

Some important points to note here are:

• The encryption is being performed section wise in the encrypt_data which is
called by encrypt.

• The function encrypt first creates a new ELF almost identical to the old one in
terms of number and size of sections and adds a note section to it.

20

• It then proceeds to read sections from the old ELF, encrypt them, and store them
in the new ELF with a different size that is byte aligned.

• In the function encrypt_data, the section itself is encrypted in blocks of 8 bytes
each.

A.3 Encryption script: code.mem

This section explains the script used to encrypt the code.mem which is generated from

the aligned ELF.

1 void encrypt(std::string filename) {

2 uint64_t key_high = 0x1234567890abcdef;

3 uint64_t key_low = 0xabcdef1234567890;

4 encrypt_data(key_high, key_low, filename);

5 }

6

7 void encrypt_data(uint64_t key_high, uint64_t key_low, std::string

filename) {

8

9 std::string line;

10 int line_count = 0;

11

12 Prince prince_side = Prince_new(key_high, key_low);

13

14 uint64_t message, ciphertext;

15 std::ofstream fout;

16 fout.open(filename);

17

18 while(fin){

19 if(line_count > 4194303)

20 break;

21 getline(fin, line);

22 message = std::stoull(line, nullptr, 16);

23 ciphertext = prince_encrypt(&prince_side, message);

24 ciphertext = prince_decrypt(&prince_main, ciphertext);

25 std::string writeback = std::to_string(ciphertext);

26 fout << writeback << std::endl;

27 line_count = line_count + 1;

28 }

21

29 }

Some important points to note here are:

• The function encrypt just initializes a couple of keys and passes them on to the
function encrypt_data. As has been mentioned before, the keys are hard coded
for now.

• The function encrypt_data first does some file handling and initialization. Then
it starts reading from the code.mem.

• Each line in the code.mem has 8 bytes. Hence, we read, encrypt and write back
one line at a time.

• We stop once a particular number of lines are done since that is the total number
of lines in the code.mem.

22

APPENDIX B

PROCEDURES

Here I will elaborate on the procedures to run various files and simulations.

B.1 Running files on SHAKTI

The setup of SHAKTI processor requires the user to follow all the steps given here up

until but not including the "Run Smoke Tests" part.

Another important point to note is that upon generating the boot files, the procedure

often generates boot.MSB and boot.LSB of 8200 lines each. This will give an error on

running ./out. In this case, the user needs to delete the last few lines of both files to

make sure they have only 8193 lines each.

B.2 princeutils.cpp

Under the folder Script_New/casl-encryptedmemory-d61d61be308d/20b_shivammittal

are the files used to encrypt the ELF. The readme.md presents the procedure to compile

and run princeutils.cpp which is the main script used to encrypt the ELF.

Most other files names princeutils_<some name>.cpp are modifications of the same

and can be compiled the same way as this one. For example princeutils_codemem.cpp

is used to encrypt a code.mem file which is required in one of the testing procedures.

B.3 Running SHAKTI on GDB

Here I will elaborate how to run an ELF on SHAKTI directly using GDB without having

to convert it to a code.mem file.

https://c-class.readthedocs.io/en/latest/quickstart.html

B.3.1 Setup

The setup for debugging support is done as given below:

1. Open c-class/sample_config/default.yaml.

2. set openocd and debugger_support to true.

3. Run "make link_verilator_gdb" after "make link_verilator" while compiling SHAKTI.

B.3.2 Running GDB

Once this setup is done, the procedure to run it is as follows:

1. Open a terminal in the c-class/bin folder and run "./out". It will start listening for
openocd to start.

2. Open another terminal in the c-class/test_soc/gdb_setup and run "openocd -f
shakti_ocd.cfg". The first terminal detects this and starts running.

3. Open the folder with the ELF that needs to be run and run "riscv64-unknown-elf-
gdb".

4. When the prompt comes, run "set remotetimeout unlimited" and then "target re-
mote :3333".

5. At the next prompt, run "file <ELF name>". Then run "load".

6. Once this is done, GDB will have loaded the ELF and can be used.

To run a code.mem file directly on SHAKTI using GDB, just follow up until the

step 2 given above. Then open a new terminal in c-class/test_soc/gdb_setup and run

"riscv64-unknown-elf-gdb -x gdb.script". Then regular GDB commands can be used.

24

REFERENCES

1. Gueron, S. (2016a). A Memory Encryption Engine for General Purpose Processors.
URL https://ieeexplore.ieee.org/document/7782706.

2. Gueron, S. (2016b). A Memory Encryption Engine Suitable for General Purpose
Processors. Cryptology ePrint Archive, Paper 2016/204. URL https://eprint.
iacr.org/2016/204. https://eprint.iacr.org/2016/204.

3. Lee, D., D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song (2017). Keystone:
An Open Framework for Architecting Trusted Execution Environments. URL https:
//n.ethz.ch/~sshivaji/publications/keystone_eurosys20.pdf.

4. Yin, T., G. Xin, and J. Han (2020). HPME: A High-Performance Hardware Memory
Encryption Engine Based on RISC-V TEE. URL https://ieeexplore.ieee.
org/document/9278286.

25

https://ieeexplore.ieee.org/document/7782706
https://eprint.iacr.org/2016/204
https://eprint.iacr.org/2016/204
https://eprint.iacr.org/2016/204
https://n.ethz.ch/~sshivaji/publications/keystone_eurosys20.pdf
https://n.ethz.ch/~sshivaji/publications/keystone_eurosys20.pdf
https://ieeexplore.ieee.org/document/9278286
https://ieeexplore.ieee.org/document/9278286

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	BACKGROUND
	Side channel attacks
	Cold boot attacks

	Prince

	RELATED WORK
	Encryption schemes
	Key management

	OVERVIEW
	Prince encryption
	Changes to SHAKTI
	Advantages
	ELF encryption

	TESTING AND RESULTS
	Running encrypted ELF on SHAKTI
	Running normal programs on SHAKTI
	Encrypting the ELF
	Issues

	Running encrypted ELF on SHAKTI with GDB
	Running procedure
	Issues with GDB

	Running encrypted code.mem on SHAKTI
	Encrypting the code.mem

	Running on Spike

	FUTURE SCOPE
	Testing and verification
	Key management

	CONCLUSION
	CODE
	Changes to cache modules in SHAKTI
	Encryption script: ELF
	Encryption script: code.mem

	PROCEDURES
	Running files on SHAKTI
	princeutils.cpp
	Running SHAKTI on GDB
	Setup
	Running GDB

