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ABSTRACT

KEYWORDS: Virtual full-duplex relaying; Successive Relaying; General Com-

pute and Forward (GCoF); Non-integer penalty; Cutset upper

bound

Motivated by the wireless backhaul application, multihop virtual full duplex relaying using

a successive relaying protocol based on compute-and-forward (CoF) was proposed recently

by Hong and Caire. The channel gain in each hop was assumed to be equal. In this work,

we consider multihop virtual full duplex relaying where the gain in the different hops can be

unequal. We use the recently proposed general compute-and-forward (GCoF) scheme along

with successive relaying. GCoF eliminates the non-integer penalty present in CoF or the CoF

with simple power allocation used earlier. We determine the achievable rate of virtual full

duplex relaying using GCoF for the multihop case and show that this rate is within a constant

gap (also independent of the number of hops) of the cutset upper bound under some mild

assumptions.
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CHAPTER 1

INTRODUCTION

In communication networks, relays are used to improve the network coverage and through-

put when the source and destination are far apart and cannot communicate with each other

efficiently. In a full duplex relay, the relay transmits and receives in the same time slot. The im-

plementation of a full duplex relay is difficult because of the huge amount of self-interference .

γ

R
S D

hS hD

Figure 1.1: Two-hop relay network with full-duplex relay

In case of a half-duplex relay, the relay can either transmit or receive at a time. Since a half-

duplex relay can forward a message from source to destination over two time slots, it makes an

inefficient use of the radio channel resource.

R
S D

hS

(a) Time Slot 1

R
S D

hD

(b) Time Slot 2

Figure 1.2: Two-hop relay network with half-duplex relay

Hence, a full duplex relay is implemented by using 2 half-duplex relays. This is called

a virtual full duplex relay. At each time slot, one of the relays receives a new data from the

source while the other relay forwards the processed data to the destination. The role of relays

is swapped at each time interval. This relaying operation is known as successive relaying. The



main issue is the inter-relay interference, corresponding to the self interference in full-duplex

relays.

S

R1

R2

D
hS

γ

hD

(a) Even Time Slot

S

R1

R2

D
hS

γ
hD

(b) Odd Time Slot

Figure 1.3: Virtual full-duplex relay

The relay does some form of processing on the received data before transmitting to des-

tination. Depending on the processing that is done, we have different relaying schemes. The

capacity and the corresponding optimal relaying schemes of general relay channels are not

known. Among the various relaying schemes, compute-and-forward (CoF) relaying Nazer and

Gastpar (2011) is an important relaying scheme. CoF and the related physical layer network

coding strategies were initally studied extensively in the context of two-way relay channels

Wilson et al. (2010); Nam et al. (2010).

1.1 Previous work

R1

R2

S D

hS

γ

hS hD

hD

Figure 1.4: 2 hop network

Consider the 2-hop relay network in Fig. 1.4. In Hong and Caire (2015), they consider the

case when the channel coefficients hS and hD are equal to unity, and each node has the same
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D

h1
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γ γ γ γh2h2 h3h3

hK

hK

Figure 1.5: K-hop network

average transmit power constraint. Some relevant results in Hong and Caire (2015) are that:

(1) successive relaying with dirty paper coding (DPC) achieves the cutset bound when SNR

≥ 1,

(2) CoF with a simple power allocation can achieve rates within a constant gap of the cutset

bound for a K-hop relay network with equal hop gains (Fig. 1.5 with h1 = h2 = . . . = hK =

1), and

(3) the gap between CoF with power allocation and the cutset bound grows linearly in the num-

ber of hops. The cutset bound and gap results in this paper are valid only for the network with

equal hop gains. The equal hop gains are assumed to be achieved in the backhaul application

by appropriate placement of nodes and power adjustment.

1.2 Proposed Algorithm

In this work, we consider the more general K-hop network in Fig. 1.5. We, therefore, do not

require each hop to have the same gain. (Note that this unequal gain network cannot be reduced

to a network with equal gains and equal power constraints at all nodes.) We do assume as in

Hong and Caire (2015) that the distance between two relays in the same hop is much smaller

than the hop distance, so that the gain for the two relays in each hop is the same. The CoF

scheme used in Hong and Caire (2015) is based on Theorem 1 in Nazer and Gastpar (2011).

The rates are found using two methods: with Power Allocation (PA) and without Power Allo-

cation. In this work, we use the General Compute and Forward (GCoF) formula given in Zhu

and Gastpar (2017) for our protocol. We will denote our scheme as the GCoF scheme. We

3



obtain the following results:

(1) For the 2-hop network, we show that successive relaying with DPC is within 1 bit of the

cutset bound under all conditions,

(2) We derive an expression for the rate achieved using the GCoF scheme over a K-hop net-

work,

(3) We show that the gap between GCoF and the cutset bound is finite as long as the first or

last hop is the bottleneck, i.e., min{h2
1, h

2
2, h

2
3, ..., h

2
K , γ

2} = h2
1 or h2

K , and h2
kSNR ≥ 1, ∀k.

Furthermore, this gap does not grow linearly with the number of hops as in Hong and Caire

(2015).

(4) Also, in Zhu and Gastpar (2015) they consider a symmetric many-to-one Interference Chan-

nel (IC) and show the conditions under which each user can achieve capacity. In this work, we

extend this result to a non-symmetric many-to-one IC. The coding scheme used for this channel

is based on the GCoF scheme.

1.3 Organisation of the thesis

Chapter 2 describes the system model that is used throughout the paper.

In chapter 3, the expression for the cut-set bound for a 2-hop network is found.

In chapter 4, we discuss the Dirty Paper Coding and the rate that can be achieved by it. We

also find the gap between the cutset bound and the rate of DPC. We then state and prove the

conditions under which DPC achieves the cutset bound.

Chapter 5 discusses the Compute and Forward protocol. The GCoF rate is found for a 2-hop

and 3-hop network and then extended to a general K-hop network. We also derive an upper

bound on the cut-set bound for a K-hop network. The gap between the cut-set bound and the

rate achieved by GCoF is also studied for special cases.

The non-symmetric many-to-one IC results are given in Chapter 6.

The simulation results are given in Chapter 7.
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CHAPTER 2

SYSTEM MODEL

S

R1

R2

D
hS

γ

hD

(a) State 1

S

R1

R2

D
hS

γ
hD

(b) State 2

S

R1

R2

D
hS

hS

(c) State 3

S

R1

R2

D

hD

hD

(d) State 4

Figure 2.1: States of a 2-hop network

In successive relaying, only the state 1 and state 2 of the 4 states given in Fig. 2.1 (i.e, Fig.

