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ABSTRACT

KEYWORDS: Underwater Imaging; Skew; Water Surface Waveform; Image

Restoration; Deblurring; Reblurring; Unsupervised Learning;

Generative Adversarial Networks.

This thesis mainly comprises works on two problems, first one involving underwater

imaging and second related to unsupervised motion deblurring. First one deals with re-

construction of dynamic water surface using single captured blurred image of a planner

scene immerged inside water. Waveform estimation is done by using blur as cue and

relating it with the slope of water surface waveform.

The above problem statement is extended to incorporate the deblurring of captured

blurred image using the information of water surface waveform. From this, the point

spread function estimation is done. Conventional methods assume some priors on psf

and latent image and use optimization techniques to compute the psf, however, a better

estimate can be easily obtained, if the information of shape of water surface is added

over it.

The second problem deals with class specific motion deblurring. In this work, three

classes of images, namely, checkerboard, faces and texts deblurring is handled. For

this purpose, GAN are trained to generate clean images and inorder to improve the sta-

bility of GAN and to preserve the image correspondence, an additional CNN module

that reblurs the generated GAN output to match with the blurred input and a module is

added, which matches the gradient of GAN output with the input. This self guidance is

achieved by imposing a scale-space gradient error with an additional gradient module.

This makes the whole architecture completely unsupervised.
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CHAPTER 1

INTRODUCTION

1.1 Underwater Imaging

Underwater imaging has been explored intensively in last few decades(1). The un-

derwater images suffer from various types of degradations like color loss, noise, low

contrast, skewing and blurring (2) and in worse case all in single image. This posts a

challenge in the underwater imaging applications of coral reef monitoring, contamina-

tion of shallow water, mapping the distribution of vegetation & seabed sediments etc

(3).

In this work, only blurring problem is addressed and an attempt is made to extract more

cues about dynamics of water waveform to better estimate the blur kernel which would

eventually improve the deblur methodologies. The images underwater are primarily af-

fected by skew and motion blur because of dynamic refractive medium and as the wave

moves, the light rays experience different amount of refraction. There are several works

that aim to restore skewed scenes (4; 5; 6; 7; 8).

These methods neglects the effect of motion blur and only skew is taken in consider-

ation. However, skewing of scenes can also be associated with motion blur when the

imaging medium is dynamic in nature and camera exposure is long. If the exposure

time is long, all the pixels would see the same waveform (experience same nature of

skew) and the result image will be a motion blurred image. If intermediate frames are

analyzed, all intermediate frames would be skewed version of clean image and they all

averaged to give the final blurred image.

From that blurred image, psf of blur is estimated and used to further estimate the water

surface waveform.

1.1.1 Summary of Contribution

• Detailed analysis on psf.



• Water surface waveform estimation from psf.

• Given water surface waveform refinement of estimated psf and deblurring using
the refined psf.

1.2 Unsupervised Deblurring

Blind-image deblurring is a classical image restoration problem which has been an ac-

tive area of research in image and vision community over the past few decades. With

increasing use of hand-held imaging devices, especially mobile phones, motion blur has

become a major problem to confront with. Any motion in the camera or scene while

capturing the image leads to motion blur. In most cases, users only have single blurred

image.

Blind-deblurring can be posed as an image-to-image translation from blur domain y

to clean domain x and with proper correspondance between the images. Many recent

deep learning based deblurring networks (10), estimate this mapping when provided

with large sets of yi, xi paired training data. Even though these networks have shown

promising results, the basic assumption of availability of paired data is too demanding.

In many a situation, collecting paired training data can be difficult, time-consuming and

expensive and in some applications even non-existent.

This limitation demands unsupervised learning (13; 14; 15) of deep networks.

1.2.1 Related Works

There is a vast literature on motion deblurring spanning both conventional and super-

vised deep learning techniques. Similarly, of late there are works on unsupervised im-

age translations gaining popularity due to lack of availability of paired data.

Motion deblurring is a long-studied topic in imaging community. To avoid shot noise

due to low amount of available photons in low light scenarios, the exposure time is

increased. Hence, even a small camera motion is enough to create motion blur in the

recorded image due to averaging of light energy from slightly different versions of the

same scene. The above problem is simplified in several deblurring works (16; 17) by

assuming usage of multiple frames.

Deblurring from single blur frame is actually an ill-posed problem. To overcome the
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ill-posedness, most of the existing algorithms (18; 19; 20) rely on image heuristics and

assumptions on the sources of the blur. The most widely used image heuristics are

sparsity prior, the unnatural l0 prior (19) and dark channel prior (18). Assumptions on

camera motion are imposed in the form of kernel sparsity and smoothness of trajectory.

These heuristics are used as priors and iterative optimization schemes are deployed

to solve for camera motion and latent clean frame from a single-blurred input. Even

though these methods are devoid of any requirement of paired data, they are highly de-

pendent on the optimization techniques and prior selection.

There have been several attempts to solve this problem using deep learning frameworks.

(10; 11; 12) have shown the effectiness of deep networks for the task of blind deblurring.

These methods work end-to-end and skip the need for the camera motion estimation and

directly provide the clean frame when fed with the blurred image thus overcoming the

tedious task of prior selection and parameter tuning. But the main disadvantage with

existing deep-learning works is that they require close supervision warranting large

amounts of paired (blur, clean) datasets for training.

Unsupervised learning The recent trend in deep learning is to use unpaired data to

achieve domain transfer. With the seminal work of Goodfellow (21), GANs have been

used in multiple areas of image-to-image translations. The key to this success is the idea

of an adversarial loss that forces the generated images to be indistinguishable from real

images thus learning the data domain. Conditional GANs (cGAN) (22; 23; 24) have

made progress recently for cross-domain image-to-image translation in supervised set-

tings. The goal remains the same in unsupervised settings too i.e; to relate the two

domains. One way to approach the problem is by enforcing a common representation

across the domains by using shared weights with two GANs as in (15; 25; 26). The

fundamental objective here is to use a pair of coupled GANs, one for the source and

one for the target domain, whose generators share their high-layer weights and whose

discriminators share their low-layer weights. In this manner, they are able to generate

invariant representations which can be used for unsupervised domain transfer. Apart

from these methods, there are neural style transfer networks (27; 28; 29) that is also

used for image-to-image translation with unsupervised data. The idea here is to com-

bine the ‘content’ features of one image with the ‘style’ of another image (like famous

paintings).

