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ABSTRACT

The project work is a collaboration of Hitachi and IITM.Due to the recent progress
in cellular technologies,there has been increase in the innovation with regards to the
capacity and data rates.With much anticipated 5G, the focus has shifted to Internet
of Things(IoT).It is seen as an opportunity to redefine the network to accommodate a
wealth of new and diversely connected devices.Two major areas envisioned in loT are
massive machine to machine communication and ultra reliable communication.The first
one is the scenario where thousand of sensor nodes talk to each other at very low data
rates and in the second,the ultimate goal is to have robust and authenticated communica-
tion irrespective of the environment in which the communication takes place. Wireless
M2M(Machine to Machine) communication in the process industry plants is severely
affected by slow fading nature of propagation channel and multipath reflections due
to presence of metallic obstructions that interact with the electromagnetic waves.Slow
fading means if the signal is in deep fade it will continue to remain in deep fade for

longer time with higher probability.

An idea of introducing fast fading through polarization angle diversity is presented
by DR.Takei of HITACHI.The idea is to send the same data through different polar-
ization angles at the transmitter and receive it in those many polarizations.The signal

processing techniques are used at the receiver to decode the signal and achieve diversity.

We have designed and developed a modulator-demodulator (MODEM) based on

this technique.Here we discuss briefly the physical layer part of the code,its porting and
testing onto the ZC702 FPGA Platform.
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CHAPTER 1

INTRODUCTION

1.1 Project Background

The project is about development of rotating polarized wave based modem.The concept
of rotation polarized wave was brought forward by Dr.Takei of HITACHI. The previous
teams have developed the Physical layer of the transmitter and receiver for 1:N proto-
col.It was further worked upon by the current team.The PHY layer of the N:1 protocol
has been completed and demonstrated.The transmitter and receiver were implemented
using the ZC702 and AD9361 RF boards.The final implementation is such that the a
PHY layer has to run on FPGA and MAC layer is to run on a processor.The current
position of the project is that protocol for the N:1 communication has been developed

and the physical layer code has been demonstrated.

Many control systems are functioning in industries and reliable communication for
such machineries is required. A reliable M to M communication system is required. Wired
communication can transmit without much loss of data but those systems are prone to
physical damage and security breaches.So a reliable M to M wireless communication
system is required.But the wireless systems are prone to slow fading(static) nature of the
propagation channel and the communication via wireless systems is not much reliable

if the machines are not in line of sight.

Also M2M radio systems in an infrastructure system are surrounded by many elec-
tromagnetic scatterers, its communication is in an NLOS situation. Data is transmitted
mainly by reflected waves. Because of the many electromagnetic reflectors, there are
many transmission paths. And reflected waves which are transmitted by different paths
are added at a receiver. If these waves are co-phase, a total received power will in-
crease, and if they are anti-phase, the power will decrease. Because of this, there are
some positions where we can't communicate. This is a case of multipath fading. By

using polarization angle diversity, one can reduce this multipath fading. When a radio



wave is reflected, its polarization angle is changed. Therefore, each polarization an-
gle has its transmission path (or paths). If we can change a polarization angle, we can

control multipath fading. This is a basic theory of polarization angle diversity.

1.2 Generating Rotating Polarization Wave

To realize polarization angle diversity, we use a rotating polarized radio wave. Its po-
larization angle is rotating and time-dependent,this wave is different from a circularly
polarized wave. A rotation frequency of a circularly polarized wave is same as its radio
frequency. When we use the 860MHz band radio wave, its rotation frequency is also
860MHz. It is too fast to control the polarization angle. On the other hand, our rotat-
ing polarized wave is rotating slowly. Because of this low rotation frequency, we can
change a polarization angle and control multipath fading.To create a rotating polarized

radio wave, we use two radio waves which have different frequencies.

The two radio waves which have different frequency (f1, f2) are mixed and trans-
mitted. In one antenna, they are simply mixed. In the other, they are mixed after 90
degrees delayed. The radio waves from these antennas have two factors. One is a (f1
+ 12)/2 frequency radio wave and the other is a (f1 - £2)/2 frequency radio wave. The
high frequency factors have same phase between the two antennas, and low frequency
factors have 90 degrees difference. So, the radio wave from the antennas is rotating
at the low frequency.The two sinusoids with frequencies very close to each other are
added together to generate a product of sinusoids with two different frequencies. The
two frequencies in the product sinusoid have as one component the average of both the
parent frequencies while the other component consists of the difference of two parent
frequencies. The average term is close to both the parent frequencies while the differ-
ence term is much smaller than the parent frequencies. Generally, the parent frequencies
are chosen closer to the desired center/RF frequencies. The average frequency term is
the desired center frequency or the frequency of propagation while the difference fre-
quency term is the frequency of rotation. A circularly polarized wave has the frequency

of rotation equal to the frequency of propagation.
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Figure 1.1: RPW generation

For the ease of implementation, we generate the sequence associated with the ro-
tation frequency at the baseband and pre multiply it with the frame to be transmitted.
This frame which is pre multiplied with the rotation sequence is generated by FPGA
board, which is given to AD9361 RF module chain to up convert the signal to the de-
sired centre frequency, thus producing the required frequency of rotation and frequency

of propagation at the output.

At such high rates, resolving the multi paths at the receiver is not a feasible op-
tion. RPW, a competent technique brings about a solution to resolve the multi paths
at the receiver. By significantly reducing the frequency of rotation much lower than
the baseband sampling rate, the multi paths can be easily resolved. These multi paths
are important because, they originate due to the different incident polarization angles.
The incident angles of polarization are changed as the wave rotates. But, the number
of polarization angles that we resolve at the receiver, depends on the sampling rate and
the frequency of rotation. Hence, we must device a rule to fix the frequency of rotation

depending on the number of polarization angles required.

Let us consider the sampling frequency to be fs Msps, the number of polarizations

required to be resolved be N, over sampling factor be k, sampling time be Ts.

The following steps illustrate the procedure to fix the frequency of rotation.

1. In order to change the incident angles of polarization of a data bit, the bit should

occupy the time taken for one complete rotation.
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2. It is therefore required to spread the bit to fill the entire rotation period.
3. The spreading length must be equal to the number of incident polarizations needed.
4. After oversampling, the number of samples that should fit in one rotation is N*k.

5. The frequency of rotation, represented by fr, can now be calculated using the
inverse of the time taken for the total number of samples required to fit in one

rotation as shown in equation fr = fs/(N*k).

The rotating polarization wave can either be generated using the structure shown in the
figure 1.1 or by generating the rotation frequency term separately in the baseband and

up-converting it to required RF frequency.

1.3 Effectiveness of Rotating Polarization

As the incident polarization angle changes, the obstructions seen by the wave changes
and hence the channel experienced by the wave changes. Thus, at each polarization
angle, the wave experiences a different channel coefficient, hence making the fading to
vary at a much faster rate. This makes the signal to come out of the deep fade scenario

very easily.

1.4 Frame Structure

The frame structure used in the rotating polarized wave based modem, consists of the
PHY layer and the PHY payload.PHY payload consists of the MAC layer and the MAC

payload along with preamble and channel estimation bits.

Zeros Zeros Channel Estimation Zeros
(40) (40) (1004) (36)

Figure 1.2: Frame Structure

There are forty O's before the preamble , forty 0's between preamble & channel

estimation bits , thirty six 0's between channel estimation bits & Physical payload data.



1.4.1 Preamble Data

A PN sequence, although resembles a random noise, is a deterministic sequence that
repeats itself after a certain period. The period can be as large as possible. These
sequences are typically used for frame detection/synchronization because of three im-

portant properties.

1. On the lines of random noise properties, this sequence has very low correlation
with any other sequence in the set, or with the same sequence at a different time

offset, or with thermal noise, or with any narrowband interference.

2. In contrast to random noise, PN sequences can be deterministically generated at

the transmitter and receiver.

3. This sequence has a very high correlation with the same sequence present in the

received signal.

The preamble sequence used for frame synchronization is a 64 length PN sequence.This
64 length Pseudo-Noise sequence bits are oversampled using an oversampling factor of
4.The resultant data is then passed through RRC filter of truncated to length 10. So the
entire length of the preamble is 262.

64 bits—>63*4+1=253(oversampling)—>253+9=262(RRC filtered).

1.4.2 Channel Estimation Data

The chip sequence consists of 1000 bits. The sequence of 200 bits is repeated 5 times.The
200 bit sequence is hundred 1's and hundred -1's.The channel Estimation bits are also

passed through a 5 point RRC filter an the output sequence is of length 1004.

+1,+1,+1,.....+1
(100 times)

+1,+1,+1,.....+1
(100 times)

Figure 1.3: Channel estimation data



1.4.3 Spreading sequence

In order to employ polarization angle diversity in our model, the modulated data is
spread using a 64 bit chip sequence so that each bit can occupy the time taken by
one complete rotation. The chip sequence used is:1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,1,-1,1,-

11,1,-1,-1,1,1,-1,1,1,1,-1,1,1,-1,1,-1,-1,1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1.

1.4.4 Pulse Shaping (SRRC):

In communications systems, two important requirements of a wireless communications

channel demand the use of a pulse shaping filter. These requirements are:

1. Generating bandlimited channels, and

2. Reducing inter symbol interference (ISI) from multi-path signal reflections.

Both requirements can be accomplished by a pulse shaping filter which is applied to
each symbol. In band-limited channels, inter-symbol interference (ISI) can be caused
by multi-path fading as signals are transmitted over long distances and through various
mediums. More specifically, this characteristic of the physical environment causes some
symbols to be spread beyond their given time interval. As a result, they can interfere
with the following or preceding transmitted symbols. By applying the pulse shaping
filter to each symbol that is generated, we are able to reduce channel bandwidth while
reducing ISI. The maximum amplitude of the pulse-shaping filter occurs in the middle
of the symbol period. In addition, the beginning and ending portions of the symbol
period are attenuated. Thus, ISI is reduced by providing a pseudo-guard interval which

attenuates signals from multi-path reflections.

