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ABSTRACT

KEYWORDS: Soil Moisture Retrieval ; Synthetic Aperture Radar .

Soil moisture is an important parameter of study for various applications across multi-
ple disciplines.

In this thesis, a robust algorithm is proposed to retrieve for soil moisture, for the case of
bare soil surface, from Synthetic Aperture Radar data. The proposed technique is aimed
to be modular in format, in order to facilitate the choice of an appropriate module de-
pending on the need. The proposed technique is compared against a similar widely
accepted algorithm, and better retrieval results are observed from the proposed algo-
rithm. In context of soil moisture retrieval from bare soil surface out of NISAR mission,
studies are conducted and the results are reported. Finally, the proposed soil moisture
retrieval technique is applied over real data collected out of RISAT-1. In all the cases,
the soil moisture retrieval accuracy is around the acceptable level and performance of

the proposed algorithm is satisfactory.
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CHAPTER 1

Introduction

Soil moisture (SM) is an important parameter in various environmental studies, such as,
in building climate models in meteorology; crop yield forecasting, irrigation scheduling
in agriculture; to predict early warnings of drought/ flooding in disaster management,
to name a few. Hence it is important to measure SM on a large scale, cost-effective and
routine basis.

SM, here, refers to water content in the surface soil corresponding to top few centime-
ters (5 cm in general) (Petropoulos ef al., | 2015). SM is commonly expressed in gravi-
metric units, M, (g/cm?®) or in volumetric units, M, (cm?/cm?). The latter is usually
preferred, and is used in this thesis throughout. This is mainly due to the fact that M, is
independent of the bulk density (b.d.) of soil, which can often result in inaccurate SM
quantification. ( M, =b.d. x M)

Remote sensing from air/ space is a promising method to measure SM on a large scale
and routine basis. In particular, microwave remote sensing offers various advantages
over optical/ IR remote sensing; such as, the former offers all-weather and round-the-
clock monitoring capability and is less affected by the presence of vegetation (longer
the wavelength implies higher the penetration depth). Remote sensing by a typical side-
looking radar system is depicted in fig [[.T] ( credits: (van Zyl, 2011)).

P
@é\\ Measured Radar Signal

voltage

Radar pulse i

time
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at far end of the
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Swath -~ ground

Figure 1.1: Remote sensing using side-looking airborne radar



Microwave remote sensing instruments can be broadly classified into active and pas-
sive (known as radars and radiometers, respectively). In addition to a receiver that
a radiometer has, radar has a transmitter as well, that is, the later has its own signal
source. Usually, active microwave sensors have high spatial resolution, whereas pas-
sive microwave sensors have high temporal resolution. However, the latter has its own

drawbacks such as coarse spatial resolution (= 25-50 km) and radio frequency interfer-

ence influence on brightness temperature at low frequencies (Petropoulos et al., 2015)

. Whereas active microwave sensors can be custom-made to image various sections of
earth surface cover, ranging from top of canopy cover to several cm into soil surface
through canopy cover. As mentioned earlier, longer the operation wavelength, higher
will be the penetration depth and deeper the imaging section (as shown in fig[1.2). Mi-
crowave sensors operating at L-band (18 cm to 30 cm) are commonly and increasingly

employed in SM monitoring as part of various global missions.

p- band (68 cm)

c-band (6 cm) L-band (24 cm)

| soil surface

Figure 1.2: Illustration on selective scanning of earth surface

Active microwave radar sensors are further classified into imaging and non-imaging
sensors; synthetic aperture radar belonging to the former class and the later class being
further sub-classified to scatterometers and altimeters. Synthetic-aperture radar (SAR)
is one of the widely used active microwave sensor for remote sensing purposes. SAR
utilizes the flight path of the platform to electronically simulate an extremely large
antenna/ aperture, to generate high resolution images. Spatial resolution of SAR is de-
termined by the beam width from the transmitter, and hence the antenna size (Longer
the antenna, narrower the beam width, higher the resolution of the image captured).

Theoretical spatial resolution limit of SAR in the azimuth direction (along the flight
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path direction) equals one-half the length of actual antenna. This limit is independent

on the flight altitude of SAR.