2.1(a) and Fig. 2.1(b)) are taken by the 2-hop network. In even time slots, the network is in

state 1 and in odd time slots, it is in state 2. In the even time slots, the source sends a message

to relay 1 and the relay 2 sends to destination. Because of the inter-relay interference level γ,

the relay 1 also receives what is sent by relay 2. The role of relays 1 and 2 is reversed in odd

time slots. The encoding and decoding is done over n channel uses of a discrete time Gaussian

channel.

For odd time slot ,

yR2
[t ] = hSxS[t ] + γxR1

[t ] + zR2
[t ]

y
D

[t ] = hDxR1
[t ] + zD[t ]



For even time slot ,

yR1
[t ] = hSxS[t ] + γxR2

[t ] + zR1
[t ]

y
D

[t ] = hDxR2
[t ] + zD[t ]

where γ ∈ R is the inter-relay interference level and hS ∈ R and hD ∈ R are the channel

gains from the source to relay and relay to destination respectively. Here xS[t ] ∈ R1xn and

xRk
[t ] ∈ R1xn are the signals transmitted by source and relay k . Also, y

D
[t ] ∈ R1xn and

yRk
[t ] ∈ R1xn denote the received signals at destination and relay k respectively. Noise is

assumed to be i.i.d. Gaussian with zero mean and unit variance (denoted by N (0,1)). Power

constraint at each transmitter is denoted by SNR.
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CHAPTER 3

CUTSET BOUND

R1

R2

S D

C1

C3

C2 C4

C5

Figure 3.1: C = min{C1 + C2, C2 + C3 + C4, C4 + C5, C1 + C5}

Cut-set bound serves as an upper bound for capacity. Suppose we want to find the maximum

information flow from S to D and each of the edges have capacities Ci (see Fig. 3.1). The

maximum information flow across any cut-set cannot be greater than the sum of the capacities

across cut edges. Thus minimizing the maximum flow across cut sets yields an upper bound on

the capacity of the network. The cut-set bound for the 2-hop network is given by considering 4

cuts as follows. The rate corresponding to each state for a given cut is shown below.

S

R1

R2

D
hS

γ

hD

(a) State 1-C1

S

R1

R2

D
hS

γ
hD

(b) State 2-C1

S

R1

R2

D
hS

hS

(c) State 3-C2

S

R1

R2

D

hD

hD

(d) State 4-0

Figure 3.2: Cut 1



S

R1

R2

D
hS

γ

hD

(a) State 1-C3

S

R1

R2

D
hS

γ
hD

(b) State 2-0

S

R1

R2

D
hS

hS

(c) State 3-C1

S

R1

R2

D

hD

hD

(d) State 4-C4

Figure 3.3: Cut 2

S

R1

R2

D
hS

γ

hD

(a) State 1-0

S

R1

R2

D
hS

γ
hD

(b) State 2-C3

S

R1

R2

D
hS

hS

(c) State 3-C1

S

R1

R2

D

hD

hD

(d) State 4-C4

Figure 3.4: Cut 3

S

R1

R2

D
hS

γ

hD

(a) State 1-C4

S

R1

R2

D
hS

γ
hD

(b) State 2-C4

S

R1

R2

D
hS

hS

(c) State 3-0

S

R1

R2

D

hD

hD

(d) State 4-C5

Figure 3.5: Cut 4

Here, C1 = C(h2
SSNR),

C2 = C(2h2
SSNR),

C3 = C

(
(h2

S + h2
D + γ2)SNR + h2

Dh
2
SSNR2 + γ2

h2D

)
,

C4 = C(h2
DSNR),

C5 = C(4h2
DSNR)

The cut-set bound is obtained as follows.
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Rcut−set = max
t1,t2,t3,t4

s.t t1+t2+t3+t4=1
t1,t2,t3,t4≥0

min{I1, I2, I3, I4}

where

I1
∆
= t1C(h2

SSNR) + t2C(h2
SSNR) + t3C(2h2

SSNR)

I2
∆
= t2C

(
(h2

S + h2
D + γ2)SNR + h2

Dh
2
SSNR2 +

γ2

h2
D

)
+ t3C(h2

SSNR) + t4C(h2
DSNR)

I3
∆
= t1C

(
(h2

S + h2
D + γ2)SNR + h2

Dh
2
SSNR2 +

γ2

h2
D

)
+ t3C(h2

SSNR) + t4C(h2
DSNR)

I4
∆
= t1C(h2

DSNR) + t2C(h2
DSNR) + t4C(4h2

DSNR)

Here, t1, t2, t3, t4 is the fraction of time the 2-hop network is in states 1,2,3 and 4. Also,

I1, I2, I3, I4 is the maximum information flow corresponding to the 4 possible cuts of a 2-hop

network.

C(SNR) = 0.5 log2(1 + SNR)

9



CHAPTER 4

SUCCESSIVE RELAYING WITH DPC

Dirty Paper Coding (DPC) is a technique for efficient transmission of data through a channel

subjected to some interference known to the transmitter. The technique consists of precoding

the data in order to cancel the effect caused by interference. For a two-hop network with single

relay stage and inter-relay interference level γ, where hS = hD = 1, Dirty Paper Coding (DPC)

is optimal, i.e., it can achieve the performance of ideal full-duplex relay.[Changiz Rezaei et al.

(2008) Chang et al. (2007)]

S

xS(w1)

R1

R2
w1

D

hS

Figure 4.1: Time slot 1

R1

S

R2

D

xS(w2)

w2

ŵ1 = w1

xR(w1)

hS

γ

hD

Figure 4.2: Time slot 2

For a 2-hop network, we can achieve the rate of ideal full-duplex relay by using half-duplex

relays with successive relaying and DPC. We analyse the action of DPC in each of the time



S

R1

R2

D

xS(w3)
w3

xR(w2)

ŵ2 = w2hS

γ

hD

Figure 4.3: Time slot 3

slots. In the first time slot, (See Fig. 4.1) the source encodes the first message as xS(w1) and

transmits it to relay 2. The relay 2 decodes w1. In the second time slot, (See Fig. 4.2) relay 2

re-encodes w1 as xR(w1) and transmits it to destination and the destination decodes w1. Also,

the source encodes the second message as xS(w2) and transmits it to relay 1. The encoding

is done in such a way that the relay 1 can decode w2. In the third time slot, (See Fig. 4.3)

the source transmits xS(w3) and the destination decodes w2 and the cycle continues. The role

of relays 1 and 2 can be reversed in the above time slots. So, in the even time slot, the 2-hop

network is in the state given in Fig. 4.2 and in the odd time slot, the state given in Fig. 4.3.

