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ABSTRACT

KEYWORDS: Target protection games, Dominance regions, Apollonius circle,

Kalman filter, zero-sum differential games, Bayesian Nash equi-

librium

The target guarding problem consists of two players, evader and pursuer. Evader

tries to reach a stationary target while avoiding pursuer and pursuer tries to obstruct

evader from reaching the target. Optimal strategies for the players have been studied

extensively in the literature. Pursuer may lose an otherwise winning game due to

lack of perfect data. In this work, we try to show how these strategies translate when

evader’s position and velocity are not precisely known to the pursuer. The problem is

formulated in game-theoretic framework and Bayesian Nash equilibrium strategies

of players are determined. After studying the game geometry, two Kalman observers

are designed to filter out the noise and their performances are analyzed. Also satis-

factory performance of these filters are validated through experiments conducted on

a developed in-house testbed. As the target guarding problem arises usually in build-

ing autonomous systems used in remote terrains, the measurement data is not always

reliable. This study is important to do post-processing of the obtained measurement

data before using it to make optimal decisions.
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CHAPTER 1

Introduction

Target guarding problem or asset defending problem often finds applications in bor-

der security systems where autonomous robots are employed to guard a secluded

territory of interest from invaders. In its basic form, first considered by Rufus Issacs,

the target guarding problem consists of two players, evader E (invader robot) and

pursuer P (guard robot). Evader tries to reach the target zone C while evading the

pursuer who tries to protect C by intercepting any intruder before reaching C . As the

objectives of both the players are opposite, the target guarding problem is a zero-sum

differential game. Pursuer wins the game if he successfully intercepts the evader be-

fore evader reaches C . Evader wins the game if he successfully evades pursuer and

reaches C .

Rufus Isaacs in his pioneering work on differential games [1], solved elementary

version of target guarding problem where both the players are assumed to have equal

speeds. If the target zone is closer to the evader, the optimal strategy of evader is

to employ pure-pursuit i.e., head towards target zone. Pursuer loses in such a game.

But pursuer is usually closer to the target zone he is protecting. The optimal strategy

of each of players when target zone is closer to pursuer is to head towards D, the

closest point to C on the perpendicular bisector of their positions (refer Figure 1.1).

Deviation from the optimal strategy causes the evader to be intercepted at farther

distance from C . Evader reaches a much closer region to C if pursuer chooses to

head towards any point other than D. Both players find the closest point to C on the

perpendicular bisector of their instantaneous positions and head towards it.

Optimal strategies of the evader and pursuer when their speeds are not equal are

presented in [2], [8]. Pontryagin’s maximum principle is used in [8] to obtain the
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Figure 1.1: Target guarding problem. (a). Both players play optimally. (b) Only P
plays optimally. (c) Only E plays optimally

optimal strategies of the players. In [2] as well, both players find the instantaneous

closest point to target on the capture locus and head towards it.

Optimal strategy of each player depends on the instantaneous position and speed

of other player. Decisions based on monitored actions of other player play a crucial

role in determining the strategies of the player especially when the criterion for the

capture is coincidence of both players. But sensor data is rarely associated with

negligible noise and so it cannot be relied upon to make decisions without post-

processing.

Various solutions to stochastic pursuit-evasion games have been proposed in lit-

erature but attempts to find strategies of players in stochastic version of TGP are

not known. As the two problems fundamentally differ in the roles of each of play-

ers, solutions derived for stochastic pursuit-evasion games cannot be directly applied

without studying game geometry. We attempt to provide a reliable strategy for the

pursuer to win the game when he receives noise-corrupted data of evader’s position

and speed.
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In this work, we assume evader always gets perfect data of the position of pur-

suer and plays optimally at every instant whereas pursuer gets noise corrupted data

of evader’s position and speed. An Extended Kalman Filter (EKF) is designed for the

dynamical model describing evader’s maneuver. EKF for the dynamical model of in-

terception point/capture point is also designed after studying the game geometry. The

performances of the two filters are juxtaposed and studied. The Kalman filters are

implemented on the generic in-house testbed developed and respective performances

are experimentally validated.

Probability density map of the interception point can be found if statistics of

sensor noise at every instant are known. Strategies that can be employed by pursuer

based on the knowledge of this probability density map are investigated and relevant

conclusions are drawn.

1.1 Contributions of the thesis

The key contributions of this thesis are:

• TGP is formulated in game-theoretic framework and pure strategy Bayesian
Nash equilbrium of the game is found.

• Two Kalman observers in an attempt to filter out the noise associated with the
sensor data of evader’s position, are designed.