1.1 Problem statement

The core purpose of this thesis is to develop a robust retrieval algorithm for the case of
base soil surface, provided the information from synthetic aperture radar that flew over
that location (as illustrated in fig[1.3).

Backscatter coefficient (BS), which is a way to quantify the ratio of power between the
emitted and received electromagnetic radiation by SAR, is dependent on the complex
dielectric constant (€4, fqce) Of the bare soil surface. SM is directly related to the com-
plex dielectric constant owing to the high dielectric constant contrast between dry soil
(=~ 2-3) (Dubois et al.l 1995) and water (= 80) in the microwave frequencies. This way,
one can retrieve for SM once the information on BS is known. But the backscatter is
also dependent on statistical nature of the surface in consideration, and also on a lower
level, on various other factors; which makes the accurate estimation of SM a difficult
task. Nevertheless, various techniques have been developed in the past, fairly succeed-

ing in SM retrieval, but many times with a price to pay.

BS from SAR [ 2
+ A 4 Llnput i
op

{

Retrieval algorithm

I 1.

: ! expected |
SM over the location ! output i
L

Figure 1.3: Problem Statement

Due to the importance and requirement of global SM mapping on a regular basis,

various space missions by different organisations have been launched in the past (such



as the Soil Moisture Active Passive mission, or SMAP (2015)) primarily for this pur-
pose and several missions are yet to be launched in the near-future (such as the NISAR
mission) owing to better resolved and more accurate SM mapping. This demands for a
robust SM retrieval algorithm for the same, which at present is either computationally
intensive or less accurate. This forms to be the core motivation for the study conducted

through this thesis.

1.2 Literature review

Over the past few decades, several studies have proposed various algorithms/ meth-
ods/ models for surface SM retrieval from the SAR backscatter data. These can be
broadly classified into three groups namely, physically-based/ theoretical models, semi-
empirical models, and empirical models (Petropoulos et al.,[2015) .

Empirical models are based on specific datasets and implementation conditions ( such
as the sensor parameters). They do suffer from severe drawbacks such as site-specific
applicability, lack of physical basis for the model and on.

Semi-empirical models are built based on experimental/ simulated datasets, but guided
by trends based on theoretical models. In this way, they serve to be a simplistic model
compared to theoretical models and site independent as opposed to empirical models.
Some of the widely used semi-empirical models include |Oh et al.|(1992), (Dubois et al.,
1995)), Shi et al.|(1997). Numerous studies have used one of the above methods and re-
ported to obtain satisfactory results.

Physically-based models have a strong physical basis often resulting in more accurate
SM retrieval; but have the downsides of being a complex and challenging model to work
with. Several methods have been proposed to invert for physically-based backscatter
model, such as IEM (developed by Fung et al.| (1992)) or its improved version- Im-
proved IEM (Fung et al., 2002), using optimization or regression techniques which
include, Look-Up Table (LUT) approach, neural networks or by least-squares method.
Yet another challenge for the same lies in calibration of the forward model employed

with respect to the BS data from SAR, that may result in retrieval inaccuracies.



1.3 Technical background

Radar backscatter coefficient (¢”) from a random rough surface primarily depends on

the surface geometrical properties, quantified by

a). surface roughness (h), which is the r.m.s. surface height,

b). correlation length (/), which quantifies the typical length scale over which the
roughness deviation stop being similar,
and on the surface electrical properties, quantified by

c¢). complex dielectric constant (¢) of soil surface.

Since most of the earth surface is non-magnetic in nature, backscatter can be con-
sidered to be independent of surface magnetic properties. Backscatter can be modelled
as a function of the above quantities, along with the information on radar parameters
such as operating wavelength and look angle of the radar (which is equal to the signal
incidence angle, #,,.) on which BS heavily depends on. This refers to a Forward model,
inverting of which, for e remains the core challenge of SM retrieval. Once € value is
retrieved over a soil surface, corresponding M, value can be obtained by inverting for
any of the microwave dielectric models available in literature.