In the even time slot, R1 can successfully decode the message if the source transmits at a

rate RS1 ≤ C(h2
SSNR) and destination can decode reliably if R2 transmits at a rate R2D ≤

C(h2
DSNR).

In the odd time slot, R2 can successfully decode the message if the source transmits at a

rate RS2 ≤ C(h2
SSNR) and destination can decode reliably if R1 transmits at a rate R1D ≤

C(h2
DSNR).

Hence, the rate of DPC can be expressed as follows.

RDPC = max
RS1,RS2,R1D,R2D

1

2
[min(RS1, R1D) +min(RS2, R2D)]

Hence, we obtain the following result.

If hS ≥ hD, RDPC = C(h2
DSNR)

If hD > hS, RDPC = C(h2
SSNR)

11



4.1 Gap between cut-set bound and the rate of DPC

4.1.1 Upper Bound

Lemma 1.

max
x∈X

min{f1(x), f2(x)} ≤ min{max
x∈X

f1(x),max
x∈X

f2(x)}

We use the above lemma to compute the gap between cut set bound and rate of DPC. The

upper bound for the 2-hop network is obtained by considering cuts I1 and I4 alone.

Rcut−set ≤ Rupper = max
t1,t2,t3,t4

s.t t1+t2+t3+t4=1
t1,t2,t3,t4≥0

min{I1, I4}

where

I1
∆
= t1C(h2

SSNR) + t2C(h2
SSNR) + t3C(2h2

SSNR)

I4
∆
= t1C(h2

DSNR) + t2C(h2
DSNR) + t4C(4h2

DSNR)

Proof.

Rupper = maximize R

subject to R ≤ CS t̃+ CBCt3

R ≤ CD t̃+ CMACt4

t̃+ t3 + t4 = 1

where

CS = C(h2
SSNR), CBC = C(2h2

SSNR)

CD = C(h2
DSNR), CMAC = C(4h2

DSNR)

t̃ = t1 + t2

12



which can be written as

Rupper = maximize R

subject to R ≤ CS t̃+ CBCt3

R ≤ CD t̃+ CMAC(1− t̃− t3)

⇒ max min {CS t̃+ CBCt3, (CD − CMAC)t̃+ CMAC − CMACt3}

∴ max
t̃,t3

t̃+t3≤1

min {CS t̃+ CBCt3, (CD − CMAC)t̃+ CMAC − CMACt3}

≤ min { max
t̃,t3

t̃+t3≤1

(CS t̃+ CBCt3), max
t̃,t3

t̃+t3≤1

{(CD − CMAC)t̃

+ CMAC − CMACt3}}(using Lemma 1)

≤ min(CBC , CMAC)

Hence Rupper ≤ min(CBC , CMAC)

We try to find the gap between cut-set bound and the rate of DPC using the above result.

If |hS| > |hD|

Rcut−set −RDPC ≤ Rupper −RDPC

≤ CMAC − 0.5 log(1 + h2
DSNR)

= 0.5 log(1 + 4h2
DSNR)

− 0.5 log(1 + h2
DSNR)

= 0.5 log

(
1 + 4h2

DSNR
1 + h2

DSNR

)
≤ 1

If |hS| ≤ |hD|

Rcut−set −RDPC ≤ Rupper −RDPC

≤ CBC − 0.5 log(1 + h2
SSNR)

13



= 0.5 log(1 + 2h2
SSNR)

− 0.5 log(1 + h2
SSNR)

= 0.5 log

(
1 + 2h2

SSNR
1 + h2

SSNR

)
≤ 0.5

4.2 Condition under which DPC achieves the cutset bound

Theorem 1. RDPC = Rcut−set if and only if |hS| = |hD| = h, when |h|2SNR ≥ 1

Proof. Throughout this section we use the following results.

There is a dual linear program associated with every linear program.

Consider the linear program

maximize bTλ

subject to ATλ ≤ c

λ ≥ 0 (4.1)

The dual of the above program is given by

minimize cTx

subject to Ax ≥ b

x ≥ 0 (4.2)

The strong duality theorem is stated below.

Theorem 2. If either of the problems (4.1) or (4.2) has a finite optimal solution, so does the

other, and the corresponding values of the objective functions are equal i.e, bTλ∗ = cTx∗. If

14



either problem has an unbounded objective, the other problem has no feasible solution.

The complementary slackness theorem is stated below.

Theorem 3. Let x and λ be feasible solutions for the primal and dual programs, respectively, in

the pair (4.1) or (4.2). A necessary and sufficient condition that they both be optimal solutions

is that for all i and j

xi > 0⇒ aTi λ = ci

xi = 0⇐ aTi λ < ci

λj > 0⇒ ajx = bj

λj = 0⇐ ajx > bj

Here, ai denotes the ith column of A and aj denotes the jth row of A.

The optimization problem for the cut-set bound in Chapter 3 can be rewritten in matrix form as

follows.

maximize
[
0 0 0 0 1

]


t1

t2

t3

t4

R



subject to



a1 a1 a2 0 1

0 a3 a1 a4 1

a3 0 a1 a4 1

a4 a4 0 a5 1

1 1 1 1 0

−1 −1 −1 −1 0





t1

t2

t3

t4

R


≤



0

0

0

0

1

−1


(4.3)



t1

t2

t3

t4

R


≥



0

0

0

0

0


15



where

a1 = −C(h2
SSNR)

a2 = −C(2h2
SSNR)

a3 = −C
(

(h2
S + h2

D + γ2)SNR + h2
Dh

2
SSNR2 +

γ2

h2
D

)
a4 = −C(h2

DSNR)

a5 = −C(4h2
DSNR)

The above problem is of the form

maximize bTλ

subject to ATλ ≤ c

λ ≥ 0

Note: The last 2 rows of (4.3) is obtained as follows.

t1 + t2 + t3 + t4 = 1

⇒ t1 + t2 + t3 + t4 ≥ 1 & t1 + t2 + t3 + t4 ≤ 1

⇒ −t1 − t2 − t3 − t4 ≤ −1 & t1 + t2 + t3 + t4 ≤ 1

The dual problem of the above optimization problem is given by

minimize
[
0 0 0 0 1 −1

]


x1

x2

x3

x4

x5

x6



16



subject to



a1 0 a3 a4 1 −1

a1 a3 0 a4 1 −1

a2 a1 a1 0 1 −1

0 a4 a4 a5 1 −1

1 1 1 1 0 0





x1

x2

x3

x4

x5

x6


≥



0

0

0

0

1


(4.4)



x1

x2

x3

x4

x5

x6


≥



0

0

0

0

0

0


This is of the form

minimize cTx

subject to Ax ≥ b

x ≥ 0

We prove the necessary condition for DPC to achieve cutset bound. We assume t∗3 = t∗4 =