• Probability density map of the interception point is found. Some strategies
pursuer can employ based on the knowledge of probability density map of
interception point are studied.

• The performance of the designed Kalman filters are validated experimentally
on the developed generic testbed.

1.2 Chapter wise Descriptions

The rest of the thesis is organized as follows: Chapter 2 is dedicated to study the ge-

ometry of game under consideration. In section 2.1, target guarding problem in deter-

ministic setting is explained. Sections 2.2 to 2.5 develop the prerequisites necessary
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to model the dynamics of evader’s maneuver and interception point. Game-theoretic

analysis of target guarding problem is presented in chapter 3. Kalman filter design

for the established models of evader’s maneuver and interception point is presented

in chapter 4. In section 4.1, a brief overview of EKF is given. Section 4.2 and 4.4

present two EKFs and corresponding simulation results. In chapter 5, some miscel-

laneous strategies are studied to check if pursuer can win the game without needing

to estimate evader’s position and speed. In chapter 6, experimental validation of the

one of the Kalman filters is presented. Testbed setup for conducting experiments is

briefly demonstrated in section 6.1. Section 6.2 presents the practical considerations

which are not considered in modelling the dynamics of players. We conclude in

section 6.4 with a brief on scope of future work.



CHAPTER 2

Game geometry

2.1 TGP in deterministic setting

The target guarding problem studied in [2] is explained and results are briefly re-

produced in this section. We assume both the players are zero-dimensional robots.

Target zone is also assumed to be a point. Constraints on turn angle rates of these

robots are not considered in evaluating the optimal strategies of the players. Both

players are constrained to move in a straight line.

Let evader E be at (xe , ye ), pursuer P be at (xp , yp ) and target T be at (xt , yt ).

Let ’k’ denotes speed of E to speed of P ratio ( ve
vp

). Assume k < 1 for the rest of the

analysis presented. The objective of E is to minimize his distance from the target at

the end of the game and that of P is to maximize the same. Dominance region, RE

(RP ) of E (P) is defined as the set of all points in R2 which are reachable by E (P)

faster than P (E). E wins the game by employing pure-pursuit strategy if T ∈ RE .

The criteria for the interception of E by P to happen are:

• T ∈ RP

• √
(x −xp )2 + (y − yp )2

vp
=

√
(x −xe )2 + (y − ye )2

ve
(2.1)

where (x, y) is the capture point Ic .

In other words, P intercepts E if P and E arrive at Ic simultaneously. Simplifying

(2.1), we get the equation (2.2) for capture locus.

C : (x −xc )2 + (y − yc )2 = R2 (2.2)
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where

xc =
xe −xp k2

1−k2
, yc =

ye − yp k2

1−k2
(2.3)

R =
√

x2
c + y2

c −
x2

e + y2
e

1−k2
+k2

x2
p + y2

p

1−k2
(2.4)

=
√( k

1−k2

)2((xe −xp )2 + (ye − yp )2)

The capture locus is an Apollonius circle C with center (xc , yc ) and radius R (refer

Fig .2.1). C is the set of all points in R2 where interception of E by P can happen

depending on the direction in which E moves.

Figure 2.1: Capture locus when both E and P are moving with different speeds

If T is in P’s dominance region, no matter in which direction E chooses to move,

he will be intercepted by P . So the best thing for E to do is to get himself intercepted

at the closest point I to T on C . Hence this is considered as optimal play for E .

Assuming E plays optimally, P not pursuing I implies that he will have to intercept

E at a closer point to T (provided P’s speed is more than E’s speed) thus increasing

the possibility of E winning the game. If P continues to play sub-optimally , T falls

out of his dominance region (refer Fig. 2.2). So pursuing I is the optimal play for P .

Hence the optimal play for both the players is to head to the point I (xI , yI ) which is
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closest to target T . In the rest of the thesis, by interception point we mean optimal

interception point.

-6 -4 -2 0 2 4 6 8
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4

6
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14

16

18

20

22

Evader

Pursuer

Centres of Apollonius

circles

Target

Figure 2.2: E plays optimally and P doesn’t. Eventually E employs pure pursuit
strategy when T falls in its dominance region

For P to head towards the optimal interception point, he has to have position and

speed data of E . But the measurement is always associated with noise and no exact

measurement in real time is possible. So if E’s position and velocity are not known

precisely, then P cannot know the exact point he has to head to, to intercept E . This

work tries to find the heading angles of P at each instant in order to intercept E at

nearest possible point to I . Analysis of the geometry of the game to get the essential

insights necessary to attempt the solution is done in the following sections.