GAN is used in proposed network to learn a strong class-specific prior on clean data.

3



 Blur  Input
Generator

   Discriminator

 CNN  

Gradient Module

Figure 1.1: Proposed network with GAN, reblur module and scale-space gradient mod-
ule.

The discriminator thus captures the semantic domain knowledge of a class but fails to

capture the content, colors, and structure properly. These are usually corrected with

supervised loss functions in regular networks which is not practical in the unsupervised

setting. Hence, self-guidance is introduced using the blurred data itself. Proposed net-

work is trained with unpaired data from clean and blurred domains. A comprehensive

diagram of the network is provided in Fig 1.1

1.2.2 Summary of Contribution

This is collaborative work done by me and one of my lab mate. For completeness entire

work is mentioned in this report. My contributions to this work are as follows:

• This is the first attempt at unsupervised learning for the task of deblurring.

• Tried various cost functions:
– Implemented Sum modified laplacian (SML) module in the GAN architec-

ture and analyzed its effect without GAN loss.

– Analyzed the effect of SML module with GAN loss.

– Analyzed the effect of Gradient module with GAN loss.

• Dataset creation for text, faces and checkerboard deblurring.

• Implemented codes of various networks (SML, SML+GAN,GAN+Gradient) with
different loss functions in torch and analyzed effects of hyper-parameters like
weights given to loss functions, batch size etc before arriving at the final archi-
tecture and parameter setting.

4



CHAPTER 2

Water Surface Waveform Estimation

2.1 Image Formation in flowing Water

Fig 2.1 represents the ray diagram of image formation. Let Ig(x) be the clean image

of the planner scene. Assuming no attenuation in wave, each video frame I(x,τ) is a

distorted version of Ig(x) related by following equations:

I(x,τ)= I(x+w(x,τ)) (1)

where w(x,τ) is the warping function at each pixel x and time τ. Let η be the refractive

index of medium and θi and θr be the angle of incidence and refraction, respectively, of

the light ray reaching the camera from scene point B. Assuming the water fluctuations

with respect to the level h0 are small. The displacement px,τ that a light ray experiences

can be calculated as:

||px,τ||2 = h0 tan(θr −θi) (2)

||px,τ||2 = h0[
(tanθr − tanθi)
1+ tanθr tanθi

] (3)

For, small water waves, θr and θi will be small (9), hence, cosθr ≈ 1,cosθi ≈ 1 and

1+tanθr tanθi ≈ 1. Using these,

||px,τ||2 = h0(sinθr −sinθi) (4)

||px,τ||2 = h0 sinθr(1− sinθi

sinθr
) (5)

From Snell’s law ηsinθi = sinθr as ηair = 1. Hence:

||px,τ||2 = h0 sinθr(1− 1
η

) (6)



Figure 2.1: Ray diagram for a scaled orthographic camera to demonstrate image forma-
tion.

Taking α= h0(1− 1
η
),

||px,τ||2 =α
√

1−cos2θr (7)

From Fig 2.1, cosθr = (v̂.η̂), where v̂ = [0 0 1]T and η̂ can be calculated as

n̂ = tx × ty

||tx × ty||2
(8)

where ‘.’and ‘×’represent dot and cross product, while tx = [1 0 hx]T and ty =
[0 1 hy]T are the tangential vectors defined on water surface at point O, and hx

and hy denote the partial derivatives of h(x,τ) with respect to spatial coodinates. If O

denotes the gradient of the water surface then O= [hx hy]T . Using these values of tx

and ty in Eq 8:

n̂ = [−hx −hy 1]T√
1+h2

x +h2
y

(9)

6



Substituting Eq 9 in Eq 7:

||px,τ||2 =α
√

h2
x +h2

y√
1+h2

x +h2
y

(10)

||px,τ||2 =α ||Oh||2√
1+h2

x +h2
y

(11)

For small waves, ||Oh||2 << 1 and Eq 11 simplifies to

||px,τ||2 ≈α||Oh||2 (12)

||px,τ||2 ≈αOh(x,τ) (13)

From Fig 2.1, when the water surface is still, the camera will image scene point A.

However, in flowing water, the light ray which reaches the camera above the water sur-

face will make a finite angle with the normal n̂ defined on the surface of the water at

point O. From Snell’s law, there will be refraction at the water surface due to which

instead of A, the camera will actually see scene point B. The amount of translation that

a pixel x experiences on the image plane is given as:

w(x,τ)=Ppx,τ (14)

where P is the projection matrix of the camera.

2.2 Blur and Skew In Underwater Imaging

As explained in section 2.1 that due to dynamic nature of water surface, the scene point

s will transformed to sτ=s+px,τ, where px,τ = [px,τ py,τ 0]T .

Using the model of pinhole camera, the point s = [X Y Z]T in 3D world corre-

sponds to pixel x, where x=[x y]T image coordinateds. The relation between x and s

is given by x = f X
Z and y= f Y

Z , here, f is the focal length of camera. Mathematically,

x̃ =K[I|0]s̃ (15)

7



Figure 2.2: Variation of gradients with time for a periodic water surface, Time (a) T = 0,
(b) T = t1 , (c) T = t2 & (d) T = t4.

where

K=


f 0 0

0 f 0

0 0 1


I is 3×3 identity matrix, 0 is 3×1 zero vector, and, x̃ and s̃ are homogeneous coor-

dinates of x and s, respectively. Assuming point s is on plane with normal n and at a

distance d form the camera image plane. And since, the water surface is dynamic, the

normal η will be time varying. And if exposure time is short, an skewed image will be

obtained. But if capture time sufficiently large, light rays from multiple scene points

will reach same pixel and the averaging effect during the exposure window will lead to

motion blurring. The mathematical relationship can be explained using Fig 2.2.