Instead of using a single Raised Cosine filter at the transmitter, a square root raised
cosine filter is used at both transmitter and receiver. This is to achieve matched filtering
which maximizes SNR of the system.In our present design SRRC filter with a roll off
factor of 0.5 is chosen to perform pulse shaping at transmitter and receiver.The SRRC
filter's oversampling factor of 4.This SRRC filter is truncated to 9 point sequence and

the filter coefficients are scaled by a factor of 1.849.



1.4.5 Payload

The data samples consists of the required 64-bits data that need to be transmitted.The 64
bits are encoded by using BPSK,spreaded by 64 length spreading sequence,the spreaded

data is upsampled by 4 and the data is further srrc filtered.

1.5 Transmission Of Frame

The entire frame which has preamble, channel estimation bits and PHY payload,is the
send by the transmitter.The receiver receives the data and detects the start of the frame
by correlating the received data with the preamble sequence.After detecting the start of

the frame,channel is estimated and equalization of the data is done to decode the bits.

1.6 Organization Of The Report

In chapter 2,the software used for optimizing the codes,implementing the codes and

also hardware used for running the codes are mentioned.

In chapter 3,we will discuss discuss how to optimize the code using the directives
options and the reports of the software tools.The codes of transmitter,receiver along

with the test-benches will be explained.

In chapter 4,the connection that are used for interfacing different IP’s,reports of
vivado design and also embedded code that is programmed on FPGA using SDK envi-

ronment is also discussed.

In chapter 5, we will discuss about the Hardware implementation setup and the

problem of frequency offset along with frequency estimation block is discussed.



CHAPTER 2

Introduction to Hardware Platforms ZC702,AD9361
and Software tools Vivado HLS,Vivado,SDK

Environment

2.1 Introduction of ZYNQ ZC702 FPGA Platform:

The ZC702 is an evaluation board that acts as a platform for developing hardware de-
scriptions. The ZC702 is comprised of many components and peripheral interfaces
common in many embedded applications, such as DDR3-SDRAM for main memory,
general purpose input/outputs (GPIO), and universal asynchronous receiver and trans-
mitters (UART), LEDs, and pushbuttons. The ZC702's features can even be extended

by peripheral module (PMOD) connectors.

The main components of the zynq board are as follows:

1. Zynq (ZC702): The Z-7020 is the System-on-Chip device that combines the pro-
cessing capabilities of a Dual-core ARM Cortex-A9 processor with programmable
logic of an Artix-7 Field Programmable Gate Array (FPGA). The Zynq ARM pro-
cessor executes the program that is written in SDK environment. The PL(programmable
logic area) contains the required design or the required algorithm that is to be ex-

ecuted .

2. Slide Switches: These are two sets of slide switches which are set in order to en-
able JTAG mode and utilize the JTAG Module, which is necessary for program-
ming the ZC702.The JTAG Module is one of the available options for download-
ing programs, probing, and debugging certain hardware on the ZC702. There are
also other options available, but the JTAG approach is the most convenient since
it only required a Standard-A to Micro-B USB cable to connect from the JTAG

Module to the computer.



3. USB to UART Bridge Device: The USB to UART Bridge allows a host computer
to connect to the ZC702’s UART with a Standard-A to Mini-B USB cable. If the
Virtual COM Port (VCP) drivers are also installed on the host computer, the USB-
to-UART Bridge will appears as a COM port and thereby enable asynchronous
serial communication with the ZC702. A user can then communicate with the
ZC702, using software such as HyperTerm or PuTTy.

12C Program-user User Push-buttons,
Clock 3.3V LVDS Active High
FMC1 LPC connector

Xilinx XADC Header FMC2 LPC Connector

Quad SPI Flash Memory(1Gb) Eight-user LEDs

5D Card Interface Connector User 2-pole DIP Switch

Configuration Mode Select Switch
Zyng All Programmable SoC

System Clock, 200 MHz, 2.6V LVDS
Power Management System
(bottom and top of board)

Power On/Off Slide Switch
FPGA PROG Push-button

12C Bus Switch

12C Real-Time Clock (RTC)
‘CAN Bus Transceiver

HDMI Controller, HDMI Video Conneclcr—/

DDR3 Component Memary (1 GB)

USB JTAG Module with integrated
USB Mini-B Connector

RGMII Ethernet PHY Oscillator,
26.000 MHz

10/100/1000 MHz USB 2.0 ULPI Transceiver, 2x6 and 1x6
Ethernet PHY, USB Mini-B Connector PMOD /O Header
RJ45 with Magnetics
Ethernet Status USB-to-UART Bridge, 2x6 Male Pin VO
LEDs USB Mini-B Connector Header driven from

12C Expander U0

Figure 2.1: AD9361

The number of available resources on ZYNQ ZC702 platform are as follows:

1. BRAM_18K=280.
2. DSP48E=220.
3. Flipflops=106400.

4. Look up table=53200.
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2.2 Introduction of AD9361 RF AGILE TRANSCEIVER:

ADO9361 is a high performance, highly integrated RF Agile Transceiver. The pro-
grammability and wide-band capability make AD9361 ideal for a broad range of transceiver
applications. The device combine an RF front end with a flexible mixed-signal base-
band section and integrated frequency synthesizers, simplifying design-in by providing
a configurable digital interface to a processor. AD9361 operates in the 70 MHz to 6.0
GHz range, all covering most licensed and unlicensed bands. Channel bandwidths on

the AD9361 is from 200 kHz to 56 MHz. AD9361 is a 2 Rx, 2 Tx device.

The AD9361 is a highly integrated radio frequency (RF) transceiver capable of be-
ing configured for a wide range of applications. The device integrates all RF, mixed sig-
nal,and digital blocks necessary to provide all transceiver functions in a single device.
Programmability allows this broadband transceiver to be adapted for use with multiple
communication standards, including frequency division duplex (FDD) and time division
duplex (TDD) systems. This programmability also allows the device to be interfaced
to various baseband processors (BBPs) using a single 12-bit parallel data port, dual 12-
bit parallel data ports, or a 12-bit low voltage differential signaling (LVDS) interface.
The LVDS interface is used on the ADFMCOMMS2-EBZ, AD-FMCOMMS3-EBZ,
AD-FMCOMMS4-EBZ and AD-FMCOMMSS-EBZ as the CMOS drive strength is

too weak to go through a connector.
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AD9361
High performance, highly AD7291BCPZ
integrated RF Agile Transceiver™ 12-bit, low power, 8-channel, SAR ADC

ADP7104ARDZ-3.3 ADP1755ACPZ ADP190ACBZ
High Input Voltage Low Vi, / Voue 1.2A LDO High-side 500mA
500mA LDO Load Switch

Figure 2.2: AD9361

The AD9361 also provide self-calibration and automatic gain control (AGC) sys-
tems to maintain a high performance level under varying temperatures and input signal
conditions.In addition, the device includes several test modes that allow system design-
ers to insert test tones and create internal loop-back modes that can be used by designers
to debug their designs during prototyping and optimize their radio configuration for a

specific application.

2.2.1 Transmit Chain:

The transmitter section consists of two identical and independently controlled channels
that provide all digital processing, mixed signal, and RF blocks necessary to implement
a direct conversion system while sharing a common frequency synthesizer.The TX sig-
nal path receives 12-bit 2’s complement data in 1-Q format from the digital interface,
and each channel (I and Q) passes this data through a fully programmable 128-tap FIR
filter with interpolation options. The FIR output is sent to a series of additional interpo-
lation filters that provide additional filtering and data rate interpolation prior to reaching

the 12-bit DAC.

The FIR filter, and of the three interpolating filters can individually be controlled

12



and bypassed if desired. Each 12-bit DAC has an adjustable sampling rate. The DAC’s
analog output is passed through two low pass filters (to remove sampling artifacts) prior
to the RF mixer. The corner frequency for each low-pass filter is programmable. At
this point, the I and Q signals are recombined and modulated on the carrier frequency
for transmission to the output stage. The combined signal also passes through analog
filters that provide additional band shaping, and then the signal is transmitted to the
output amplifier. Each transmit channel provides a wide attenuation adjustment range

with fine granularity to help designers optimize signal-to-noise ratio (SNR).

Both the I and the Q paths are schematically identical to each other.Self-calibration
circuitry is built into each transmit channel to provide automatic real-time adjustment.
The transmitter block also provides a TX monitor block for each channel. This block
monitors the transmitter output and routes it back through an unused receiver channel
to the BBP for signal monitoring. The TX monitor blocks are available only in TDD

mode operation while the receiver is idle.

2.2.2 Receive Chain:

The receiver section contains all blocks necessary to receive RF signals and convert
them to digital data that is usable by a BBP. There are two independently controlled
channels that can receive signals from different sources, allowing the device to be used
in multiple input, multiple output (MIMO) systems while sharing a common frequency

synthesizer.

Each channel has three inputs that can be multiplexed to the signal chain, making the
ADO9361 suitable for use in diversity systems with multiple antenna inputs. The receiver
is a direct conversion system that contains a low noise amplifier (LNA), followed by
matched in-phase (I) and quadrature (Q) amplifiers, mixers, and band shaping filters
that down convert received signals to baseband for digitization. External LNAs can also
be interfaced to the device, allowing designers the flexibility to customize the receiver

front end for their specific application.

The AD9361 RX signal path passes down-converted signals (I and Q) to the base-
band receiver section. The baseband RX signal path is composed of two programmable

analog low-pass filters, a 12-bit ADC, and four stages of digital decimating filters. Each

13



of the four decimating filters can be bypassed. The corner frequency for each low-pass
filter is programmable. Note that both the I and Q paths are schematically identical to

each other.

Gain control is achieved by following a preprogrammed gain index map that dis-
tributes gain among the blocks for optimal performance at each level. This can be
achieved by enabling the internal AGC in either fast or slow mode or by using manual
gain control, allowing the BBP to make the gain adjustments as needed. Additionally,
each channel contains independent RSSI measurement capability, dc offset tracking,

and all circuitry necessary for self-calibration.

The receivers include 12-bit, sigma-delta ADCs and adjustable sample rates that
produce data streams from the received signals. The digitized signals can be condi-
tioned further by a series of decimation filters and a fully programmable 128-tap FIR
filter with additional decimation settings. The sample rate of each digital filter block is

adjustable by changing decimation factors to produce the desired output data rate.

