
Hardware implementation of 5G Receiver

A Project Report

submitted by

TAMALAMPUDI MANI KRISHNA REDDY

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2018

THESIS CERTIFICATE

This is to certify that the thesis titled Hardware implementation of 5G

Receiver, submitted by T. Mani Krishna Reddy, to the Indian Institute of Technol-

ogy, Madras, for the award of the degree of Master of Technology, is a bona fide

record of the research work done by him under our supervision. The contents of this

thesis, in full or in parts, have not been submitted to any other Institute or University

for the award of any degree or diploma.

Dr. Radha Krishna Ganti
Project Guide
Assistant Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Dr. Nitin Chandrachoodan
Project Guide
Associate Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 8th May 2018

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude towards several people who enabled me to

reach this far with their timely guidance, support and motivation.

First and foremost, I offer my earnest gratitude to my guide, Dr.Radha

Krishna Ganti whose knowledge and dedication has inspired me to work efficiently

on the project and I thank him for motivating me, allowing me freedom and flexibility

while working on the project.

I would like to thank my co-guide Dr.Nitin Chandrachoodan who have guided me

throughout the project.

i

ABSTRACT

KEYWORDS: Vivado HLS, Vivado IP Integrator, Xilinx SDK.

The current trend in digital design is to accelerate the design and developmental cycles

without compromising on verification. One of the key factor underlying the concept

is to raise the abstraction layer from the traditional RTL level which are time consum-

ing,error prone and difficult to debug. HLS tools are an attractive proposition for the

rapid prototyping of the systems and bridges the gap between development times and

time to market. HLS tools automatically transforms the algorithms written in C, C++

to RTL implementations.

In this thesis I am presenting a case study of using Vivado HLS tool and Xilinx

Design Suites including Vivado IP Integrator and Xilinx SDK for the design and imple-

mentation of a 5G receiver. In order to improve the performance of the hardware vari-

ous optimizations like data flow pipelining, loop pipelining, array partitioning are used

to convert the C code to RTL implementations. The challenge was to achieve the re-

quired performance through minimized iteration interval with less additional hardware

overhead. The hardware generated is successfully tested in Zynq Ultrascale evaluation

board

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vi

ABBREVIATIONS vii

1 Introduction 1

1.1 Introduction . 1

1.2 Motivation . 1

1.2.1 Pros and Cons of HLS . 2

1.2.2 Design Flow Comparison between RTL and HLS 4

2 Background 7

2.1 Introduction to Vivado HLS . 7

2.1.1 Data Types . 7

2.1.2 Interface Synthesis and Functions 8

2.1.3 Area/Resource . 9

2.1.4 Pipelining . 9

2.1.5 Loops . 10

2.1.6 Arrays . 10

2.1.7 Exporting from Vivado HLS 11

2.2 Introduction to Vivado IP Integrator 11

2.2.1 AXI Architecture . 12

2.2.2 AXI Transactions . 14

2.3 Introduction to Xilinx SDK . 14

3 Implementation of Receiver 16

iii

3.1 System Description . 16

3.2 FFT . 17

3.3 RB De Mapping . 18

3.4 Layer De Mapping . 19

3.5 De Modulation . 20

4 Integration and Results 22

4.1 Method of on-board testing and results 22

LIST OF TABLES

2.1 Arbitrary precision data types for C/C++ 8

2.2 Arbitrary precision fixed point data types for C++ 8

v

LIST OF FIGURES

1.1 RTL Design Flow . 4

1.2 HLS Design Flow . 5

2.1 AXI4 write channel architecture 13

2.2 AXI4 read channel architecture . 13

3.1 Block diagram of a 5G transceiver system 16

3.2 Timing performance of FFT . 18

3.3 Resource utilization of FFT . 18

3.4 Timing performance of RB De Mapper 19

3.5 Resource utilization of RB De Mapper 19

3.6 Timing performance of Layer De Mapper 20

3.7 Resource utilization of Layer De Mapper 20

3.8 Timing performance of De Modulator 21

3.9 Resource utilization of De Modulator 21

4.1 Block Diagram of Transmitter and Receiver system 22

4.2 Utilization estimates of Transmitter and Receiver system 23

vi

ABBREVIATIONS

RTL Register Transfer Level

HLS High Level Synthesis

IP Intellectual Property

FPGA Field Programmable Gate Array

SDK Software Development Kit

HDL Hardware description language

EDA Electronic Design Automation

VHDL VHSIC Hardware Description Language

IDE Integrated Development Environment

GNU GNUâĂŹs Not Unix

GCC GNU Compiler Collection

JTAG Joint Test Action Group

BSP Board Support Package

GNU GNUâĂŹs Not Unix

vii

CHAPTER 1

Introduction

1.1 Introduction

The move to take new products, which are characterized by highly complex designs,to