Assuming a sinusoidal wave, at time T=0, A,B,C and D pixels corresponds to points

E,F,G and H, respectively. At T=t1, the pixels A,B,C and D will see surface points

F,G,H and E respectively. At T=t2, these pixels will see G,H,E and F respectively and

so on. Therefore, at any time, the pixels have different slopes and hence, different

traslations. This leads to skewing effect. The final captured image will be average of all

these skewed images.

Let f and g be the images captured under still and dynamic water. Then, the image g is

the average of all skewed versions of f during the exposure time Te.

Mathematically,

g(x)= 1
Te

∫ Te

0
f (x+w(x,τ))dτ (16)

8



2.3 PSF

The point spread function (PSF) describes the response of an imaging system to a point

source. PSF can be seen as a system’s impulse response, the PSF being the impulse

response of a focused optical sytem.

In the case of a planner scene immerged inside water or say inside a water tank under

dynamic condition, the psf refers to the blur kernel of the image. The point spread

function contains the information about the shift of central pixel because of variation in

slopes of the water surface.

The PSF has two parameters namely, length of PSF (2k+1) and weights (wi, i=-k,-

k+1,..,-1,0,1,..,k-1,k). Following is a typical 1D psf of length 11:

w5 w4 w3 w2 w1 w0 w−1 w−2 w−3 w−4 w−5

A detailed analysis of information that can be extracted from these paratmeters about

the water wavefrom is presented in following sections:

2.3.1 Length of PSF

The length of psf depends upon the maximum slope in the water surface waveform and

distances between the water surface and camera and between the water surface and the

object. If these distances are kept constant, then the length of psf is entirely function of

shape of water surface of waveform.

Effect of slope variation:

Simple geometry can give relation between angle of incidence and angle of plane:

θi = θ. From Snell’s law:sinθr = sinθi
η

Since, sin is increasing function in [0, π2 ], so, angle of refraction θr will be more for

higher slope. This idea is clear from the Fig 2.3 also.

Effect of changing the distances between water surface and camera/object:

From the Fig 2.4, it is clear that with increase in the distance between the water surface

and camera/object, the spread of psf increases.

9



Figure 2.3: Increase in the shift of pixel because of higher slope.

Figure 2.4: Increase in the shift of pixel because of increase in distance between surface
and object/camera.

10



Figure 2.5: Slope and weight correspondence of Psf.

2.3.2 Weights of PSF

The weights of psf reflect the information about the time for which a particular slope

appears in the water waveform. Since, psf for image is represented using pixels, there-

fore, because of discretization, one pixel doesn’t correspond to one particular slope but

to a range of slopes and the weight value in that pixel block represents the fraction of

total time that slopes’ range appears in the water waveform. Fig 2.5 shows the way

following which psf can be computed from the waveform. This approach is used in

section 2.5 to compute psf from the shape of water waveform.

11



2.4 Water Surface Waveform Estimation

This problem deals with reconstruction of water surface waveform using a single blurred

image. The idea is to use blind deconvolution to obatin the psf estimate for the image.

And relating the length and weights of psf with with the slopes and time for which those

slopes are seen in the waveform, an estimate of water surface waveform is done.

Mathematical Desciption

Lets take following as the known psf:

wk wk−1 ... .. w1 w0 w−1 .. ... w−k+1 w−k

The length of psf is 2k+1 and wi are the weights with corresponding slopes represented

by si. From equations 13,14

ω(x,τ)=Pαhx

Considering 1D water waveforms for simplicity, however, the equations remain true for

2D water waveforms also. Since, P and α are constants, the maximum warping corre-

sponds to maximum slope as explained in section 2.3.1. Let t be pixel length (assuming

pixels are square in shape), therefore, maximum slope is given by:

Pαsmax = (k−1)t (17)

Hence,

smax = sk =P−1 (k−1)t
α

(18)

Similarly, maximum negative slope would be:

s−max = s−k =−P−1 (k−1)t
α

(19)

Since, the distribution of slope is linear, all si can now be computed easily.

∆s = sk − s−k

2k+1
(20)

sk−1 = sk −∆s (21)

sk−2 = sk−1 −∆s (22)

12



s−k+1 = s−k+2 −∆s (23)

and so on. Let T be total exposure time and Ti be time corresponding slope range is

present in the waveform. Therefore:

k∑
i=−k

Ti = T (24)

The Ti are related to weights of psf by following relations:

Ti = wi∑k
j=−k w j

T (25)

Waveform Reconstruction

Neglecting the spatial parameter as the same waveform is seen at all pixels and naming

it as y(t):

y(t)=



skt 0≤ t ≤ Tk

skTk + sk−1t Tk ≤ t ≤ Tk−1

...
...∑−k+1

i=k siTi + s−kt T−k+1 ≤ t ≤ T−k

(26)

Results

The input blurred image Fig 2.6:

The computed psf:

0.13 0.13 0.08 0.07 0.07 0.06 0.07 0.07 0.08 0.13 0.12

In the case of sinusoidal wave (in general any symmetric waveform), only half of the

wave can be generated using the psf as the psf for 2nd half is exactly same as the 1st.

Since, psf is already normalized, detecting repetition is not possible. However, this

can be easily resolved by making assumption that water waveform has to differentiable

at each point, which is totally logical as non-differentiable waveforms don’t occur in

normal conditions. They may occur in turbulant flows and some haphazard motion of

water waves but that can be safely neglected as those cases are rare and not considered

in this work.
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Figure 2.6: Input blurred image.

Estimated Waveform

This method generates one of many possible waveforms that would result in the blurred

image and more on this ambiguity is discussed in the section 2.6. The x-axis represents

time, and it depends upon fps and exposure time of camera. The y-axis information is

irrelevant as discussed in section 2.2, amplitude of wave is considered to be small and

waveform is assumed as just slopes at surface of water with negligible height.

