Department of Electrical Engineering
Indian Institute of Technology, Madras
Chennai - 600036, India

Adaptive Augmentation of Option
Indices in Hierarchical
Reinforcement Learning

Dual Degree Project Report

Submitted by
Akash Reddy A
EE17B001

n fulfillment of requirements
for the award of the Dual Degree of

Bachelor of Technology
and

Master of Technology
m

Electrical Engineering

June 2022

THESIS CERTIFICATE

This is to certify that the thesis titled Adaptive Augmentation of Option Indices in
Hierarchical Reinforcement Learning, submitted by Akash Reddy, to the Indian In-
stitute of Technology, Madras, for the award of the degree of Dual Degree in Electrical
Engineering, is a bona fide record of the research work done by him under our supervision.
The contents of this thesis, in full or in parts, have not been submitted to any other Institute
or University for the award of any degree or diploma.

Prof. Balaraman Ravindran

Research Guide

Professor

Dept. of Computer Science and Engineering
Robert Bosch Center for Data Science and Al
II'T Madras, 600 036

Place: Chennai
Date: 18 June 2022

Acknowledgements

I would like to express my heartfelt gratitude, first and foremost, to Prof. Balaraman Ravin-
dran, Department of Computer Science and Engineering, IIT Madras, for offering me his
exceptional guidance coming from the cumulative knowledge of decades. His encouragement
and understanding have helped me bolster my understanding of this field, and shape this final
year project into what it stands to be today. I would also like to thank Prof. Arun Rajkumar
and Prof. Nandan Sudarsanam for their valuable time and inputs as panel members during
the mid-year review of this project.

I would next like to thank Pradeep Shenoy, Kushal Chauhan, and Soumya Chatterjee of
Google Research India, for showing me interesting research directions, providing resources,
helping to clarify ideas, and even taking the time out to assist me with implementation in
certain tough spots.

I would like to thank my family and friends for providing a supportive ecosystem in which
I can continue to pursue my goals, professional and personal. Heartfelt gratitude also goes out
to the Electrical Engineering department of II'T Madras, and the institution of II'T Madras as
a whole, for providing crucial exposure and a valuable set of peers who have exposed me to a
variety of learning experiences, and also the opportunity to work on my Master’s thesis.

Finally, I would also like to extend my gratitude towards my colleagues Nishant Prabhu and
Sawni Gupta, who provided me with access to computational resources when I needed them.

Abstract

In hierarchical reinforcement learning, a task is broken down into several subtasks for learning.
This promotes easier learning of long-horizon tasks, as well as allows for reuse of subtasks across
several related tasks. This reuse finds strong utility in a continual learning setting, where a
stream of tasks are to be solved by the agent while retaining information on previous tasks
and potentially reusing it for future tasks, a concept known as positive forward transfer. A
continual learning agent in real life might be expected to have a large repository of knowledge
from solving previous tasks throughout its lifetime. If there is such a large library of skills
(or options, as they are called in the Options framework), there would be no need to re-learn
the subtasks end-to-end for each task, provided the tasks themselves are related. In such a
situation, an option retrieval mechanism that retrieves only the relevant options drastically
simplifies the learning task at hand, avoiding the need to learn a policy over the entire option
library. However, if even one option that is necessary for the task is missed out, the learning
collapses and fails. The work in this thesis extends a project that implements an option retrieval
mechanism, by implementing an adaptive augmentation mechanism, that uses an augmented
neural network to learn a policy over parts of the state space that the set of retrieved options
does not cover, preventing full collapse of the option retrieval mechanism in situations where
some options are missed out. Some positive results of this idea are demonstrated, first on a
simple gridworld environment called CraftWorld, and then on a complex 3D environment called
iTHOR. Finally, some ideas are proposed to extend the adaptive augmentation mechanism into
a true continual learning framework for options, where new skills/options may be added to the
option library as the continual learning agent progresses through tasks.

List of Tables

Table No. Table Description Page No.

1 Some task recipes from Craft World 15

2 Mean training rollout reward obtained in CraftWorld experiments 19

3 The original actions provided by the iTHOR API, 22
used to derive the action space

4 The index (list) of primitive (base) actions that form 23
the iTHOR action space

5 Some task recipes and reward conditions in iTHOR 32

6 The missing options in the evaluated adaptation tasks in iTHOR 35

List of Figures

Figure No. Figure Description Page No.
1 The Reinforcement Learning framework 9
2 The A2T Architecture 11
3 The modified A2T for Adaptive Augmentation 13
4 The CraftWorld environment and a task visualised 16
5 Mean episodic training reward curves in CraftWorld 18
6 Some scened from iTHOR 20
7 Visualisation of pre-encoded options 24
8 Older iTHOR state representation for OI-HRL 25
9 The two cases in base network receiving reward 28
10 A visualisation of default iTHOR agent visibility 29
11 Calculation of relative pitch and angle of iTHOR objects 30
12 Newer iTHOR state representation for Adaptation 31
13 Evaluation reward curves on iTHOR tasks 34
14 Visualisation of base network policy trajectories 36
15 Visualisation of the local area in the state space 37

covered by a base network policy

Abbreviations

Abbreviation Full Form

RL Reinforcement Learning

HRL Hierarchical Reinforcement Learning

OIHRL Option-Indexed Hierarchical Reinforcement Learning
MDP Markov Decision Process

SMDP Semi-Markov Decision Process

A2C Advantage Actor-Critic

A2T Attend, Adapt and Transfer

Contents

(1__Introductionl 8
CTOVEIVIEW . . o o o e e e e e 8
1.2 Motivation and Objective] 8

2 Background| 9
[2.1 Reinforcement Learning| o o oo 9
[2.2 Hierarchical Reinforcement Learning| 9
2.3 Literature Reviewl e 10

[2.3.1 Continual Learning|. L. 10
[2.3.2 Transfer Learning] 11
2.4 Actor-Critic Methodsl o 11
[2.5 Option Indexed Hierarchical Reinforcement Learning (OI-HRL)[. 12

13 Adaptive Augmentation: Methodology| 13
[3.1 Modifications and Complications Relative to A2'T. 13

4 Experimental Setup and Results| 15
41 CraftWorldl o o 15
H2 ATDTHORI o o o et e e e e e e e e 18

[4.2.1 Action Space|l 21
[4.2.2 Pre-Encoded Options] 24
[4.2.3 State Space and Reward Functions: Some Challenges Faced and their |
| Solutions| e e 25
E24 Taskd 32

[Learning Options out of Base Network Policies| 36

6 Future Research Directions| 38

(7_References| 39

1 Introduction

1.1 Overview

Hierarchical approaches to artificial intelligence are inspired from significant evidence in be-
havioural science and neuroscience [1, 2] that animal activities can be described in terms of
a small set of important behaviours. Even when humans think of going from, say, home to
the office, we tend to break it down into the several steps involved, such as going downstairs,
walking to the bus station, exiting the bus at the right stop, and climbing up to the office.
In the actual execution of these steps, some actions such as climbing stairs are performed al-
most subconsciously because they are behaviours that we have internalised through repetition
across a variety of other tasks, despite the recruitment of complex sensorimotor systems to
move several parts at once. As such, breaking down tasks into subtasks within the realm of
Hierarchical Reinforcement Learning has shown to benefit learning of complex tasks and learn
skills that are transferable.

1.2 Motivation and Objective

However, skills acquired through such learning can only transfer to related tasks, where such
behaviours are required again. A truly versatile learning agent of general intelligence must be
able to continuously perform sequences of varied tasks in the real world, while not completely
forgetting how to perform previously learnt tasks. Also, these new tasks may bring with them
the potential to even learn more useful skills which can transfer to an even broader set of tasks.

As a human example, consider a non-athletic person who has had no exposure to any kind
of sport. They possess useful life skills such as walking, conversation, and perhaps a musical
talent as well. Let us imagine this person decides to learn tennis. At this juncture, none of
the skills that they possess transfer well to the task at hand. The ability to adapt and learn
outside of existing skills is important even for an agent that already possesses useful skills.

Furthermore, the sport of tennis has several transferable skills to other sports as well, such
as powerful stroking with the arm, bracing the wrist tight, explosive jumps, and agility. In-
ternalising these fundamental skills of athleticism could directly transfer to new physically
demanding tasks in the future, such as arm wrestling for example. If somehow these funda-
mental skills were not memorised, arm wrestling would be an entirely new task, despite having
gone through the process of learning tennis. It could be learnt a lot easier through direct
application of previously developed skills, if they were retained instead. As such, it may help
an agent to not only retain the performance on tennis, but also certain useful skills for better
learning future tasks. This is known as positive forward transfer.

On the other hand, if there is a large library of skills that an agent can always try, learning a
strategy to use them may be significantly slower. Skill indexing is an approach to retrieve the
relevant skills by looking at the state and items in the environment available in the current
task (more on this in Section 2.5). This allows efficient learning of a higher-level strategy over
only the relevant skills. In such an approach, however, an indexing mechanism may sometimes
miss out on one or more relevant options to the task (or the entire option library itself may
not contain a relevant option in the first place). When this happens, it is quite useful to be
able to adapt to the task at hand anyway.

The goal of this project is to empower hierarchical agents possessing a certain set (either
a library or a retrieved index) of skills to adapt to new unseen tasks, where the existing/re-
trieved skills may not suffice. Additionally, we propose that useful behaviours encountered in

these new tasks may be captured and encapsulated as new skills, progressively expanding the
arsenal of skills that the agent holds.