market as fast as possible made the EDA community to device strategies that reduces

the design and development cycles without compromising on verification. The strate-

gies adopted for design acceleration are (i) design reuse and (ii) making higher abstrac-

tion level of the design.The strategies to reduce design and development cycles in turn

implies reduction in developmental costs.

Xilinx Vivado HLS is a tool for synthesizing digital hardware directly from a de-

scription of the system either in C/C++ or SystemC.This eliminates the need of design-

ing the hardware in HDL languages like VHDL/Verilog. This high level design does-

nâĂŹt fix the hardware architecture as is done by HDL languages. The most important

feature of the HLS tools are the designed functionality and its hardware implementa-

tions are kept separate and this provides great flexibility to the design community as

various architectures can be explored and arrived at an optimum design.

Xilinx SDK is a part of Vivado IDE which provides a platform for creating fully

functional software applications. The SDK includes GNU based compiler tool chain

(GCC compiler, GDB debugger), JTAG debugger, flash programmer, drivers for Xilinx

IPs and standalone BSPs and libraries for application specific functions. All of these

features are accessible from within the Eclipse based IDE.

1.2 Motivation

Current research in the field of wireless communication is tending towards increasing

the data rates with increased spectral usage efficiency. This is often accompanied by

trying out various algorithms and optimization of these algorithms which the situation

demands. Sometimes the demand is to build customized communication systems which

put forth specific requirements of the usage of specific algorithms.

1.2.1 Pros and Cons of HLS

There are a wide range of HLS tools available which are differ by their ease of use

and quality of the hardware derived.Some of the challenges that HLS tools must over-

come(Donald.G.Bailey (2015)) are listed below.

• Software algorithms are sequential in nature whereas hardware operates concur-
rently.HLS must map the sequential algorithm onto concurrent hardware

• Due to the sequential nature of software execution timing is implicit whereas
hardware deals with timing constraints by controlling and synchronizing opera-
tions at the clock cycle level.

• Software supports fixed word lengths say 8,16,32 or 64 whereas hardware sup-
ports arbitrary precision data types like 5,11,15 etc depends on the computation
being performed.

• Software supports dynamic memory allocation whereas hardware doesnâĂŹt sup-
port, as local variables are stored in registers with distributed address spaces.

• Data transfer between various modules is through shared memory in case of soft-
wareâĂŹs whereas hardware depends upon the use of FIFOâĂŹs , stream inter-
faces and associated handshaking signals for flow control.

Synthesis of an algorithm using HLS tools generally perform the following steps

data-flow analysis is being carried out as part of its algorithm synthesis to determine the

type of operations that need to be performed; then resource allocation is done to deter-

mine how the resources on the hardware can be made use of in building the hardware

followed by resource binding to determine the type of operations to be done by which

hardware resource and finally scheduling which determines at what instant of time each

operations will be performed to obtain the desired functionality.

Some of the key benefits in using HLS are listed below:

• Portability of the source code to any hardware which rarely involves restructuring
of the code.

• HLS tools during its algorithm synthesis will analyze the structure of the code
(loops, branches etc) to automatically extract and build the control path (FSM)
whereas traditional RTL design requires explicit coding of the control path, which
for complex designs it will be a herculean task.

2

• Data dependencies and the sequence of operation are analyzed by HLS tools to
exploit parallelism which can be pipelined further to achieve the desired timing
constraints.

• A pipelined architecture can be inferred from loops which involves less data de-
pendencies between successive iterations.

• Iterations in a loop can be made parallel by loop unrolling which divides the loops
to multiple hardware.