2.5 PSF Estimation

The psf estimation from single blurred image is ill-posed problem. The blurred image

obtained by camera is convolution of ground image with the psf. Assuming g is the

blurred image of f. So, the following holds neglecting presence of noise:

g= f∗k (27)

Hence, there may be different combinations of f and k which will give same g and esti-

mating the correct f and k is difficult without any additional information. Usually some

prior are assumed on f and k, which reduces this complexity to some extent but not

14



Figure 2.7: The estimated waveform.

Figure 2.8: The sine wave.

completely.

If the information about shape of waveform is considered in the psf estimation, the esti-

mation can be highly improved. The challenge in this how to get the information about

the shape of water waveform. This has been done using optical flow. However, use of

optical flow increases the complexity of solution.

In general, water waveform created as result of wind, follows trochoid shape, which

is closely related to sinusoidal wave for smaller amplitude. In this report, sinusoidal

waveform is assumed, however, similar psf model can be developed for trochoids and

other waveforms.

2.5.1 PSF model for sinusoids

y(t)= Asin(ωt) (28)
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y
′
(t)= Aωcos(ωt)= A′cos(t) (29)

Here, the effect of ω can be modeled by modifying the amplitude.

Maximum slope=tan−1A

The center of psf corresponds to zero slope. On each side of zero slope pixel, there are

k pixels. Therefore, there are (k+0.5) pixel on both sides of zero slope. Therefore:

(k+0.5)x = tan−1 A (30)

x = 2tan−1 A
2k+1

(31)

This associates each psf block with range of angles. For ith pixel angle range will be

from (2i+1)tan−1 A
2k+1 to (2i+3)tan−1 A

2k+1 for i=0,1,...k-1.

Exactly similar expressions will hold for negative slopes and i=-1,-2,...-k.

Computation of Weights:

For ith block:

tan(
(2i+1)tan−1 A

2k+1
)= Acos(t) (32)

Ti = cos−1[
1
A

tan(
(2i+1)tan−1 A

2k+1
)] (33)

Ti+1 = cos−1[
1
A

tan(
(2i+3)tan−1 A

2k+1
)] (34)

∆Ti = |Ti −Ti+1|

∆Ti = cos−1[
1
A

tan(
(2i+1)tan−1 A

2k+1
)]−cos−1[

1
A

tan(
(2i+3)tan−1 A

2k+1
)] (35)

The weights wi of psf are ∆Ti multiplied by some constant, however, estimating the

constant is not required as psf is itself normalized. Hence, given the length 2k+1 of psf

and amplitude of wave, using above equations, psf of sinusoidal wave can be estimated.

Following is psf of sine wave for length of 11 (k=5) and amplitude 1.

0.231 0.085 0.062 0.052 0.047 0.045 0.047 0.052 0.062 0.085 0.231
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Figure 2.9: Input blurred image.

2.5.2 PSF estimation from the Blurred Image

As explained before, the blur has information about the pixel movement across the

frames and that information relates to slope of water waveform.

Algorithm:

1. Divide the blurred mxn image into say N smaller sub images.

2. Estimate the psf for all sub images and the complete image using tradional ap-
proach to get N+1 psf.

3. Use K-mean clustering to group similar psf into single group and it is assumed
group with higher element has psf closer to actual psf.

4. Start with some amplitude A for sinusoidal wave, compute the psf.

5. Minimize the error between the psf from the group and sinusoidal wave. Gradient
descent is used for updating the A, such that error reduces.

6. Finally, the last step is to stop the loop, if further improvement is not possible or
is smaller than some threshold. Since the obtained psf is coming from shape of
wave itself, it must be better estimate. This can be verified by computing Kernel
Similarity (47) with the actual kernel.

Results:

The input blurred image Fig 2.9:
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Figure 2.10: The clean image.

Since, it is synthetic experiment, original image is also known Fig 2.10:

Psf estimate by tradional approach:

0.144 0.217 0.087 0.038 0.023 0 0 0 0 0 0

0 0 0 0 0 0 0.039 0.088 0.217 0.146

Psf estimate by new approach:

0.140 0.060 0.047 0.041 0.037 0.035 0.033 0.032 0.031 0.030 0.030

0.030 0.031 0.032 0.033 0.035 0.037 0.041 0.047 0.060 0.140

Since, this is synthetic experiment, ground psf is also known:

0.075 0.094 0.055 0.047 0.039 0.039 0.035 0.035 0.031 0.031 0.031

0.031 0.031 0.035 0.035 0.039 0.039 0.047 0.055 0.090 0.075

Comparsion of ground truth psf with both methods show the significance of adding

shape of wave information in the psf estimation. The closeness of psf by new approach

to ground truth psf can be seen.
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Figure 2.11: Deblurred image using traditional approach.

Figure 2.12: Deblurred image using new approach.

Kernel similarity with ground psf of tradional approach: 0.8230

Kernel similarity with ground psf of new approach: 0.9158

The kernel similarity matrix is used to measure the closeness of a kernel with ground

truth kernel, where 0 represents no similarity and 1 represents same kernel.

Further the estimated psf can be used for deblurring the image.

Deblurring using tradional approach Fig 2.11:

Deblurring using new approach Fig 2.12:

Clearly, the new algorithm performs better than existing approach as it adds the

information about shape of water wave to the existing psf estimation method which im-

proves the psf estimation significantly.
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This is shown for sine wave only, however, similar approach can be extended for other

waveforms and even to non-periodic waveforms.

2.6 Conclusion

The first problem of estimation of water surface waveform using the psf has multi-

ple solutions. Using the approach mentioned in section 2.4, one of those solutions is

estimated. This ambiguity appears impossible resolve as there may be multiple inter-

mediate frames whose average can give the same blurred image.

Psf contains the information about the slopes present in the waveform for e.g say slopes

from -π4 to π
4 are in the waveform but psf doesn’t contain the information about time

like which slope is appearing at what time or which slope is coming after which slope

or about the repetition of slopes.