Let the positions of the P , T be (xp , yp ), (xT , yT ) respectively. Let the speed of

the evader to the speed of the pursuer ratio, ve
vp

= k be a known quantity. For these

given coordinates of P , T and speed ratio k, let the function I f (x, y ,k) : R3 → R2

represents the interception point I when the evader is at (x, y). Let I∗f (x, y ,k) : R3 →

R2 represents the farthest point from T on the Apollonius circle C when the evader is

at (x, y). These notations are maintained in the rest of the analysis presented in this

thesis unless stated otherwise.
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2.2 Possible evader locations for a given evader’s speed

which result in same interception point

Let the position of evader be (xe , ye ). Let k be a known fixed quantity. Let Ce
(
xc , yc

)
and R be center and radius of Apollonius circle C . The expressions for center Ce

and radius Re are (2.3) and (2.4) respectively. The objective is to find the set of

all evader locations, F whose interception point is I . Note that T , I , and Ce lie

on a straight line. For I to be the interception point corresponding to (xe , ye ) i.e.,

I f (xe , ye ,k) = I (xI , yI ), it has to be the nearest point to T on C . In other words Ce

must lie on the line joining T and I . Alternatively,

yt − yI

xt −xI
= yc − yI

xc −xI
= M . (2.5)

Using the expressions (2.2) for xc , yc in (2.5) leads to

ye − yp k2

1−k2
− yt = M

[xe −xp k2

1−k2
−xt

]
, (2.6)

which simplifies to

L : ye −M xe = (yt −M xt )(1−k2) = (yI −M xI )(1−k2) (2.7)

Thus all the evader points that belong to the set F must lie on the straight line L

(2.7). However, the interception points of all points on L need not be I (refer Fig

2.3).

I has to lie on Apollonius circle of (xe , ye ).

Therefore,

(xI −xc )2 + (yI − yc )2 = R2 (2.8)
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Figure 2.3: Apollonius circles of elements of set S1

Substituting for xc , yc and R in (2.8) leads to

x2
I + y2

I −2xI xc −2yI yc =
k2(x2

p + y2
p )

1−k2
− x2

e + y2
e

1−k2

Further simplification leads to the following circle equation

Ce : (xe −xI )2 + (ye − yI )2 = k2((xp −xI )2 + (yp − yI )2) (2.9)

So, elements of the set F i.e., all evader locations which result in same interception

point satisfy (2.7) and (2.9).

As Ce is circle and L is a line, we get two solutions (except when L becomes

tangent to Ce). Let the solution set be S . Out of these two solutions, one solution is

always feasible. In-feasibility of the other solution depends on the location of T with

respect to the centers of Apollonius circles corresponding to two solutions.

Two cases arise

• Target lying in between centers (refer Fig. 2.4). In this case one of the Apollo-
nius circles encompasses target.

Let the set of all solutions whose dominance regions do not contain target be
S f .

S f = {(xe , ye ) | (xe , ye ) ∈ S, T 6∈ RE (xe , ye ,k), I f (xe , ye ,k) = (xI , yI )} (2.10)
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where RE (xe , ye ,k) is the dominance region of evader when evader speed to
pursuer speed ratio is k.

Let the set of all solutions whose dominance regions contain target be S1.

S1 = {(xe , ye ) | (xe , ye ) ∈ S, T ∈ RE (xe , ye ,k), I f (xe , ye ,k) = (xI , yI )} (2.11)

-50 0 50 100 150 200 250 300 350 400 450
-100

-50

0

50

100

150

200

250

Apollonius circles

I

EE2

P

1

TE2
C

C
E1

Figure 2.4: Case where interception point of (xe , ye ) is (xI , yI ), but as the Apollonius
circle encircles T , pursuer has already lost the game if the actual evader
position is E2

• Target not lying in between centers (refer Fig. 2.5). In this case, I becomes the
farthest point from target on the Apollonius circle corresponding to one of the
solutions. Hence the solution for which I∗f (xe , ye ,k) = (xI , yI ) is infeasible.

Let the set of all infeasible solutions be S2

S2 = {(xe , ye ) | (xe , ye ) ∈ S, I∗f (xe , ye ,k) = (xI , yI )} (2.12)

So solutions set is S f ∪S1 ∪S2. The number of elements in S is

n(S) = 2.

Let x ∈ S −S f

n(S1) =
{

1 i f x ∈ S1

0 i f x 6∈ S1

n(S2) =
{

1 i f x ∈ S2

0 i f x 6∈ S2

Note F = S f ∪S1 Hence when n(S1) = 1, there are two evader points in R2 that

result in same interception point, else only one point exists.
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Figure 2.5: Infeasible case (xe , ye ) whose corresponding interception point is not
(xI , yI )

2.3 Possible evader locations which result in same in-

terception point when evader’s speed is also a vari-

able

The objective is to find F set of all evader positions and their associated speeds which

result in same interception point.