2 Background

2.1 Reinforcement Learning

Reinforcement Learning is an artificial intelligence paradigm developed in the context of opti-
mal control, where the agent learns an optimal policy 7 to take actions to move from one state
to another in an environment. The learning happens through scalar feedback that the agent
receives in the form of rewards. The environment is usually encoded as a Markov Decision
Process (MDP) represented by the tuple (S, A, P, R, 7), where S is the state space, A the
action space, P the matrix of transition probabilities p(s’|s, a) for each state-action pair, R the
reward function, and « the factor by which future rewards are discounted per time-step. This
framework allows agents to learn complex behaviours even in stochastic environments without
explicit supervision as to how to reach a goal - the agent learns through trial and error and
the reward it receives from the environment.

"'_| Agent |

state reward action
S, R, A,
. R£+1 (
<= Environment

Figure 1: The Reinforcement Learning framework

2.2 Hierarchical Reinforcement Learning

However, this learning mechanism that relies solely on reward signals can sometimes hinder
learning. In long-horizon sparse-reward tasks, the reward is received rarely, say, at the end of
a successful episode. In early training, this may only happen through a series of lucky actions
in the trial-and-error process. Therefore, learning can be quite slow. One of the solutions that
has proven to effectively tackle this issue in several complex scenarios, such as robot continuous
control [3], is Hierarchical Reinforcement Learning (HRL).

In HRL, the longer-horizon task is broken down into a hierarchy of smaller subtasks. A
higher-level policy decides which subtask to use, and the lower-level policies in turn execute
the subtasks. At the lowest level, the actual actions in the environment would be executed.
This framework can drastically accelerate learning as, at the higher level, the shorter horizon
leads to better reward feedback, and at the lower level, the subtasks may be easier to learn as
well. There are several approaches today for HRL - some of the recent work is in multi-agent
HRL [4] and graph-based subtask learning [5]. Some of the original classical approaches are
MAXQ [6], Hierarchical Abstract Machines [7], and Options [8].

Options

The Options framework uses the theory of Semi-Markov Decision Processes (SMDPs), which
are an extension of the classical MDPs to a continuous-time case, where the actions can take
varying amounts of time (temporally extended). The time-varying subtasks in an HRL setting,
which may be similarly temporally extended, therefore fit neatly into the SMDP framework in
the form of temporally-extended actions.

Therefore, the SMDP representing the reinforcement learning problem in the hierarchical set-
ting can be formulated as the MDP + a set of options O which correspond to the available set
of temporally extended actions. An option is represented as < I, m,, B, >, which correspond
to the initiation state set (states where an option can be taken), the option policy, and the
option termination function which dictates where an option will end. The higher-level policy
7 can learn to choose an option from the set of options (which may also include the lower-level
primitive actions) in any given MDP state. When an option is picked, its primitive actions
are executed in the MDP (according to m,) until it terminates, the higher-level policy selects
another option, and so on.

In classical SMDP theory, the temporally extended actions are treated as atomic units which
cannot be further divided. Here, however, an option is composed of primitive actions. There-
fore, one can consider options to be a bridge between MDPs and SMDPs, which allows one
to dig deeper into what the options are doing at the MDP level, and even change/learn the
subtasks that they perform.

2.3 Literature Review
2.3.1 Continual Learning

A versatile, real-life, general-purpose learning agent should be able to incrementally learn new
tasks using both current data and (potentially) behaviours from previous tasks that it has
learned, while retaining previously learned abilities. This is the premise of continual learning
[9], where several algorithms have emerged from various approaches towards the problem - some
algorithms are episodic-memory-based [10, 11], where a buffer of experiences is maintained, but
used in a specific manner amenable to continual learning, unlike the usual experience replay
used in deep RL algorithms such as DQN [12]. Some approaches store latent parameters and
tune them as tasks are observed, e.g., ELLA [13], which maintain a latent basis that represents
tasks, uses it to solve a new task, and refines the basis using this task. The related PG-ELLA
[14] extends this algorithm into a policy gradient method for continual RL.

We are interested in the problem of learning new options in a continual manner when new
tasks arrive. In Bagaria et al. 2020 [15], skills are learnt through identification of salient re-
gions of the state space and learning options between them. Brunskill and Li 2014 [16] present
a mathematically justified algorithm for adding options with PAC-guarantees, but it assumes
the knowledge of near-optimal actions for each state in the MDP. Aubret et al. 2020 [17]
maintain a hierarchy of intrinsically-motivated skills which are progressively broken down and
expanded, making them transferable. However, the transferability is not specific to a potential
new task in a stream of sequential tasks, as the algorithm learns a general set of reusable skills
for the currently available tasks.

Perhaps the closest work to this project is by Tessler et al. 2016 [18], which contains sev-
eral lower-level Deep Skill Networks (DSNs) which function as options, and a higher-level
Hierarchical Deep RL Network (H-DRLN) that uses a variation of DQN to learn to choose

10

between these DSNs and the primitive actions. While this method can adapt the existing set
of options to new tasks, it would find large or continuous action spaces harder to handle, as a
continuous action cannot be selected categorically, alongside a set of options.

2.3.2 Transfer Learning

A different, yet related, paradigm to continual learning is the transfer learning setting. Here,
the information from several source tasks is used for effectively learning a target task. How-
ever, the agent and policy for the target task is separate, and it is not expected to retain the
performance of the source tasks. The ability to learn a new policy in this framework, when
combined with a hierarchical learning agent, can be utilised to learn a new option - to adapt
an available option index to a new task. This idea will be the foundation of the Adaptive
Augmentation method described below.

In particular, the method is inspired by Attend, Adapt and Transfer (A2T) by Rajendran
et al. [19], a transfer learning method where several source tasks K, Ko, ..., Ky are available,
and a base policy network Kp is available in order to learn the target task in the parts of
the state space where the source tasks transfer negatively. A deep attention network learns
state-dependent attentions for each network, including the base network, and the final target
policy K in any state is the linear combination of the output of each network weighted by its
respective attention in that state. In the problem of interest, where the option library available

i e
[/ Attention ¢ d
& Network /

Ty ¥ eight
...... Ky ™
. error
state laction
Source Task
Solutions
reward
—[Environment Jd—
(b)

Figure 2: From the A2T paper: (a) The A2T architecture (b) Actor-Critic using A2T as
the Actor

(or index retrieved) for a task may be insufficient, this idea can be used to adapt a base net-
work to learn an augmented policy for states where the options are not useful. Furthermore, it
is interesting to look into expanding this idea to allow continual learning of options, through
the annexation of the learnt base network as a new option into the option index, to be used
for future tasks.

2.4 Actor-Critic Methods

In policy gradient methods, gradient steps are taken to improve a parametrised policy according
to a performance metric J(€). If we wish to maximise the cumulative expected future reward
(i.e., value function) as a metric when we follow a policy, the policy gradient theorem [20]

11

allows the gradient step to take the following basic form in the REINFORCE algorithm:

Orr1 — 0 + QVJ(H)
0+ a(Gy — b(S;))V log w(As| S, 6;)

where G; is the cumulative discounted reward obtained in an episode, and b(S;) is a state-
dependent, action-independent baseline that acts as a reference point with which to compare
all actions in the current state S;, and can reduce variance in training. A natural choice for
the baseline is the value-function estimate for the state.

The issue with Gy is that one must wait until an episode ends to obtain it. This can be-
come a problem especially in long-horizon settings. The idea of temporal-difference learning
[21] can be used to bootstrap the value of G using the current reward and the value-function
estimate of the next state, to learn in an online fashion. This bootstrapping can also reduce
variance in learning, and leads us into the idea of actor-critic methods [22]:

9t+1 — 9t + Oé(Rt + ’y@(St+1) — @(St))VIOg W(At‘St, 0,5)
— 0; + ad;V log TI'(At’St, 0;

Here, the policy m(als,) is referred to as the actor, and the value-function estimate o(s)
is called the critic, as it provides a baseline and a bootstrapping estimate of the return that
critiques the actor and pushes it in the right direction.

2.5 Option Indexed Hierarchical Reinforcement Learning (OI-HRL)

The work described in this thesis extends a project by Google Research India on the task of
retrieving the options relevant to the task at hand from a larger library of pre-trained or pre-
encoded options [23]. In a regular end-to-end HRL setting, the agent attempts to partition a
long-horizon task into subtasks, learn how to perform these subtasks, and also sequence these
subtasks in the right order. This is a difficult task to successfully learn, and requires high
amounts of training.

Provided that the task is one among many related tasks, if one allows the agent to learn useful
behaviours from previous related tasks, then this can be leveraged to improve performance
on a new unseen task. The knowledge from previous related tasks can be encoded as a large
library of options, over which direct hierarchical training would prove to be extremely slow. It
can be assumed that this large library of options has been acquired across the lifetime of a con-
tinual learning agent. This is the situation in which the OI-HRL approach proves beneficial, as
it allows hierarchical training to happen over a much smaller set of relevant options to the task.

OI-HRL learns an index over the option library that generates a vector key for each option,
and a Query Generation Network (QGN) that generates a vector query based on the initial
state of the environment. Using a dot product between the key for each option and the vector
query of the current task, from the abstract of the project: ”...we learn an affinity function
between options and the items present in the environment.” This affinity function is used to
generate a probability vector consisting of the probabilities that each option is present in suc-
cessful trajectories of the current task. These probabilities are then used to rank the options
and the top-p [24] set of options is retrieved as the relevant set of options for the current task.
If the retrieved set contains all the required options, learning a higher-level policy over options
is made much more efficient.