0 & t∗1 = t∗2 = 0.5. The optimization problem reduces to

maximize R

subject to R ≤ C(h2
SSNR)

R ≤ 0.5C

(
(h2

S + h2
D + γ2)SNR + h2

Dh
2
SSNR2 +

γ2

h2
D

)
R ≤ C(h2

DSNR)

17



Below we consider the case when hS > hD

0.5C

(
(h2

S + h2
D + γ2)SNR + h2

Dh
2
SSNR2 +

γ2

h2
D

)
= 0.25 log

(
1 + (h2

S + h2
D + γ2)SNR + h2

Dh
2
SSNR

2 +
γ2

h2
D

)
> 0.25 log(1 + 2h2

DSNR + h4
DSNR2)

= 0.25 log((1 + h2
DSNR)2)

= 0.5 log(1 + h2
DSNR)

= C(h2
DSNR)

Hence optimal R is C(h2
DSNR)

Next we consider the case when hD > hS

0.5C

(
(h2

S + h2
D + γ2)SNR + h2

Dh
2
SSNR2 +

γ2

h2
D

)
= 0.25 log

(
1 + (h2

S + h2
D + γ2)SNR + h2

Dh
2
SSNR2 +

γ2

h2
D

)
> 0.25 log(1 + 2h2

SSNR + h4
SSNR2)

= 0.25 log((1 + h2
SSNR)2)

= 0.5 log(1 + h2
SSNR)

= C(h2
SSNR)

Hence optimal R is C(h2
SSNR)

∴ t∗ =



t∗1

t∗2

t∗3

t∗4

R∗


=



0.5

0.5

0

0

min{ā1, ā4}


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By the Strong Duality Theorem, we have

cTx∗ = bTλ∗

= bT t∗

[
0 0 0 0 1 −1

]


x∗1

x∗2

x∗3

x∗4

x∗5

x∗6


=
[
0 0 0 0 1

]


0.5

0.5

0

0

min{ā1, ā4}


x∗5 − x∗6 = min{ā1, ā4}

The second and third inequalities of (4.3) are strictly less than zero since R < 0.5ā3

By Complementary Slackness theorem,

x∗2 = x∗3 = 0

We first consider the case when hS > hD

x∗5 − x∗6 = ā4

Since t∗1 > 0, t∗2 > 0, R > 0, by Complementary Slackness Theorem, the 1st, 2nd and 5th

inequalities of (4.4) become equalities. Hence, we have

a1x1 + a3x3 + a4x4 + x5 − x6 = 0

a1x1 + a3x2 + a4x4 + x5 − x6 = 0

x1 + x2 + x3 + x4 = 1

Since, x∗2 = 0, x∗3 = 0 & x∗5 − x∗6 = −a4

a1x1 + a4x4 − a4 = 0

x1 + x4 = 1

Since x∗2 = 0, x∗3 = 0 and x∗5 − x∗6 = −a4
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a1x1 + a4x4 − a4 = 0

x1 + x4 = 1

Solving, we get x∗1 = 0, x∗4 = 1

We check if x∗1, x
∗
2, x
∗
3, x
∗
4, x
∗
5, x
∗
6 satisfies the 3rd and 4th inequalities of (4.4)

We first check the third inequality.

a2x1 + a1x2 + a1x3 + x5 − x6 = −a4 > 0

(∵ −a4 = C(h2
DSNR))

Next, we check the fourth inequality.

a4x2 + a4x3 + a5x4 + x5 − x6 = a5 − a4 < 0

(∵ −a4 = C(h2
DSNR) & − a5 = C(4h2

DSNR))

Hence, we find that the 4th inequality is not satisfied.

Below we consider the case when hD > hS

x∗5 − x∗6 = ā1

a1x1 + a4x4 = a4

x1 + x4 = 1

Solving, we get x∗1 = 1, x∗4 = 0

Again, we check the third inequality of (4.4).

a2x1 + a1x2 + a1x3 + x5 − x6 = a2 − a1 < 0

(∵ −a1 = C(h2
SSNR) & − a2 = C(2h2

SSNR))

Next, we check the fourth inequality.

a4x2 + a4x3 + a5x4 + x5 − x6 = −a1 > 0

(∵ −a1 = C(h2
SSNR))

Hence, we find that the third inequality is not satisfied.

To satisfy the 3rd and 4th inequalities in both the cases, a1should be equal to a4,i.e., |hS| =

|hD| = h
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Hence, the necessary condition for

t∗1 = t∗2 = 0.5; t∗3 = t∗4 = 0 is |hS| = |hD| = h

The sufficient condition for successive relaying can be proved by following similar steps to

the proof of Lemma 1 given in Hong and Caire (2015)
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CHAPTER 5

COMPUTE AND FORWARD

Upon receiving the data from the source, the relay does some form of processing on it and

then forwards it to destination. Depending on the processing that is done, there are different

encoding schemes for the relay.

• Amplify and Forward (AF): Here, the relay acts as a repeater and forwards a scaled
version of the received signal to the destination.

• Quantize-Map and Forward (QMF) : The relay quantizes the received signal, maps it to
a codeword, and then forwards it.

• Decode and Forward (DF) : The relay decodes the received message, re-encodes it and
then forwards it to the destination.

Yet another scheme is the Compute and Forward (CoF) which we study in detail.

In case of CoF, the source maps the messages wk to lattice codewords tk which are then en-

coded and transmitted as xk = εk(wk) to the relay. The relay receives a noisy linear combina-

tion of what is sent by the source and the other relay.

y = hSx1 + γx2 + z

Here, γx2 is the interference signal. Instead of treating interference as noise, the relay decodes

an integer linear combination of the message signal and interference signal u from the received

y.

u = a1x1 + a2x2

This is further encoded and transmitted to destination where the messages are recovered using

forward substitution.



5.1 Lattice codes

Below we give a short description of the lattice codewords used in CoF scheme.

• A lattice Λ is a discrete subgroup of Rn which satisfies the property that if t1, t2 ∈ Λ,
then t1 + t2 ∈ Λ.