The second problem of estimation of psf requires prior knowledge of water surface

waveform. Apart from this constraint, the solution seems to improve psf estimation

significantly.
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CHAPTER 3

Unsupervised Deblurring

In image deblurring, the transformation from blur to clean domain is a many-to-one

mapping while clean to blur is the vice versa depending on the extent and nature of

blur. Thus, it is difficult to capture the domain knowledge with the existing architec-

tures of CoGAN, DualGAN, CycleGAN. Also, the underlying idea in all these networks

is to use a pair of GANs to learn the domains, but usually training GANs is highly un-

stable (38) and thus using two GANs simultaneously escalates in stability issues in the

network. Instead of using a second GAN to learn the blur domain, we use a CNN net-

work for reblurring the output of GAN and a gradient module to constrain the solution

space. A detailed description of each module is provided below.

GAN proposed by Goodfellow (21) consists of two networks (a generator and a dis-

criminator) that compete to outperform each other. Given the discriminator D, the

generator tries to learn the mapping from noise to real data distribution so as to fool

D. Similarly, given the generator G, the discriminator works as a classifier that learns

to distinguish between real and generated images. The function of learning GAN is a

min-max problem with the cost function

E(D,G)=max
D

min
G

E
x∼Pdata

[logD(x)]+ E
z∼Pz

[log(1−D(G(z)))]. (3.1)

where z is random noise and x denotes the real data. This work was followed by con-

ditional GANs (cGAN) (39) that use a conditioning input in the form of image (23),

text, class label etc. The objective remains the same in all of these i.e, the discriminator

is trained to designate higher probability to real data and lower to the generated data.

Hence, the discriminator acts as a data prior that learns clean data domain similar to

the heuristics that are used in conventional methods. In the proposed network, the input

to generator G is a blurred image y ∈ Y and the generator maps it to a clean image

x̂ such that the generated image x̂ = G(y) is indistinguishable from clean data (where

clean data statistics are learned from x̃s ∈ X ).

Self-supervision by reblurring (CNN Module) The goal of GAN in proposed deblur-

ring framework is to reach an equilibrium where Pclean and Pgenerated are close. The



alternating gradient update procedure (AGD) is used to achieve this. However, this pro-

cess is highly unstable and often results in mode collapse (40). Also, an optimal G that

translates from Y → X does not guarantee that an individual blurred input y and its

corresponding clean output x are paired up in a meaningful way, i.e, there are infinitely

many mappings G that will induce the same distribution over x̂ (13). This motivated the

use of reconstruction loss (||x̂− x||2) and perceptual loss (||Φi((x̂)−Φi(x)||2, where Φi

represents VGG module features extracted at the ith layer) along with the adversarial

loss in many supervised learning works (10; 22; 23; 24; 41), to stabilize the solution and

help in better convergence. Since all these require ground truth, which is unavailable

in this case, we use the blurred image y itself as a supervision to guide in deblurring.

Adding such a module ensures that the deblurred result has the same color and texture

comparable to the input image thereby constraining the solution to the manifold of im-

ages that captures the actual input content.

Gradient matching Module With a combined network of GAN and CNN modules, the

generator learns to map to clean domain along with color preservation. Now, to enforce

the gradients of the generated image to match its corresponding clean image, we use a

gradient module in the network as given in Fig 1.1. Gradient matching resolves the

problem of over-sharpening and ringing in the results. However, since the reference

image is unavailable, determining the desired gradient distribution to match with is dif-

ficult. For this, a heuristic from (43) that takes advantage of the fact that shrinking a

blurry image y by a factor of α results in a image yα that is α times sharper than y is

used. Thus, the blurred image gradients are used at different scales to guide the deblur-

ring process. At the highest scales, the gradients of blurred and generated output match

the least but improve while going down in scale space. A visual diagram depicting this

effect is shown in Fig 3.1 where the gradients of a blurred and clean checker-board at

different scales are provided. Observe that, at the highest scale, the gradients are very

different and as we move down in scale the gradients start to look alike and the L1 error

between them decreases.
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Figure 3.1: Scale space gradient error.

3.1 Loss Functions

3.1.1 Tried out loss functions

The feature which differentiate a blur image from clean is sharpness. A clean image is

much sharper than the blurred image. In order to classify any image as clean or blurred,

we have various focus operators like Gradient energy, Gaussian derivative, 3D gradi-

ent, Energy of Laplacian, Modified Laplacian, Histogram entropy etc. Generally, the

objective is to find an operator that behaves in a stable and robust manner over vari-

ety of images and for this purpose, the commonly used focus operator is sum modified

laplacian (SML).

SML

Mathematically, the SML focus operator on an image I is computed as:

O2I = |∂
2I
∂x2 |+ |∂

2I
∂y2 | (3.2)

We incorported SML module in GAN architecture. First we tried in supervised frame-

work. Given a blurred image, the generator output and clean image, we trained gener-

ator to minimize the loss between the SML value of clean image and generator output.

This helped generator to learn features of clean image. However, it is supervised as

availability of clean image of corresponding blurred input image is assumed in this

case. The results with different weights fo SML on deblurring is given below:

From Fig 3.2, it’s clear that SML module with GAN is able to perform deblurring. The

output images are sharp and visually appreciable. However, it suffer from problem of

color preservation. With too high weight or too low weight to SML cause severe color

problems in the ouput.
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Input Output Target

Figure 3.2: SML(weight 0.1) with GAN (row 1&2), SML (weight 100) with GAN
(row3 &4), SML (weight 0) with GAN (row 5 & 6).

Then, we tried without GAN. The same architecture was used, however the GAN loss

was neglected and only SML loss was considered. However, it didn’t work. The gener-

ator was producing some random images which had same SML value as of clean image

but it wasn’t learning the content of the image. Hence, we dropped the idea of using

SML alone.