Forward models are employed to synthetically generate ¢ values for all possible com-
binations of physically possible discrete surface parameter values (h, [, €). Such a
construct of dataset is generally referred to a ’datacube’( because it seems like a cube of
data). SAR sensor operation can be classified into more than one operation configura-
tions, depending on the nature of the signal polarization the sensor emits or records. De-
pending on the sensor on-board SAR, the collected data can be co-polarized backscatter
data (either oy, 0., or both) or cross-polarized backscatter data (o, / 0,5, both being
the same in case of a mono-static radar). Notation-wise, in case of oy, h refers to
transmitted signal polarization and v refers to received signal polarization, and similar

notation will be used through the thesis.



CHAPTER 2

Proposed Technique

o being a non-linear function of h, [ and ¢, makes inversion for € from the non-linear
function involving several parameters, both a challenging and computationally intensive
task. In this section, a physically-based inversion technique, which we call, Sliced
Regression Inversion, is proposed for ¢ (and further, SM) retrieval from information on
.

In this technique, o which is a non-linear function of the parameters (h, [ and ¢), is
expressed as a collection of independent functions of the parameters; such that in each
of the sub-functions, o can be approximated as a linear function of h, [ and e, for the

defined range of the parameter values (as illustrated in ).

(a) (b)

Figure 2.1: a non-linear function in represented as a collection of independent lin-

ear functions in

The proposed technique aims to be modular in format, such that there exists fea-
sibility of replacing any of the modules with an alternative method depending on the
retrieval scenario.

The proposed algorithm broadly consists of 2 parts; a). to solve for forward problem

(to populate the datacube) & b). to solve for inverse problem, to retrieve soil moisture



by inverting datacube from (a). Steps involved in the proposed technique are detailed

as follows-

input : backscatter data from SAR (o, / 04y, / 01y ) + information on radar param-

eters : (A\op & ;) + (other information, if any)

1) Preprocessing:

step 1a) Choose an appropriate Forward model (depending on input data);
Populate datacube for all possible combinations of discrete, physically pos-
sible values of soil surface parameters (for all input backscatter configura-
tions: o, / 04y / Op, ) as illustrated in fig. 2.2]

parameter? range

parameter2 range

® * X * *
< % % * %
Forward model
— % % % % %
® * X * *
< % % * %
\] Y

Y
A

parameterl range

parameterl rang

« refers to o°

Figure 2.2: two parameter populating of datacube
note: In[2.2] parameter! could be h and parameter2 could be €

Remark: Calibration of the above, synthetically generated, datacube to be done, if
necessary
(against few of the given radar measurements & the corresponding surface
parameter ground truth values)

step 1b) Slice the datacube (dc) into sub-dc’s (as illustrated in fig.

Choice of slicing (among various possibilities) :

(i) Perform all of slicing combinations.
(i) find the fitting error, S*~**Si(|of . - 0% ,]) for each of the combi-
nation. (¢ refers to different backscatter data)
(111) Choose the slicing combination that has the least fitting error.

step 1¢) Each of the sub-dc can be approximately represented by the relation,

O-S)”it,i = Boi + Bri-x1i + B2i-Toi + ...+ Bri-Tni



parameter2 range parameter2 range

(o] | [og

—_— DCE
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Figure 2.3: two parameter datacube slicing

(x refers to surface parameter variables involved in the model; n refers to total
number of such variables; 3’s represent regression coefficients)
Perform multiple linear regression for each of the sliced sub-dc s.

0
1 @y, x9,... Ty 5o og
0
1 2z, oo ... Zp, b1 op
1 z, = x I} ol
12 29 ¢+ - no n+1 2n

—~— —_——
X B Y

X6=Y

obtain
B=(X'X)"1X'Y, forall sub-dc s

Repeat the above operations and obtain corresponding regression coeffi-
cients for all of ¢ backscatter data.

step 1d) Store the corresponding regression coefficients (3; ,,’s) & independent vari-
able bounds (lower bound(z,, ,,,), upper bound(z,, ,,)), for it" backscatter
type, n'* surface parameter variable and m!" sub-dc.