2.2.3 Rx and Tx Filtering:

In both the receive and transmit chains, there are :

1)Analog low pass filters either to removing sampling artifacts on the Tx side, or to

band shaping to reduce adjacent-channel interference on the Rx side.

2)Digital interpolation/decimation filters to up/down convert from the digital base-

band rate (64.11MSPS max) to the actual ADC (640MSPS) or DAC (320MSPS) rates.

Irrespective of the implementation (analog or digital) these filters impact the mag-
nitude and phase in the passband. This must be compensated somewhere in the system.
It can easily be done (and therefore is normally done) inside the 128 tap FIR filter. The
FIR filter is not only used to implement a low pass filter, but also to compensate for
the magnitude and phase impacts the analog and digital half band filters create in the

baseband area of interest.

These filters depend on sample rates, clocks, and data rates (which sets the digital
half band filters), and the RF bandwidth (which sets the analog filters). Loading a

filter, and then changing anything in the system, will negatively affect overall baseband
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performance.

2.2.4 Clocking options:

The AD9361 uses fractional-n phase locked loops (PLLs) to generate the transmitter
and receiver local oscillator (LO) frequencies as well as the oscillator (the baseband
PLL) used for the data converters, digital filters, and I/O port. These PLLs all require
a reference clock input, that includes a digitally controlled crystal oscillator (DCXO)
function, an on-chip programmable/variable capacitor. This capacitor can tune the crys-
tal frequency variance out of the system, resulting in a more accurate reference clock
from which all other frequency signals are generated. The input for the DCXO can be

provided by two different sources:

1)To connect an external oscillator or clock distribution device (such as the AD9548
to the XTALN pin (with the XTALP pin remaining unconnected). If an external oscil-
lator is used, the frequency can vary between 10 MHz and 80 MHz. This is for appli-
cations such as wireless base-stations, which require that the reference clock lock to a

system master clock.

2)To use a dedicated crystal with a frequency between 19 MHz and 50 MHz con-
nected between the XTALP and XTALN pins. This is typically used in wireless user
equipment (UE), which do not typically need to be locked to a master clock but they do
need to adjust the LO frequency periodically to maintain connection with a base-station
(BTS). The BTS occasionally informs the UE of its frequency error relative to the BTS,
and the baseband processor can adjust the reference clock frequency and thus the LO

frequency as needed.

The DCXO tuning function can also be used with the on-chip temperature sensor to

provide oscillator frequency temperature compensation during normal operation.

2.2.5 ADY9361 No-OS SDK API’s To Configure Tx and Rx parame-

ters:

D)struct ad9361_rf_phy *ad9361_init(AD9361_InitParam *init_param):
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Initializes the FMCOMMS2 board. Receives as parameter a structure that contains
the AD9361 initial parameters. Returns a structure that contains the AD9361 current

state in case of success, negative error code otherwise.

2)int32_t ad9361_set_rx_rf_gain(struct ad9361_rf_phy *phy, uint8_t ch, int32_t
gain_db):

Sets the receive RF gain for the selected channel. Receives as parameters a structure
that contains the AD9361 current state, the desired channel number (0,1) and the RF

gain.

3)int32_t ad9361_set_rx_rf_bandwidth(struct ad9361_rf_phy *phy, uint32_t band-
width_hz):

Sets the RF bandwidth. Receives as parameters a structure that contains the AD9361

current state and the desired bandwidth in Hz. Similar function for tx also.

4)int32_t ad9361_set_rx_sampling_freq(struct ad9361_rf_phy *phy *phy, uint32_t
sampling_freq_hz):

Sets the sampling frequency. Receives as parameters a structure that contains the
ADO9361 current state and the desired sampling frequency in Hz.Similar function for tx

also.

5)int32_t ad9361_set_rx_gain_control_mode (struct ad9361_rf_phy *phy *phy, uint8_t
ch, uint8_t gc_mode): Sets the gain control mode for the selected channel. Receives as
parameters a structure that contains the AD9361 current state, the desired channel (0,1)
and the gain control mode (GAIN_MGC, GAIN_FASTATTACK_AGC,
GAIN_SLOWATTACK_AGC, GAIN_HYBRID_AGC).

6)int32_t ad9361_set_tx_attenuation(struct ad9361_rf_phy *phy *phy,uint8_t ch,uint32_t

attenuation_mdb):

Sets the transmit attenuation for the selected channel. Receives as parameters a
structure that contains the AD9361 current state, the desired channel number (0, 1) and

the attenuation in dB.
Nint32_t ad9361_set_rx_lo_freq(struct ad9361_rf_phy *phy *phy, uint64_t lo_freq_hz):

Sets the LO frequency. Receives as parameters a structure that contains the AD9361
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current state and the desired LO frequency in Hz.

All functions except ad9361_init() returns O in case of success, negative error code

otherwise.

2.3 Vivado HLS

The software which has been used to convert c++ code into HDL is VIVADO HLS,
which is provided by Xilinx.The Xilinx Vivado High-Level Synthesis (HLS) is a tool
that transforms a C specification into a register transfer level (RTL) implementation that
can synthesize into a Xilinx field programmable gate array (FPGA). For the c codes to
be converted into HDL codes,it has to be written in particular manner which will be
discussed later. VIVADO HLS also provides directives like pipelining,unrolling,array
partitioning etc which can be used to optimize the code .The software shows the mini-
mum & maximum number of clock cycles taken by the functions in the code and also
minimum & maximum amount of time taken by the operations,loops in the c++ code.By
analyzing the times taken by different instances of the code, we can know where to opti-
mize the code.VIVADO also shows the amount of hardware which has been used for the
HDL and whether the hardware used in within the limit. VIVADO has a option known
as ’co-simulation” which simulates and runs both the c++ code and also the HDL code

by which we can check the accuracy of the HDL code.
High-level synthesis also bridges hardware and software domains, providing the

following two primary benefits:

1. Improved productivity for hardware designers (Hardware designers can work at

a higher level of abstraction while creating high-performance hardware).

2. Improved system performance for software designers (Software developers can
accelerate the computationally intensive parts of their algorithms on a new com-

pilation target, the FPGA).

2.3.1 Design steps in Vivado HLS:

1. First step is to develop algorithm at the C level.
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2. Next, we will verify the algorithm at the C level.

3. Next, we will synthesize the C algorithm into an RTL implementation. (Vivado
HLS tool can automatically create an RTL implementation of our C algorithm.
Vivado HLS will also automatically create data path and control path modules

required to implement our algorithm in hardware).

4. Next, we will generate comprehensive reports and analyze the design. Vivado
HLS automatically creates synthesis reports to help us understand the perfor-

mance of the implementation.
5. Next, we verify the RTL implementation.

6. Last step, package the RTL implementation into a selection of IP formats.

2.3.2 Key Benefits of Vivado HLS:

1. Portability of the source code to any hardware which rarely involves restructuring

of the code.

2. Data dependencies and the sequence of operation are analyzed by HLS tools to
exploit parallelism which can be pipelined further to achieve the desired timing

constraints.

3. A pipelined architecture can be inferred from loops which involves less data de-

pendencies between successive iterations.

4. Iterations in a loop can be made parallel by loop unrolling which divides the loops

to multiple hardware.

2.3.3 Data types in Vivado HLS:

Floating Point Datatypes:

Vivado HLS supports standard floating type data types of C/C++.But they use lot of
resources/Area and also these datatype effect the Latency and throughput of the de-

sign.So,we generally use fixed point datatypes.
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Fixed Point Datatypes:

The specification of fixed point data type affects the resource utilization, timing per-
formance, and power consumption greatly. But,if word length is Under-specified the
compromises accuracy, while over-specifying will leads to increased resources, inflated
power consumption, and a sub-optimal maximum clock frequency. So,a trade-off of
word length has to be chosen accordingly. Vivado HLS supports both the native C/C++
data types plus the arbitrary precision data types for integer (for C/C++) and fixed
point (for C++ only).Arbitrary precision data types are widely used to optimized the
area/resources in the required design. They can be used in HLS C program by adding

ap_int.h , ap_fixed.h.

I)ap_int.h: These data types are used for integer types of data. A variable range
of integer bits can be configured. Data types in this libraries are declared by using
the format ap_int<N>.(N bit integer format).Similarly unsigned integers can also be

declared as follows ap_uint<N>.

2)ap_fixed.h: These data types are used for fixing decimal types of data. A variable
range of bits can be configured and the decimal number can be approximated according
to the required precision. Data types in this libraries are declared by using the for-
mat ap_fixed<W,I,Q,O,N>.(I bits are for integer and W-I for fractional part).Similarly

unsigned decimal can also be declared as follows ap_fixed<W,[,Q,0,N>.

VIVADO HLS also supports the complex data type by including the header file

"complex.h".

2.3.4 Optimization directives Vivado HLS:
Pipelining:

In HLS, pipelining refers to the partitioning into sub stages of an arbitrary set of de-
pendent operations. The objective for pipelining is to enable parallel processing, and
thereby increase the throughput supported by the design. Pipelining can be applied as a

directive in Vivado HLS, at the level of functions and loops.
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Latency and Initiation Interval(II):

Latency is defined as the number of clock cycles between applying an input, and achiev-
ing the corresponding output. Latency can be viewed at different levels of hierarchy and
in the context of loops, latency refers to the completion of all iterations of the loop and
the term iteration latency is used when referring to a single iteration. The total latency is
equal to the iteration latency, multiplied by the number of iterations of the loop (known
as trip count). Latency can also be specified as a design constraint by the user, and the

Vivado HLS tool optimizes the design wherever possible to meet the requirement.

The Initiation Interval (II) is the number of clock cycles that separate the acceptance
of inputs to the Vivado HLS design. Without applying directives, the initiation interval
will be one cycle more than the latency, because the default behaviour of Vivado HLS is
to optimize for area, resulting in a serial design. However the use of pipeline directive
can reduce the Initiation Interval to much less than the latency of the design. This results
in an increase in the area of the design, so there is a trade-off involved. Initiation interval
corresponds directly to throughput. Throughput expresses the rate at which data can be
passed through the system. The best possible initiation interval is 1, meaning that new
input samples can be accepted on every clock cycle, in which case the throughput is
equivalent to the clock rate. Higher levels of throughput can be achieved through use of

partial loop unrolling, or by replicating a synthesized function.