• The lattice quantizer is defined as

QΛ(x) = argmint∈Λ ||t− x||

• The fundamental Voronoi region is defined as

V := {x ∈ Rn : QΛ(x) = 0}

• In a general K-user Gaussian MAC, for every user, a lattice Λk which is good for AWGN
channel coding is chosen. We denote the coarsest lattice among them by Λc. Also, we
construct K lattices Λs

k which are simultaneously good and which satisfies the condition
Λs
k ⊂ Λc. The lattice Λs

k is used as the shaping region of the codebook of user k. They
have the following second moment.

1

nVol(Vsk)

∫
Vs
k

||x||2 dx = β2
kP

Here, β = (β1, β2, ...βK) where βk, k = 1, ...K are K non-zero real numbers.

In this section, we compare the performance of CoF that is computed using General Com-

pute and Forward Formula in Zhu and Gastpar (2017) (We denote it by RGCoF ) with DPC for

a 2-hop network at high SNR.

Theorem 4. A General Compute-and-Forward Formula : Consider a K-user Gaussian MAC

with channel coefficients h = (h1, ..., hK) and equal power constraint P . Let β1, ..., βK be

K nonzero real numbers. The computation rate tuple (Ra
1, ..., R

a
K) with respect to the sum

u :=

[∑K
k=1 aktk

]
mod Λs

f is achievable with

Ra
K =

[
0.5 log

(
‖ã‖2 − P (hT ã)

2

1 + P‖h‖2

)−1

+ 0.5 log β2
k

]+

where ã := [β1a1, ..., βKaK ] and ak ∈ Z for all k ∈ [1 : K]. Here, Λs
f is the finest lattice

among Λs
k.
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+

hK

h2

h1

Y

X1

X2

XK

Z

Figure 5.1: K-user Gaussian MAC

5.2 CoF for a 2-hop network

Below we discuss the action of Compute and Forward (CoF) protocol in each of the time slots.

S

xS(w1)

R1

R2
u1 = w1

D

hS

Figure 5.2: Time slot 1

In the first time slot, (See Fig. 5.2) the source encodes the first message w1 as xS(w1) and

transmits it to relay 2. The relay 2 decodes w1.
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R1

S

R2

D

xS(w2)

u2 = q1w2 + q2u1

ŵ1 = u1

xR(u1)

hS

γ

hD

Figure 5.3: Time slot 2

In the second time slot, (See Fig. 5.3) relay 2 re-encodes w1 as xR(u1) and transmits it

to destination and the destination decodes w1. Also, the source encodes the second message

as xS(w2) and transmits it to relay 1. The relay 1 receives xS(w2) + γxR(u1). The relay

decodes an integer linear combination of what is sent by the source and the other relay u2 =

a2w2 + a1u1.

S

R1

R2

D

xS(w3)

u3 = q1w3 + q2u2

xR(u2)

ŵ2 = q1
−1u2 − q1

−1q2u1
hS

γ

hD

Figure 5.4: Time slot 3

In the third time slot, (See Fig. 5.4) the relay 1 re-encodes u2 and transmits it as xR(u2) to

destination. The destination decodes w2 using forward substitution (ŵ2 = a2
−1u2−a2

−1a1u1).

This cycle is continued in successive time slots.

Below, we find the rate that can be achieved by the CoF protocol. This is found by using the
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General Compute and Forward formula (Theorem 4). We denote the rate by RGCoF .

Compared to the CoF scheme in Hong and Caire (2015), the GCoF coding scheme has addi-

tional lattice scaling coefficients that allow us to choose the scaling depending on the channel

parameters. This reduces the rate loss due to mismatch between the channel coefficients and

the integer combination computed at the relays. Our choice of these scaling coefficients and

the integer combination will help us overcome the non-integer penalty.

From Fig. 5.3, the source and the relay 2 can be considered as 2 users and the other relay 1 as

destination. This forms a 2 user Gaussian MAC with channel coefficients hS and γ respectively.

Using the General Compute and Forward formula, the relay can reliably decode the linear

combination a1w1 + a2w2 if

RS ≤ 0.5 log

(
1 + SNR(h2

S + γ2)

β2
1a

2
1 + β2

2a
2
2 + SNR(hSβ2a2 − γβ1a1)2

)
+ 0.5 log(β2

1)

RR ≤ 0.5 log

(
1 + SNR(h2

S + γ2)

β2
1a

2
1 + β2

2a
2
2 + SNR(hSβ2a2 − γβ1a1)2

)
+ 0.5 log(β2

2)

where, RS denotes the rate at which the source can transmit and RR denotes the rate at

which the relay can transmit. β1, β2 are non zero real numbers which control the rates and

a1, a2 ∈ Z. β1, β2 and a1, a2 can be chosen to optimize performance. We would like the

term SNR(hSβ2a2 − γβ1a1)2 in the denominator to be zero, so that there is no penalty at high

SNR. In order to completely eliminate this loss, we consider hSβ2a2 − γβ1a1 = 0. We take

β2
1a

2
1 + β2

2a
2
2 = 1. Solving these two equations, gives: Hence, we get the following values.

β1 = hS√
γ2+h2S

, a1 = 1

β2 = γ√
γ2+h2S

, a2 = 1

Substituting the above, we take the achievable rate of the source as R1 = min{RS, RR}

R1 = min

{
0.5 log

(
1 + SNR(h2

S + γ2)

)
+ 0.5 log

( h2
S

h2
S + γ2

)
,

0.5 log

(
1 + SNR(h2

S + γ2)

)
+ 0.5 log

( γ2

h2
S + γ2

)}
= min

{
0.5 log

( h2
S

h2
S + γ2

+ h2
SSNR

)
, 0.5 log

( γ2

h2
S + γ2

+ γ2SNR
)}

The decoded linear combination at the relay is reliably transmitted to destination if the relay
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transmits at a rate R ≤ R2

where R2 = 0.5 log(1 + h2
DSNR)

Hence, the achievable rate of GCoF is given by

RGCoF = min{R1, R2}

Clearly, RGCoF satisfies the following condition.

RGCoF > min
{

0.5 log(h2
SSNR), 0.5 log(h2

DSNR), 0.5 log(γ2SNR)
}

Also, when min{hS, hD, γ} 6= γ

RGCoF > min
{

0.5 log(h2
SSNR), 0.5 log(h2

DSNR)
}

The rate of DPC is given by

RDPC = min
{

0.5 log(1 + h2
SSNR), 0.5 log(1 + h2

DSNR)
}

When h2
SSNR, h2

DSNR ≥ 1 and min{hS, hD, γ} 6= γ, we get |RDPC − RGCoF | < 0.5. Thus,

RGCoF achieves the rate of DPC within 0.5 bits.

