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Abstract

Image resolution has been a topic of an attractive research for quite some time
since it has many applications in different fields like medical imaging, remote
sensing, video surveillance, astrophysics and many more. Image resolution
represents the detailed description of an image.The higher the resolution, the
more details we can get about the image.

Super resolution is class of techniques to get high resolution image from
multiple or single low resolution images.In this thesis, we have learned about
the techniques of getting high resolution image from multiple overlapped
images since we will get overlapped data from Scatterometer. Three resolu-
tion techniques have been tried to learn in great detail.The first and second
method i.e. Algebraic Reconstruction technique and Simultaneous Algebraic
Reconstruction technique as name suggests, is reconstruction based method.
The third one is Super Resolution via Sparse Representation which is learn-
ing based method.
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Chapter 1

Introduction

1.1 Super Resolution

Super resolution means obtaining high resolution image from one or more
low resolution images. High resolution images have high pixel density infor-
mation i.e. more details are available for an image whereas low resolution
images have low pixel density. High resolution images are needed in many
areas like medical imaging, satellite and aerial imaging, ultrasound imaging,
compressed images, facial images improvement and many more. High res-
olution can be achieved by collecting more information while capturing the
image itself i.e. using extra sensors. But increasing the number of sensors
to achieve high resolution is not the cost effective solution. We need super
resolution algorithms which can reconstruct the degraded image. Super res-
olution problems mainly can be categorized in two main streams. One is
multi-frame super resolution in which many low resolution images is being
taken and we have to get high resolution image. Many low resolution im-
ages implying different looks of the same object but this doesn’t ensure extra
information. Low resolution images have to be different pixel shifted or over-
lapped to contain extra information needed to super resolve them into one.
Second is single image super resolution where only one image is available as
data and we have to super resolve it.

1.2 Remote Sensing and Scatterometer

Remote Sensing is a means of obtaining information about an object or
medium without coming into physical contact with it. Two types of remote
sensors:
Active: Sensors which use artificial sources that emit radiation, directing it
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towards the object of interest and collecting the return signal.
Passive: Sensors which use the natural radiation emitted by the Sun, by
stars, and by the Earth and its atmosphere.
Scatterometers are an active non imaging sensors which were typically used
to measure radar backscatter from oceans surface to determine wind direction
and its speed over the ocean. Scatterometer can cover large areas of earths
surface within two/three days and is relatively immune to clouds and pre-
cipitation. There are different types of scatterometers with different spatial
resolution capacity like Seasat-A-Scatteromter(SASS) has typically 50km res-
olution while QuickScat has 25km. This resolution is good enough to study
wind vectors over ocean but not good for land or ice studies. However, by
applying resolution enhancement algorithms i.e. image reconstruction meth-
ods to the data,images with sufficient detail for land and ice studies can be
obtained.

1.3 Literature Review And Motivation

Super resolution problems come under Image Reconstruction class. The idea
of super resolution is based on the linear imaging model which relates between
low resolution images and high resolution image. The low resolution image
is generally considered to be some decimated blur version of high resolution
image with some noise added to it.

Y = BSX + n (1.1)

where Y represents low resolution image. S is a decimation operator, B rep-
resents blur function, X is high resolution image, n is the noise in the system.

Figure 1.1: Imaging Model
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So, super resolution algorithms are inverse problems where Y is the
observed data and we need to find out the original image X i.e. recon-
struct/restore it given the information of decimation and blur function. Ac-
cording to Jacques Hadamard, a mathematical model for any physical phe-
nomena can be considered as well posed if it follows following condition:

• A solution exists.

• Solution is unique.

• Solution’s behavior changes continuously with input data.

Our inverse problem doesn’t belong to well posed category.It is an ill posed
problem since a unique solution doesn’t exist in our case. But in case of
reconstruction, let say SB = H, the most feasible solution would have been

X = H−1Y. (1.2)

in case of noiseless system. But the inverse doesn’t exist for our case. In
inverse problems, eq 1.1 represents system of linear equations, we don’t have
enough information to determine the solution of given equations.So, we need
some algorithms to solve eq 1.1 to get our reconstructed image from the
observed one. Though there exists lot of approaches to solve this problem,
the two categories are Reconstruction based methods and Learning based
methods.