12

In the case where the retrieved set is insufficient (or the option library itself does not pos-
sess the right options for the current task in the first place), however, the higher-level policy
completely fails to complete the task. This is the context in which the ability to adapt to such
situations is highly valuable. This is done using the presence of a base network that can learn
the policy in parts of the state space that are not covered by existing options, in a very similar
way to A2T. The methodology is described in the next section.

3 Adaptive Augmentation: Methodology

| Source Task
Solutions

Option Library/
Index

| Value/ Advantage |’
| Function

|

l Environment |

State

Figure 3: Visual Flowchart for the Adaptive Augmentation Strategy inspired by the A2T
architecture. The dotted blue lines represent parts of future work.

The adaptation of an option index to new tasks is done through augmentation, using an
architecture inspired by A2T. The attention network would play the role of a hierarchical
higher-level network. The source tasks that receive the attentions would be replaced by the
options from the option index, and the base network would function as an augmented ”extra”
option, which can learn a policy for the parts of the state space where the existing options do
not suffice.

3.1 Modifications and Complications Relative to A2T

e However, the SMDP setting of the Options framework is a little different. For one, the
attention network in A2T outputs attentions at the higher level, and uses the resultant
lower-level policy for training, at the timescale of primitive actions. On the other hand,
a hierarchical network chooses an option at the higher level, and the option plays actions
until its termination. Control is not returned to the hierarchical network at every time
step, but after the option terminates. Therefore, there is a need to train the hierarchical
network in an intra-option manner, perhaps using lower-level policy gradients. It can
also be assumed that control is, in fact, returned to the hierarchical network after every
primitive action. In such a framework for Options, there is no termination function.
However, the inability to play options to directly complete subtasks without the hier-

13

archical policy diving into primitive actions would mean that the hierarchical training
would be considerably slower.

Secondly, if we consider the setting where options are played until termination, it is
not straightforward to combine the "source” and "base” options using a soft-attention
mechanism as in A2T, where it allows flexibility to combine multiple lower-level solutions.
With options, one does obtain several lower-level policies which could be combined in
a soft manner, but the varying timescales and terminations present a roadblock. What
does it mean to combine several options? Does the resultant policy run for as long as
option 1, or option 2, or the base network (which just plays lower level actions, leading
to control returning to the hierarchical network after just one time step)? As a result,
hard attentions have been used, which simply select one of the lower-level choices with
no combination.

Next, it is worthwhile to note that A2T prescribes a learning of the base network which
is off-policy and intra-option. That is, even if the effective policy hardly uses the base
policy, the actual actions played in the environment can be used to train the base network
as if the action was played from the base network itself:

Oy ¢— O + a0V log 7 (s¢, ay)
Op <— Op + 0,0,V log B (s¢, ar)

for the case of actor-critic learning. (Gradient normalisation has not been displayed here
for the sake of brevity, but it prevents the problem of slow crawling when the gradients
are too small.)

This method of training the base network can result in significantly faster learning than
simply training the base network only when it is picked. This is a benefit that could be
leveraged in our application, however, it is important to note that this is not possible
if the options are rule-based, indivisible units. In the experiments below, the options
used are indivisible units, and therefore this kind of training was not possible. The base
network is trained only on those time steps when it is picked.

Finally, if the base network learns useful behaviour over a significant part of the state
space in any particular task (or series of tasks) which is not captured by the option
library, the base network can potentially be packaged as another option and annexed
to the option library, thereby learning and adding options in a truly continual manner.
This might require generalisation of the learnt base network policy over a larger portion
of the state space than initially learnt upon. This idea is discussed in Section 6.

14

4 Experimental Setup and Results

4.1 CraftWorld

The algorithm was first implemented on a 12 x 12 gridworld-like environment called Craft World
[24]. Tt is similar to the video game Minecraft in that objects can be collected, and combined
in workshops to produce complex objects, which in turn can be used in recipes for even more
complex objects (built in possibly different workshops). Some of the recipes from the Cookbook
of the CraftWorld are displayed below in Table 1.

plank use: wood
at: workshopO

paper use: wood
at: workshopl
use: grass
at: workshop2
bridge use: wood, iron
at: workshop2
axe use: rod, iron
at: workshopl
use: stick, iromn
at: workshop4

Table 1: Some recipes from CraftWorld

An SMDP was built on top of this CraftWorld environment, with a set of options. This
set comprises of the base network, and all other options were picked from a set of pre-encoded,
rule-based options which perform subtasks such as picking up basic objects like wood and
grass. These rule-based options had been constructed beforehand, and were indivisible units -
for simplicity, they were constructed as ”teleporting” options that let the agent directly jump
to the required objects and pick them up, and calculate and return the corresponding dis-
counted reward (referring to the true reward which would be returned if the option played
actual primitive actions). This is calculable due to the gridworld-nature of the environment:
the optimal option would simply follow the shortest path (Manhattan distance path) to the
object and pick it up, which means the length of the option (and therefore discount applied)
is known.

Such an environment allows the construction tasks that are of interest to the adaptive augmen-
tation problem, where the set of available/retrieved options is involved in, but not sufficient
for, solving a task. Let us represent any task with the notation " [options available] goal
object". The experiments were conducted on these tasks: "[wood, workshopO] plank",
"[wood] plank", "[wood, iron, rock, grass] plank", and "[wood, iron, workshop2]
bridge", " [wood, workshop2]

bridge", with and without the base network. The last of these tasks was also included to
investigate the effect of the presence of irrelevant options on the sample complexity and con-
vergence rate of a task.

The details of the CraftWorld environment are listed below:
e Gridworld size: 12 x 12

e Number of kinds of items: 41

15

bridge, 50 A- bridge, $4 A-Use

Step 1
oy
EIlN ENE N ju] il EEEmE ‘EEEm
]
bridge, S13 A-Use Edues SR A
Step 3

Figure 4: The CraftWorld environment, and a representation of the bridge task step-by-step,
using the teleporting, pre-encoded options. Step/Option 1: pick up wood, Step/Option 2: pick
up iron, Step/Option 3: use them at workshop?2

e Agent state representation in underlying MDP: For the purposes of Option In-
dexing in OI-HRL, it was sufficient to consider a state representation that was global, as
the teleporting options did not need positional information of the agent relative to the
objects of interest. For adaptation, however, the base network uses primitive actions to
actually move in the environment, and therefore it is important for the agent to have an
ego-centric view so that it may understand when an object is nearby and be encouraged
to move towards it. The final state is a (2091,) vector which contains the concatenation
of:

— one hot vector representations of presence of objects in a local 5 x 5 grid around
the agent (flat vector of size 5*5*41)

— one hot vector representations of presence of objects in a larger local 52 x 52 grid
(in this case, this covers the entire gridworld) around the agent, where each 5 x 5
subgrid in the grid is maxpooled into one entry in the one-hot vector (if an object
is present in the subgrid, the corresponding cell in the final vector takes the value
1) (flat vector of size 5*5*41)

— one hot vector representation of the inventory of the objects that the agent has
currently (flat vector of size 41)

e Agent action space: In the CraftWorld MDP, the 5 actions are

16

0: DOWN
1: TUP

— 2: LEFT
3: RIGHT

— 4: USE: use an item that is present in the current cell. If an object, pick it up. If
a workshop, use the workshop to build a complex object that the objects currently
in the inventory allow.

In the SMDP, the actions are the options, K +1 in number. K is the number of rule-based
options available, and the extra option is the base network.

Reward: The agent is rewarded +1 when it reaches the state of holding the right items in
the inventory, and is penalised (-0.3) in case it picks up extra items. Also, when an option
is executed, any reward received at the end of the option is discounted appropriately.

Algorithmic Details in CraftWorld Experiments

The SMDP was trained using Advantage Actor-Critic (A2C) [], a form of Actor-Critic that
uses the advantage function as the critic instead of simply a value function, reducing variance.

Number of parallel subprocess-environments: 10, each with a different training seed
Higher-level /attention policy network architecture: 2091 x 64 x 64 x K41

Value network architecture: 2091 x 64 x 64 x 1

Activation function: tanh()

Learning rate: 3 x 10~4

Optimizer: RMSProp (e = 107°)

Gradient clipping (max = 0.5) and normalisation used

Discount factor ~: 0.99

Value function loss coefficient (critic loss): 0.5

Generalized Advantage Estimate (GAE) used to estimate advantages, A = 0.99

Rollout buffer used for mini-batch training, size = 5

The base network was trained using A2C in a similar fashion, however, the same state-value
critic as the higher-level network was used for the base network too.

Base network policy architecture: 2091 x 64 x 64 x 5

Activation function: tanh()

Learning rate: 3 x 10~4

No rollout buffer used (size = 1), therefore training is online and stochastic

All other hyperparameters same as the higher-level network. A clear hyperparameter
search has not been performed yet as the implementation of the algorithm is yet to
complete.