Design space exploration is accomplished through a combination of source code

optimization and synthesis directives. Finding out the optimum design is generally a

trade off between the speed and resources. Software profiling tools in HLS helps to

identify processing bottlenecks, which enables to put more efforts on areas where it

can potentially achieve the greatest gains. Design explorations at early stage can be

achieved through HLS tools as it provides reasonably accurate estimate of resources

without going for synthesizing the resulting RTL. In contrast,design exploration at RTL

coding level will generally require considerable amount of time as it involves re-coding

to change both the data and control paths and its error prone too. In HLS as the ver-

ification takes place at a higher level, simulations or verificationâĂŹs required for the

generated designs are faster. But there is a necessity to validate the final design at the

RTL level to ensure that the algorithm transformations are correct and HLS automati-

cally generates RTL test benches from high level verification test benches.

Some of the key limitations in using HLS are listed below:

• Code restructuring is a must in realizing the hardware in order to improve perfor-
mance.

• Treating HDL like a software leads to inefficient use of resources.

• Algorithms are based on pointers, whereas hardware implementations rely on ar-
rays and array references which makes HLS finding it difficult to map to hardware
and hence at many times a restructuring of the code is required.

• Recursive algorithms are very difficult to translate to hardware using HLS.

• Verification failure at the RTL level will be very difficult to analyze as the RTL
code generated through HLS lacks human readability.

• Best algorithms for software realizations are not preferably the best suited for
hardware implementations.

3

1.2.2 Design Flow Comparison between RTL and HLS

Figure 1.1: RTL Design Flow

The traditional RTL design flow is shown in Figure 1.1. The design entry comprises

of files written in the HDL such as Verilog or VHDL. The design is described by RTL

because any synchronous digital hardware circuit can be represented using Huffman

model representation of an FSM wherein the data flows between hardware registers and

the combinational circuits does the operation on these data.The functionality written in

HDLâĂŹs are verified by using test benches which are also written in HDL. The test

bench provides inputs to the design and also receives outputs from the design. This

process is called Behavioural Simulation where the functionality of the design is veri-

fied. The physical synthesis converts this description in hardware language into netlist

which has gates, registers and wires. The physical synthesis which consist of technol-

ogy mapping, placement and routing adds informationâĂŹs such as gate delays, wire

length, location of gates to produce the final bit file. The bit file can be used to program

the FPGA to perform required digital functionality.

HDL level description of a hardware consumes a major chunk of the time as it is

written at a lower level of abstraction than algorithmic level. RTLâĂŹs are written at

a level of multiplexers,flip-flops etc.. In addition HDL is a concurrent programming

language which makes them difficult to understand and code. HLS takes advantage of

the situation through ease of programming thereby increasing productivity and ease of

4

understanding.

Figure 1.2: HLS Design Flow

HLS based design flow is shown in Figure 1.2. The design entry is in C/C++ or

SystemC which allows the designer to describe an algorithm in a sequential manner.The

algorithm written in high level languages are verified through a test bench which is

also written in the same language and the process of functional verification is called

C Simulation. After C Simulation produced the required result, the HLS synthesis tool

analyzes and process the C based code with user specified constraints and directives and

converts the C/C++ description into RTL which is called the C Synthesis or High Level

Synthesis âĂŞ the rest of the flow is similar to the traditional RTL flow.The design

space exploration happens through the incremental changes provided by the user in the

form of directives and hence different architectures are evaluated in due course.

Once the equivalent RTL model is produced, it can be further verified against the

original C/C++/SystemC code via the process of C/RTL Co-Simulation.This process

re-uses the original, C-based testbench to supply inputs to the RTL version generated

by HLS, and check the outputs it produces against expected values.Importantly, this

saves the effort of generating a new RTL test bench. The advantages of this flow

5

are higher productivity, flexibility of design and architectural exploration which also

helps to identify performance bottlenecks and area requirements at an early stage of

design.The simulation at HLS based flow is much faster compared to the RTL level as

the former allows to do so in C/C++ level. Error correction and design re-use at HLS

based design is more easier and hence cost effective than RTL based design.