We also tried to make the whole GAN + SML architecture unsupervised. For this we

computed the histogram for SML values of clean and blurred images. And found a

threshold over the SML values to categorize an image as clean or blur based on the

average SML. However, this also didn’t work as expected and we came up with a better

modules to solve the problem of unsupervised deblurring.

In short, we started with SML module in supervised framework. It was performing fine,

doing decent work at deblurring. However, since our final aim was to make the entire

architecture unsupervised, we moved to its unsupervised version. We further tried with

SML in GAN framework and VAE framework before finally arriving to the final net-

work consisting of a GAN module, a CNN module for reblurring and a gradient module

for matching the gradients.
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3.1.2 Final loss function

A straightforward way for unsupervised training is by using GAN. Given large unpaired

data {xi}M
i=1 and {yj}N

j=1 in both domains, train the parameters (θ) of the generator to map

from y→ x by minimizing the cost

Ladv =min
θ

1
N

∑
i

log(1−D(Gθ(yi))) (3.3)

Training with adversarial cost alone can result in color variations or missing finite de-

tails (like eyes and nose in faces or letters in case of texts) in the generated outputs but

the discriminator can still end up classifying it as real instead of generated data. This

is because discriminating between real and fake does not depend on these small details

(see Fig 3.3(b), the output of GAN alone wherein eyes and colors are not properly re-

constructed).

With the addition of the reblurring module, the generator is more constrained to match

the colors and textures of the generated data (see Fig 3.3(c)). The generated clean image

from generator x̂ = G(y) is again passed through the CNN module to obtain back the

blurred input. Hence the reblurring cost is given as

Lreblur = ||y−CNN(x̂)||22 (3.4)

Along with the above two costs, the gradients are forced to match at different scales

(s) using the gradient cost defined as

Lgrad = ∑
s∈{1,2,4,8,16}

λs|Oys↓−Ox̂s↓| (3.5)

where O denotes the gradient operator. A Laplacian operator


0 1 0

1 −4 1

0 1 0

 is used to

calculate the image gradients at different scales and λs values are set as [0.0001, 0.001,

0.01, 0.1, 1] for s = {1,2,4,8,16}, respectively. Adding the gradient cost removes un-

wanted ringing artifacts at the boundary of the image and smoothens the result. It is

evident from the figure that with inclusion of supporting cost functions corresponding

to reblurring and gradient, the output (Fig 3.3(d)) of the network becomes comparable
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(a) (b) (c) (d) (e)

Figure 3.3: Effect of different cost functions. (a) Input blurred image to the generator,
(b) result of unsupervised deblurring with just the GAN cost in eq. (3.3), (c)
result obtained by adding the reblurring cost in eq. (3.4) with (b), (d) result
obtained with gradient cost in eq. (3.5) with (c), and (e) the target output.

with the ground truth (GT) image (Fig 3.3(e)). Hence, we traine the generator network

with a combined cost function given by

LG = γadvLadv+γreblurLreblur+γgradLgrad (3.6)
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Figure 3.4: GAN network with SML module

3.2 Network Architecture

3.2.1 Tried Network Architecture

GAN with SML

Fig 3.4 presents the network architecture of GAN along with SML for supervised train-

ing. The clean image sml value is replaced by pre defined sml value classifying images

as clean and blur to train the model in unsupervised manner. The impacts and results

obtained by this network architecture is already discussed in section 3.1.1.

GAN with Gradient Module

As the GAN network with SML module didn’t perform upto expectation, we switched

to a gradient module. The idea as explained in section 3.1.2 was, as we scale down

blur images, the extent of blur reduces and the gradients of blur and clean image starts

to match. Hence, we introduced this gradient matching module which downscales the

GAN output and computes the gradient losses between the down scaled versions of

GAN output by factors of 1,2,4,8 and 16 and blur image down scaled by same factors

correspondingly. This helped in better learning of GAN for the task of deblurring.

Results are given in section 3.1.2

3.2.2 Final Network Architecture

We use similar architecture for generator and discriminator as proposed in (24), which

has shown good performance for blind-superresolution, with slight modification in the

feature layers. The network architecture of GAN with filter sizes and the number of

feature maps at each stage is provided in Table 3.1. Each convolution (conv) layer in the
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Table 3.1: The proposed generator and discriminator network architecture. conv ↓ indi-
cates convolution with stride 2 which in effect reduces the output dimension
by half and d/o refers to dropout.

Module Generator Discriminator
Layers conv conv conv conv conv conv conv conv conv conv conv↓ conv↓ conv↓ conv↓ conv ↓ fc

Kernel Size 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 -
Features 64 128 128 256 256 128 128 64 64 3 64 128 256 512 512 -

d/o (.2) d/o (.2)

Table 3.2: Reblurring CNN module architecture.

Module CNN
Layers conv conv conv conv conv tanh

Kernel Size 5 5 5 5 5
Features 64 64 64 64 3

generator is followed by batch-normalization and non-linearity using Rectified Linear

Unit (ReLU) except the last layer. A hyper tangential (Tanh) function is used at the last

layer to constrain the output to [−1,1]. The discriminator is a basic 6-layer model with

each convolution followed by a Leaky ReLU except the last fully connected (fc) layer

which is followed by a Sigmoid. Convolution with stride 2 is used in most layers to go

down in dimension and the details of filter size and feature maps are provided in Table

3.1. The reblurring CNN architecture is a simple 5-layer convolutional module provided

in Table 3.2. We operate the gradient module on-the-fly for each batch of data using

GPU based convolution with the Laplacian operator and downsampling depending on

the scaling factor with ‘nn’modules.