Preprocessing result : Regression coefficients & surface variable bound matrices
for all sub-dc’s
2) Inversion:

step 2a) Find linear least-square solution, subject to bound constraints, for each of
the sub-dc s,

min ||fz — Y2 provided, x5 <z <zyp

step 2b) Find the sub-dc that returns the more accurate retrieval values, with the help
of a suitable error metric;
Return the retrieved ¢, for that sub-dc.



step 2¢) Find the corresponding M, value from the retrieved €, by inverting for a
suitable microwave dielectric model.

Output : Retrieved values of volumetric soil moisture (M) s) for the given set of

SAR backscatter data

2.1 Generalised "best slicing'' candidate

In order to generalise a best method to often, if not always, slice the dc into sub-dc s;
several possible ’best slicing’ candidates were chosen and their corresponding retrieval
results were compared. It is found, slicing the dc into smallest possible sub-dc s always
resulted in better retrieval results.

This motivated to follow up similar way of slicing for the studies conducted through

this thesis.

2.2 Comparison of error metrics

In order to find out the sub-dc that returns the more accurate retrieval result, two of the
error metrics were identified, their retrieval accuracies were studied and compared, and

the better one is chosen for incorporating into the proposed model.

1) sum-of-residuals error metric
By this metric, for each of the sub-dc s, sum of the residual (or, the difference
in the computed backscatter and the sub-dc backscatter) values for all of the 7
different backscatter readings is found. Mathematically speaking, it is found,

¥, (|o? —

sub—dc,i computed,i ‘ )

VY  sub—dec

Sub-dc associated with the least sum of the residual value returned to be the sub-
dc corresponding to the more accurate retrieval values.

i) ranking error metric
By this metric, for a particular (i*") backscatter configuration (i.e., opi/ Tyo! Thy),

- rank all of sub-dc (in ascending order) depending on the corresponding

value of, (|09,4_gei — Toomputea,il) (in the same order).

- Repeat the same for all of the 7 backscatter configurations



- Sum the rank for all 7 configurations for each of the sub-dc.

- Return the sub-dc associated with the least rank among all sub-dc s; re-
trieved values corresponding to which is chosen to be the more accurate
parameter retrieval values.

For ¢ < 2; both the metrics return similar results. But for ¢ > 2; sum-of-residuals

metric often returns more accurate results compared to ranking metric. Hence the for-

mer metric is chosen to be the default metric for studies conducted through this thesis.
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CHAPTER 3

Validation of Proposed Technique

In order to test the accuracy of the retrieval values from the proposed model, com-
parison of the retrieval results from the proposed model, which is physically-based, is
done against the retrieval results (for the same BS data and radar parameter values)
from a widely employed semi-empirical model, SMART Inversion algorithm (which is
developed out of Dubois et al.| (1995)). Further, the degree of improvement in the re-
trieval accuracy upon having information on dual band backscatter, as opposed to single
band backscatter information is studied. Finally, considering the challenge in meeting
the required SM retrieval accuracy, for given information on dual-band, co-polarised
backscatter (o, & 0,,), the proposed inversion technique has been applied to datacube
populated by all of primary influencers on BS from rough soil surface (i.e., h, I, €,,
€im), and corresponding retrieval results are presented. Backscatter (0°’s) from SAR
are typically noise-affected (with noise standard deviation on the order of & 0.5 dB).
This makes it important to validate the proposed technique for backscatter coefficients
affected by various noise levels (or say, for various degrees of added Gaussian/ random
noise). The same has been implemented for each of the study results presented in this
section. Since the noise added to the backscatter is random, that may return different
retrieval result for each retrieval instance, several retrieval instances were performed
and the mean retrieval value along with standard deviation is reported for each study.
(Here the number of retrieval instance were chosen to be 10. This is owing to the ob-
servation from the simulation; upon performing retrieval for unity to 100 instances in
random steps, retrieval instances to be 10 were fixed.)