Once the design has been validated, and the implementation iterated to the point

of achieving the intended design goals, it will be intended for integration into a larger

system.This can be achieved directly through the use of packaging the outputs produced

by Vivado HLS by means of Export RTL. Packaging to an IP helps to introduce HLS

designs easily into other Xilinx tools, namely IP Integrator within Vivado IDE, XPS(for

the ISE design flow), and System Generator. Once the design has been integrated and

implemented with HLS generated IPs and specific IPs provided by Xilinx like softcore

processors and other peripherals, the whole hardware system can be controlled through

application specific softwareâĂŹs written on top of it through Xilinx SDK. The appli-

cation in the form of elf (executable and linkable format) can be made to run on softcore

processors and the system can be made to interface with external world.

Keeping this background in mind, the motivation for the present work is to use

HLS,Vivado IP integrator and Xilinx SDK for the implementation of a specific wireless

system.

6

CHAPTER 2

Background

The details present in this chapter contains information that are part of ug902,ug904.But

are reproduced here for easy reference.

2.1 Introduction to Vivado HLS

This section will cover topics including the specification of data types and its implica-

tions for synthesis, the creation of port and block-level interfaces, aspects of algorithm

synthesis and the use of directives and constraints to influence the solutions produced

by HLS.

2.1.1 Data Types

The specification of data type affects the resource utilization, timing performance, and

power consumption. Under-specifying the word length compromises accuracy, while

over-specifying leads to increased resources, inflated power consumption, and a sub

optimal maximum clock frequency. Vivado HLS supports both the native C/C++ data

types plus the arbitrary precision data types for integer (for C/C++) and fixed point

(for C++ only). It also supports the complex data type by including the header file

"complex.h".

For the arbitrary precision fixed point data type W denotes the width of the word

length and I denotes the bits specified for integer portion. So W âĹŠ I decides the bits

for fractional representation. Q is a string which specifies the quantization mode and O

gives the overflow mode. N specifies the number of bits in overflow wrap mode. The

strings Q, O and N are optional. Vivado HLS also supports floating point data types and

operations, as long as these maps to available Xilinx technology core libraries.

Language Data Type Description Header
C intN N bit precision #include

signed integer "ap_cint.h"
uintN N bit precision

unsigned integer
C++ ap_int<N> N bit precision #include

signed integer "ap_int.h"
ap_uint<N> N bit precision

un signed integer

Table 2.1: Arbitrary precision data types for C/C++

Language Data Type Description Header
C++ ap_fixed<W,I,Q,O,N> signed fixed point #include

number of I "ap_fixed.h"
integer bits and

W-I fractional bits
ap_ufixed<W,I,Q,O,N> unsigned fixed point

number of I
integer bits and

W-I fractional bits

Table 2.2: Arbitrary precision fixed point data types for C++

For the arbitrary precision fixed point data type W denotes the width of the word

length and I denotes the bits specified for integer portion. So W − I decides the bits

for fractional representation. Q is a string which specifies the quantization mode and O

gives the overflow mode. N specifies the number of bits in overflow wrap mode. The

strings Q, O and N are optional. Vivado HLS also supports floating point data types and

operations, as long as these maps to available Xilinx technology core libraries.

2.1.2 Interface Synthesis and Functions

The input arguments and return value of the designed top-level C/C++ function are

synthesized into RTL data ports, each with an associated protocol. The RTL data ports

can be either input, output or in-out bidirectional ports depending on whether data is

read, write or both read and write into the ports respectively. Array arguments in top

functions will translate to off chip RAMs . Arrays can be partitioned to increase the

speed of access and by default are mapped to single port RAMs. The ports and protocol

form a port interface. Port interfaces are used to communicate with other subsystems

like the processor in the system. In addition to the port interfaces , block-level protocols

8

and associated ports are used to coordinate the exchanges of data between subsystems.

2.1.3 Area/Resource

By default, Vivado HLS minimizes area, which implies time-sharing of hardware. This

generally leads to increased latency and reduced throughput. Latency is defined as the

number of clock cycles between applying an input, and achieving the corresponding

output. Latency can be viewed at different levels of hierarchy and in the context of

loops, latency refers to the completion of all iterations of the loop and the term itera-

tion latency is used when referring to a single iteration. The total latency is equal to

the iteration latency, multiplied by the number of iterations of the loop (known as trip

count). Latency can also be specified as a design constraint by the user, and the Vivado

HLS tool optimizes the design wherever possible to meet the requirement.The Iteration

Interval (II) is the number of clock cycles that separate the acceptance of inputs to the