Torch is used for training and testing with the following options: ADAM optimizer

with momentum values β1 = 0.9 and β2 = 0.99, learning rate of 0.0005, batch-size of

32 and the network was trained with the total cost as provided in eq. (3.6). The weights

for different costs were initially set as γadv=1, γgrad=.001 and γreblur=0.01 to ensure

that the discriminator learns the clean data domain. After around 100K iterations the

adversarial cost was weighted down and the CNN cost was increased so that the clean

image produced corresponds in color and texture to the blurred input. Hence, we read-

justed the weights, as γadv=.01, γgrad=.1 and γreblur=1 and reduced the learning rate

to .0001 to continue training. Apart from these, to stabilize the GAN, during training,

we use drop-out of 0.2 at the fourth and fifth convolution layers of the generator and a

smooth labeling of real and fake labels following (38).
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3.3 Experiments

The experiments section is arranged as follows: (i) training and testing datasets, (ii)

comparison methods, (iii) quantitative results, metrics used and comparisons, and (iv)

visual results and comparisons.

3.3.1 Dataset Creation

For all classes, we use 128 × 128 sized images for training and testing. The dataset

generation for training and testing of each of these classes is explained below. Note that

we traind the network for each of these classes separately.

Camera Motion Generation: In the experiments, to generate the blur kernels re-

quired for synthesizing the training and test sets, we use the methodology described

by Chakrabarthi in (44). The blur kernels are generated by randomly sampling six

points in a limited size grid (13 × 13), fitting a spline through these points, and setting

the kernel values at each pixel on this spline to a value sampled from a Gaussian dis-

tribution with mean 1 and standard deviation of 0.5, then clipping these values to be

positive, and normalizing the kernel to have unit sum. We use a total of 100K kernels

for creating the dataset.

Face Dataset: We use the aligned CelebA face dataset (45) for creating the training

data. CelebA is a large-scale face attributes dataset of size 178 × 218 with more than

200K aligned celebrity images. 200K images were selected from it and resized to 128

× 128 and divided into two groups. Then one group is blurred.

Text Dataset: For text images, we used training dataset of Hradis̆ et al. (37) which con-

sists of images with both defocus blur generated by anti-aliased disc and motion blur

generated by random walk. They have provided a large collection of 66K text images

of size 300×300. We cropped the images to 128×128 and grouped into blur and clean

domains containing 33K images each.

Checkerboard Dataset: We take a clean checkerboard image of size 256 × 256 and

applied random rotations and translations to it and cropped out 128 ×128 (avoiding

boundary pixels) to generate a set of 100K clean images. Then, we partitioned the

clean images into two sets of 50K images each to ensure that there are no correspond-

ing pairs available during training. To one set synthetic motion blur is applied to create
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the blurred images by convolving with linear filters and the other set is kept as such.

3.3.2 Comparison Methods

The deblurring results are compared with three classes of approaches, (a) State-of-art

conventional deblurring approaches which use prior based optimization, (b) Super-

vised deep learning based end-to-end deblurring approaches, and (c) latest unsupervised

image-to-image translation approaches.

Conventional Single image deblurring: The comparison is done with the state-of-the-

art conventional deblurring works of Pan et al. (18) and Xu et al. (19) that are proposed

for natural images. In addition to this, for face deblurring, the deblurring work in (36)

is used that is designed specifically for faces. Similarly for text, comparison is done

with the method in (46) that uses prior on text for deblurring. Quantitative results are

provided by running their codes on created test dataset. Deep supervised deblurring:

In deep learning, for quantitative analysis on all classes,we do comparison with end-to-

end deblurring work of (10) and additionaly for text and checkerboard comparison with

(37). The work in (10) is a general dynamic scene deblurring framework and (37) is

proposed for text deblurring alone. All these methods use paired data for training and

hence are supervised. Besides these for visual comparisons on face deblurring, we also

compared with (30) on their images since the trained model was not available.

Unsupervised image-to-image translation: We train the cycleGAN (13) network for

deblurring task. We trained the network from scratch for each class separately and

quantitative and visual results are reported for each class in the following sections.

3.3.3 Quantitative Analysis

For quantitative analysis, the test sets are created for which the ground truth is available

to report the metrics mentioned below. For text dataset, we used the test set provided

in (37). And for checkerboard, we used synthetic motion parametrized with {l,θ}. For

faces, test sets are created using the kernels generated from (44).

Quantitative Metrics: We use PSNR (in dB), SSIM and Kernel Similarity Measure(KSM)

values for comparing the performance of different state of art deblurring algorithms on

all the classes. For texts, apart from these metrics, we used Character Error Rate (CER)
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to evaluate the performance of various deblurring algorithms.

CER (37) is defined as i+s+d
n , where, n is total number of characters in the image, i

is the minimal number of character insertions, s is the number of substitutions and d

is the number of deletions required to transform the reference text into its correct OCR

output. We use ABBYY FineReader 11 to recognize the text and its output formed the

basis for evaluating the mean CER. Smaller the CER value, better the performance of

the method.

Kernel Similarity Measure: In general practice, the deblurring efficiency is evaluated

through PSNR, SSIM metric or with visual comparisons. These commonly used mea-

sures (MSE) are biased towards smooth outputs due to 2-norm form. Hence, Hu et al.

(47) proposed KSM to evaluate deblurring in terms of the camera motion estimation ef-

ficiency. KSM effectively compare estimated kernels (K̂) evaluated from the deblurred

output with the ground truth (K). It is computed as S(K , K̂) = maxγρ(K , K̂ ,γ) where

ρ(.) is the normalized cross-correlation function given by (ρ(K , K̂ ,γ) =
∑
τ(K(τ). ˆK(τ+γ))

||K ||.|K̂ || )

and γ is the possible shift between the two kernels. The larger the value, the better the

kernel estimate and indirectly the better the deblurring performance.

Results and Comparisons: Table 3.3 summarizes the quantitative performance of var-

ious competitive methods along with proposed network results for all the three classes.

A set of 30 test images from each class is used to evaluate the performance reported

in the table. It is very clear from the results that the unsupervised network performs

on par with competitive conventional methods as well as supervised deep networks.