Loop Optimizations:

Loops are basic constructs of any algorithm and expresses operations that are repetitive
in nature. Several loop optimizations can be made using directives, enabling architec-
tural variation exploration with almost no change required in the software code. The

various optimizations performed in loops are

1. Loop Unrolling: It means that the hardware inferred from the loop body is cre-
ated N times. Practically it can be less than N, depending on whether data depen-
dency or memory operations are present in the design. Advantage is throughput

increase and disadvantage is the increase in hardware resource.

2. Partially Unrolled: Only a part of the loop is unrolled.This generally is a trade-
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off between rolled and unrolled architecture.

Array Optimization Directives

As arrays represent storage they are synthesized into memories. The memories inferred
are mapped to physical resources on the FPGA as Block RAM, or distributed RAM.
Various directives are used to map these memories to physical memory resources. Some

of the optimizations on arrays are discussed below.

1. Array Map: It maps several small arrays to be combined into a single, larger
array. Mapping can be either horizontal (arrays are concatenated to form an array
with more elements), or vertical (array elements are combined, resulting in an

array with longer words).

2. Array Partition: It maps the subdivision of a large array into a set of smaller
ones. It increase the rate at which memory transactions can take place. In the
extreme case, array partitioning will subdivide an array into individual register

elements.

3. Array Reshape: This allows an array with many elements, each with short
words, to be reshaped into an array with fewer, longer words. This directive

reduces the number of required memory accesses.

2.3.5 Exporting from Vivado HLS:

Designs can be exported from Vivado HLS to permit easy integration of Vivado HLS
IP with other development tools. IPs are exported from HLS to the IP-XACT format,
which allows the module to be integrated into a Vivado IP Integrator design. This results
in a zip folder residing in the ip sub-folder under impl folder of the respective solution,
and represents the IP catalogue package. It also contains API's required to use the IP in
Xilinx SDK environment. This format allows easy sharing and distribution of IP across

all platforms.
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2.3.6 Limitations of Vivado HLS:

1. Dynamic memory allocation.
2. Operating system (OS) operations.

3. Software algorithms are sequential in nature whereas hardware operates concur-

rently. HLS must map the sequential algorithm onto concurrent hardware.

4. Algorithms are based on pointers, whereas hardware implementations rely on
arrays and array references which makes HLS finding it difficult to map to hard-
ware and hence at many times a restructuring of the code is required.Recursive

algorithms are very difficult to translate to hardware using HLS.

24 VIVADO

The Vivado suite of design is a tool that support all phases of FPGA designs starting
from design entry, simulation, synthesis, place and route, bitstream generation, debug-

ging, and verification as well as the development of software targeted for these FPGA.

2.4.1 1IP’sin Vivado Design Suite:

Intellectual property (IP) cores are fundamental criteria when selecting which FPGA
vendor and specific part to choose for a design. IP provides an easy mechanism for
incorporating complex logic in your designs, from high-speed gigahertz transceivers
(GT's) to digital signal processors (DSPs) as well as soft microprocessors (MicroBlaze)

to an embedded ARM system on a chip (SoC).

Xilinx provided IP's have been optimized and tested to work with the FPGA re-

sources including DPS, block RAM, and IO, greatly accelerating design development.

User defined IP's are generated in Vivado HLS tool and the corresponding IP's

which are requires for our design can be easily includes by using Vivado design Suite.

In this project use of IP's which are provided by the Vivado design suite to serve
various functions such as Controlling speed mismatch between two IP's (Mostly by us-

ing FIFO generator block) ,considering few data bits of a data bus for signal processing
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based operations (xlIslice block),controlling operations of the User defined IP's such as

TX,Packet detect and RX (using xlconstant) is implemented.

2.4.2 Different Xilinx Vivado IP’s Used :

FIFO Generator IP:

The First in First out (FIFO) IP block is used as a temporary storing element .It has many
interfacing option to integrate with the different IP interfaces such as AXI-Memory
mapped, AXI-Stream Interface. The FIFO has three modes,they are Native, AXI-
Memory mapped,AXI-Stream. There are also implementation options based on the

read and write clocks options.

In this project,the Native Interface,Independent clocks with built-in FIFO configu-
ration is considered.In native ports the read mode is a standard FIFO mode,in this mode
the user is provided with the data on the cycle after it was requested.The read/write data
port can be configured according to the data that needs to be stored.There are additional

flag signal which gives many other functionality.

The full,wr_en and empty,rd_en ports are used to interface with the axi-stream in-
terface of AD9361 to read and write samples from ADC and DAC respectively. The dif-
ferent read and write clocks ports are connected to the different IP's (usually AD9361
interface and the user defined IP's) accordingly when the different IP's are operating

with different clocks.

In this project, a sampling rate of 10MSPS is chosen as result,effectively clock of
AD9361 is 10MHz.The user defined IP's has clock rate of 100MHz. As a result different

clock rate FIFO is considered to integrate this two IP's.

Utility vector logic:

This IP is used to implement the basic gate logics such as and,or,not,xor operations.

The number of input and output ports can be configured.

In this project,the not gate is used to interface the hls::stream with the FIFO IP

block. The empty signal of FIFO is given as input to not gate and the output of not gate
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is connected to the stream interface's T_valid signal.(this implies that the FIFO when

not empty has a valid data that has to be read by the hls::stream interface).

Similarly the full signal of FIFO is given as input to not gate and the output of
not gate is connected to the stream interface's T_Ready signal.(this implies that the
hls::stream interface should not write any valid data to FIFO). A rst (reset) port is also

available,this port is used to clear the FIFO IP.

xlconstant:
his Vivado IP is used to implement a constant value on its output port according to the
value that it has been configured.

In this project, the packet detector IP block requires to read the input hls::stream
continuously, so the ap_start signal is given high signal.(This configures the user defined

block to be in auto restart mode).

ZYNQ processing system IP :

Xilinx provides the Processing System IP Wrapper for the Zyng-7000 to accelerate our
design and its configuration for our embedded products. The Processing System IP
is the software interface around the Zyng-7000 Processing System. The Zyng-7000
family consists of a system-on-chip (SoC) style integrated processing system (PS) and
a Programmable Logic (PL) unit, providing an extensible and flexible SoC solution
on a single die.The Processing System IP Wrapper acts as a logic connection between
the PS and the PL while assisting you to integrate custom and embedded IPs with the

processing system using the Vivado IP integrator.

Key Features and Benefits:

1. Enable/Disable I/O Peripherals (IOP).
2. Enable/Disable AXI 1/0 ports (AIO).
3. MIO(Multiplexed 1/0) Configuration.

4. Extended Multiple Use 1/Os (EMIO).
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5. DDR Configuration.
6. Security and Isolation Configuration.
7. Interconnect Logic for Vivado IP - PS interface.

8. PL Clocks and Interrupts.

2.4.3 Modules used in Vivado

The modules are the user defined block,these are in hardware descriptive language.In

this project two modules are added to the design.

tx_bitslice:

The tx_bitslice verilog module accepts 32-bits data wires and splits it into two 16-bits
data wires.This is to given the 12-bit dac the real(16-bit) and imaginary(16-bit) parts of

the tx complex 32-bit data.

rxconcate:

The rxconcate verilog module accepts two 16-bit data wires,considers the 12 lower bits
in both the wires and write the output data wire by scaling the lower bits by +4. (As the

adc is 12 bits only they are considered as valid data).

2.5 Introduction to SDK environment:

Xilinx SDK provides an environment for creating software platforms and applications

for Xilinx processor cores.It works with hardware designs generated with Vivado.

The two main terminologies used in Xilinx SDK are hardware platform and soft-
ware platform. The hardware platform is the embedded hardware design that is created
in Vivado and exported in the form of an HDF/XML file through the use of export
hardware wizard. Once the hardware platform is identified and imported, we create

the software platform. A software platform is a collection of libraries and drivers that
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form the lowest layer of application software stack. The software applications must run
on top of a given software platform, using the provided API's. Therefore before creat-
ing and use software applications in SDK, a software platform project must be created.

SDK includes the following two software platform types. They are:

I)Standalone OS It is a simple and single-threaded environment that provides basic
features like standard input/output and access to processor hardware features. In this

project we extensively used this software platform.

2)Xilkernel A simple and lightweight kernel that provides POSIX-style services

such as scheduling, threads, synchronization, message passing, and timers.

2.5.1 [IP Block Initialization and Status Monitoring Functions in

SDK:

There are four standard functions for every Vivado HLS tool IP block:
1)Xtop level function name_Initialize()
2)Xtop level function name_Start()
3)Xtop level function name_IsDone()

4)Xtop level function name_IsIdle()

The required functions in any processor program are:
1)Xtop level function name_Initialize()

2)Xtop level function name_Start()

The initialization function Xtop level function name_Initialize has no effect on the IP
block at the hardware level. The purpose of this function is to store identifier infor-
mation for a specific instance of the example function in hardware. This identifier
information is required by all other driver functions to ensure communication with the
correct hardware module. The designer can use the same API to communicate with as
many fabric instantiations of a hardware accelerator as needed by the application.

The start function, Xtop level function name_Start, pulses the ap_start signal on the
target Vivado HLS tool hardware accelerator. This is a 1 clock cycle pulse that initiates

the operation of the IP block. Depending on the Vivado HLS tool protocols selected
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for the function I/O, the location of XExample_Start in the processor code must be
changed to guarantee proper execution of the accelerator. Ports with a raw 1/O protocol
such as ap_none and ap_stable must be written before the start signal is received by the
accelerator. Ports with qualified I/O protocols can be written before or after the XEx-
ample_Start function as long as the sequencing of the protocol is respected.