Vivado HLS design. Without applying directives, the initiation interval will be one cy-

cle more than the latency, because the default behaviour of Vivado HLS is to optimize

for area, resulting in a serial design. However the use of pipeline directive can reduce

the iteration interval to much less than the latency of the design. This results in an

increase in the area of the design, so there is a trade-off involved. Initiation interval

corresponds directly to throughput. Throughput expresses the rate at which data can be

passed through the system. The best possible initiation interval is 1, meaning that new

input samples can be accepted on every clock cycle, in which case the throughput is

equivalent to the clock rate. Higher levels of throughput can be achieved through use of

partial loop unrolling, or by replicating a synthesized function.

2.1.4 Pipelining

In HLS, pipelining refers to the partitioning into sub stages of an arbitrary set of de-

pendent operations. The objective for pipelining is to enable parallel processing, and

thereby increase the throughput supported by the design. Pipelining can be applied as a

directive in Vivado HLS, at the level of functions and loops.

9

2.1.5 Loops

Loops are basic constructs of any algorithm and expresses operations that are repetitive

in nature. Several loop optimization’s can be made using directives, enabling archi-

tectural variation exploration with almost no change required in the software code.The

various optimization’s performed in loops are

Loop Unrolling

It means that the hardware inferred from the loop body is created N times. Practically

it can be less than N, depending on whether data dependency or memory operations are

present in the design. Advantage is throughput increase and disadvantage is the increase

in hardware resource.

Partially Unrolled

This generally is a trade-off between rolled and unrolled architecture.

Merging of Loops

This directive can be applied to loops which are occurring one after the other in code

and are having the same trip count. Advantages adds in creating the control path of the

design as it reduces the number of states in the FSM derived.

Loop Flattening

It applies to nested loops where the overhead in additional clock cycles associated with

entering and exiting the inner loops can be avoided which results in improved latency

and throughput.

2.1.6 Arrays

As arrays represent storage they are synthesized into memories. The memories inferred

are mapped to physical resources on the FPGA as Block RAM, or distributed RAM.

Various directives are used to map these memories to physical memory resources. Some

of the optimization’s on arrays are discussed below.

Resource

It maps an array to a specific memory resource.

Array Map

It maps several small arrays to be combined into a single, larger array. Mapping can

be either horizontal (arrays are concatenated to form an array with more elements), or

10

vertical (array elements are combined, resulting in an array with longer words).

Array Partition

It maps the subdivision of a large array into a set of smaller ones. It increase the rate at

which memory transactions can take place. In the extreme case, array partitioning will

subdivide an array into individual register elements.

Array Reshape

This allows an array with many elements, each with short words, to be reshaped into an

array with fewer, longer words.This directive reduces the number of required memory

accesses.

Stream

If the array element access is sequential not random, then this directive can be made use

of. It reduces the number of ports generated.

2.1.7 Exporting from Vivado HLS

Designs can be exported from Vivado HLS to permit easy integration of Vivado HLS

IP with other development tools. IPs are exported from HLS to the IP-XACT format,

which allows the module to be integrated into a Vivado IP Integrator design. This results

in a zip folder residing in the ip sub-folder under impl folder of the respective solution,

and represents the IP catalogue package. It also contains API’s required to use the IP in

Xilinx SDK environment. This format allows easy sharing and distribution of IP across

all platforms.

2.2 Introduction to Vivado IP Integrator

The Vivado IP integrator tool allows to create complex subsystem designs by instanti-

ating and interconnecting IP cores from the Vivado IP Catalogue which contains Xilinx

IP’s , third party IP’s and user IP’s. Using the repository manager provided by the tool,

we can add user developed IP’s especially in Vivado HLS to the current project or can

be added permanently to the user IP portion of the Vivado IP catalogue. Various design

flows of the FPGA are provided as separate functions on the Vivado IP integrator tool.

Even the RTL level designs can also be packaged to an IP using the tool and it will

provide an easy and straight forward approach to the incremental building of a complex

11

design. The tool provides different options to optimize the foot prints of the IP’s imple-

mentation on FPGA which improves operating frequency, performance, or area and can

be specified such that a suitable balance between these three metrics is achieved. This

is done very easily in Vivado using a configuration wizard.