17

Task- plank_waord_nobase Task: bridge wood-workshop? nobase

rood | — = rood | -
5 i . 5 i e
n30o | ,v o
; ! 4 ; !
254 0 pE 254 0
§ 1 = f § : |
& ogo - = & ogot-
3 -0.75 I 3 -0.75 I
0.50 i 0.50 i
] —— dark merd]
a,7% | pank_moo-ron-rock-grass —,75 | == bridge_wood-iron-workshop?
| —— piank_wond-workshopd | Biridge_wood-workshop?
1ood — pank_mosd hobace 1004 —— hiidge_ Wosd-warkenapd nanaie
1 1
o 23000 50000 75000 104000 L23000 150000 175000 200000 o 23000 50000 75000 104000 L23000 150000 175000 200000
SMDP_AZE Training Iteratiens — SMDP_AZC Training iterations —
(a) various plank tasks (b) various bridge tasks
Figure 5: Mean episode reward curves during rollouts
Results

In both "[wood, workshopO] plank" and "[wood, iron, workshop2] bridge", the agent
had all the required pre-trained options for the task and did very well with a reward close to
1 (the maximum). Here, the hierarchical policy had a very straightforward task of putting
together the options in the right order.

In "[wood] plank" and "[wood, iron, rock, grass] plank" without base network, the
options were not sufficient to solve the task. Therefore, even after 200,000 training steps, there
was no learning and the average reward was 0.

Once the base network was added, the agent was able to leverage the idea of adaptation.
The base network was capable of learning a policy in the parts of the state space where the
available options were insufficient. However, in the case of "[wood, iron, rock, grass]
plank", learning was significantly slower than in " [wood] plank", because the presence of ex-
cess options slowed down the higher-level hierarchical learning, and the base network learning
as a result of the base network being picked less frequently as the agent explored. Perhaps
if the base network is allowed to learn off-policy and intra-option, after the pre-trained tele-
porting options are replaced with options that play primitive options, it can learn faster even
through actions that other options execute, and the training speed becomes more comparable
with the " [wood] plank" case.

Similarly, " [wood, workshop2] bridge" without a base network learned nothing as one in-
gredient option was missing. When a base network was added, learning happened, but it was
significantly slower than in " [wood] plank", which is a l-ingredient-missing analogue for the
plank object. Once again, this was probably happening due to less frequent selection and train-
ing of the base network as the agent explored (due to there being more options to choose from).

In conclusion, encouraging results in favour of the idea of adaptation to improve the per-
formance of option indexing/retrieval were obtained. Table 2 summarises the values of mean
episodic rewards at the end of 200,000 steps for each of these tasks.

4.2 AI2THOR

Upon obtaining supportive results, the next step was to attempt adaptive augmentation in a
more complex 3D environment. AI2THOR [25], developed by the Allen Institute for Artificial

18

Final Target Task Options Available R.v
plank [wood, workshop0] 0.947
[wood] with base network 0.890
wood, 1ron, rock, grass| with base networ .
d, i k ith b k 0.371
[wood] without base network 0.0
wood, iron, rock, grass| without base networ .
d, i k ith b k 0.0
bridge [wood, iron, workshop2] 0.941
[wood, workshop2] with base network 0.223
[wood, workshop2] without base network 0

Table 2: Mean episodic rollout reward (Rg,) for the various tasks in CraftWorld

Intelligence, is a framework comprised of 3D simulation environments that facilitate interac-
tion with several objects. It comprises of iTHOR (an environment with a set of interactive
objects and scenes, with accurate physics modelling), ManipulaTHOR (an environment for
visual object manipulation using a robotic arm), and RoboTHOR (a navigation environment
with simulated scenes which have counterparts in the real world). The iTHOR scenes have
been used for the experiments in this project.

iTHOR consists of 120 scenes, 30 each of kitchens, living rooms, bedrooms, and bathrooms in
simulation. Since the task setting for the problem requires the usage of recipes (sequences of
subtasks/steps taken to achieve the goal), we selected one of the kitchen scenes as our final
environment. The possible recipes from the kitchen scenes are quite intuitive to construct and
evaluate on, as there are food items, such as apple, bread, and egg, and they can be changed
into a Cooked state from Uncooked using, say, a stove-burner. Additionally, bottles and mugs
can be filled with coffee or water, for example.

19

Figure 6: Some scenes from iTHOR. The full set of objects available in iTHOR is: Alarm-
Clock, AluminumFoil, AppleSliced, ArmChair, BaseballBat, BasketBall, Bathtub, Bathtub-
Basin, Blinds, Book, Boots, Bottle, Bowl, Box, Bread, BreadSliced, ButterKnife, Cabinet, Can-
dle, CD, CellPhone, Chair, Cloth, CoffeeMachine, CoffeeTable, CounterTop, CreditCard, Cup,
Curtains, Desk, DeskLamp, Desktop, DiningTable, DishSponge, DogBed, Drawer, Dresser,
Dumbbell, Egg, EqggCracked, Faucet, Floor, FloorLamp, Footstool, Fork, Fridge, Garbage-
Bag, GarbageCan, HandTowel, HandTowelHolder, HousePlant, Kettle, KeyChain, Knife, La-
dle, Laptop, LaundryHamper, Lettuce, LettuceSliced, LightSwitch, Microwave, Mirror, Muyg,
Newspaper, Ottoman, Painting, Pan, PaperTowelRoll, Pen, Pencil, PepperShaker, Pillow,
Plate, Plunger, Poster, Pot, Potato, PotatoSliced, RemoteControl, RoomDecor, Safe, Salt-
Shaker, ScrubBrush, Shelf, ShelvingUnit, ShowerCurtain, ShowerDoor, ShowerGlass, Shower-
Head, SideTable, Sink, SinkBasin, SoapBar, Sofa, Spoon, SprayBottle, Statue, Stool, Stove-
Burner, StoveKnob, TableTopDecor, TargetCircle, TeddyBear, Television, TennisRacket, Tis-
sueBox, Toaster, Toilet, ToiletPaper, ToiletPaperHanger, Tomato, TomatoSliced*, Towel,
TowelHolder, TVStand, VacuumCleaner, Vase, Watch, WateringCan, Window, WineBottle.

A robotic agent is allowed to navigate in the iTHOR environment and manipulate ob-
jects by moving them and modifying their state, through the usage of actions provided by
the iTHOR API. iTHOR provides access to the metadata of the ”controller” (agent + envi-
ronment), which includes information such as objectType, objectId (a string of the format
‘Egg-01+00.12|-00.45]+00.97|" - a combination of the objectType and initial spawn loca-
tion), position, rotation, visibility, temperature, the objects they contain (called "receptacle
objects”), and the objects they are contained in (called ”parent receptacles”) of each object.
Further, the metadata contains information about the agent: its own position and rotation,
as well as camera rotation angle. The metadata also contains a Boolean variable indicating
whether the last action was successfully executed or not.

It is important to note that an action played by the iTHOR agent on an object only af-
fects the object if it is in visible range of the agent, which is specified with a default value of
1.5 metres. Objects farther than this from the agent cannot be manipulated unless the agent
moves closer to them.

20

Constructing the SMDP over iTHOR

The recipes used for all the tasks in our case do not require that all objects in iTHOR be
considered. For example, Vase is not an object used in any recipe. The list of the 20 considered
objects is:

Object No. Object Name

0 Apple

1 Bottle

2 Bowl

3 Bread

4 BreadSliced
5 CounterTop
6 Cup

7 DiningTable
8 Egg

9 EggCracked
10 Microwave
11 Mug

12 Pan

13 PepperShaker
14 Plate

15 Pot

16 SaltShaker
17 StoveBurner
18 Toaster
19 WineBottle

We ignore all the other objects in the iTHOR environments. The objectlds of duplicate
objects (more than one instance of the same object type) are also included in a list and ignored
during the execution of the program. This is for simplicity in the state representation - so that
there is no non-toasted slice of bread after a bread slice has been put in a toaster and toasted,

for example.

4.2.1 Action Space

Part of the infrastructure needed to construct an MDP over the iTHOR environment is pro-
vided within the AI2THOR framework - the agent actions and the transition probabilities
(which are mostly deterministic, except for certain actions that fail with a miniscule probabil-
ity due to bugs) are packaged with the iTHOR agent and the environment. The actions that
the agent is capable of using, which perform navigation, and object movement and manipula-
tion are described in Table 3.

21

Many actions that the agent is able to play on the iTHOR simulator, allow continuous

Action Type Action Name and Important Arguments

Navigation ctr.step(action="MoveAhead", moveMagnitude=float)
ctr.step(action="Rotateleft", degrees=float)
ctr.step(action="RotateRight", degrees=float)
ctr.step(action="LookUp"/"LookDown", degrees=float)
ctr.step(action="Crouch"/"Stand")
ctr.step(action="Teleport", position=dict(x, y, z),
rotation=dict(x, y, z), horizon=float)

Object Movement ctr.step(action="PickupObject", objectId=str)
ctr.step(action="PutObject", objectId=str(targetobject))
ctr.step(action="DropHandObject")
ctr.step(action="ThrowObject", moveMagnitude=float)
ctr.step(action="MoveHeldObjectAhead",
moveMagnitude=float)
ctr.step(action="RotateHeldObject", pitch=float,
yaw=float, roll=float)
ctr.step(action="DirectionalPush", objectId=str,
moveMagnitude=float, pushAngle=float)

Object State Changes ctr.step(action="0penObject", objectId=str)
ctr.step(action="CloseObject", objectId=str)
ctr.step(action="BreakObject", objectId=str)
ctr.step(action="Cook0Object", objectId=str)
ctr.step(action="SliceObject", objectId=str)
ctr.step(action="ToggleObjectOn", objectId=str)
ctr.step(action="ToggleObject0ff", objectId=str)
ctr.step(action="0penlObject", objectId=str)
ctr.step(action="DirtyObject", objectId=str)
ctr.step(action="FillObjectWithLiquid", objectId=str,
filllLiquid=str)

ctr.step(action="EmptyLiquidFromObject", objectId=str)
ctr.step(action="UseUpObject", objectId=str)

Table 3: The main original actions that the iTHOR API provides. Most of these actions also
have an Boolean argument called forceAction which, if set to true, executes an action ignor-
ing visibility and interactability constraints. Some auxiliary actions have not been displayed,
such as GetReachablePositions which returns a list of positions that the agent can reach
(useful in tandem with the Teleport action). Each object-manipulating action requires the
specification of the objectID of the object which is to be manipulated, which is a string that
is part of the object’s metadata.

values for movement magnitude, rotation angle, etc. Since extremely precise control is not
required to perform tasks in iTHOR, it is possible to reduce this continuous action space into
a discrete one for simplicity. The navigation actions have therefore been specified with certain
fixed values of movement magnitude and rotation angle, and made available to the agent as
discrete actions. Additionally, the PickUpObject, PutObject, SliceObject, OpenObject, and
CloseObject actions for each of the 20 considered objects (only if any given object is picku-
pable, receptacle, sliceable, etc.) is included as a separate action. The full list of available

22

primitive actions in the MDP’s action space is described below in Table 4.