The above results are also found for the 3-hop case.

• In time slot 2 (Fig. 5.5(b)), relay 2 can reliably decode the linear combination if the
source transmits at a rate

R ≤ 0.5 log

(
1 + SNR(h2

1 + γ2)

)
+ 0.5 log

( h2
1

h2
1 + γ2

)
= 0.5 log

( h2
1

h2
1 + γ2

+ h2
1SNR

)
Also, the relay 1 has to transmit at a rate

R ≤ 0.5 log

(
1 + SNR(h2

1 + γ2)

)
+ 0.5 log

( γ2

h2
1 + γ2

)
= 0.5 log

( γ2

h2
1 + γ2

+ γ2SNR
)
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S

xS(w1)

R1

R2

R3

R4

u1 = w1

D

h1

(a) Time slot 1

S

xS(w2)

R1

R2

R3

R4

xR(u1)

u2 = a2w2 + a1u1

u1 = w1

D

h1

γ h2

(b) Time slot 2

S

xS(w3)

R1

R2

R3

R4

xR(u2)

u3 = a2w3 + a1u2

u4 = a2u2 + a1u1

xR(u1)

D

ŵ1 = u1h1

γ h2 γ

h3

(c) Time slot 3

S

xS(w4)

R1

R2

R3

R4

xR(u3)

u5 = a2w4 + a1u3

u6 = a1u3 + a2u4

xR(u4)

D

ŵ2h1

γ h2 γ

h3

(d) Time slot 4

Figure 5.5: GCoF for a 3-hop network

• In the next time slot (Fig. 5.5(c)), relay 3 can reliably decode the linear combination if
the relay 2 transmits at a rate

R ≤ 0.5 log

(
1 + SNR(h2

2 + γ2)

)
+ 0.5 log

( h2
2

h2
2 + γ2

)
= 0.5 log

( h2
2

h2
2 + γ2

+ h2
2SNR

)
Also, the relay 4 has to transmit at a rate

R ≤ 0.5 log

(
1 + SNR(h2

2 + γ2)

)
+ 0.5 log

( γ2

h2
2 + γ2

)
= 0.5 log

( γ2

h2
2 + γ2

+ γ2SNR
)

• The decoded linear combination can be reliably transmitted to destination if relay 4 trans-
mits at a rate

R ≤ 0.5 log(1 + h2
3SNR)

This is seen in Fig. 5.5(c).
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Hence

RGCoF = min

{
0.5 log

( h2
1

h2
1 + γ2

+ h2
1SNR

)
, 0.5 log

( γ2

h2
1 + γ2

+ γ2SNR
)
,

0.5 log
( h2

2

h2
2 + γ2

+ h2
2SNR

)
, 0.5 log

( γ2

h2
2 + γ2

+ γ2SNR
)
, 0.5 log(1 + h2

3SNR)

}

5.3 CoF for a K-hop case

Choosing the scaling coefficients at each stage in a similar manner, we get the rate for the

general K-hop case to be the following expression. The last term is for the destination to

decode the message. Each of the first K − 1 hops contributes two terms, one for each relay to

reliably decode the linear combination.

RGCoF =

min

{
min

i=1,2,..,K−1

{
0.5 log

( h2
i

h2
i + γ2

+ h2
iSNR

)}
, min
i=1,2,..,K−1

{
0.5 log

( γ2

h2
i + γ2

+ γ2SNR
)}
,

0.5 log(1 + h2
KSNR)

}

From the above, we get

RGCoF > min

{
min

i=1,2,..,K

{
0.5 log(h2

iSNR),
}
, 0.5 log(γ2SNR)

}
(5.1)

Corollary 1. For the case when SNR ≥ 1, h1 = h2 = . . . = hK = 1 and γ > 1, RGCoF

achieves the cut-set upper bound within 0.5 bits.

Proof. When h1 = h2 = . . . = hK = 1, γ > 1, RGCoF > 0.5 log(SNR). From (Hong and

Caire, 2015, Lemma 3), the cut-set upper bound is 0.5 log(1 + SNR). Therefore, |0.5 log(1 +

SNR)− 0.5 log(SNR)| ≤ 0.5 for SNR ≥ 1.
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5.4 Gap between cut-set bound and RGCoF for a K-hop net-

work

S

I1 I2 I3 IK

R1

R2

R3

R4

R5

R6

R2K−3

R2K−2

D

h1

h1

γ γ γ γh2h2 h3h3

hK

hK

Figure 5.6: Cuts for K-hop network

Theorem 5. For a K-hop network, we have the following results.

• If min{h2
1, h

2
2, h

2
3, . . . , h

2
K , γ

2} = h2
1, and h2

1SNR ≥ 1, thenRcut−set−RGCoF ≤ 0.5 log 3.

• If min{h2
1, h

2
2, h

2
3, ..., h

2
K , γ

2} = h2
K , and h2

KSNR ≥ 1, thenRcut−set−RGCoF ≤ 0.5 log 5.

Proof. An upper bound using cutsets, for the K-hop case, can be obtained by considering the

cuts as shown in Fig. 5.6.

Rcut−set = max min{I1, I2, I3, .., IK}

≤ min{max I1,max I2,max I3, ..,max IK}.

The maximum of I1 for such a channel is bounded by C(2h2
1SNR). Similarly, the maximum

of Ik is 2C(h2
kSNR) for k = 2, 3, . . . , K − 1. Maximum of IK is bounded by C(4h2

KSNR).

Hence, we get

Rcut−set ≤ min{C(2h2
1SNR), 2C(h2

2SNR), . . . , 2C(h2
K−1SNR), C(4h2

KSNR)} (5.2)

Using the lower bound for RGCoF in (5.1) and the upper bound for Rcut−set in (5.2), we bound

the gap between the cut set bound and the rate achieved by GCoF for the following cases.
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(1) If min{h2
1, h

2
2, h

2
3, ..., h

2
K , γ

2} = h2
1, then

Rcut−set ≤ C(2h2
1SNR),

RGCoF > 0.5 log(h2
1SNR).

Therefore

Rcut−set −RGCoF < 0.5 log
(1 + 2h2

1SNR
h2

1SNR

)
.

If h2
1SNR ≥ 1, then

Rcut−set −RGCoF ≤ 0.5 log 3.

(2) If min{h2
1, h

2
2, h

2
3, ..., h

2
K , γ

2} = h2
K , then

Rcut−set ≤ C(4h2
KSNR),

RGCoF > 0.5 log(h2
KSNR).