1.3.1 Reconstruction Based Methods

In this type of techniques, image reconstruction is being done using projec-
tions on the image as data. The Algebraic Reconstruction Technique(ART)
and Simultaneous Algebraic Reconstruction Technique(SART) are the tech-
niques which is being studied for reconstruction of image from projections.
The basic of image reconstruction from projection was introduced by Her-
man, (1980), Natterer and Wubbeling (2001) and Kak and Malcolm (2001).
The basic idea behind reconstruction is divide the whole space which one
wants to reconstruct into finite number of pixels and each pixel represent a
constant value.
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1.3.2 Learning based Methods

Various regularization methods were proposed to stabilize the inversion of
such an ill-posed problem, such as [1-3]. However, the performance of these
reconstruction-based super-resolution algorithms degrades rapidly when the
desired magniflcation factor is large or the available input images are lim-
ited. In these cases, the results may be overly smooth. In learning based
techniques, an over sized dictionaries corresponding to high and low reso-
lution images are being learned using test images. We try to find out the
most sparseset solution for our overlapped images with respect to learned
dictionaries. [4]

1.4 Research Objective

The main aim is to reconstruct high resolution image from the low resolution
overlapped images. Since, this inverse problem is highly ill posed and sys-
tem of equations form an underdetermined system, so, the study of different
iterative algorithms which are capable to reconstruct efficiently and easy to
implement is being carried out. Solve the eq:

y = Hx+ n (1.3)

by ART , SART and Sparse representation.

1.5 Thesis Organization

Chapter 1 is the introduction of super resolution , remote sensing , motiva-
tion and research objective of the project.

Chapter 2 is the detailed discussion of the techniques tested in the project.
ART , SART and Sparse representation to the application of high resolution
is being explained.

Chapter 3 is the results and discussions of the techniques mentioned in
the chapter 2.

Chapter 4 is the conclusion.
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Chapter 2

Background Theory

2.1 Algebraic Reconstruction Technique

It is an iteration based technique in which reconstruction problem is modelled
as set of linear equations i.e. it is applied to solve large system of linear
equations. In this method, reconstruction of image is being done by taking
measurements from the projection on the object. A linear model is being
proposed in between measurements and no of unknown variables. The object
is being divided into discrete finite grid where every cell represent constant
value, x. Every projection onto it gives the measurement, y. The linear
relation is as follows:

M∑
i=1

Hjixi = yj (2.1)

j = 1 to N

where Hij is the weight function which accounts for the contribution of
every cell to particular projection. M is the no of cells in the grid and N is
the no of projections taken.
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Figure 2.1: Projection as sum of intersected pixels

Since, its an iterative method, initial guess to x plays a role to the con-
vergence of solution. If initial x is chosen to be zero, then ART converges to
minimum norm solution.
min||x||2 such that Hx = y

The geometrical interpretation of the technique is as follows:
From eq 2.1, we can say every equation represents a hyper plane. Projections
onto hyper planes one after the other till it converges to the solution. It is
also known as row action technique as one row of H is needed at one single
iteration. The unique solution to the system will be existing if the equations
are consistent. The uniqueness will depend on the rank of H. But in case, if
the measurements are less or system is inconsistent/ under determined, we
can get minimum norm solution.

Figure 2.2: Geometrical interpretation when M=N=2

In ART, one projection is considered at a time i.e. in one iteration,
one projection is taken and initial guess is modified according to that which
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makes the algorithm slower towards convergence as number of iterations is
very large.

Initialisation: x0=0
Iterative step :

xk+1
j = xkj +

yi − 〈hi, xk〉
||hi||2

hij (2.2)

where xkj is the jth element of the vector x at the kth iteration, hi is the ith
row of H, and hij is the (i,j)th element of H.[2] From the equation, we can
see that only immediate predecessor x is needed and one row of H. Since the
correction from the projection term is being added to the initial guess and
so on, this ART is also known as Additive ART.