Primitive Action

Corresponding Real Action Used in iTHOR

MoveAhead
RotateLeft/
RotateRight
RotateLeftHard/
RotateRightHard
Rotatel80
LookUp/LookDown
PickupBottle
PickupEgg

PickupBread
PutPan
PutPot

PutCountertop
SliceApple
SliceBread

ToggleOnMicrowave
ToggleOnToaster

OpenMicrowave

CloseMicrowave

FillMugWithCoffee
FillBottleWithCoffee

ctr.
ctr.

ctr.

ctr.

ctr

ctr.

ctr.

ctr

ctr.

ctr.

ctr.

ctr.

ctr.

.step(action="SliceObject", objectId

step(action="MoveAhead", moveMagnitude=0.5)
step(action="RotateLeft"/"RotateRight", degrees=30)

step(action="RotateLeft"/"RotateRight", degrees=60)

step(action="RotateRight", degrees=180)

.step(action="LookUp"/"LookDown", degrees=30)

step(action="PickupObject", objectId =
corresponding pickupable object)

step(action="PutObject", objectId =
corresponding receptacle object)

corresponding sliceable object)
step(action="BreakObject", objectId = eggl[’objectId’]

step(action="ToggleObjectOn", objectld =
corresponding toggleable object)

step(action="0penObject", objectld =
microwave[’objectId’]

step(action="CloseObject", objectIld =
microwave[’objectId’]

step(action="FillObjectWithLiquid", objectId =
corresponding object with canFillWithLiquid==True,
fillLiquid = "coffee")

Table 4: The index of primitive (or base) actions that form the action space in the MDP,
derived from the API actions available in iTHOR, by providing fixed, discrete values for the

parameters

23

4.2.2 Pre-Encoded Options

Similar teleportation options to the CraftWorld setting were created for iTHOR and used as
the pre-encoded options available in the option library. The teleportation was implemented
using the inbuilt Teleport action in iTHOR. The arguments to the Teleport action, i.e.,
the position, rotation, and horizon (camera pitch angle) that the agent needs to teleport
to were calculated using iTHOR metadata of the agent and the objects, and using geom-
etry and trigonometry of triangles formed by the involved vectors, in a manner very similar
to the calculation of the relative pitch and relative angle of objects (described in Section 4.2.3).

Figure 7 displays the execution of four options: pickup_egg, break egg, pickup_eggcracked,
puton_countertop.

BreakObject | (a) break egg option

Pickupobject IR (b) pickup egg option

pickupobiect NEHE (c) pickup eggcracked option

—_— =i

Teleport ’ PutObject [N : (d) puton countertop option

Assume

eggcracked
is already

picked up

Figure 7: The visualisation of 4 pre-encoded options. Each step visualised happens directly
after the previous one, without intermediate steps of navigation or manipulation. The name
of each iTHOR action used for each step is written above the arrow leading from step to step.

24

4.2.3 State Space and Reward Functions: Some Challenges Faced and their So-
lutions

The metadata of the controller provided by iTHOR can be used to construct the state of the
MDP. The state is encoded first as an N x (N + K') multi-binary matrix containing information
about all considered objects. N corresponds to the number of considered objects, and K corre-
sponds to the number of ”extra attributes”, described in the following paragraphs. The latter
N x N square section of the matrix contains information about which objects are contained in
which other objects - if the cell (z,y) is set to 1, it means that object x is contained in object
y. This is meaningful information to include in the state as many of the tasks involve placing
some object on another receptacle object, say, on a DiningTable or a CounterTop while serving
a dish.

The remaining first K columns in the state matrix correspond to K other attributes obtained
from the metadata, for each object corresponding to each row of the matrix. For the option
indexing task, an abstracted environment capturing essential features of the actual iTHOR
environments was used, where the available options could all ”teleport” and perform their
corresponding sub-task in a single step. Therefore, the current visibility of an object to an
agent did not matter. With the usage of this abstracted environment, the actual graphical
iTHOR environment with an agent capable of executing primitive actions could be omit-
ted. Therefore, the abstract ”objects” in this abstraction only possessed the following hand-
picked attributes: breakable, canFillWithLiquid, compatibleRecepticles, cookable,
pickupable, sliceable, isPickedUp, temperature, isCooked, fillliquid, receptacleObjects,
parentRecepticles, isPresent. They did not possess attributes of real objects in the real
iTHOR environment, such as visible, position, and interactable.

For the recipe tasks in the option indexing context, it was therefore sufficient to consider

only the following object attributes in the abstracted environment: isPickedUp, isCooked,

isBroken, isSliced, isOpen, fillLiquid==’coffee’, filllLiquid==’water’, fillLiquid==’wine’
as the K columns in the state matrix.

E . : 18,1
e [[OOOOO00DOO01000000010000000 0 0]
e [poOOODODOOOOD1OOO010GOOOG1010000]
ok [16000O001000000000000100020 8 20]
ard [P OO0 O0NO110000000000060610010600]
sl A QO OOOOOOO1OO0000100000000G60 0]
"""""" " [0PO010000000000001000000100 0]
Cup [L6OOPODOOROO1000000100000000 0]
mgte [@ Q0010010000001 10000000000 0]
Fag [0 100000000101 00000001100006 0 0]
meked (D QO OOOO001000010000010000001 1]
woe (B OODOOO0OO0OOO0000000010000000 0 0]
Mg [000O0O0D100000100000000010000 0]
= [LoOOAA100A1I10EEE0EOEEORAOO0OQAAA]
mesiie [0 OO OO0 O00O00O00O00CCO000G1000000 0]
Plase [P100100000100000000001010606 0 0]
Pt [POPOOOAOR1OO00CO1000EOREEOO0O0 O O]
ol Saihe [LoOOOODOOAR1O00QQCO0RAOCERO1001CGE O]
------ s: [0 OO0 000Q0010C00CO00AAE1000R000A]
Tosser [101000000000000000000000R00O0 1]
werc: [0 OO OO OO00O0OO00100606100060011060601]]

K columns [f:lxK matrix} N columns {MxM matr.i)-:) corresponding to

corresponding to other receptacle (which objects contain which) information

attributes

Figure 8: The Older State Representation in the Previous Option Indexing Context

25

However, in the adaptation setting, in the presence of a base network which needs to learn a
policy over primitive actions, it became necessary to work in the actual iTHOR environment.
Here, the visibility and position of objects were important to consider - since we expected the
agent to know when to walk forward, when to pick up an object, and when to execute other
actions. In other words, the local context of the agent became important, and it was now nec-
essary to shift to an egocentric view of the environment. As a result, the state representation
required certain modifications.

The first step was to indicate the attributes of an object only when that object is visible.
For a currently invisible object, the current state would have all zeroes in the corresponding
row. This changes the state to an egocentric view, where only the attributes of the visible
objects are known to the state. This was thought to encourage the agent to first seek out
visibility of the relevant objects which, in turn, leads to successful trajectories - therefore, first
the agent would align and/or navigate itself towards the relevant object, and then manipulate
it as required.

However, this state representation failed despite several improvements to the learning algo-
rithm over several weeks. It was, eventually, improvements to the MDP itself, discussed below,
that yielded positive results.

Reward Structure: The tasks are all sparse-reward, therefore a reward of 1.0 is obtained
only when the final goal is reached. This reward was encoded by checking whether only the
relevant aspects of the current state match with the goal state. The goal state was generated
by running the known recipe of the task on an instance of the environment in advance. If
the relevant aspects matched, a reward of 1.0 was considered, else 0.0. In addition, a length
penalty of -0.002 was added to the reward for every step, to discourage long policies and pre-
vent the agent from getting stuck. A few examples of tasks and their reward conditions using
the state information are tabulated in Table 5.