In a processor integrated system, the IP’s are interfaced with each other generally on an

AXI bus which are connected through an AXI interconnect. AXI interconnect can be

considered as a switch in computer networks. Currently the standard is AXI4 and there

are three variants of bus protocols namely

AXI4

It is provided for memory-mapped IP’s, and having the highest performance with an ad-

dress is supplied followed by a data burst transfer of up to 256 data words. AXI4-Lite

It is a simplified link supporting only single data transfer per connection (no bursts). It

is also memory-mapped. In this case an address and a single data word are transferred.

AXI4-Stream

This data streaming is provided for non memory mapped IP’s and supports high-speed

streaming data with burst transfers of unrestricted size.

2.2.1 AXI Architecture

The AXI protocol supports burst based transactions, with each containing address and

control information on the address channel. Several AXI masters can be connected

to several AXI slaves through an AXI interconnect. An AXI master transfers data to

an AXI slave through the AXI interconnect using a write data channel (or a read data

channel from slave to master). The write transactions in particular have an additional

write response channel, as all data flows from master to slave and as such this is used for

the slave to signal completion of a write transaction. The following figures demonstrate

communication between AXI master and slave.

The Figure 2.1 shows the write channel architecture where address and control data

is passed from master to slave before a burst of data is transmitted, and a write response

signalled following completion.The Figure 2.2 shows a read transaction, with address

and control data transmitted to the slave before a burst of read data is transmitted to the

master.

12

Address /

Control

Write

Data

Write

Data

Write

Response

Write Address Channel

Write Data Channel

Write Response Channel

Master Slave

Figure 2.1: AXI4 write channel architecture

Address /

Control

Read

Data

Read

Data

Read Address Channel

Read Data Channel

Master Slave

Figure 2.2: AXI4 read channel architecture

13

2.2.2 AXI Transactions

Write-Burst Transaction

Suppose we need to write burst of data to an address A. The master drives the slave and

transaction begins with the sending of address and control information via the signal

AWADDR. Following confirmation of a valid address with AWVALID, a signal is sent

to confirm that the system is ready for the transaction on AWREADY. The master then

sends the data blocks in the burst of data to the slave on the WDATA signal, with the

final data item being indicated through the WLAST signal going high and confirming

the completion of the transaction. The master also sends various control signals regard-

ing data bursts.

Read-Burst Transaction

In case of a read-burst transaction using AXI4 for data being read from an address A,

the slave is driven by the master through transmission of address and control informa-

tion in signal ARADDR. ARVALID goes high signalling a valid address and the system

is confirmed ready for transmission with the signal ARREADY. Data blocks are read

from address A via the signal RDATA, and as before the final data block is indicated via

signal RLAST. The RVALID signal kept low by the slave until read data is available.

2.3 Introduction to Xilinx SDK

Xilinx SDK provides an environment for creating software platforms and applications

for Xilinx processor cores.It works with hardware designs generated with Vivado.

SDK is provided with

1. Reference Software Applications
Applications like lwip echo server which we made use of for building this project.

2. XMD
Xilinx Microprocessor Debugger is debug agent used to communicate with Xilinx
embedded processors.

3. XSDB
Xilinx System Debugger is a command-line interface to debug the Xilinx hw_server.

4. FPGA programmer
Used to program the Xilinx FPGA with the bitstream.

14

5. Flash programmer
Used for burning bitstream and software application images into external parallel
NOR Flash devices.

6. Bootloader generator
Used for automatically bootloading your embedded software applications from
parallel Flash.

The two main terminologies used in Xilinx SDK are hardware platform and soft-

ware platform.The hardware platform is the embedded hardware design that is created

in Vivado and exported in the form of an HDF/XML file through the use of export

hardware wizard. Once the hardware platform is identified and imported, we create

the software platform. A software platform is a collection of libraries and drivers that

form the lowest layer of application software stack. The software applications must run

on top of a given software platform, using the provided API’s. Therefore before creat-

ing and use software applications in SDK, a software platform project must be created.

SDK includes the following two software platform types. They are

1. Standalone OS
It is a simple and single-threaded environment that provides basic features like
standard input/output and access to processor hardware features. In this project
we extensively used this software platform.

2. Xilkernel
A simple and lightweight kernel that provides POSIX-style services such as schedul-
ing, threads, synchronization, message passing, and timers.