Figure 2.3: Flowchart for the ART Algorithm

2.2 Simultaneous Algebraic Reconstruction Tech-

nique

In this technique, average projection is added to the iterative term i.e. in one
iteration itself, initial guess is projected onto every hyperplane and average of
all those projections is being added to initial guess to update x. Initialisation:
x0=0
Iterative step :
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xk+1
j = xkj +

∑m
i=1

hijd
k
i∑n

j=1 hij∑m
i=1 hij

(2.3)

where dki = yi − 〈hi, xk〉. [3]
SART is different from ART because in this, single pixel update requires

information from every measurement as it normalizes each update xj by the
sum of the elements in the jth column of H. It is also known as column action
technique as one column is needed to update x at one time.

Figure 2.4: Flowchart for the SART Algorithm

2.3 Sparse Representation Technique

It is a learning based technique in which sparsity of natural images has been
exploited for super resolution i.e. any natural images can be represented as
sparse signal in the chosen over-complete dictionary. It is also based on the
fact that there exists a linear relationship between high resolution images
and its low dimensional projections. Let D be an over-complete dictionary
of k bases and a signal x can be represented as

x = Dα (2.4)

where α determines the nonzero coefficients and it tells the sparsity of signal
with respect to D. The details regarding dictionary is explained in next sec-
tion. In this technique, we refer to our overlapped measurements as patch

8



since one low resolution image from Scatterometer corresponds to one patch
of the complete area under its scanning. In this method, we will work with
the two coupled dictionaries DL and DH for low and high resolution patches
respectively. This algorithm is based on patch wise reconstruction. We will
find out sparse representation of low resolution patches with respect to DL

and reconstruct the high resolution patch using DH and sparse representa-
tion found out from DL.
Since, we know every low resolution patch, y, can be expressed as sparse
representation with respect to DL locally. And globally, it follows:

y = Hx (2.5)

considering the noiseless case. First we will try to find out the most sparseset
representation of y. In general, L0 minimization has to be done to find out
the most sparse solution but since L0 minimization is non-deterministic poly-
nomial hard problem, we will try to find out the solution by L1 minimization
which is as follows:

min
α
||FDlα− Fy||22 + λ||α||1 (2.6)

where λ represents the sparsity of solution and F represents the feature
extraction operator which is used to get texture from the image than the
intensity. Every patch is being convoluted with first order and second order
filters to get four different patches and all the patches are being concatenated
into a matrix to form feature extraction operator for that patch.
The equation 2.6 doesn’t explore the overlapped information in between dif-
ferent patches. To ensure that the reconstructed patches follow over over-
lapped region, we minimize the following eq:

min
α
||PDHα− w||22 + λ||α||1 (2.7)

where P extracts the overlapped region between current patch and previously
reconstructed patch and w is the previously reconstructed high resolution im-
age on the overlap.
We can find the most sparseset solution by optimizing the above two equa-
tions which puts local constraint on patches that every patch can be expressed
as sparse representation of dictionaries.
The two equations can be combined as:

min
α
||D̃α− ỹ||22 + λ||α||1 (2.8)
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D̃ =

[
FDl

βPDh

]
(2.9)

ỹ =

[
Fy
βw

]
(2.10)

After finding sparse representations for every patch, we can reconstruct
the patch in high resolution by:

x = DHα +m (2.11)

where x represents the high resolution reconstructed patch.
After reconstructing all the patches, we can reconstruct the image and to en-
sure that every patch follow global constraint i.e. y=Hx, we can use steepest
gradient descent method and the update equation for that is given by:

X∗ = argmin
X
||BSX − Y ||22 + c||X −X0||22 (2.12)

where X0 represents the highly reconstructed image from patch wise recon-
struction.
X∗ is the final high resolution reconstructed image.[4]