One of the important improvements had to do with the reward structure for the base net-
work, and is described below:

1. In the option indexing and adaptation setting, it is a sequence of options (including the
base network) that leads to a successful episode. This means there are two possible cases
for the base network:

e Case 1: The base network has to compensate for the first or an intermediate option
in the recipe: In this case, the base network does not receive any reward directly.
The reward for completing the task is only given to the hierarchical network. There-
fore, the base network needs some kind of pseudo-reward to learn that the state it
ends on is, in fact, valuable. One candidate for this pseudo-reward is the value func-
tion maintained by the hierarchical policy, which possesses the higher-level aware-
ness that the end state of the base network can lead to reward upon playing other
options. The reward, then, at each time step for the base network can be considered
to be equal to true reward+higher-level value, effectively combining the true
reward and the pseudo-reward.

e Case 2: The base network has to compensate for the last option in the recipe: In
this case, the base network receives the actual reward from the environment as it
is the one that completes the task. Considering this, true reward+higher-level
value is no longer a good candidate for the base reward, as adding the higher-level
value as a pseudo-reward leads to a moving target for the A2C algorithm used by

26

the base network for learning. The higher-level value of the last state does not make
sense in this context, as it is the true last state of the episode. Moreover, the value
function of both the higher-level network and the base network indicate a similar
value in this setting, as there is no future trajectory after the base network reaches
success. Loosely assuming that both the value functions are the same, we have the
following problem with the TD-error used in updates:

Errorrp = [7' + Vhigh(st)] + V;)ase(st-l—l) - V;Jase(st)
~ [T + V;)ase(st)] + ‘/base(st—l-l) - V;)ase(st)
~ 7+ Vigse(St+1)

which proves to be an exploding target for the learning algorithm. While this
description is not mathematically accurate, it is an indicator of the problem with
using true reward+higher-level value as the reward signal for the base network
when the last option is missing.

As a result, whenever it is the last option that is missing, the base network simply
learns using true reward as the base reward.

2. As the primary goal was the implementation of the adaptive augmentation idea on the
complex iTHOR environment, changing the base-reward formulation depending on which
option was missing was the temporary adopted solution for this problem. However,
incorporating these different cases is only possible if we know the missing option in
advance, which is not the case in a real option retrieval and adaptation setting. A
formulation for the pseudo-reward which is not dependent on the ideal position of the
base network in the recipe would be better suited.

The next page contains Figure 9 which represents both the above cases in graphical form for
better understanding.

27

o i
<o e na

puton_counterto

Base Network

(a) when base network compensates intermediate option

To train 1y
e ulhlﬁ_ran:hinal Metwary

fill_bottle with
_coffee

(b) when base network compensates final option

Figure 9: The propagation of reward signal to the base network in both
the cases, Case 1 and Case 2, discussed above. The task considered is
serve_beverage coffee_on table_countertop-v000, whose recipe in terms of the
pre-encoded options is 1. pickup_-bottle, 2. £fill bottle with coffee, 3.
puton_countertop. In Case 1, an intermediate option is missing: the true task reward
cannot propagate directly to the base network for training, therefore some pseudo-reward (in
this case the higher-level value function) must be used to encourage the base network towards
policies that drive it towards the reward state. In Case 2, the final option is missing: the
reward is a direct consequence of the base policy, and can be used to directly train the base
network.

The algorithm, however, still failed for most tasks - showing reasonable success only for tasks
involving objects close to the starting location. Eventually, upon visualisation of the learned
policies, it was discovered that the agent was stuck when it was far away from the objects of
interest, spinning circles or running into the wall, essentially failing to learn the navigation
aspect of such tasks.

It was then understood that the agent currently had no way of telling through the state,
whether an object was nearby or far away, to the left or to the right, as only visibility (and the

28

lack of it) was encoded. The original iTHOR environment treated only interactable (nearby)
objects as visible, and the visibility distance itself was very short (1.5 metres). This means that
a faraway object, even if present in the frame, was effectively invisible to the agent. Therefore,
for example, the agent would not know when it can use the MoveAhead action to get closer to
an object. The agent merely had a small region of visibility and interactability. As a result,
the agent was unable to learn how to transition from an object being invisible to being visible,
and once visible, how to get closer within interactable distance of the object.

Figure 10: A true scene in an iTHOR environment (left) and what the agent could see at any
given time (represented approximately) according to the default definition of visibility and
interactibility (right). According to how visibility was defined by default, the agent could only
see nearby objects that it could interact with. This hindered the agent’s ability to learn to
move towards an object that it sees in the distance, making learning navigation impossible.

The state representation was subsequently enriched to include more information about ob-
jects:

1. The visibility distance of the agent was increased so that all objects in the frame are
visible. However, they are not all interactable in a realistic setting. Therefore, an extra
condition was added for interactability: the relative distance between the agent and the
object was calculated using the metadata, and only objects within the original visiblity
distance of 1.5 metres were made interactable.

2. The relative pitch between the agent’s camera angle and the objects’ y-coordinates
(height or depth) was calculated geometrically. The field of view of the agent was di-
vided into three horizontal sections. If the relative pitch was < —35°, the object was
categorised as being "down” and the agent would hopefully learn to use the LookDown
action to keep the object in the field of view as it moved closer. If the relative pitch was
> 35°, the object was categorised as being "up”, and the agent would hopefully learn to
use the LookUp action.

3. Similarly, the relative left-right angle between the agent’s camera angle and the objects’
x- and z-coordinates was calculated geometrically, and the field of view was divided into
3 regions: relative angle < —35°, —35° <= angle <= 35°, > 35°, so that the agent may
learn to use the RotateLeft and RotateRight actions when required.

29

Figure 11: Calculation of the angles with respect to the object Pan: (a) Relative pitch calcu-
lated taking the difference between the agent camera pitch angle, and the object pitch angle
calculated using the arctan of the y-coordinate distance divided by the xz-plane distance
between the agent camera and the pan (b) Relative left-right angle calculated taking the dif-
ference in angle between the agent rotation, and the object position vector with respect to the
agent torso in the xz-plane

The final state representation is shown graphically below in matrix form for better under-

30

standing. The actual state representation fed to the agent is the flattened version of the matrix,
so that it can be used as input to the agent’s MLP neural networks.

Xz o TER Aty
e 3 ‘F ? %:“ é E‘ 1 = T: = B j E & z E)
SeN I 00T < 50 PR < P B o Tl Pt v = PR S < P o (SR B o P P oS - F - S el ol o - P T < TR < |
e [0. 0.0.0.0. 0.0.0.0.0.0.0.0.0. . 9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.80.]
s« [@. 1. ©. 6. 0. 6. B. 6. 0. 1. 0. 0. 6. O. . 0.0.0.0,0.60.0.0.0.0.0.0.60.06.0.0.]
B [6. 6. 6. B. 0. B. B. €. 0. 0. 6. 0. 0. 6. 6. 68,8 0.0.0, 6.0.606 0.0 0.6 60 0]
eesioed [@, 0.0, 8. 8. 0, 0. 9. 9. 0. B, 0. 0. 0. O B B 100,105,166 1B D B BB, B B B
e [, 0. 0. 0.0, 0.0, 0..0..0.. 8,0, 0,:0. B0 00 e, R, B G B G B B 8, B @ 8]
e [€ 06 05 By 9500006 €4 0505 0% 9.0 B O G G O B O O B 0 B B B B G]
wgite [@. 0. 0. 0. 0. 0. 0.:6. 0. 0, 8. 0. 0. 0. 0.0 B0 0 8. 0 6 B B B B 8, B 0. 8:]
s [€. 8. 8. B. 0. 0. 0..6, 0. 6. 8. &, 0.0, 0.8 8. 9.0, 0. 8.6 8 B B Bl 8L B B 66
moue [@, B, 0, 8. 0. 6. B. €. 0. €. 6. 0. 6. 6. (v P o TS S S5 W < S sl - S S A P R TR S« 9 |
Misimare [0. 1. 6. ©. 0. 6. 0. ©. 6. 1. 6. 1. 0. 0. {< i c Pl P ol P - e Pl o Pl ol P - < P Pl T
Hig T P T T P T PO 0. S e P T S i P L - - L
.. [6. 1. ©. 8. ©. 0. 0. 0. 0. . 0.0.0,0.0.0.0.0,0,0.0.0,0.0.0.]
rpestaes [0, 0. ©. 6. 0. @, 0. 0. 0. 0. 0. 0. 0,0, 0. 0 Fa]
e [6. 1. 0. 8. 0. 6. B. 6. 0. 0. 6. 0. @ €). 6.]
"~ [6. 1. @. 8. 0. 6. 0, @. 8. 0. 8. - 6.]
sk [@. @, 0. 0. 0. 0. 0. €. 0. 9. @ 0.]
s [@. 1. 0. 0. B. 0. 0. 9. 0. @, e 8.]
SO | TS TS S s el
wroe [€. 8. 0. 8. 0. 6. 0. 8. 0. 0. 0.]]
K columns (l‘:IxK matrix) M columnsg (Mxm matrlix} corresponding to
correspanding 1o other receptacle (which objects contain which) information
attnbutes

Figure 12: An example scene (top) and the corresponding final, enriched state representation
(bottom). Only the rows in red, which correspond to objects that are visible (Bowl, Microwave,
Pan, Plate, Pot, StoveBurner, Toaster) have non-zero entries in them: this gives the state an
egocentric view typical of any navigation agent. In this example, Toaster and Plate are not
within the interactable range of 1.5 metres even though they are visible. The existence of such
states allows the agent to learn to use the MoveAhead action in such contexts to move towards
objects of interest. Also, StoveBurner has a relative pitch of < —35° and a relative angle of
> 35°, which means it is downwards and rightwards. This state information allows the agent
to learn to use the RotateRight and LookDown actions in this situation, if StoveBurner was
an object of interest.