F := {(xe , ye ,k)|I f (xe , ye ,k) = (xI , yI )}

When speed of evader is also unknown, the equation (2.6) becomes

( ye − yp k2

1−k2

)
−M

(xe −xp k2

1−k2

)
= yt −M xt (2.13)

Simplifying, we get

(ye −M xe − c) = (yp −M xp − c)k2 (2.14)

where c = yt −M xt
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The equation (2.9) remains the same.

Ce : (xe −xI )2 + (ye − yI )2 = k2((xp −xI )2 + (yp − yI )2) (2.15)

Eliminating k2 from the equations (2.14) and (2.15),

(xe −xI )2 + (ye − yI )2 = ye −M xe − c

yp −M xp − c
((xp −xI )2 + (yp − yI )2) (2.16)

Simplifying, we get the following circle equation.

Cm : (xe −xcm)2 + (ye − ycm)2 = R2
m (2.17)

Expressions for center (xcm , ycm) and radius Rm of circle Cm are given by (2.18),

(2.19) respectively.

xcm = xI − H M

2
, ycm = yI + H

2
(2.18)

R2
m = (xI −xcm)2 + (yI − ycm)2 = H 2(M 2 +1)

4
(2.19)

where

H = (xp −xI )2 + (yp − yI )2

(yp −M xp − c)

M = yt − yI

xt −xI

So set of all {(xe , ye ),k} which result in same interception point i.e., I f (xe , ye ,k) =

(xI , yI ) satisfy (2.17), (2.20). Let the solution set be S

k2 = (xe −xI )2 + (ye − yI )2

((xp −xI )2 + (yp − yI )2)
(2.20)
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We define the sets S f ,S1,S2 following the definitions of S f ,S1,S2 from section

(2.2). The set S is divided into these three sets to separate feasible solutions from

infeasible solutions.

Let the set of all solutions of S whose dominance regions do not contain target be

S f .

S f = {(xe , ye ,k) | (xe , ye ,k) ∈ S, T 6∈ RE (xe , ye ,k), I f (xe , ye ,k) = (xI , yI )} (2.21)

Let the set of all solutions whose dominance regions contain target be S1.

S1 = {(xe , ye ,k) | (xe , ye ,k) ∈ S, T ∈ RE (xe , ye ,k), I f (xe , ye ,k) = (xI , yI )} (2.22)

Let the set of all infeasible solutions be S2

S2 = {(xe , ye ,k) | (xe , ye ,k) ∈ S, I∗f (xe , ye ,k) = (xI , yI )} (2.23)

From these definitions of the sets S f ,S1,S2, it follows that F = S f ∪S1. If true

values of (xe , ye ,k) ∈S1, then pursuer loses the game as T 6∈ Rp (xe , ye ,k).

Assuming S1,S2 are non-empty sets,

S1 ∩S2 = {(xe , ye ,k)|I f (xe , ye ,k) = I∗f (xe , ye ,k) = (xI , yI )} (2.24)

This happens when center of Apollonius circle corresponding to (xe , ye ), (xc , yc ) =

(xT , yT ).
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2.4 Continuity of the function I f (xe , ye ,k) over the sets

S f ,S1,S2

Let us parameterize the solution set S as follows.

xe (θ) = xcm +Rm cosθ (2.25)

ye (θ) = ycm +Rm sinθ (2.26)

k(θ) =
√

(xI − (xcm +Rm cosθ))2 + (yI − (ycm +Rm sinθ))2√
(xI −xp )2 + (yI − yp )2

(2.27)

where xcm , ycm ,Rm are given by (2.18), (2.19)

xe (θ), ye (θ),k(θ) are continuous functions of θ and center (xc , yc ), radius R of

circle C (given by (2.3), (2.4)) are continuous functions of xe , ye ,k for k < 1. It

follows that xc , yc ,R are continuous functions of θ. The function I f (xe , ye ,k) is given

by (2.28)

Figure 2.6: Centers of Apollonius circles of the elements of set S lie on a straight line
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xI =
xe −xp k2

1−k2
±

√√√√√ ((xe −xp )2 + (ye − yp )2) k2

(1−k2)2

1+ (
yt (1−k2)−ye+yp k2

xt (1−k2)−xe+xp k2 )2

yI =
ye − yp k2

1−k2
±

√√√√√ ((xe −xp )2 + (ye − yp )2) k2

(1−k2)2

1+ (
xt (1−k2)−xe+xp k2

yt (1−k2)−ye+yp k2 )2

(2.28)

Note that ± in (2.28) is determined by the location of T .