The other two functions generated for the example IP block are:
1)Xtop level function name_IsDone()

2)Xtop level function name_IsIdle()
Both of these functions are optional and allow the processor to monitor the status of the
IP block.
Xtop level function name_IsDone() can be used by the processor to check when the IP
block started by Xtop level function name_Start has finished execution. This enables
polling the IP block for task completion.
Xtop level function name_Isldle tells the processor if the core is running or not. It is
not a deadlock checking function. This function returns false from the time the start
function is executed by the processor until the ap_done signal is asserted by the IP
block. If the system causes the Vivado HLS tool IP block to deadlock, the *_Isldle

function also returns false.

I/0 Read and Write Function:

The number of I/0 read and write functions directly corresponds to the number of I/0
ports in the IP block.

Consider a function signature of the IP block generated with the Vivado HLS tool:

int example(int A, int B)
This function signature states that there are 2 input ports A and B and 1 output port for
the function return value. Also, assume that port A has I/O protocol ap_none and port

B has I/0 protocol ap_hs. In this case, port A is associated with these driver functions:
XExample_SetA()

XExample_GetA()
The function XExample_SetA writes a value from the processor to port A of the IP

block. As a result of using the ap_none protocol on port A, this function must be

27



executed by the processor before the XExample_Start function. All ports utilizing the
ap_none protocol are sampled and registered by the IP block at the time ap_start signal
is received. Ports using the ap_stable protocol must also be set before the start signal is
issued. Furthermore, the value of these ports must remain constant during the execution
of the IP block. Ports with the ap_stable I/O protocol are never registered by the Vivado
HLS tool IP block.

The purpose of the get function, XExample_GetA, is to verify the value written from
the processor to the IP block.

As a result of using a qualified I/O protocol, port B is associated with these driver

functions:
XExample_GetB()
XExample_SetB()

XExample_SetB_VI1d()

XExample_SetB_VId function is a direct result of the I/O protocol of port B, tells the
IP block when the value of port B is valid and can be registered into the core. The
evaluation of the valid signal on port B does not occur until the IP block receives the
start signal from the processor. The processor can write the value of B at any time
within its program execution. The Vivado HLS tool IP block stalls and waits for the
valid signal in port B before continuing operation.

The read functions return the value of a register in the Vivado HLS tool IP block to the

processor. In the case of input ports A and B, the read functions are
XExample_GetA()

XExample_GetB()
The purpose of these functions is to read the contents of a register in the Vivado HLS
tool IP block. All user defined 1/0 ports have a read function associated with them. In

the case of the function return value, the read function is of the form:

XExample_GetReturn()
The value of XExample_GetReturn is only valid after the done signal has been received

from the IP block.
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CHAPTER 3

Explanation and Optimization of the codes

3.1 Transmitter

The input bits to the transmitter code are PHY payload bits(which are 0's and 1's). O's
and 1’'s are encoded using BPSK.Then the input bits(which are now sequence of -1's

and 1's) are multiplied with chip sequence of length 64.

Figure 3.1: Transmitter Flow Chart

The resultant data is then oversampled with oversampling factor of 4.The oversam-

pled data is then passed through RRC filter.



3.1.1 Transmitter Code Explanation

Transmitter Test Bench Explanation

1. The file which has the input data is opened and then input data is read from that

file into an array.

ifstream input_test;

ifstream input_testl;
input_test.open(“test_data.txt”);
ap_uint <1 >out_bc1[56];

char comma;

int i=0;

while (linput_test.eof()) {

input_test » out_bcl[i] ;

1++;

2. The data bits are passed to a RPW_TX function to get a output frame in the form
of stream of 32 bits complex data(that is to make RPW modulation scheme).

RPW _TX(bits_filtered11,TX_Sig_rotl);

3. The output is then printed.
for(i=0;i<LS;i++)
{

cout«i«*:”«TX_Sig_rotl[i]«endl;

Explanation Of The Transmitter HLS source code

RPW_TX

1. #pragma HLS INTERFACE s_axilite port=out_bc bundle=a
(Directive used to declare input axilite interface).

# pragma HLS INTERFACE s_axilite port=return bundle=a
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(Directive used to return IP controlling APT’s).

# pragma HLS INTERFACE axis port=TX_Sig_rotl

(Directive for declaring stream interface).

# pragma HLS DATA_PACK variable=TX_Sig_rotl

(Directive used for concatinating real and imaginary data bits into a single data

bus of 32 bits).

. The input data of O's and 1's is converted into -1's and 1's.
int i,p;

ap_int <2 >Beacon1_CRC[LBC];

ap_int <2 >Beacon_Spread[LBC*spread];

for (i=0;i<LBC;i++)

{

# pragma HLS PIPELINE

if(out_bc[i]==0)

Beaconl_CRC(Ji]=-1.0;

else

Beaconl_CRC]Ji]=1.0;

. The input data(i.e -1's and 1's) is then multiplied with the chip sequence of length
64.

for(i=0;i<LBC;i++)
{

for(p=0;p<64;p++)

{
Beacon_Spread[64*i+p]=Beaconl_CRC[i]*chipsequence[p];

. The data which is multiplied with chip sequence is then oversampled with a over-

sampling factor of 4.
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ap_int < 2 > Beacon _osf[((LBC*spread-1)*4)+1+16];
int j=0;

for(i=0;1<8;i++)

{

# pragma HLS UNROLL
Beacon_osf[i]=0;

}
for(i=8;i<=(4*(LBC*spread-1)+8);i++)
{

# pragma HLS PIPELINE

if(i%4==0) {
Beacon_osf[i]=Beacon_Spread][j];

Jj++

}

else {

Beacon_osf[i]=0;

}
Beacon_osf[4*i1+8]=Beacon_Spread([i];

}

. The data which is obtained is then convolved with RRC filter.
data_out_t bits_filtered[LD];

data_out_t rrc[9];

rrc[0]=-1.6051438e-01;

rre[1]=2.3727352e-01;

rrc[2]=8.7536235e-01;
rrc[3]=1.4742286e+00;
rrc[4]=0.8597;
rrc[5]=1.4742286e+00;
1rc[6]=8.7536235e-01;
rrc[7]=2.3727352e-01;
rrc[8]=-1.6051438e-01;
for(i=0;i<LD;i++)

{
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# pragma HLS PIPELINE

# pragma HLS UNROLL factor=4

data_out_t temp=0;

for(p=0;p<=4;p++)

{
temp=temp-+(data_out_t(Beacon_osf[8+i-p]+Beacon_osf[i+p])*rrc[p]);
}

bits_filtered[i]=temp;

}

. The preamble data,channel estimation data and the modified data, is then made
together into a frame.

int n=0;

int r=0;

int 1=0,m=0;

for(i=0;i<Ngaurd_F;i++)

{

# pragma HLS PIPELINE

TX_Sig_rotl.write(ComplexData(0,0));

}

for(i=Ngaurd_F;i<LLP+Ngaurd_F;i++)

{

# pragma HLS PIPELINE
TX_Sig_rotl.write(ComplexData(PREAMBLE[i-Ngaurd_F],PREAMBLE][i-Ngaurd_F]));
} for(i=Ngaurd_F;i<Ngaurd_CH+LP+Ngaurd_F;i++)

{

# pragma HLS PIPELINE

TX_Sig_rotl.write(ComplexData(0,0));

}

. The remaining frame samples are then multiplied with the rotating sequence
which rotates each data except the preamble data.
for(i=Ngaurd_F;i<Ngaurd_CH+LP+Ngaurd_F;i++)

{

# pragma HLS PIPELINE
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TX_Sig_rotl.write(ComplexData(0,0));

n++;r=n%10;

} for(i=Ngaurd_F;i<2053+Ngaurd_CH+LP+Ngaurd_F;i++)

{

# pragma HLS PIPELINE
TX_Sig_rotl.write(BL[i-(Ngaurd_CH+LP+Ngaurd_F)]*ComplexData(rota[r]));
n++;r=n%10;

} for(i=2053+Ngaurd_F;i<L.D+2053+Ngaurd_CH+LP+Ngaurd_F;i++)
{

# pragma HLS PIPELINE
TX_Sig_rotl.write(ComplexData(bits_filtered[i-
(Ngaurd_CH+LP+Ngaurd_F)+2053)],0)*ComplexData(rota[r]));
n++;r=n%10;

}

3.2 Receiver

The Samples are received one by one and the start of the frame is found by the corre-
lating the received samples with the preamble sequence.Once the start of the frame is
found,then the remaining length of the frame(i.e length of the frame-length of pream-
ble) is stored in a output FIFO buffer.Then from the output FIFO buffer,the channel
estimation data is stored in an array and channel is estimated.

y=h*x+w

Where,

y : received channel estimation sequence

X : transmitted channel estimation sequence

h : channel coefficients

w : Noise at receiver

The channel coefficients are estimated by dividing the received signal with the x (be-
cause the environment the modem is used is few 100 meters the channel is considered
as single-tap wireless channel,w is compensated when we use averaging of channel co-
efficients).

We get the estimate as follows:
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h=(y/x) + (w/x)
From the estimated channel,the data is equalized and then convolved with the RRC filter

to find the received data.

Also,the start of the frame is found out by correlating the received samples with the
preamble sequence.The cross correlation values are then compared with auto correlation
values returned by norm function using stored preamble and received data.The cross
and auto correlation value are stored in an array.We find the start of the frame if the
value of cross correlation is greater than a product of auto correlation and threshold
value,also cross correlation of current value must be greater than all other calculated
cross correlation values that found before and after reading the input data samples(we
check for few data samples window,here we check if the cross correlation of the read
data samples is greater than cross correlation of 9 data samples 4 before and 4 after that

input data sample).