31

With this enriched state representation, adaptive augmentation finally showed success on the

complex iTHOR environment.

4.2.4 Tasks

The tasks that the agent is trained
recipes) of the pre-encoded options.
in Table 5.

and evaluated on, are generated using set sequences (or
A few examples of tasks and their recipes are tabulated

Task

Recipe

Reward Conditions

put_crockery_bottle_on

_table_countertop-v000
serve_beverage_coffee_on

_table_countertop-v002

put_egg_on
_countertop-v000
serve_coffee_egg on
_table_countertop-v000

serve_microwaved_egg_on
_table_countertop-v000

-pickup_bottle
—puton_countertop

-fill mug with_
coffee

-pickup_mug

-puton_countertop

-pickup_egg
-puton_plate

-pickup_egg
—puton_countertop

-fill bottle with
_coffee
-pickup_bottle
-puton_countertop
—puton_countertop
-break_egg
-pickup_eggcracked
-puton_countertop

-break_egg
-pickup_eggcracked
-puton_microwave
-cookon_microwave
-pickup_eggcracked
-puton_countertop

- bottle in
countertop[’receptaclelbjs’]

- mug in
countertop[’receptaclelbjs’]
- fillLiquid==’coffee’

in mug

- egg in
plate[’receptaclelbjs’]

- egg in
countertop[’receptaclelbjs’]

- bottle in
countertop[’receptaclelbjs’]
- fillLiquid==’coffee’

in bottle

- eggl’isBroken’]==True

- eggcracked in
countertop[’receptaclelbjs’]

- eggcracked in
countertop[’receptaclelbjs’]
- eggcracked[’isCooked’]
==True

- microwave[’isOpen’]==True

Table 5: A few task recipes used for training and evaluation of the agent

32

Algorithmic Details for AI2THOR Experiments

Both the higher-level network and the base network were trained using A2C once again. The
same state-value function as the higher-level network was not used for the base network, as in
the CraftWorld experiments (as this is incorrect). Instead a separate value function network
(critic) was maintained for the base network.

State Space: 20 x 34 multi-binary matrix flattened into a 680—dimensional vector

Primitive (Base) Action Space: 44 object manipulation and navigation actions derived
from the iTHOR, API actions, giving them fixed parameter values

Higher-level /attention policy network architecture: 680 x 64 x 64 x K+1

Value network architecture: 680 x 64 x 64 x 1

Activation function: tanh()

Learning rate: 3 x 10~4

Optimizer: RMSProp (e = 107°)

Gradient clipping (max = 0.5) and normalisation used

Discount factor ~: 0.99

Value function loss coefficient (critic loss): 0.8

Entropy coefficient: 0.5

Generalized Advantage Estimate (GAE) used to estimate advantages, A = 0.99

Rollout buffer used for mini-batch training, size = 10

Base network policy architecture: 680 x 64 x 64 x 44

Value network architecture: 680 x 64 x 64 x 1
Activation function: tanh()

Learning rate: 3 x 1074

Optimizer: RMSProp (e = 107°)

Value function loss coefficient (critic loss): 0.8
Entropy coefficient: 0.5

Rollout buffer used (size = 10), advantages are calculated using GAE again in a backward
accumulative manner. However, in time steps where the base network is not used, the
accumulation has to be broken and GAE calculation is restarted whenever the base
network is picked again, even within a single buffer of 10 transitions.

All other hyperparameters same as the higher-level network. A clear hyperparameter
search has not been performed.

33

Results

The reward curves for 5 of the 6 tasks tabulated in Table 5 are displayed below. Three kinds
of scenarios are considered:

e HRL-ADAPT_N-1 and HRL-ADAPT_N-2: The scenarios relevant to adaptation, with one
missing option and two missing options for completing the task respectively.

e HRL-N: The exact set of options required for the task is available, and a hierarchical
agent is trained over them.

e HRL-FULL: The full set of 42 pre-encoded options required for the task is available, and
a hierarchical agent is trained over them.

Task: put_erorkery bottle an_table eountetnp-vDo0 Task: put_eqq on_countertap-uioo
oo 4 |= et LO0] | e e
6% iM‘\.ﬂf i . i
: : x-'\/v
| I NN N
030 1 0307 | I|I J
I ‘ | I
| | |
t oaq | b t oaq |
i | i |
RPN L BRSPS | I § Ou s e
¥] ¥]
T | T |
5
o =039 | o =039 Illl
! -]
~0.50 4 | o504)
| U
—grs | — HRI-ADMAT M1 —grs | — HRI-ADMAT M1
il — LN il — LN
-1004 | —— HAL-FULL -1004 | —— HAL-FULL
]]
o8 02 o4 06 08 14 12 14 o8 02 o4 06 08 14 12 14
Training Iteratians - Led Training Iteratians - Led
Task: serve_beverage coffee on table countertop-v0n2 Task: serve coffes egq_on_table_countertop-wilin
oo | — . SRR Y oo | e e PR
! M : e
a1 f 075 |
1 :
03011 | 0307 |
| [i
t oaq | t oaq |
B il B !
PO B (SRR S S : e
T 000 T
=] =]
kil ! If kil !
& =0357 ! & =0357 !
| |
~0.50 4 | ~0.50 4 |
| |
~0.75 I,f‘ — HRL-ADMPT_N-1 o !
| — RN | — HRL-ADART F-F
-1004 | —— HAL-FULL -1004 | — HAL-K
1 1
o8 02 o4 06 08 14 1z 14 o8 02 o4 06 08 14 1z 14
Training |teratiens —+ Leg Training |teratiens —+ Leg

Task:- serve_microwaved egg on_fable countertop-vO

L B e
i
an] | o
[YN
w3 ! |" ﬂ/\f
i |
t gasq |
.l nJ
§ 000 s e e R S
. 1
b I
T |
o -028 !‘M
-0.50 }\\
(" O
-0.75 ! \. == HRI-2DAPT_M-1
| —— HRL-K
~1.00 i — HRL-FULL

[+1:] 0.2 b4 [eX=] og 14 12 14
Training lterations - 123

Figure 13: Reward curves for 1 training run of each task, upto 1.5M training steps

The value of final reward reached at convergence cannot be compared in this evaluation, as
there is a varying length penalty on the reward depending on whether a pre-encoded option or

34

the base network accomplishes any particular subtask. Currently, as the pre-encoded options
are "teleporting”, there is no good way to impose a length penalty on them that is indicative
of the actual number of steps that the option might take if it used primitive actions (this was
calculable in CraftWorld as the Manhattan distance is easy to obtain in the gridworld setting).
Therefore, the teleporting options and the primitive actions both have an equal length penalty
of 0.002. This means that a teleporting option might accomplish a subtask with just 0.002
length penalty, while the base network might use a long sequence of primitive actions to do
the same subtask, and therefore incur a larger length penalty (0.002 for each primitive action).
This discrepancy would be eliminated if the pre-encoded options were also replaced by neural
policies that are actually pre-trained to perform their corresponding subtasks.

It is worthwhile to look at the convergence rate or sample complexity. In put_egg on_countertop-v000
and serve_ beverage coffee on_table_countertop-v002, it appears that HRL-ADAPT_N-1
converges faster than the HRL-FULL setting, and at nearly the same rate as HRL-FULL

in serve microwaved_egg_on_table_countertop-v000. These conclusions demonstrate that
adaptive augmentation, with some refinement, can be used effectively in the option retrieval /op-

tion indexing context with one missing option.

In serve_coffee_egg on_table_countertop-v000, HRL-ADAPT_N-2 is also considered, and
adaptation does well to compensate for two missing options. This is encouraging evidence
towards the use of this idea in the context of several missing options. At the very least, having
the adapting base network would do better than not having it. The reward curves for all the
experiments above where options are missing without a base network would be all -1, as there is
no way to perform the task if the retrieved options are insufficient and there is no way to adapt.

The missing options in each HRL-ADAPT_N-1 (or HRL-ADAPT_N-2) scenario are tabulated
below.

Task Missing Option(s)
put_crockery_bottle_on_table_countertop-v000 -pickup_bottle
put_egg_on_countertop-v000 -puton_countertop
serve_beverage _coffee_on_table_countertop-v002 -puton_countertop
serve_coffee_egg _on_table_countertop-v000 -pickup_bottle
-break_egg
serve_microwaved_egg _on_table_countertop-vOOO -cookon_microwave

Table 6: The missing options in the evaluated HRL-ADAPT_N-1 and HRL-ADAPT_N-2 tasks

35

Visualisation of the base network policies: As further evidence of the policies learnt
by the base network compensating for the missing option, shown below is several trajectories of
the base policy learnt in the task serve beverage coffee_on_table countertop-v002 with
puton_countertop missing. The base network learns to put the mug on the counter-top in
several ways after the agent has filled the mug with coffee and picked it up using the available
pre-encoded options missing.

Figure 14: Several trajectories of the puton_countertop segment of the task
serve_beverage _coffee_on_table_countertop-v002 that the base network learns to perform.
There are several spurious actions in between that have not been visualised - therefore, the
lengths of successful trajectories are not 3, 4, or 5 for example.

5 Learning Options out of Base Network Policies

The base network in the Adaptive Augmentation idea learns a policy to compensate for a step
(or steps) in the recipe of a task. This means it is learning to do a useful subtask - which might
help in future tasks. Therefore, it would be helpful to encapsulate this policy as an option,
and add it to the option library. A framework of this nature would enable a true continual
learning framework of options, which is a meaningful eventual goal for this project.