AssumingS1,S2 are non-empty sets, it follows from their definitions that I f (xe , ye ,k)

is discontinuous at S1 ∩S2 where ′+′ in (2.28) changes to ′−′. Hence I f (xe , ye ,k) is

continuous function over the sets S f ,S1,S2.

2.5 Some important results

Result I: Pursuer coordinates (xp , yp ) is one of the two solutions of (2.7), (2.9) when

k = 1

Proof:

When k = 1, (2.9) becomes

(xe −xI )2 + (ye − yI )2 = (xp −xI )2 + (yp − yI )2 (2.29)

Pursuer coordinates (xp , yp ) trivially satisfies (2.29). (xp , yp ) also satisfies (2.7)

(refer Fig. 2.7). This means when k = 1 one solution is always (xp , yp )

Define the function De : R→R as

De (k) =
√

(xe −x∗
e )2 + (ye − y∗

e )2

(xe , ye ) and (x∗
e , y∗

e ) ∈ S for the given k and interception point (xI , yI ). So De (k)

represents the distance between two elements of solution set S. Note that the line
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Figure 2.7: Topology of game when k=1. EP ∥ T I

joining the two elements of S forms a chord of circle Cm (2.17).

Define θmax ,θmi n ,θth as

θmax = argmax
θ

k(θ)

θmi n = argmin
θ

k(θ)

θth = θmi n +θmax

2

where k(θ) is given by (2.27)

Let θmi n < θth < θmax . θmax − θmi n = 1800. So, the line passing through

(xe (θmax), ye (θmax)), (xe (θmi n), ye (θmi n)), Lθ is a diameter of the circle Cm (2.17)

and the slope of this line is −1
M (refer Appendix B). The line Lθ is perpendicular to

the line L (2.7).

It is to be noted that as k(θ) is a monotonically increasing function of θ when θ ∈

[θmi n ,θmax]. As k increases from k(θmi n) to k(θth), De (k(θ)) increases. De (k(θth))

is equal to the diameter of circle Cm . As k increases from k(θth) to k(θmax), De (k(θ))
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decreases.

Result II:

(a) If k(θ) ∈ [k(θth),k(θmax)] and De (k(θ)) =L , then

√
(xp −xe (θ))2 + (yp − ye (θ))2 <L (2.30)

(b) If k(θ) ∈ [k(θmi n),k(θth)] and De (k(θ)) =L , then

√
(xI −xe (θ))2 + (yI − ye (θ))2) <L (2.31)

where L is a positive constant and k(θ) < 1.

Proof: (a) (xp , yp ) ∈ S when k = 1 ⇒ (xp , yp ,1) ∈ S (from result I).

As θ ∈ [θth ,θmax], k(θ) < 1, De (k(θ)) < De (1).
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Figure 2.9: Relative positions of pursuer and evader on circle Cm when k(θth) < k <
k(θmax)

Let || _AB || be length of arc
_

AB . Note that length of chord AB , ||AB || = || _AB ||.

|| _
E1E2|| > || _

E1P ||,

|| _
E1E2|| > || _

E2P ||

⇒||E1E2|| > ||E1P ||,

||E1E2|| > ||E2P ||

(refer Fig. 2.9)

√
(xp −xe (θ))2 + (yp − ye (θ))2 < De (k(θ))

∴
√

(xp −xe (θ))2 + (yp − ye (θ))2 <L

(b) (xI , yI ) ∈ S for k(θmi n) = 0 as when k = 0, (2.27) becomes

(xe −xI )2 + (ye − yI )2 = 0 (2.32)

=⇒ (xI , yI ,0) ∈ S



Figure 2.10: Relative positions of pursuer and evader on circle Cm when k(θmi n) <
k < k(θth)

θ ∈ [θmi n ,θth], and 0 ≤ k(θ) < 1

|| _
E1E2|| > || _E1I ||,

|| _
E1E2|| > || _E2I ||

⇒||E1E2|| > ||E1I ||,

||E1E2|| > ||E2I ||

(refer Fig. 2.10)

√
(xI −xe (θ))2 + (yI − ye (θ))2 < De (k(θ))

∴
√

(xI −xe (θ))2 + (yI − ye (θ))2 <L
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CHAPTER 3

Game-theoretic analysis of Target Guarding Problem

3.1 Game formulation

Let target be at T . Let the closest point from T on the capture locus at time instant

’n’ be In .