Also, throughout this thesis, microwave dielectric model discussed in Hallikainen et al.
(1985)) is employed to invert for the volumetric SM from the retrieved dielectric con-
stant of soil. Soil texture is chosen, by default, to be sandy loam (corresponding to sand
content = 51 %; silt content = 13 %); and frequency is chosen to be 1.4 G H z for the

same.



3.1 Comparison with SMART inversion algorithm

Soil Moisture Assessment Radar Technique (or SMART) Inversion is a semi-empirical
soil moisture inversion model. Due to simplistic nature of the model and good retrieval
accuracies, it has been applied at numerous sites to map the soil moisture from multi-
polarised radar data.

To compare the retrieval results from SMART inversion algorithm and the proposed
Sliced Regression Inversion algorithm, BS coefficients were synthetically generated
from SMART Forward model, whose corresponding soil surface parameter values (here,
h & €,) being already known (also , \,, = 24cm in single-band operation, 8;,,. = 409),
are used to find the retrieval accuracies for the models to be compared.

Retrieval values using Sliced Regression Inversion technique are obtained by populat-
ing datacube using SMART Forward model, covering physically possible values of soil
surface parameters (and by setting \,, = 24cm, 0, = 40°).

Obtained retrieval results from both the methods, for various noise added BS data, are

as follows :

1) Without any added noise -

¢ estimated value
® actual value

L)

20

(dB)
114

18

1-16

=
(=3}

¢

1 -18

"
=

-20

-22

=
[=]

-24

dielectric constant, ¢
=
%]

-26

-28

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
r.m.s height, h (cms)

Figure 3.1: comparison result (1)
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Figure 3.2: comparison result (2)

2) For added noise of 0.3 dB (on an average) -

0.35

mean rms error (s.d.) in,

h (cm)

€

M, (ecm?/cm?)

SR inversion algorithm

0.11 (0.03)

1.60 (0.36)

0.026 (0.007)

SMART inversion algorithm

0.13 (0.04)

1.86 (0.39)

0.035 (0.008)

0.4

% SR Inversion
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O SMART Inversion
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Figure 3.3: comparison result (3)
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3) For added noise of 0.6 dB (on an average) -

mean rms error (s.d.) in, h (cm) € M, (ecm?/cm?)
SR inversion algorithm 0.20 (0.04) | 3.24 (0.66) | 0.053 (0.012)
SMART inversion algorithm | 0.25 (0.07) | 3.95 (0.80) | 0.073 (0.019)
0.35 ;
3 SR Inversion % i
03} O ;zir:':'-lfrfuersion $
- &
5 0.25
‘§ 0.2
2 * &
4@; 0.15 o
=
0.1
0.05 2‘5 : : : : :
0.05 0.1 0.15 0.2 0.25 0.3 0.35
M, actual (cm3/cm?)
Figure 3.4: comparison result (4)
4) For added noise of 1 dB (on an average) -
mean rms error (s.d.) in, h (cm) € M, (ecm?/cm?)
SR inversion algorithm 0.25 (0.06) | 4.02 (1.17) | 0.065 (0.017)
SMART inversion algorithm | 0.36 (0.09) | 5.85 (1.60) | 0.115 (0.033)
0.4 . .
¥ SR Inversion O O
0.35f K;ﬂiﬁ?f:uersion
~ * %
£ 03r
mé 0.25
= ¢ ¢
)
o 02f &
9: 0.15 | L4 ¢
= &
0.1}
&
0.05 £ : : : :
0.05 0.1 0.15 0.2 0.25 0.3 0.35
M, actual {cm3;cm3)

Figure 3.5: comparison result (5)
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3.2 Single-band vs dual-band retrieval results

As mentioned earlier, microwave remote sensors can be employed to map specific sec-
tions of a geographical location over earth surface, by using suitable operating wave-
length for the sensors. Backscatter information for different operating wavelengths are,
to a larger extent, independent of each other.

The significance of this study lies in context of the NISAR mission (an upcoming mis-
sion), which will employ a dual-band SAR to monitor earth surface as opposed to all
the previous missions which employs or employed single-band SAR. Operating SAR at
two different frequencies is expected to provide more information about the location be-
ing monitored compared to the information that can be collected with single frequency
SAR operation.