15

CHAPTER 3

Implementation of Receiver

This chapter gives information about the various algorithms that were used to imple-

ment the system using Vivado HLS.

3.1 System Description

The 5G transceiver block diagram of the system is show in the Figure 3.1.

Figure 3.1: Block diagram of a 5G transceiver system

Following blocks are implemented in Receiver:

• FFT

• RB De Mapping

• Layer De Mapping

• De Modulation

3.2 FFT

FFT(1024 point) is implemented using Xilinx FFT IP.The Xilinx FFT IP block
can be called within a C++ design using the library hls_fft.h. To use the FFT
in C++ code:

– Include the hls_fft.h library in the code.

– Set the default parameters using the pre-defined struct hls::ip_fft::params_t.

– Define the run time configuration.

– Call the FFT function.

Define the static parameters of the FFT. This includes such things as input width,
number of channels, type of architecture. which do not change dynamically. The
FFT library includes a parameterization struct hls::ip_fft::params_t,
which can be used to initialize all static parameters with default values. Default
values for output ordering,input width,output width and phase factor width are
over ridden using a user defined struct config1 based on the pre-defined struct.

struct config1 : hls::ip_fft::params_t {

static const unsigned ordering_opt =1;
static const unsigned input_width = 32;
static const unsigned output_width = 32;
static const unsigned phase_factor_width = 24;

};

where 1 refers to natural_order of output. set the run time configuration. The
direction of the FFT (Forward or Inverse) based on the value of variable direction
and also set the value of the scaling schedule.
// direction=0 refers to ifft, direction=1 refers to fft
fft_config1.setDir(direction);
fft_config1.setSch(0x2AB);
Output scaling is done for both Forward and Inverse FFT. FFT function is called
in the following way. The function parameters are, in order, input data, output
data,output status and input configuration. hls::fft<config1>(xn1,xk1,&fft_status1,&fft_config1);
Refer to LogiCORE IP Fast Fourier Transform Product Guide (PG109) for details
on the parameters and the implication for their settings.
Performance and Utilization estimates of this block in HLS is shown below.

17

Figure 3.2: Timing performance of FFT

Figure 3.3: Resource utilization of FFT

3.3 RB De Mapping

RB de mapper extracts data,pilots and control infos from the output of FFT block.

Output of de mapper is multiplied by 213 (212 due to down scaling in FFT and down

scaling by 2 in RB mapping).

Following figures shows Performance and Utilization estimates of this block in HLS.

18

Figure 3.4: Timing performance of RB De Mapper

Figure 3.5: Resource utilization of RB De Mapper

3.4 Layer De Mapping

Layer De mapper converges multiple layers into single layer. Following figures shows

Performance and Utilization estimates of Layer Mapper block in HLS.

19

Following figures shows Performance and Utilization estimates of Layer De Mapper

block in HLS.

Figure 3.6: Timing performance of Layer De Mapper

Figure 3.7: Resource utilization of Layer De Mapper

3.5 De Modulation

Input to the de modulation function is output of RB demapping. On the received sym-

bols operations are performed and output is generated for each bit in the synbol. If

output is greater than 0 it corresponds to bit 0 and if output is less than 0 it corresponds

to bit 1. Output is generated in following way:

• Based on type of modulation, constellation points are equalized with the channel.

• Distance is calculated between each received symbol and equalized constellation
points.

• Iterates through each bit of the symbol and calculated dist0,dist1.

20

• Difference between dist1 and dist0 divided by noise gives output of the demodu-
lator block.

Performance and Utilization estimates of this block in HLS is shown below.

Figure 3.8: Timing performance of De Modulator

Figure 3.9: Resource utilization of De Modulator

21

CHAPTER 4

Integration and Results

This chapter gives information about integration of transmitter and receiver on Zynq

ultra scale board.

4.1 Method of on-board testing and results

• The first step towards validating the design has been completed in the Vivado-
HLS tool through the various design flows namely C-Simulation, Synthesis, C/RTL
co-simulation.

• After co-simulation status is pass export the IP from Vivado HLS to Vivado.

• In Vivado all the IP’s generated from HLS and Uart IP are connected to the Zynq
ultra scale processor.