Let each of the players senses the position of other player for every ∆T time.

Both the players are constrained to move on a straight line during this interval. The

actions sets of players, Sp ,Se are given by (3.1).

Si =
{
αi |αi ∈ [0,2πc ]

}
, i = {p,e} (3.1)

αi is the heading angle of player i . Denote utility functions for pursuer and evader

by Up ,Ue , defined in (3.2).

Up (sp , se ) = Di st (T , In+1)

Ue (se , sp ) =−Di st (T , In+1)

(3.2)

Given the positions of pursuer and evader at time instant ’n’, the utility of pur-

suer is the distance between target and interception point at time instant ’n +1’. As

Up (sp , se )+Ue (se , sp ) = 0,∀se ∈ Se ,∀sp ∈ Sp , TGP is a zero-sum game.

Let s∗p and s∗e denote the strategies of pursuer and evader when they pursue In .

Rufus Isaacs in his pioneering work, argued that when pursuer employs s∗p , there is

always an incentive to deviate from any se 6= s∗e . But the incentive to deviate from

se = s∗e is zero. Same is the case for pursuer. If evader is playing optimally, any
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strategy of pursuer, sp 6= s∗p is strictly dominated by s∗p . Mathematically,

Up (s∗p , s∗e ) >Up (sp , s∗e ) ∀sp ∈ Sp , sp 6= s∗p

Ue (s∗e , s∗p ) >Ue (se , s∗p ) ∀se ∈ Se , se 6= s∗e

(3.3)

This implies,

BRp (s∗e ) = s∗p

BRe (s∗p ) = s∗e

(3.4)

where BRi (s j ) = si , si ∈ Si , i , j ∈ {p,e}, j 6= i ,

Thus (s∗p , s∗e ) is the only pure strategy Nash equilibrium (PSNE) for this game.

Let the maxmin values of pursuer and evader be V1,V2 respectively.

Let ap ,be be set of all maxmin strategies of pursuer and evader respectively. The

strategy pair set {(a,b)|a ∈ ap ,b ∈ be } is defined as set of maxmin solutions.

The following theorem gives the relation between minmax, maxmin and Nash

equilibrium strategies for a zero-sum game.

Von-Neumann Maxmin theorem: A zero sum game has a PSNE if and only

if V1 = V2 . In this case, the pure strategy Nash equilibria are exactly the maxmin

solutions.

We will understand this theorem in the present context. Given pursuer’s strat-

egy, evader tries to play in such a way that Di st (T , In+1) ≤ Di st (T , In), trying to

minimize Up and maximize Ue . Pursuer tries to maximize the minimum possible

payoff.

ap = argmax
sp∈Sp

min
se∈Se

Up (sp , se ) = argmin
sp∈Sp

max
se∈Se

Ue (se , sp ) = s∗p

Up (ap , se ) = Di st (T , In) ≥Up (sp , se ),∀se ∈ Se ,∀sp ∈ Sp

(3.5)

Similar argument holds for evader. Given evader’s strategy, pursuer tries to play in
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such a way that Di st (T , In+1) ≥ Di st (T , In), trying to minimize Ue and maximize

Up . In such a situation, evader’s strategy must be equal to

ae = argmax
se∈Se

min
sp∈Sp

Ue (se , sp ) = argmin
se∈Se

max
sp∈Sp

Up (sp , se ) = s∗e

Ue (ae , sp ) = Di st (T , In) ≥Ue (se , sp ),∀se ∈ Se ,∀sp ∈ Sp

(3.6)

Hence Up (s∗p , s∗e ) =Ue (s∗e , s∗p ) = V1 = V2 = Di st (T , In).

As both players are rational and TGP is a simultaneous move game, we assume

evader always plays the strategy s∗e which is his minmax/maxmin strategy guarantee-

ing himself a minimum payoff of −Di st (T , In). Note that s∗e strictly dominates any

se ∈ Se , se 6= s∗e when pursuer plays s∗p (3.3).

3.1.1 TGP in Bayesian game-theoretic framework

Let evader gets perfect measurements of position and speed of pursuer, while pur-

suer only gets perfect measurement of speed of evader and is ambiguous about the

position of the evader. We will try to find the pure strategy Bayesian Nash equilibria

(PSBNE) of this incomplete information Target Guarding Problem (TGP).

Type set of evader, Θe = {E1,E2}. Type set of pursuer, Θp = {P }.

The action sets available to players are

Si =
{
αi |αi ∈ [0,2πc ]

}
, i = {p, (e1,e2)} (3.7)

The probability distribution over the evader type set be {x, y}, x, y ≥ 0 and x + y = 1.