Figure 3.2: Receiver Flow Chart
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3.2.1 Receiver Code Explanation

Receiver Test Bench Explanation

1. The received data is read from a file and then stored in a input FIFO buffer.

ifstream input(*“rx_in.txt”);

myStream1 input_data(“input_data”), out_data(“out_data”);
data_t8 inp;

data_type8 real_data, imag_data;

ap_int <2 >frame_dcd[64];

ap_int <2 >crc_bits[64];

char comma;

int count = 0, npkts = 0,i=0;

while (!input.eof()) {

1++;
input » real_data » comma » imag_data;
input_data.write(data_t(real_data, imag_data));

}

. The input data is send one by one into the “pckdect” function which detects the
start of the frame and then after detecting the start of the frame it pushes the
remaining data of the frame(i.e length of the frame-length of the preamble) into

an output FIFO buffer.(npts is the number of frames detected in the input data)
while (!input_data.empty()) {
if (pckdect(input_data,out_data)) {

npkts++;

}

. The output FIFO buffer is then given as an input to the function called “decode”,
which takes the remaining data(i.e length of the frame - length of the preamble)
from the output buffer and then decode the bits.

for(i=0;i<npkts;i++)

{
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decode(out_data,frame_dcd,crc_bits);

Explanation Of The Functions

pckdect

1. The function “pckdect” accept the input from the FIFO buffer, sample by sample
and pushes the data into a shift register called data_store which is of length 262(i.e

length of preamble).

input_data.read(inp);
for(i=0;i<LP-1;i++)

{

# pragma HLS PIPELINE rewind
# pragma HLS UNROLL

data_store[i]=data_store[i+1];

}
data_store[LP-1]=inp;

29 ¢

2. The function pckdect contains three shift register called “val_arr ”,“num” and
prevdata which are of length 9. The correlation between data_store and stored
preamble sequence is done.The cross correlation value is then stored in num the
auto correlation is stored in val_arr by the norm function.The data_store is shifted

by one.
norm(data_store,& magl,& mag_datal);
for(i=0;i<9-1;i++)
{
val_arr[i]=val_arr[i+1];

prevdata[i]=prevdata[i+1];
}
val_arr[W-1]=mag_datal;
num[W-1]=magl;
prevdata[W-1]=inp;
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. If the the value of the 5th element in val_arr(i.e the middle element in the val_arr)
is greater than the remaining elements in the array, val_arr and is also greater
than product of threshold and autocorrelation, then the point corresponding to the
correlation value of 6th element in the array,val_arr is considered to be the start
of the frame(i.e end of the preamble of a new frame) .After detecting the start
of the frame,the remaining elements of the frame(i.e length of frame-length of

preamble) is pushed into an output FIFO buffer,the the shift registers are cleared.

if(num[I]>threshold*val_arr[I] && val_arr[1]>0.125)
{

flagl=true;
for(i=0;i<9;i++)
{
if(num[5]*val_arr[i]<num[i]*val_arr[5])

{

flagl=false;

}

if(flagl==true)

{
packet=true;
for(i=0;i<5;i++)

{
# pragma HLS UNROLL

out_data.write(prevdata[i+5],0);

}
for(i=I;i<17776-LP-40;i++)

{
# pragma HLS PIPELINE

input_data.read(inp);
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out_data.write(inp);
}
for(i=0;1<W;i++)
{

# pragma HLS UNROLL
val_arr[i]=data_type5(0);
prevdata[i]=data_t8(0,0);
num[i]=data_typem(0);

}
for(i=0;i<LP;i++)

{
# pragma HLS PIPELINE rewind

# pragma HLS UNROLL
data_store[i]=data_t8(0,0);
}
}
}

return packet;

}

decode

1. The decode function takes the output FIFO buffer from the “pckdect” function as
the input and reads the channel estimation data from the buffer, divides it with
input channel estimation data and stores the result in an array.
for(i=0;i<Ngaurd_CH;i++){

# pragma HLS PIPELINE
input_data.read(inp);

}
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2. The middle 780 data samples of the channel_est array is considered,they are dero-
tated and divided by the transmitted data samples(to perform zero forcing), data
samples of index 120,130,..170 and 220,230....270 and this sequence of indexes
upto 870 is considered and amean values of this 48 samples is assigned as chan-
nel_mean_final[0].Simillarly 121,131...271 and this sequence of corresponding
indexes mean values are assigned accordingly to the channel_mean_final array to
form overall 10 channel coefficients.They are used for channel equilization.
decode_labell :for(i=0;i<LC;i++){

# pragma HLS PIPELINE
input_data.read(inp);

if(i>110&&i1<890)
channel_est[i]=inp/(channel_rrc[i]*rotal[r]);
n++;r=n%10;

}

const data_chnl c3=data_chnl(0.0208333,0);
for(p=0;p<10;p++)

{

# pragma HLS PIPELINE
temp=data_chnl(0,0);
for(i=100;1<900;i=1+100)

{
for(j=20;j<80;j=j+10)
{
temp=temp-+(channel_est[i+j+p]);
}
}

channel_mean_final[p]=temp*(c3);

}

3. The next input stream data of 36 gaurd bits are read. for(i=0;i<Ngaurd_CH2;i++)

{
# pragma HLS PIPELINE

input_data.read(inp);
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}

for(j=0;j<=7;j++) {

# pragma HLS PIPELINE
datal[j]=data_dt1(0,0);

}

. The remaining data is read from the buffer, divided with the estimated chan-
nel,also with rotation sequence and then stored in an array named datal.

J=0;

for(i=8;i<L.D+2053+8;i=i+10) {

# pragma HLS PIPELINE

for(j=0;j<10;j++) {

input_data.read(inp);
datal[i+j]=(data_chnl(inp)/(channel_mean_final[j]*data_chnl(rota[j])));

}

}
for(j=LD+2053+8;j<LD+2053+16;j++) {

# pragma HLS PIPELINE
datal[j]=data_dt1(0,0);
}

. The data in the array,“datal” is then convolved with RRC filter and then stored in
an array called datal_rrc.The datal array is also decimated by a factor of 4 and
assigned to final_unspread array to compensate for the oversampling factor that
has been introduced during Transmission of data samples.This process of Convo-
lution and Undersampling is done in the same loop inorder to reduce the required
computions (by reducing multiplications) and also B-RAM memory used(by re-

moving arrays).

data_typedtl rrc[5];

#pragma HLS ARRAY_PARTITION variable=rrc complete dim=1 rrc[0]=-1.6051438e-
01;

rre[1]=2.3727352e-0;

rrc[2]=8.7536235e-01;
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rrc[3]=1.4742286e+00;
rrc[4]=0.8597;

data_typep temr;

int h=0;

for(i=8;1<2053;i=1+4) {

# pragma HLS PIPELINE

# pragma HLS UNROLL factor=4
temr=data_typep(0);
for(p=0;p<=4;p=p+1) {
temr=temr+data_typep((real(datal[i+8-p])+real(datal[i+p]))*(rrc[p]));
}
final_unspread[h]=data_fnsd(temr);
h=h+1;

}

h=512;
for(i=2061;i<LD+2053+8-8;i=1+4) {
# pragma HLS PIPELINE

# pragma HLS UNROLL factor=4
temr=data_typep(0);
for(p=0;p<=4;p=p+1) {
temr=temr+data_typep((real(datal [i+8-p])+real(datal[i+p]))*(rrc[p]));
}
final_unspread[h]=data_fnsd(temr);
h=h+1; }

. The final unspread data is then multiplied with the chipsequence , stored in an
array called temp_rx and then every 64 bits of the temp_rx are added to check the
real part of the summation. If the real part of the summation is greater than 0,then

the bit is decoded as 1 otherwise 0.
for(i=0;i<Nbits;i++) {

# pragma HLS PIPELINE

# pragma HLS UNROLL factor=2
pre=data_typep(0);

p=spread*i;
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for(j=0;j<64;j++) {
pre=pre+data_typep((final_unspread[p+j])*data_fnsd(chipsequencel[j])); }
if (pre>0) {

frame_dcd[i]=1;
crc_bits[i]=1;

}

else {
frame_dcd[i]=-1;

crc_bits[1]=0;

3.3 Optimization of codes

Directives present in the VIVADO HLS can be used for the optimization of the code.

3.3.1 Transmitter

In transmitter three major changes have been made for improving latency and Resources

used :

1. All the arrays that are used are optimized by declaring them with lower bits(below
16bits). The output stream samples are also made 16-bits as AD9361 can only

accept atmost 16bits data as input through one channel.

2. The rotation sequence is pre-generated with a fixed rotation frequency and the
samples are stored in an array.So,this eliminated the need for trigonometric func-
tions to be included in our TX.So,as a result the need for generation of cos and
sin data is reduced which in turn improved latency and DSP48 resources.We can
further make rotation as variable instead of fixed by using CORDIC algorithm for

cos ans sine generation.
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3. The loop which is used to RRC filter the data samples has been Unrolled by a
factor of 4 and the array used is partition is made to improve access to the data ar-
ray,which has reduced the latency of the code but at the cost of Resources(because
of array partition the B-RAM resources are been utilized more also due to loop

unrolling more multiplication DSP48 block has been used).

3.3.2 Packet Detector

In Packet Detector algorithm has been modified significantly inorder to reduce its oc-

cupency of resources and latency.

1. The PN Sequnce has been changed for 256 length to 64 length (as the number of
multiplications that are needed are reduced from 262 to 68 during calculation of

under-sampled correlation values).

2. The shift register which are used for storing the cross and auto correlation values
are been reduced both in length and also in data width as they are been completely

partitioned to get improve latency(by reducing array access time).

3. The loop where the auto and cross correlations are done merged and also the
data samples are typecasted to 10 bits data sample inorder to perform lower order

correlation thereby reducing the DSP48 and also LUT’s required.

4. The data_store array has been array partitioned(cyclic) as they are accessed for

computing correlation values.

5. The square root of normalization of cross correlation value with auto correlation
value is removed as the square root operation and the division operations are using
more DSP48 blocks and increasing the loop latency.Instead of root-normalization
operations,the comparision of cross correlation values with the auto correlation
is performed,this may have increased some DSP48 and LUT elements but the

overall Latency has been reduce significantly.

3.3.3 Receiver

In receiver,three ”for” loops have been optimized for efficiency are :
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1. The loop for channel estimation are been pipelined to improve latency.

2. The channel_final_ estimation array is partitioned completely to reduce array ac-

cess time,this improve the latency of the Block.

3. The loop which is used to RRC filter the data samples has been Unrolled by a
factor of 4 and the array used is partition is made to improve access to the data ar-
ray,which has reduced the latency of the code but at the cost of Resources(because
of array partition the B-RAM resources are been utilized more also due to loop

unrolling more multiplication DSP48 block has been used).