Conventional methods are highly influenced by parameter selection. The results could

perhaps be improved further by fine-tuning the parameters for each image but this is a

time-consuming task. Though deep networks perform well for class-specific data, their

training is limited by the lack of availability of large collections of paired data. It can

be seen from Table 3.3 that proposed network (without data pairing) is able to perform

equally well when compared to the class-specific supervised deep method (37) for text

deblurring. The network even outperform the dynamic deblurring network of (10) in

most cases. The cycleGAN (13)(though unsupervised) struggles to learn the blur and

clean data domains. It can be noted that, for checkerboard, cycleGAN performed better

than the unsupervised network in terms of PSNR and SSIM. This is because checker-

board had simple linear camera motion. Because blur varied for text and faces (general

camera motion) the performance of cycleGAN also deteriorated (refer to the reported
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values).
Table 3.3: Quantitative comparisons on face, text, and checkerboard datasets.

Face dataset Text dataset Checkerboard dataset
Method PSNR SSIM KSM PSNR SSIM KSM CER PSNR SSIM KSM

Conventional Pan et al. (46) - - - 16.19 0.7298 0.8628 0.4716 11.11 0.3701 0.7200
Methods Pan et al. (18) 19.38 0.7764 0.7436 17.48 0.7713 0.8403 0.3066 13.91 0.5618 0.7027

Xu et al. (19) 20.28 0.7928 0.7166 14.22 0.5417 0.7991 0.2918 8.18 0.2920 0.6034
Pan et al.(36) 22.36 0.8523 0.7197 - - - - - - -

Deep learning Nah et al. (10) 24.12 0.8755 0.6229 18.72 0.7521 0.7467 0.2643 18.07 0.6932 0.6497
Methods Hradis̆ et al. (37) - - - 24.28 0.9387 0.9435 0.0891 18.09 0.6788 0.6791

Unsupervised Zhu et al. (13) 8.93 0.4406 0.2932 13.19 0.5639 0.8363 0.2306 21.92 0.8264 0.6527
technique Proposed 22.80 0.8631 0.7536 23.22 0.8792 0.9376 0.126 20.61 0.8109 0.7801

Real Handshake Motion: In addition, to test the capabilities of the trained network

on real camera motion, we do testing for face and text classes using the real camera

motion dataset from (48). Camera motion provided in (48) contains 40 trajectories of

real camera shake by humans who were asked to take photographs with relatively long

exposure times. These camera motions are not confined to translations, but consist of

non-uniform blurs, originating from real camera trajectories. The efficiency of the pro-

posed network in deblurring images affected by these real motions is reported in Table

3.4. Since long exposure leads to heavy motion blur which is not within the scope of

this work, short segments of the recorded trajectory is used to introduce small blurs.

Table 3.4 shows the PSNR, SSIM between the clean and deblurred images and KSM

between the estimated and original motion. The handshake motion in (48) produces

space-varying blur in the image and hence a single kernel cannot be estimated for the

entire image. Patches (32× 32) from the image are used and space-invariant blur is

assumed over the patch to extract the kernel and KSM is computed. This was repeated

on multiple patches and an average KSM is reported for the entire image. The KSM,

PSNR, and SSIM are all high for both the classes signifying the effectiveness of pro-

posed network to deal with real camera motions.

3.3.4 Visual Comparisons

The visual results of the network and competitive methods are provided in Figs. 3.5 and

3.6. Fig. 3.5 contains the visual results for text and checkerboard data. Comparisons

Table 3.4: Quantitative comparisons on face and text on real handshake motion (48).

Class PSNR SSIM Kernel Similarity
in (dB) KSM

Text 21.92 0.8968 0.8811
Face 21.40 0.8533 0.7794
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are provided with (19; 18) and (46). The poor performance of these methods can be

attributed to the parameter setting. Most of these results have ringing artifacts. Now, to

analyse the performance of the network over supervised networks, we do comparison

with the dynamic deblurring network of (10) and class-specific deblurring work of (37).

From the visual results it can be clearly observed that even though the method in (10)

gave good PSNR in Table 3.3 it is visually not sharp and some residual blur remains

in the output. The supervised text deblurring network (37) result for checkerboard was

sharp but the squares were not properly reconstructed. The inefficiency of cycleGAN

to capture the clean and blur domains simultaneously is reflected in the text results. On

the contrary, the proposed unsupervised network produces sharp and legible (see the

patches of texts) results in both these classes. Proposed network outperforms existing

conventional methods and at the same time works on par with the text-specific deblur-

ring method of (37).

Visual results on face deblurring are provided in Fig. 3.6. Here too comparison with

I/o (19) (18) (46) (10)

(37) (13) Proposed GT

.
I/o (19) (18) (46) (10)

(37) (13) Proposed GT

Figure 3.5: Visual comparison on checkerboard deblurring. Input blurred image, de-
blurred results from conventional methods (19), (18) and (46), results from
supervised network in (10), (37) and unsupervised network (13), Proposed
network result and the GT clean image are provided in that order.

conventional methods (19; 18) as before and the exemplar-based face-specific deblur-

ring method of (36) is done. Though these results are visually similar to the GT, the

effect of ringing is high with default parameter settings. The results from deep learning

work of (10) is devoid of any ringing artifacts but are highly oversmoothened. Simi-
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I/o (19) (18) (36) (10) (13) Proposed GT

Figure 3.6: Visual comparisons on face deblurring.

larly, CycleGAN (10) fails to learn the domain properly and the results are quite differ-

ent from the GT. On the other-hand, results of proposed network are sharp and visually

appealing. While competitive methods failed to reconstruct the eyes of the lady in Fig.

3.6 (second row), proposed method reconstructs the eyes and produces sharp outputs

comparable to GT.

3.4 Conclusions

We propose a deep unsupervised network for deblurring class-specific data. The pro-

posed network does not require any supervision in the form of corresponding data pairs.

A reblurring cost and scale-space gradient cost are introduced that are used to self-

supervise the network to achieve stable results. The performance of proposed network

was found to be at par with existing supervised deep networks on both real and syn-

thetic datasets. The method paves the way for unsupervised image restoration, a domain

where availability of paired dataset is scarce.
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