Let Ii , (s(i )
p , s(i )

e ) be the interception point and PSNE when type of the evader is

Ei , where i = {1,2}.
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The utility for pursuer at NE is

Up (s(i )
p , s(i )

e ) = Di st (T , Ii )

Denote the utility of the pursuer when type of evader is Ei and strategy of pursuer

is α as u(i )
α .

Note that s(i )
p is the strictly dominant strategy for pursuer when type of the evader

is Ei . So the following relation holds

u(i )
α =Up (s(i )

p , s(i )
e ), i f α= s(i )

p

<Up (s(i )
p , s(i )

e ), i f α 6= s(i )
p

(3.8)

The game is represented in extensive form as shown in Figure 3.1

Figure 3.1: Extensive form representation of incomplete information TGP

The expected utility of pursuer as a function of α is given in (3.9).

EEi Up (Θp ,Θe ,α, s∗e (Ei )) = (x)u1
α+ (y)u2

α, (3.9)

The Bayesian Nash equilibrium strategy of pursuer maximizes the expected util-

ity (3.9). Hence, for a given probability distribution over the type set of evader, the
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PSBNE strategy, α∗ is given by (3.10)

α∗ = argmax
α∈Sp

EEi Up (Θp ,Θe ,α, s∗e (Ei )) (3.10)

where s∗e (Ei ) is evader’s NE strategy given evader is at Ei .

PSBNE of TGP is (α∗, s(1)
e , s(2)

e ).

3.1.2 Bayesian Nash equilibrium strategy of pursuer for larger

type set of evader

Consider the following utility function for the pursuer

Up (sp , se ) =


1 sp = s∗p

−1 sp 6= s∗p

(3.11)

(3.4) still holds for this utility function. So (s∗p , s∗e ) is PSNE.

The expected utility of pursuer as a function of α, given in (3.9) becomes

EEi Up (Θp ,Θe ,α, s∗e (Ei )) =



x − y α= s(1)
p

y −x α= s(2)
p

−1 other wi se

(3.12)

Hence PSBNE is 

(s(1)
p , s(1)

e , s(2)
e ) x > y

(s(2)
p , s(1)

e , s(2)
e ) x < y

(s(1)
p ∼ s(2)

p , s(1)
e , s(2)

e ) x = y

(3.13)

Let us extend the above analysis to the game with larger type set of evader. We

are interested in finding the PSBNE in this case.
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The type set of evader, Θe = {E1,E2, .....EN }.

Let the set of interception points corresponding to Θe be I . For a given constant

c j , define the set Lc j as

Lc j = {(xI , yI )| yI − yp

xI −xp
= c j , (xI , yI ) ∈I } (3.14)

where j = {1,2,3...m}.

Figure 3.2: Set of all interception points which can be pursued with same heading
angle have Up (sp , se ) = 1

Let the set of all positions of evader in Θe which result in (xI , yI ), (xI , yI ) ∈ Lc j

for a given c j be Eα j . Let E−α j =Θe −Eα j . Let number of elements in Eα j be n j

The best response of each of evaders belonging to the set Eα j is to pursue intercep-

tion point (xI , yI ) ∈ Lc j . Let s(xi
j ) be the best response for xi

j ∈ Eα j , i = {1,2,3...n j },

j = {1,2,3...m}

For evader positions belonging to set Eα j , the best response of pursuer is to use

the strategy α j = tan−1 c j .

The utilities of the pursuer given the strategies of evader are shown in above table.

Up (α j , s(xi
j )) = 1

Up (α j , s(xi
k )) =−1

(3.15)
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Figure 3.3: Extensive form representation of incomplete information TGP

where α j = BR(s(xi
j )), k 6= j , k, j ∈ {1,2,3...m}, xi

j ∈ {x1
j , x2

j , x3
j ...x

n j

j }

The expected utility of the pursuer when he employs the strategy α is

EEi Up (Θp ,Θe ,α j , s∗e (Ei )) =
n j∑

i=1
F (xi

j )Up (α j , s(xi
j ))+

m∑
l=1
l 6= j

n j∑
i=1

F (xi
l )Up (α j , s(xi

l ))

(3.16)

where F (x) is the probability distribution over the type set Θe . Substituting (3.15)

in (3.16), (3.16) becomes

EEi Up (Θp ,Θp ,α j , s∗e (Ei )) =
n j∑

i=1
F (xi

j )−
m∑

l=1
l 6= j

n j∑
i=1

F (xi
l ) (3.17)

Note that
∑n j

i=1 F (xi
j ) is the probability that pursuer’s best response to s(xi

j ) is

heading angle α j . Denote
∑n j

i=1 F (xi
j ) by pr (α j ).