4. The undersampling and the RRC filtering is done in the same loop.This reduces
use of additional multiplication.BRAM memory and thus improving both latency

and hardware used.

3.4 HLS reports

3.4.1 Transmitter Report

The transmitter IP has an latency of 61113 and Initiation Interval(II) of 61114.By defini-
tion of latency,61113 many clock cycle are required to generate the one frame(complete
all its operations) and also 61114 cycle to accept the next payload data.The estimated
timing clock is 8.56 ns and its meets the target clock.The utilization resources report
is shown in the below figure and the transmitter block can be easily fitted onto the

Programmable Logic of ZC702.
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Performance Estimates

Performance Estimates

* Timing (ns)

o Summary
Clock|Target|Estimated|Uncertainty|
ap clk| 10.00 8.56 125
* Latency (clock cycles)
o Summary
L.atency I_Tlterval Type
min | max | min | max
61113|61113|61114|61114 none
o Detail
= Instance
= Loop
Lat Initiation Interval
Loop Name .a Y teration Latency - ? on nre Trip Count|Pipelined
min | max achieved | target
- Loop 1 56 56 2 1 1 56 yes.
- Loop 2 7336| 7336 131 - - 56 no
+ Loop 2.1 128 128 2 - - 64 no
- chipseq osf label2|14333(14333 2 1 1 14333 yes.
- convolution label3|21525(21525 11 6 1 3586 yes.
- Loop 5 40 40 2 1 1 40 yes.
- Loop 6 262| 262 2 1 1 262 yes.
- Loop 7 40 40 2 1 1 40 yes.
- Loop 8 1020| 1020 18 1 1 1004 yes.
- Loop 9 50 50 LE 1 1 36 yes
- Loop 10 2070| 2070 19 1 1 2053 yes
- Loop 11 14361|14361 22 1 1 14341 yes

Figure 3.3: Transmitter Performance Estimates

Utilization Estimates and Export Report for Transmitter

Utilization Estimates

« Summary
Name BRAM_18K[DSP48E| FF | LUT

DSP - 22| - -

Expression 1 0| 1611
FIFO - -

Instance 2 1301] 1295
Memory 25 19 7
Multiplexer - 604
Register - 1534 41
Total 27 23| 2854| 3558
Available 280 220/106400{53200
Utilization (%) 9 10 2 6

Resource Usage

'VHDL)

SLICE

636

LUT

1443

FF

1178

DSP

34

BRAM|

27

SRL

77

Final Timing

VHDL

CP required

10.000

CP achieved

8.571

Timing met

Figure 3.4: Transmitter utilization estimates and Export report
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3.4.2 Packet detector Report

The Packet detector IP has an Initiation Interval(Il) of 7.The packet detector IP has
to be in auto-restart mode,as it should accept the samples from the ADC of AD9361
and the samples should be time synchronized and the valid data samples has to be
given to the next block serially through stream interface.The samples are read at the
rate of 7 clock cycles(Il) and the samples to the next block is written at the rate of
21 clock cycle(Latency) this can be observed from the timing diagram.The estimated
timing clock is 8.34 ns and its meets the target clock.The utilization resources report
is shown in the below figure and the transmitter block can be easily fitted onto the

Programmable Logic of ZC702.

Performance Estimates

Performance Estimates
+ Timing (ns)

°o Summary

[Clock|Target|Estimated|Uncertainty|
[ap_cli[ 10.00] 8.34] 1.25

« Latency (clock cycles)

°o Summary

Latency | Interval
min| max [min| max
6[17481[ 7[17482[none

o Detail
= Instance
Instance Module L?tency I_n.te Type
min|max/min[max
grp pckdect norm fu 3996/pckdect norm 4\ 4 4\ 4|none
= Loop
Lat Initiation Interval
Loop Name ,ﬂ 20V |teration Latency 2 ? Ot Trip Count|Pipelined
min | max achieved | target
- Loop 1 17470[17470 2 1] 1 17470 yes

Figure 3.5: Packet Detector Performance Estimates
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Utilization Estimates and Export Report for Packet detector

Resource Usage

'VHDL
SLICE| 4841
LUT |13317
Utilization Estimates FF 9986
DSP 15
+ Summary BRAM 0
Name |BRAM_18K|DSP48E| FF |LUT SRL 0
DSP - 14 - -
Expression - - of 178 . . .
B - - — Final Timing
Instance - 89| 1208| 3204
Menmory - - S - VHDL
Multiplexer - - - 5867 -
s - 0321 - CP required (10.000
Total 0 103| 10529] 9249 CP achieved| 9.935
Available 280 220(106400[53200 Timing met
Utilization (%) 0 46 o 17

Figure 3.6: Packet Detector Utilization Estimates and Export Report

A timing diagram of the stream interface observed using vivado using ILA(Integrated
Logic analyzer) is also attached.The input_data_V_Tready signal gives clear info on
the latency and Initiation Interval of the packet detector.This signal gives info on when
the stream interface is freed inorder to write or read a new samples on to stream in-
terface.The new sample is accepted for every 7 clock cycle,and the sample that is read

from the input stream is written to output stream after 21 clock cycles.

Figure 3.7: ILA Waveform
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3.4.3 Decode Report

The decode IP has an latency of 20447 and Initiation Interval(Il) of 20448.By definition
of latency,20447 many clock cycle are required to process one frame and also one extra
cycle to decode the frame payload data.The estimated timing clock is 8.80 ns and its
meets the target clock.The utilization resources report is shown in the below figure and

the decoder block can be fitted onto the Programmable Logic.

Performance Estimates

Performance Estimates
* Timing (ns)

o Summary

\ Clo ck|T‘arget \ E stlmated\Uncertalntﬂ
[ap_cIk] 10.00] 8.80| 1.25|

* Latency (clock cycles)

o Summary

Latency Interval
min |max min \ max Type
2044720447[20448[20448none

o Detail
= Instance
Instance Module Latency,(Interval Type
minmax mi
grp decode divoperator ap fixed s fu 3485 |decode divoperator ap fixed s | 33| 33| 1 1|function|
grp decode muloperator ap fixed s fu 3501|decode muloperator ap fixed s| 1 1] 1 1|function|
grp decode addoperator ap fixed s fu 3521 |decode addoperator ap fixed s| 0 0 1 1|function|
grp decode addoperator ap fixed s fu 3531 |decode addoperator ap fixed s| 0 0 1 1|function|
= Loop

Loop Name :j::er;::x Iteration Latency; I;:;i;t:g: I:;:;;:I Trip Count|Pipelined
- Loop 1 40 40 1 1 1 40 yes
- decode label10| 1068| 1068 66 1 1 1004 yes
- Loop 3 243| 243 28 24 1 10 yes
- Loop 4 36 36 1 1 1 36 yes
- Loop 5 8 8 1 1 1 8 yes
- decode label0 |16424|16424 45 10 1 1639 yes
- Loop 7 40 40 38 1 1 4 yes
- Loop 8 8 8 1 1 1 8 yes
- decode label20| 259| 259 5 1 1 256 yes
- decode label21| 1795| 1795 5 1 1 1792 yes
- Loop 11 514| 514 19 16 1 32 yes

Figure 3.8: Decode Performance Estimates
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Utilization Estimates and Export Report for Receiver

Utilization Estimates

* Summary

Name BRAM 18K|DSP48E| FF | LUT
DSP = 22 = -
Expression 2 0| 7671
FIFO - -
Instance 4 8| 6522| 6372
Memory 43 - 13 3
Multiplexer - - 2508
Register - 4652 142
Total 47 32| 11187|16696
Available 280 220|106400|53200
Utilization (%) 16 14 10 31

Resource Usage

VHDL
SLICE| 3261
LUT 9749
FF 8820
DSP 36
BRAM 47
SRL 198

Final Timing

VHDL
CP required [10.000
CP achieved| 9.325

Timing met

Figure 3.9: Receiver Utilization Estimates and Export Report
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CHAPTER 4

Vivado IP Connections,Reports and SDK code:

4.1 Vivado Block Diagram and Connections:

16 BITS(Q)

)

’ wCw FrOXHZ00 >4{E::::>

wCw rroOvH4HZ00 R >»>-H>»0

Figure 4.1: Vivado Block Diagram



4.1.1 Transmitter Connections:

The transmitter IP connections are connected as shown below.The Transmitter IP writes
the data to the FIFO generator IP.The FIFO generator IP accepts the data until the
FIFO is not empty(this is achieved by connecting negation of full signal to the stream
Ready signal).The AD9361 DAC reads data from the FIFO(the FIFO read enable is
connected to DAC valid signal).The FIFO write clock is from TX IP and read clock is
from AD9361 clock.