Therefore

Rcut−set −RGCoF < 0.5 log
(1 + 4h2

KSNR
h2
KSNR

)
.

If h2
KSNR ≥ 1, then

Rcut−set −RGCoF ≤ 0.5 log 5.

We illustrate the results with three numerical examples here.

(1) We consider a 3-hop network where h1 ∼ N (2,1), h2 ∼ N (3,1), h3 ∼ N (3.5,1), and

γ ∼ N (5,1). Using the realizations where the condition min{h2
1, h

2
2, h

2
3, γ

2} = h2
1 is satisfied,

we plot the average achieved rate of the GCoF scheme versus SNR in Fig. 5.7. The averaged

cut-set bound is also shown. The gap result is shown by plotting the sum of the achieved rate
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Figure 5.7: Average RGCoF vs SNR when min{h2
1, h

2
2, h

2
3, γ

2} = h2
1

and the derived gap.

(2) We consider a 3-hop network where h1 ∼ N (2.5,1), h2 ∼ N (2,1), h3 ∼ N (1,1), and

γ ∼ N (5,1). Using the realizations where the condition min{h2
1, h

2
2, h

2
3, γ

2} = h2
3 is satisfied,

we plot the average achieved rate of the GCoF scheme versus SNR in Fig. 5.8. The averaged

cut-set bound is also shown. The gap result is shown by plotting the sum of the achieved rate

and the derived gap.

(3) We consider a 3-hop network where h1 ∼ N (2,1), h2 ∼ N (1,1), h3 ∼ N (4.5,1), and

γ ∼ N (5,1). Using the realizations where the condition min{h2
1, h

2
2, h

2
3, γ

2} = h2
2 is satisfied,

we plot the average achieved rate of the GCoF scheme versus SNR in Fig. 5.9. The averaged

cut-set bound is also shown.
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CHAPTER 6

MANY TO ONE INTERFERENCE CHANNEL
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Figure 6.1: Many to one Interference channel

Consider a many to one interference channel as shown in Fig. 6.1. Each user k, k ∈ [0 : K]

has a message Wk to send to its corresponding receiver. Each transmitter has an encoder Ek :

Wk → Rn which maps the message to its channel input as xk = Ek(Wk), k ∈ [1 : K].

y0 =x0 +
K∑
k=1

hkxk + z0,

yk =xk + zk, k ∈ [1 : K],

The noise zk ∈ Rn is assumed to be i.i.d. Gaussian with zero mean and unit variance. This

system is referred to as the many-to-one interference channel, since only Receiver 0 experiences

interference from other transmitters.

In Zhu and Gastpar (2015), they show that for a symmetric channel, (i.e., h1 = h2 = . . . =

hK = h), every user can achieve the capacity under some channel conditions.

Here, we extend the theorem to a non-symmetric channel. The result is stated below.



Theorem 6. Consider a non-symmetric (non-cognitive) many to one interference channel with

K+1 users. If h2
k >

(1+Pk)(1+P0)
Pk

,(k = 1, 2, ...K) then each and every user can achieve capacity

. Here, P0 is the power of the primary transmitter and Pk, the power of the kth transmitter.

R0 =
1

2
log(1 + P0)

Rk =
1

2
log(1 + Pk)

Proof. We use theorem 2 in Zhu and Gastpar (2015) which is stated below to prove the above

result.

For any given positive numbers β and coefficient matrix A, define Lk := {` ∈ [1 : L]|ak(`) 6=

0} with L ∈ [1 : K + 1] . If rk(a`|1:`−1, β) > 0 for all ` ∈ Lk, k ∈ [0 : K], then the following

rate is achievable for the many-to-one interference channel

R0 ≤min
`∈L0

r̃0(a`|1:`−1, β)

Rk ≤min

{
1

2
log
(
1 + h2

kPk
)
,min
`∈Lk

r̃k(a`|1:`−1, β)

}

for k ∈ [1 : K]

r̃k(a`|1:`−1, β) := max
α1,...,α`∈R

1

2
log+

(
β2
kPk

Ñ0(`)

)

Ñ0(`) :=
∑
k≥1

(
α`hk − ak(`)βk −

`−1∑
j=1

αjak(j)βk

)2

Pk

+

(
α` − a0(`)β0 −

`−1∑
j=1

αja0(j)β0

)2

P0 + α2
` .

Like in the GCoF protocol, the primary receiver Rx0 decodes integer linear combinations of the

messages sent by the transmitters. Using these, the primary receiver Rx0 decodes the message

sent by the primary transmitter Tx0. Here, A is the coefficient matrix whose rows indicate the

linear combination of the messages that is decoded by the primary receiver Rx0.
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A =


a0(1) a1(1) a2(1) . . . aK(1)

...
...

...
...

...

a0(L) a1(L) a2(L) . . . aK(L)

,
r̃k(a`|1:`−1, β) refers to the rate at which transmitter k can transmit so that the l−th sum can be

decoded, given that the previous l − 1 sums are already decoded. The term 1
2

log(1 + h2
kPk) is

for the receiver Rxk,k ∈ [1 : K] to decode the message sent by transmitter Txk reliably.

This result is proved by taking the coefficient matrix

A =

0 1 . . . 1

1 0 . . . 0


in Gnanasambandam (2017)

Here, we take the coefficient matrix given below.

A =

0 1 . . . 1

1 1 . . . 1


=

a0(1) a1(1) . . . aK(1)

a0(2) a1(2) . . . aK(2)


When the primary user decodes the first equation, the variance of the equivalent noise is given

by

Ñ0(1) := α2
1 +

∑
k≥1

(α1hk − ak(1)βk)
2Pk

+(α1 − a0(1)β0)2P0.

Like in the GCoF protocol, the encoder maps the messages to lattice codewords which are

scaled and then transmitted. βk denotes the scaling coefficient for each user. By choosing

different βk for each user, we can adjust the rate of individual user and achieve a better rate

region. We choose βk = hk and β0 = 1

The parameters α1, α2, . . . , αl is used to balance the effect of the noise that comes due to the

non-integer channel gain and also the additive white Gaussian noise at the receiver. We find the
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optimal α1, α2, . . . , αl so as to minimize the effective noise and hence maximize the rate. This

is found by differentiating Ñ0(l) with α1, α2, . . . , αl.

Ñ0(1) : = α2
1 +

∑
k≥1

(α1hk − hk)2Pk + (α1 − 0)2P0

= α2
1 + (α1 − 1)2

∑
k≥1

h2
kPk + α2

1P0.