The following study is conducted to figure out the degree to which retrieval accuracy
could be improved upon using backscatter information for additional wavelength of
operation. As in the previous section, SMART Forward model is employed here to
populate the datacube. Datacubes are populated for L.—band in case of single-band
study and for both L—band & S—band in case of dual-band study, as are the bands to
be employed in NISAR mission. Upon employing the proposed technique for the two

cases, retrieval results for the same are presented below :

1) For added mean noise standard deviation of 0.3 dB -

mean rms error (s.d.) in, | h (cm) € M, (em3/em?)
single-band results 0.12 (0.02) | 1.81 (0.37) | 0.030 (0.007)
dual-band results 0.09 (0.02) | 1.21 (0.27) | 0.020 (0.005)

2) For added mean noise standard deviation of 0.6 dB -

mean rms error (s.d.) in, | h (cm) € M, (em?/cm?)
single-band results 0.19 (0.05) | 3.28 (0.88) | 0.053 (0.015)
dual-band results 0.14 (0.03) | 2.21 (0.49) | 0.037 (0.010)

3) For added mean noise standard deviation of 1 dB -

mean rms error (s.d.) in, | & (cm) € M, (cm?/em?)
single-band results 0.26 (0.04) | 4.45(1.29) | 0.071 (0.021)
dual-band results 0.19 (0.04) | 3.17 (0.88) | 0.051 (0.014)

15




3.3 Further retrieval results

3.3.1 IEM as the forward model

It is important to have access to a fairly accurate forward model, so as to expect good
retrieval accuracy from inversion of the same. Integral equation model (IEM) is a
physically-based forward model that computes the back-scattering of a random sur-
face with any specified surface electrical/ geometrical condition (to an extent) for any
of the receive/ transmit wave polarization combinations.The simulation results from
IEM is reported to be in close agreement with the experimental data for many of the
comparison studies done in the past. In this section, the backscatter coefficients were
synthetically generated using IEM forward model to test the degree of its applicability
for the real world data.
For bare surface SM retrieval, it is important to incorporate all the primary influencing
parameters on radar BS to the model, which are - h, [, €., and €;,,,. In this section, re-
trieval accuracies for the above mentioned parameters along with SM are studied for a
given dual band (L— band & S— band) co-polarized BS information (+ radar parame-
ters), as a measure of noise added to the generated BS data.
Using the dielectric model Hallikainen et al.| (1985), real part (¢,) and complex part
(€im) of the the complex dielectric constant can be expressed as independent functions
of M,. Hence, it is possible to invert for M, from either of the two functions. Since
the typical range of ¢;,, values considered is much lower than that of e, retrieval error
in €;,, highly amplifies the retrieval error in M, compared to the retrieval error in .
Same observation is noted from the retrieval results as well. Hence we retrieve for M,
from its relation with €, and present the same here. Retrieval results, upon building
datacube using IEM model and further applying sliced regression inversion algorithm,
are as follows:

1) For no noise added case

hiem) | L(em) | € | €m | M, (cm3/em?)
rms error | 0.95 30.79 | 0.52 | 0.82 0.008

2) For 0.3 dB (on an average) noise added case

h (cm) [ (cm) € €im M, (em3/em?)

mean rms error (s.d.) | 0.94 (0.02) | 29.00 (1.69) | 3.38 (0.52) | 0.88 (0.07) | 0.053 (0.006)
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3) For 0.6 dB (on an average) noise added case

h (cm) [ (cm) € €im M, (em3/em?)

mean rms error (s.d.) | 0.94 (0.05) | 28.52 (2.26) | 5.32 (0.60) | 0.94 (0.04) | 0.082 (0.009)

4) For 1 dB (on an average) noise added case

h (cm) [ (cm) € €im M, (em3/em?)

mean rms error (s.d.) | 0.95 (0.04) | 29.40 (1.80) | 6.13 (0.31) | 0.95 (0.03) | 0.093 (0.005)
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3.3.2 Retrieval results from RISAT-1 dataset

Radar satellite-1 (RISAT-1) is a microwave remote sensing satellite with a SAR payload
operating in c-band (5.35 G H z), launched in the year 2012.