• Uart baud rate is set to 115200.

• Block diagram of the complete system is shown below

Figure 4.1: Block Diagram of Transmitter and Receiver system

• After Validating the design generate bitstream.

• Utilization estimates of complete transmitter and receiver chain is shown in the
following figure

Figure 4.2: Utilization estimates of Transmitter and Receiver system

• Bit stream is exported to Vivado SDK.

• Input parameters of tx and rx blocks are set by using following functions

XTx_top_Set_in_para_in_size(tx_topptr,4128);

XTx_top_Set_in_para_modulation_type_V(tx_topptr,6);

XTx_top_Set_rs_index1_V(tx_topptr,0);

XTx_top_Set_nresources1_V(tx_topptr,50);

XTx_top_Write_in_V_Words(tx_topptr,0,in1,172);

XTx_top_Write_frame_strucure1_V_Bytes(tx_topptr,0,fr,8400);

XRx_top_Write_channel_M_real_V_Words(rx_topptr,0,&l,4128);

XRx_top_Write_channel_M_imag_V_Words(rx_topptr,0,&l,4128);

int v= (1«5);

XRx_top_Set_N0_V(rx_topptr,v);

XRx_top_Set_in_para_in_size(rx_topptr,688);

XRx_top_Set_in_para_modulation_type_V(rx_topptr,6);

XRx_top_Set_rs_index1_V(rx_topptr,0);

XRx_top_Set_nresources1_V(rx_topptr,50);

XRx_top_Write_frame_strucure1_V_Bytes(rx_topptr,0,fr,8400);

XRx_top_Write_inp_Words(rx_topptr,0,kk,28672);

• Output from receiver is read by using following function

XRx_top_Read_output_V_Words(rx_topptr,0,b1,4128);

Received output from rx module is compared with rx block in HLS. And both the

outputs are matched.

Iteration interval for Tx module is 13136 clock cycles. Clock cycle period is 10ns.

Tx blocks input size is of 4128 bits so input bit rate is 31.425Mbps.

23

Appendix

Problems faced and solved during the Project :

• Based on the precision of the variable N0 in demodulation block, output precision
of the demodulation block should be adjusted such that output of the demodula-
tion block should not overflow.

• Output of FFT block in receiver chain has precision of <32,1> typecasting it to
<16,2> (output of resource de mapper)in resource de mapper precision will be
lost. So it is type casted to <32,2>, left shift it by 13 and then typecasted back
to <16,2>.The return type of the shift left operation is the same width as the type
being shifted. Refer to page no 654 in UG902 (v2017.2) June 7, 2017.

• While testing the individual blocks test for all possible cases. For example in
demodulation block test for all modulation types bpsk, qpsk, 16qam, 64qam.

• Integrate the complete transmitter and receiver system inside example fft project
given by Xilinx. Otherwise exporting of the IP to Vivado will create issues.

• In SDK inputs are given in the form of integers (even for fixed point data types).
So give the fixed point inputs in its equivalent integer format. For example con-
sider ap_fixed<10,5> k=1 in HLS corresponding input in SDK is 32(1 is left
shifted by 5).

24

REFERENCES

1. Xilinx, Vivado Design Suite User Guide High-Level Synthesis (UG902). Xilinx
(v2017.2) User Guide, 2017.

2. Xilinx, Vivado Design Suite User Guide Implementation (UG904). Xilinx (v2017.2)
User Guide, 2017.

3. LogiCORE IP Fast Fourier Transform Product Guide (PG109).

4. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing
(UG973).

5. 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network; NR; Physical channels and modulation (Release 15) (3GPP TS 38.211
V15.1.0 (2018-03)).

25

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	Introduction
	Introduction
	Motivation
	Pros and Cons of HLS
	Design Flow Comparison between RTL and HLS

	Background
	Introduction to Vivado HLS
	Data Types
	Interface Synthesis and Functions
	Area/Resource
	Pipelining
	Loops
	Arrays
	Exporting from Vivado HLS

	Introduction to Vivado IP Integrator
	AXI Architecture
	AXI Transactions

	Introduction to Xilinx SDK

	Implementation of Receiver
	System Description
	FFT
	RB De Mapping
	Layer De Mapping
	De Modulation

	Integration and Results
	Method of on-board testing and results