We have to find α1 that minimizes Ñ0(1) so as to get maximum rate.

dÑ0(1)

dα1

= 2α1 + 2(α1 − 1)
∑
k≥1

h2
kPk + 2α1P0 = 0

α1 =

∑
k≥1

h2
kPk

1 + P0 +
∑
k≥1

h2
kPk

Substituting for α1 in Ñ0(1) we get

Ñ0(1) =

(
∑
k≥1

h2
kPk)(1 + P0)

1 + P0 +
∑
k≥1

h2
kPk

r̃k(a1, β) =
1

2
log

(
β2
kPk

Ñ0(1)

)

=
1

2
log

((h2
kPk)(1 + P0 +

∑
k≥1

h2
kPk)

(1 + P0)(
∑
k≥1

h2
kPk)

)

>
1

2
log

(
h2
kPk

1 + P0

)

Hence r̃k(a1, β) > 1
2
log

(
h2kPk

1+P0

)
Decoding this sum does not impose any constraint on R0 since the linear combination does not

contain W0.

When the primary user decodes the second equation, the variance of the equivalent noise is
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given by

Ñ0(2) : = α2
2 +

∑
k≥1

(α2hk − ak(2)hk − α1ak(1)βk)
2Pk+

(α2 − a0(2)β0 − α1a0(1)β0)2P0

= α2
2 +

∑
k≥1

(α2hk − hk − α1hk)
2Pk + (α2 − 1)2P0

We have to find α1 and α2 to minimize Ñ0(2) and hence maximize the rate.

dÑ0(2)

dα1

= 2(α2 − α1 − 1)(−1)
∑
k≥1

h2
kPk = 0

⇒ α2 = α1 + 1 (6.1)

dÑ0(2)

dα2

= 2α2 + 2(α2 − α1 − 1)
∑
k≥1

h2
kPk + 2(α2 − 1)P0 = 0

Substituting for (6.1) in the above expression, we get

α2 =
P0

1 + P0

α1 =
−1

1 + P0

Substituting for α1 and α2 in Ñ0(2)

Ñ0(2) =
P0

1 + P0

rk(a2|1, β) =
1

2
log

(
β2
kPk

Ñ0(2)

)
=

1

2
log

(
(h2

kPk)(1 + P0)

P0

)
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R0 =
1

2
log

(
(h2

0P0)(1 + P0)

P0

)
=

1

2
log
(
(h2

0)(1 + P0)
)

Since h0 = 1, we get R0 = 1
2
log(1 + P0), i.e, the primary transmitter 0 can achieve capacity.

We know Rk = min{rk(a1, β), rk(a2|1, β), 1
2
log(1 + Pk)}

Also, we know rk(a1, β) > 1
2
log

(
h2kPk

1+P0

)
If h2

k >
(1+Pk)(1+P0)

Pk
, then rk(a1, β) > 1

2
log(1 + Pk)

Also, rk(a2|1, β) > 1
2
log (1+Pk)(1+P0)2

P0

Hence, we have min{rk(a1, β), rk(a2|1, β), 1
2
log(1 + Pk)} = 1

2
log(1 + Pk)

Hence, each and every user can achieve capacity if h2
k >

(1+Pk)(1+P0)
Pk
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CHAPTER 7

SIMULATION RESULTS

We plot the rate vs interference for the 3 hop network for various encoding schemes. This is

considered for the case when h1 = h2 = hD = 1 and SNR=20 dB

• CoF without Power Allocation given in Hong and Caire (2015)
R

(K)
CoF = R

(1)
CoF

• CoF with Power Allocation given in Hong and Caire (2015)
R

(K)
CoF−P = 0.5 log(SNR) + 0.5K log(γ2

max)

where γmax = max
{

γ
dγe ,

bγc
γ

}
• With General Compute and Formula -RGCoF

• Decode and Forward scheme given in Hong and Caire (2015)

RDF = min

{
0.5 log(1+SNR),max

{
0.5 log

(
1+ SNR

1+γ2SNR
)
, 0.25 log

(
1+(1+γ2)SNR

)}}
• Quantize Map and Forward scheme given in Hong and Caire (2015)

RQMF = 0.5 log

(
1 + SNRK+1

(1+SNR)K+1−SNRK+1

)
• Amplify and Forward Scheme given in Hong and Caire (2015)

RAF = 0.5 log

(
1 +

(
1+SNR

1+(1+γ2)SNR
)K
. SNRK+1

(1+SNR)K+1−SNRK+1

)

We compare it with the upper bound. This is shown in Fig. 7.1.



1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Interference

0

0.5

1

1.5

2

2.5

3

3.5
R

at
e

3 hop network

CoF Without PA
CoF With PA
GCoF
Upper Bound
DF
AF
QMF

Figure 7.1: Plot of rate vs interference

We observe that RGCoF almost achieves the cut-set bound. The rate of the CoF scheme

with and without power allocation fluctuates as the interference levels vary. The Quantize Map

and Forward (QMF) scheme has a constant gap with interference. The rate of Amplify and

Forward (AF) scheme decreases as the interference levels increase. Also, the rate of Decode

and Forward (DF) scheme increases with interference.
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Figure 7.2: Plot of rate vs number of relay stages

We also compare the rate vs the no of relay stages for different encoding schemes. This

is shown by simulation in Fig. 7.2. This is done when the channel coefficients hS and hD are

equal to 1 and inter-relay interference level γ is also equal to 1. We observe that CoF without

PA, CoF with PA, GCoF almost achieves the upper bound. The DF scheme has a constant gap

with the upper bound. For QMF scheme, the gap increases logarithmically with the number of

relay stages. For AF scheme, the gap increases much faster.
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CHAPTER 8

CONCLUSION

In this work, we extend the virtual full-duplex relaying scheme in Hong and Caire (2015) by

considering unequal gain across hops for the channel coefficients. We found the gap between

the cut-set bound and DPC for a 2-hop network. We also showed the conditions under which

DPC achieves the cut set bound.

We use the General Compute-and-forward (GCoF) scheme to derive an expression for the rate

achieved using the GCoF scheme over a K-hop network. We show that the gap between GCoF

and the cutset bound is finite as long as the first or last hop is the bottleneck. Furthermore, this

gap does not grow linearly with the number of hops as in Hong and Caire (2015). Also, for a 2

hop network, RGCoF can achieve the rate of DPC within 0.5 bits.

We also considered the case when the channel coefficients are equal to unity. We showed that

RGCoF achieves the cut-set bound within 0.5 bits for a K-hop network.

We also studied the non-symmetric many-to-one interference channel and showed that all the

users achieve the capacity under certain channel conditions.
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