Figure 4.2: Transmitter connections

4.1.2 Receiver Connections:

The packet detector and receiver IP connections are connected as shown below.The
ADO9361 interface IP writes the data to the FIFO generator IP.The FIFO generator IP
accepts the data only when the ADC gives valid data (this is achieved by connecting
adc valid of AD9361 to the FIFO write enable).The AD9361 DAC writes data to the
FIFO.The FIFO read clock is from RX IP and write clock is from AD9361 clock.The

interface between packet detector and RX IP is stream interface.
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"~{Block: util_vector ogic_

Figure 4.3: Receiver connections

4.2 Vivado Utilization Resource:

The final resources that are used after synthesis and implementation is as follows:

4.2.1 Post Synthesis:

Utilization - Post-Synthesis

FF a5%

DsSP 77%

0 5%
BUFG 28%
MMCM 50%

B87%

0 25 50 75
Estimated Utilization (%)

Graph Table
Post-Synthesis Postdmplementation

utilization - Post-Synthesis

Resource Estimation Muailable
LT 46416

LUTRARM 1562

FF 47833

BRAM 48.50

DSP 169

[[e] 90

BUFG 9

MMM 2

Graph Table

Post-Synthesis = Postdmplementation

Figure 4.4: Vivado Post Synthesis Reports
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Utilization %

53200
17400
106400
140
220
200

32

4

87.25

8.98
45.05
34.64
76.82
45.00
28.13
50.00



4.2.2 Post Implementation:

Utilization - Post-Implementation Utilization - Post-Implarnentation

T i Resource Utilization Available Utilization %
LuT 44465 53200 83.58
LUTRAM 5% LUTRAM 954 17400 5.48
FF aa% FF 47203 106400 44.36
BRAM 48.50 140 34.64
BRAM RS DsP 165 220 75.00
Dsp 75% 10 90 200 45.00
BUFG 7 32 21.88
0 <EE3 MMCM 2 4 50.00

BUFG 22%

MMCM 50%

25 S0 75 100
Utilization (%)

Graph Table Graph Table

Post-Synthesis = Post-Implementation Post-Synthesis Post-Implementation

Figure 4.5: Vivado Post Implementation Reports

43 SDK

The Vivado design suite generates a bitstrem file.This is exported into the Xilinx Soft-
ware Development Kit for programming the ZC702 platform through Uart cable.The
SDK toolkit also provide a serial terminal console to observe the data that is returned
by the decode ip through USB-JTAG cable. Through SDK the AD9361 parameters for
transmission and reception can also be programmed.The SDK tool is also used to pass
the data(that needs to be RPW modulated)from ZYNQ to transmitter IP by using axilite
interface.(During the final stage of the project the data is not given SDK but passed from
ethernet to transmitter IP through ZYNQ processing System).The continuous transmis-
sion of data bits through TX ip and decoding data bits through decode IP using SDK

code is given as follows:

4.3.1 SDK codes

1. The ZC702 and AD9361 are initializated.(AD9361 parameter are also configured
here).
int main() {
init_platform();
ad9361_main();
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2. The data for transmitter IP is declared here.
int status,sumbh,i;
char input_data[56]= {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,
0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0 };
int f[64];
int *fi=(int *)(f);

3. The Transmitter IP is initialized and auto-restart is enable here.
XRpw_txer doRpw;
XRpw_txer *txptr;
txptr= & doRpw;
XRpw_txer_Config *doRpw_cfg;
status=XRpw_txer_Initialize(txptr,0);
XRpw_txer_EnableAutoRestart(txptr);

4. The Decode IP is initialized and auto-restart is enable here.
XDecode xdecode;
XDecode* xdecptr =& xdecode;
XDecode_Initialize(xdecptr, 0);
XDecode_EnableAutoRestart(xdecptr);

5. The data bits are passed to Transmitter IP.
XRpw_txer_Write_out_bc_V_Bytes(txptr,0,input_data,56);

6. The Transmitter and Decode IP’s are started here.
XRpw_txer_Start(txptr);
XDecode_Start(xdecptr);

7. We wait for completion of decode IP and the data from decode ip is read through
axilite.(Then we clean up the platform and exit the code.)

while(1){
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while(!(XDecode_IsDone(xdecptr)));
sumh=XDecode_Read_crc_bits_Words(xdecptr, 0, fi,64);
}

cleanup_platform();

return O;

}
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CHAPTER 5

Hardware Implementation Setup and Frequency offset

5.1 Implementation Setup

The following experimental setup as shown in figure is been established.The antenna
used is a designed to operate at 860 MHz,it has two dipole antenna that are oriented
perpendicular to each other in order to implement the RPW modem.One dipole of the
antenna is excited with the TX1 port’s signal from the AD9361,the other dipole of the
same antenna is excited by TX2 port’s signal. At,the receiver end the RX1 port’s signal
is fed from one of the dipole antennas and the other dipole of same receiver antenna
feeds the RX2 port of the AD9361 RF board. The AD9361 boards are connected to the
ZC702 platform through fmcomm? ports of ZC702.The ZC702 boards are programmed
through USB-JTAG cable,also the they are monitored through USB-UART cables.

L

— RPW TX RPW RX
é (master) (Slave) é
. Serial/ss
Serial/ss h
h ) monitor
monitor

Figure 5.1: Experimental setup with 1 TX and 1 RX RPW nodes with same LO in LOS

The same experiment is repeated by using 1 RX and 2 TX RPW nodes in NLOS

with same LO.
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RPW TX 2
= RPW RX Yé \
- (master) [— | ™~ / %
Serial
console CLOCKOUT to Serial
Transmitter 1 console
(10 m cable) RPWTX 1

Figure 5.2: Experimental setup with 2 TX and 1 RX RPW nodes with same LO in NLOS

The AD9361 clock-out pin is connected to the clock-in pin of other AD9361,this is

to have same clock for TX and RX nodes.

5.2 Frequency offset

Through the project the TX and RX are been frequency synchronized by driving the RF
component LO(local oscillator) with the same clock.When the TX and RX are driven by
two different LO sources there is a frequency offset between the two LO sources which
lead to the problem of frequency offset.This offset has to be estimated and corrected

accordingly to decode the bits correctly.

5.2.1 CORDIC

CORDIC(coordinate rotation digital computer) is a hardware-efficient iterative method
which uses rotations to calculate a wide range of elementary functions.The fundamental
advantage of the CORDIC algorithm is that it only requires addition/subtraction, table
look up and bit shift. This makes it particularly suitable for implementation on FPGA’s,

where the multipliers are a scarce resource. CORDIC can be either used in
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1. Rotation Mode: The rotation of an input vector by a given angle o .Used in

offset correction.

2. Vectoring Mode: To calculate inverse tangents(Phase values) of rotation of an

input vector V.Used in offset estimation.

The CORDIC algorithm is used because of its low latency and low number of resource

usage with accurate output values.

5.2.2 Frequency offset estimation

We transmit a sequence of known single tone complex exponential frequency signal. Then
we calculated the frequency of the received signal and the difference between the fre-
quency is the offset that needs to be compensated.The frequency offset is estimated by

using two algorithms:

1. CORDIC algorithm is used for calculating the Phase of the received complex sig-

nal.(from this frequency is calculated)

The cordic algorithm initially take the vector (1,0) as input and rotates through 45
degree angle(as argtan(1/2)=45).The cordic algorithm rotates the angle iteratively
in step of

argtan(2™")

The vector is rotated with respective to the desired angle we want to achieve,some
iterations rotate clockwise direction and some rotates in anticlockwise direction

to converge to the desired angle.A look up table for

argtan(2™")

is stored.The K value is fixed based the number of the iteration loops used in the

cordic algorithm.

2. The calculated Phase values are fitted to a straight line through Simple linear

regression.The slope of this straight line gives the frequency of received signal. A
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straight line with slope and intercept is considered and the differentiation w.r.t

slope and intercept is performed.

a N
T o o 2
om 3:1 (yn miy C)
0 — )
8_0 3:1 (yn — M, — C)

The y axis data is phase angle after appropriate compensation from cordic(as the
phase is returned in piece-wise continuous form and has to be modified before
fitting to a straight line) and x axis is linear scale from 1 to N,the resultant slope

after simplification reduces to

SN 6% ((2%n) — N — 1) % (phasevalue,)

_ n=1

The estimated frequency is then given as:

ZnNzl 6% ((2%xn) — N — 1) x (phasevalueatn)
2% mx 1077 x N3

Estimatedfrequency =

Code for Frequency Estimation

1. The read received stream data of cos and sin samples is given as input to CORDIC
function.The returned phase value from the CORDIC function is stored in "now"

variable and the now values is stored in "prev" variable.

prev=now;
now=anglel;

int k=0,mid=0,mid1=0;

2. The phase value of continuous 3000 samples is considered and the piece-wise
linear phases returned by CORDIC function is made into continuously varying
linear phase by adding the 2* 7 for every 7 variations.The compensated phase
values are also summed up (with appropriate scaling) in order to find the slope of

line(that is fitted to the phase values).

if((>=201 & & j<=3200)) {

mid=prev-now;mid l=now-prev;
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if(mid>51470)k=((ap_int<48>(mid)*83449)»32);now=now+k*51470+51470;
if(mid1>51470)k=((ap_int<48>(mid1)*83449)»32);now=now-k*51470-51470;
accu=accu+now*coeff;

coeff=coeff+2;

}

. The value of the accu variable is scaled by

6
2 % 30003 % 10~7

to get the estimated frequency scaled by 7 value.In CORDIC 7 is equivalent to
51470 (integer part of 7 * 21 ),s0 the actual sent frequency 1 MHz multiplied
with 7 is equal to 51470000000.When we send positive exponential value the
offset is calculated by subtracting the value 51470000000,this result is divide
by m(51470) and is stored in slope[0].Similarly if negative exponential value is
sent the offset is calculated by adding 51470000000 to the temp variable and
divide by 51470 to get the offset value.The division by 51470 and scaling factor
of accu consume many DSPs and also has high Initiation Interval and latency
values.So,we do the multiplication of 83449 and 4772186 followed by 32 bit
shift to perform the division operations (the multiplying numbers are selected

accordingly for an appropriate precision).

J++;ap_int<64> temp=0;
if(j==3250)

{ temp=((accu*4772186)»32);
temp=temp+(51470000000);
slope[0]=(((temp)*83449)»32);
temp=temp-(102940000000);
slope[1]=(((temp)*83449)»32);
}

. Finally after reading the current frame samples,the variable are reset for estimat-
ing the offset for next frame. 1f(j==18478)

{ j=0;temp=0;accu=0;now=0;prev=0;slope[0]=0;slope[1]=0;coeff=-2999;

}
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CHAPTER 6

Future Work

The RPW Nodes having two different LO has to be implemented.The offset between the
two LO’s has to be removed accordingly inorder to decode the payload data correctly
as in the case of same LO.The problem of the IQ imbalance and DC offset is removed
by using the quadrature correction and DC offset correction,the results were not as
expected,a baseband algorithm for compensated this 1Q,DC offset and frequency cor-
rection has to be implemented in-order to decode the payload data.Some of the antenna
are not having maximum power transfer at 860 MHz frequency,with the TX spectrum
power at -20db and there is an addition loss during transmission and reception(due to
antennas),signal reception is effected as the AD9361 has maximum of 70db gain in
receiver port.The high gain power amplifier and Low noise amplifier board that is pro-

vided by Hitachi has to be integrated in order to improve the reception range.
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