Figure 2.5: Flowchart for the Sparse Representation Algorithm

2.3.1 Dictionary Learning

Dictionary is a matrix in which signal can be represented as sparse repre-
sentation of ’atoms’. Atoms are the bases vectors as columns vectors in
the dictionary. To learn coupled dictionaries, we need two training sets,
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Xh = [x1, x2...]and Y l = [y1, y2..] which corresponds to the set of sampled
high resolution and low resolution patches correspondingly. We can learn
dictionaries by optimizing the following eq:

arg min
Dh,Z
||Xh −DhZ||22 + λ||Z||1 (2.13)

argmin
Dl,Z
||Y l −DlZ||22 + λ||Z||1 (2.14)

such that
||Di||22 ≤ 1, i = 1, 2....k

But these equations are non convex but fixing D and then optimize for Z
and fixing Z and optimizing for D till it converges.
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Chapter 3

Results and Discussions

3.1 Simulation Results

All the simulations for this project is being carried out in MATLAB. For
some part of the simulations, CVX toolbox and SPAMS toolbox is being
used. SPAMS toolbox is used for dictionary learning. CVX toolbox is used
for L1 norm minimization. Algorithms are being tested on the self generated
overlapped coarse data, y i.e. undersampled low resolution data.

3.2 Generation of coarse data

Coarse data from image is being generated by taking patch of dimension
10 ×10 and summing it up to get one coarse measurement.Similarly many
overlapped patches were taken to get the coarse data. This means resolution
achieved is 10 times the coarse data given to the algorithm. Since, no of
measurements is less than no of pixels needed to be reconstructed, the system
of equations formed an underdetermined system. The performance of the
algorithms is being tested by calculating the normalised error as:
Normalised error=(Reconstructed image - Original Image)/Original Image
Percentage error in the reconstruction can be calculated as:
Percentage error=Normalised error × 100.

3.3 Algebraic Reconstruction Technique’s Re-

sults

Reconstruction of 2D image using ART technique.
Original image size 512×512 = 262144 pixels.
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Coarse measurements
Overlap% coarse pixels
60 16129
80 63504
90 253009

Table 3.1: Table to show no of coarse observations generated

Normalised error in Reconstructed Images
Data(y) without
noise

Data with
SNR=10dB

Overlap% k=30 k=30
10 31.54 32.56
20 37.13 37.81
30 36.74 37.46
40 30.63 31.45
50 14.38 17.88
60 21.50 23.39
80 09.38 23.83
90 38.04 44.82

Table 3.2: Table to show normalised error. k=no of times algorithm is being
run.

From the table, we can see as the overlap increases, the error is decreasing
as more information is available to reconstruct and geometrically we can say
as overlap increases, no of equations increases which increases the probability
of converging to minimum norm solution. But since simulations are being
tested for fixed no of iterations i.e. k=30, the error in 90 % overlap is high as
in this case , the no of equations is increased and convergence will be not be
achieved in 30 iterations.When k=50 was used,then error goes to 20.53. We
can say , as no of equations increases, the convergence gets slow and more
no of iterations is needed.But ART is susceptible to noise. As noise in the
image is added, the error is increased and its effect is more visible in higher
overlap. Mathematically we can say, the condition no of H is high i.e. small
change in measurements bring large change in output.
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(a) Original image (b) Original image

(c) Reconstructed image when k=30 and
without noise

(d) Reconstructed image when k=30 and
with noise

(e) Coarse data

Figure 3.1: Images corresponding to overlap 60%
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(a) Original image (b) Original image

(c) Reconstructed image when k=30 and
without noise

(d) Reconstructed image when k=30 and
with noise

(e) Coarse data

Figure 3.2: Images corresponding to overlap 80%
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(a) Original image (b) Original image

(c) Reconstructed image when k=30 and
without noise

(d) Reconstructed image when k=30 and
with noise

(e) Coarse data

Figure 3.3: Images corresponding to overlap 90%
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(a) Error, when k=30 (b) Error when k=30

Figure 3.4: Reconstructed error when signal has a. no noise b. 10dB noise

3.4 Simultaneous Algebraic Reconstruction Tech-

nique’s Result

Reconstruction of 2D image using SART technique.
Original image size 512×512 = 262144 pixels.