However, in the current state, there exist a few obstacles towards achieving this framework.

1. The learnt base network policy from a single task is usually not generalisable. Say,
the base network learns to compensate for a puton_countertop option in the task
put_crockery_bottle_on_table_countertop-v000, it is able to perform the puton_countertop
subtask, but only from the part of the state space it has seen.

2. Secondly, the puton options in the iTHOR environment, for example, are not only re-
quired to generalise positionally, but also in an object-agnostic manner (as the picked
up object information is also a part of the state). A base policy that learnt to put a
bottle on the countertop should be able to extend that to placing other objects on the
countertop.

36

shelf

N
A

countertop

Figure 15: The policy learnt by a base network is local only to some states around
the place where it starts off from. In the above figure, the agent is represented by
the blue square marked ’A’. Assuming the bottle is on the shelf, and the task is
put_crockery_bottle_on_table_countertop-v000 as discussed above, with pickup_bottle
available and puton_countertop missing, the pickup_bottle option takes the agent near the
shelf. The base network then learns to ”put on countertop” from only this local region of the
state space, and does not transfer as a generalised option.

3. If the base network learns to compensate for the absence of two (or more) options, the
base network learns a combination of two subtasks (for different parts of the state space).
In such a case, before we think about generalisation over the state space, it might be
necessary to split the policy into two (or more) policies that perform one subtask each,
so that we can continually expand the option library without redundancy.

The following are some heuristics that might lay the pathway towards future work:

e For positional generalisation: Consider a sequence of tasks, say Task 1, Task 2, and
so on. Assume the case where only one of the required options is missing from the set of
retrieved options. The base network might learn a localised policy for a subtask during
adaptation for Task 1. For Task 2, we allow this base policy from Task 1 to continue
training in the form of a "new option” added to the set of options. If the missing option
in Task 2 is quite similar to what the base policy learnt in Task 1, the "new option”
finetunes its policy to perform a similar task in a generally different part of the state
space. In order to prevent catastrophic forgetting, the updates could be done in a manner
similar to methods such as GEM, where the gradient step is taken in a direction that
does not decrease performance on previous tasks.

e Alternatively, when training, the agent could be made to undergo a random positional
reset after the execution of every option. This allows the base network to perform the
subtask of the missing option from all over the state space, leading to a generalisable
policy being learnt.

e Finally, state abstraction methods could be looked into, so that several states can be
interpreted as similar according to the base network if it only focuses on the important
features of the state. However, an immediate problem that arises here is that the impor-
tant features of the state depend on the option that is missing, which we do not know
in advance. An idea to overcome this, is to identify the common features of the state
recurring frequently in successful trajectories of the training task.

e For object-agnostic generalisation: For iTHOR environments, the only object-
agnostic generalisation required is that of the picked up object. A puton_countertop-
compensating base network that learns to put a bottle on the countertop should easily

37

generalise to other objects. This could be done by abstracting the isPickedUp Boolean
attribute of all objects (stored in the state) into a single bit, which is 1 if any object is
picked up, and 0 if none is picked up. This collapses all states where an object is picked
up into one.

e When the base network learns to compensate for multiple (say, two) missing options, it
learns two different subtasks locally in two different parts of the state space. In such a
case, it might help to split the learnt policy into several policies based on discrete regions
of the state space that it covers, and then attempt generalisation.

6 Future Research Directions

In summary, some directions for future work and improvements to the present work are:
e Extending this work into true continual learning for options, by:

— generalising the base network policies, from whatever tasks something useful is
learnt, to large parts of the state space, and subsequently packaging them as options
to add into the option library,

— splitting the base network policies effectively when it learns two different subtasks,
in order to fulfill the above objective, and

— distilling the option library into an encoded basis, similar to [25], to keep the option
library compact and eliminate redundancy as new options are continually added to
the library

e Implementation of off-policy intra-option base network training when actual options
made of primitive actions are used, as mentioned in the third point under Section 4.1

38

7 References

1.

10.

11.

12.

13.

14.

Gordon J. Berman, Daniel M. Choi, William Bialek, and Joshua W. Shaevitz. 2014.
Mapping the stereotyped behaviour of freely moving fruit flies. Journal of The Royal
Society Interface, 11(99), 20140672.

. Matthew M. Botvinick, Yael Niv, and Andrew G. Barto. 2009. Hierarchically organized

behavior and its neural foundations: A reinforcement learning perspective. Cognition,

113(3), 262-280.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. 2018. Data-Efficient Hier-
archical Reinforcement Learning. Proceedings of the Conference on Advances in Neural
Information Processing Systems, 2018.

. Mohammad Ghavamzadeh, Sridhar Mahadevan, and Rajbala Makar. 2006. Hierarchical

multi-agent reinforcement learning. Autonomous Agents and Multi-agent Systems 13, 2
(2006), 197-229.

Matheus R. F. Mendonga, Artur Ziviani, and André M. S. Barreto. 2019. Graph-based
skill acquisition for reinforcement learning. ACM Computing Survey 52, 1 (Feb. 2019).

Thomas G. Dietterich. Hierarchical Reinforcement Learning with the MAXQ Value
Function Decomposition

Ronald Parr and Stuart Russell. 1998. Reinforcement learning with hierarchies of ma-
chines. Proceedings of the Conference on Advances in Neural Information Processing
Systems, 1997.

Richard S. Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning. Artificial In-
telligence 112, 1-2 (Aug. 1999), 181-211.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. 2020. Towards
Continual Reinforcement Learning: A Review and Perspectives.

David Lopez-Paz and Marc’Aurelio Ranzato. 2017. Gradient Episodic Memory for
Continual Learning. In Proceeding of the Conference on Advances in Neural Information
Processing Systems 2017.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan,
Puneet K. Dokania, Philip H. S. Torr, and Marc’Aurelio Ranzato. 2019. On Tiny
Episodic Memories in Continual Learning.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with Deep Reinforce-
ment Learning. Conference on Advances in Neural Information Processing Systems Deep
Learning Workshop, 2013.

Paul Ruvolo and Eric Eaton. 2013. ELLA: An Efficient Lifelong Learning Algorithm.
Proceedings of the 30th International Conference on Machine Learning, 2013.

Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew E. Taylor. 2014. Online
Multi-Task Learning for Policy Gradient Methods. Proceedings of the 31st International
Conference on Machine Learning, 2014.

39

15.

16.

17.

18.

19.

20.

21.
22.
23.

24.

25.

26.

27.

Akhil Bagaria, Jason K Senthil, and George Konidaris. 2021. Skill Discovery for Ex-
ploration and Planning using Deep Skill Graphs. Proceedings of the 38th International
Conference on Machine Learning, 2021.

Emma Brunskill and Lihong Li. 2014. PAC-inspired Option Discovery in Lifelong Re-
inforcement Learning. Proceedings of the 31st International Conference on Machine
Learning, 2014.

Arthur Aubret, Laetitia Matignon, and Salima Hassas. 2020. ELSIM: End-to-end learn-
ing of reusable skills through intrinsic motivation. Proceedings of the Furopean Confer-
ence on Machine Learning, 2020.

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J. Mankowitz, and Shie Mannor.
2016. A Deep Hierarchical Approach to Lifelong Learning in Minecraft.

Janarthanan Rajendran, Aravind Srinivas, Mitesh M. Khapra, P Prasanna, and Balara-
man Ravindran. 2017. Attend, Adapt and Transfer: Attentive Deep Architecture for
Adaptive Transfer from multiple sources in the same domain. Proceedings of the 5th
International Conference of Learning Representations, 2017.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 1999. Policy
Gradient Methods for Reinforcement Learning with Function Approximation.

Richard S. Sutton. 1988. Learning to Predict by the Methods of Temporal Differences.
Vijay R. Konda and John N. Tsitsiklis. 1999. Actor-Critic Algorithms.

Kushal Chauhan, Soumya Chatterjee, Akash Reddy, Balaraman Ravindran, Pradeep
Shenoy. 2022. Matching Options to Tasks Using Option-Indexed Hierarchical Reinforce-
ment Learning. https://arziv.org/pdf/2206.05750.pdf

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. The curious case
of neural text degeneration. In International Conference on Learning Representations.
URL: https://openreview.net/forum?id=rygGQyrFvH.

The CraftWorld Environment. https://github.com/jacobandreas/psketch

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Her-
rasti, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. 2017. AI2-THOR:
An Interactive 3D Environment for Visual Al https://arziv.org/abs/1712.0547

Option Encoder: A Framework for Discovering a Policy Basis in Reinforcement Learning.
2020. Arjun Manoharan, Rahul Ramesh, and Balaraman Ravindran. Proceedings of the
European Conference on Machine Learning, 2020.

40

	Introduction
	Overview
	Motivation and Objective

	Background
	Reinforcement Learning
	Hierarchical Reinforcement Learning
	Literature Review
	Continual Learning
	Transfer Learning

	Actor-Critic Methods
	Option Indexed Hierarchical Reinforcement Learning (OI-HRL)

	Adaptive Augmentation: Methodology
	Modifications and Complications Relative to A2T

	Experimental Setup and Results
	CraftWorld
	AI2THOR
	Action Space
	Pre-Encoded Options
	State Space and Reward Functions: Some Challenges Faced and their Solutions
	Tasks

	Learning Options out of Base Network Policies
	Future Research Directions
	References