For the dataset from RISAT-1, on the backscattering coefficient (oy,;), recorded over
a few specific region (within the range of latitude (22.5-23.4); longitude (72.3-72.6))
across a few specific time of the year (2015), soil moisture (SM) levels are retrieved,
within certain accuracy level, employing the proposed technique. IEM is used as the
forward model to populate datacube, with the motivation of fairly accurate retrieval of
the surface parameters h, [ & € from a single observation information on oy,. Further-
more to obtain M, from the retrieved e value, a widely popular model (Topp et al.,
1980) is employed. The employed dielectric model is a third order polynomial relating
e and M, without considering the nature of soil texture or the frequency of operation of

radar employed to collect the data. The results on the same are presented below.

information provided :

(which also serves to be input to the inversion model)

1) backscatter information (op); 2) look angle (same as the incidence angle) = 36.8
degrees; 3) frequency of radar operation = 5.35 GG H z (corresponding to c-band wave-
length)

Retrieval results from the information provided :

retrieval results from %hh alone
0.5
c 04
4
m
£ 03
3 ¥ *
3 0.2
g *
E 0.1 rms error = 8.9 % |
> 0.1 J
= ¥ retrieved data
—reference line
O | | L L
0 0.1 0.2 0.3 0.4 0.5

MV true (cm3fcm3)

Figure 3.6: RISAT-1 retrieval result
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rms error in,
h (incm) | 0.31
€ 3.81

Retrieval results for the dataset provided from the developed inversion method looks
satisfactory, if not excellent. The accuracy of model prediction is expected to improve
significantly on having o, information, in addition. Moreover, simultaneous backscat-
ter information on more than one wavelength is observed to return highly accurate re-
trieved surface parameter values. It is tested and observed for dual-band backscatter
information against single band backscatter information, which is visible from the pre-
vious section.

The forward method employed in the proposed retrieval algorithm is not calibrated in
retrieving for the surface parameters for the time/ site specific dataset provided. This is

believed to be the primary reason for the observed retrieval error.
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CHAPTER 4

Conclusion

4.1 Summary

A physically-based soil moisture retrieval algorithm is proposed and validated with
good retrieval accuracy . The proposed technique is aimed at having a modular design
such that any of the algorithm module can be replaced by another suitable one, depend-
ing on the need; without affecting any other module in the algorithm. The proposed
algorithm is compared against a widely employed semi-empirical inversion algorithm,
and it is observed, better results are returned from the former. Performance of the pro-
posed retrieval algorithm on single band retrieval and dual band retrieval is studied; and
itis found dual band retrieval almost always returns better retrieval results for SM, along
with other soil surface parameters. The proposed algorithm is employed to synthetically
generated datasets in consideration to a more practical bare surface SM retrieval sce-
nario considering all the primary influencers on BS into the model, and employing an
advanced Forward model. Finally, the proposed technique is applied to real data from
RISAT-1 to retrieve for soil moisture corresponding to the recorded backscattered coef-

ficients. The retrieval results for all the cases are found satisfactory.

4.2 Future work

The proposed algorithm is developed for a simplistic case of bare surface soil moisture
retrieval, whose application is limited to the real world scenario. Most of the earth sur-
face is covered by vegetation and to some extent by artificial structures, which makes
soil moisture retrieval beneath its surface difficult, if not impossible. Hence it is im-
portant to develop exclusive models depending on the geographical conditions of the
location or in general, a commonly applicable model that can give a fairly accurate re-
trieval results for majority of the earth surface locations. A simple up gradation that can

be made to the current model is to incorporate another quantity (say, vegetation water



content) that represents the effect of a layer of vegetation on top of soil surface. There
is also a huge scope for development of better inversion algorithm that returns more
accurate retrieval values for any dataset. Furthermore the proposed algorithm is yet
to be applied to dataset obtained from air-borne/ space-borne SAR, and corresponding

retrieval result accuracies yet to be found.
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