Normalised error in Reconstructed Images
Data(y) without
noise

Data with
SNR=10dB

Overlap% k=30 k=30
10 21.50 22.61
20 19.01 20.25
30 20.68 22.14
40 16.87 30.62
50 14.71 21.55
60 13.76 23.61
80 10.68 18.47
90 10.01 12.18

Table 3.3: Table to show normalised error. k=no of times algorithm is being
run.

From the table, we can see the same trend as in ART technique but we
can see the SART technique converges faster and SART is less prone to error
as compare to ART. As in SART, we take all the projections at one time
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and take the average to update the the reconstructive step which makes this
technique better than ART.

(a) Original image (b) Original image

(c) Reconstructed image when k=30 and
without noise

(d) Reconstructed image when k=30 and
with noise

(e) Coarse data

Figure 3.5: Images corresponding to overlap 60%

18



(a) Original image (b) Original image

(c) Reconstructed image when k=30 and
without noise

(d) Reconstructed image when k=30 and
with noise

(e) Coarse data

Figure 3.6: Images corresponding to overlap 80%
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(a) Original image (b) Original image

(c) Reconstructed image when k=30 and
without noise

(d) Reconstructed image when k=30 and
with noise

(e) Coarse data

Figure 3.7: Images corresponding to overlap 90%
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(a) Error, when k=30 (b) Error when k=30

Figure 3.8: Reconstructed error when signal has a. no noise b. 10dB noise
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Chapter 4

Conclusion

4.1 Conclusion

The super resolution techniques are being tested and found out that in case
of noiseless measurements, SART converges to solution with a more mono-
tonic behaviour than ART. In ART, the order in which rows of H has been
picked also matters. Resolution by a factor of 100 is being achieved since
for every 100 pixels in high resolution, we have one pixel information in
the low resolution grid. As the overlap increases, the error will decrease as
more information is available for reconstruction. But as overlap increases,
the number of hyperplanes increases for the projections, so we need to take
more projections in case of ART to get better results. In SART, as overlap
increases, we have got expected results.
But in case of measurements having noise, both the algorithms don’t show
promising results.In case of noisy measurements also, SART performs better
than ART.
SART converges faster and the error is less in reconstruction than ART.

4.2 Future work

We can apply these techniques to real world data by overcoming the chal-
lenges in it. After super resolving the data , we can use the information to
model for various applications in remote sensing like wind vector retrieval
over oceans, soil moisture etc.

22



References

[1] Image Reconstruction from Projections: The Fundamentals of Comput-
erized Tomography (Computer Science Applied Mathematics), aHer-
man, Gabor T,

1980

[2] A tutorial on ART (algebraic reconstruction techniques), Gordon,
Richard, journal=IEEE Transactions on Nuclear Science, volume=21,
number=3, pages=78–93, year=1974, publisher=IEEE

[3] Andersen, Anders H and Kak, Avinash C, Simultaneous algebraic re-
construction technique (SART): a superior implementation of the ART
algorithm

journal=Ultrasonic imaging, volume=6, number=1, pages=81–94,
year=1984, publisher=SAGE Publications Sage CA: Los Angeles, CA

[4] Image super-resolution via sparse representation, Yang, Jianchao and
Wright, John and Huang, Thomas S and Ma, Yi, journal=IEEE transac-
tions on image processing, volume=19, number=11, pages=2861–2873,
year=2010, publisher=IEEE

[5] Long, David G and Early, David S.Image reconstruction and enhanced
resolution imaging from irregular samples year=2001, publisher=IEEE

[6] Rafel C. Gonzalez and Richard E Woods.Digital Image Processing

23


	Acknowledgements
	Introduction
	Super Resolution
	Remote Sensing and Scatterometer
	Literature Review And Motivation
	Reconstruction Based Methods
	Learning based Methods

	Research Objective
	Thesis Organization

	Background Theory
	Algebraic Reconstruction Technique
	Simultaneous Algebraic Reconstruction Technique
	Sparse Representation Technique
	Dictionary Learning


	Results and Discussions
	Simulation Results
	Generation of coarse data
	Algebraic Reconstruction Technique's Results
	Simultaneous Algebraic Reconstruction Technique's Result

	Conclusion
	Conclusion
	Future work

	References