Equation (3.16) becomes

EEi Up (Θp ,Θp ,α j , s∗e (Ei )) = pr (α j )−
m∑

l=1
l 6= j

pr (αl ) (3.18)
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PSBNE strategy of pursuer, α∗ satisfies the following inequalities.

EEi Up (Θp ,Θp ,α∗, s∗e (Ei )) > EEi Up (Θp ,Θp ,α j , s∗e (Ei )), ∀α j 6=α∗ (3.19)

Solving inequalities of (3.19), we get

pr (α∗) > pr (α j ), ∀α j 6=α∗ (3.20)

Hence PSBNE for incomplete information TGP is given by (α∗, (s∗e (E1), s∗e (E2), ...s∗e (EN ))),

where α∗ is most probable heading angle.

Let us find the PSBNE of the TGP with (3.2) as the utility function of the pursuer.

Before we proceed, we have to partition the set Eα j as follows

E Ik
α j

= {y i
j (k)|I f (y i

j (k)) = I k
j }, i ∈ {1,2,3....N k

j }, k ∈ {1,2,3.....q j }

q j⋃
k=1

E Ik
α j

= Eα j

m⋃
j=1

Eα j =Θe

(3.21)

where I f (y i
j (k)) = I k

j is the interception point when evader is at y i
j (k), i ∈ {1,2,3....N k

j }.

E Ik
α j

is set of all evader positions whose interception point is I k
j , I k

j ∈ Lc j . Let the

best response of the evader at y i
j (k) be s(y i

j (k)). The payoff for the pursuer when his

strategy is BR(s(y i
j (k))), is

Up (α j , s(y i
j (k))) = Di st (T , I k

j ) (3.22)

When evader is at y i
j (k) and his strategy is s(y i

j (k)), αl , l 6= j is sub-optimal strategy
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of pursuer. Then pursuer’s payoff is Up (α j , s(y i
l (k))) 6= Di st (T , I k

l ), k ∈ {1,2,3....q j }.

EEi Up (Θp ,Θp ,α j , s∗e (Ei )) =
n j∑

i=1
F (xi

j )Up (α j , s(xi
j ))+

m∑
l=1
l 6= j

n j∑
i=1

F (xi
l )Up (α j , s(xi

l ))

=
q j∑

k=1

N
j

k∑
i=1

F (y i
j (k))Up (α j , s(y i

j (k)))+
m∑

l=1
l 6= j

q j∑
k=1

N l
k∑

i=1
F (y i

l (k))Up (α j , s(y i
l (k)))

(3.23)

Note that
∑N

j
k

i=1 F (y i
j (k)) is sum of probabilities of all evaders being at y i

j (k).

By our notation, all these evader positions result in same interception point I k
j . So∑N

j
k

i=1 F (y i
j (k)) is equal to the probability of interception point being at I k

j . Represent

the probability of interception point being at I k
j as pr (I k

j ). Equation (3.23) becomes

EEi Up (Θp ,Θp ,α j , s∗e (Ei )) =
q j∑

k=1
pr (I k

j )Up (α j , s(y i
j (k)))+

m∑
l=1
l 6= j

q j∑
k=1

pr (I k
l )Up (α j , s(y i

l (k)))

(3.24)

Substitution of (3.22) in (3.24) results in

EEi Up (Θp ,Θe ,α j , s∗e (Ei )) =
q j∑

k=1
pr (I k

j )Di st (T , I k
j )+

m∑
l=1
l 6= j

q j∑
k=1

pr (I k
l )Up (α j , s(y i

l (k)))

(3.25)

The PSBNE strategy of the pursuer α∗ is the strategy that maximizes expected

utility (3.25).

α∗ = argmax
α j∈Sp

EEi Up (Θp ,Θe ,α j , s∗e (Ei )) (3.26)

where Sp is the action set of pursuer given in (3.1).

Hence PSBNE of TGP is (α∗, (s∗e (E1), s∗e (E2), s∗e (E3).....s∗e (EN ))).



CHAPTER 4

Kalman filter for TGP

4.1 A brief introduction

Kalman filtering is a clever technique to filter the noise present in the measurements

of states using the dynamical model of the system and Bayesian updating. The esti-

mation algorithm is a two step process. In the first step, it estimates the current state

variables and their uncertainties using the state space model of the system. In the

second step, it finds the posterior probability distributions of the states given prior

probability distributions, using the noise corrupted measurements and corrects the

estimates of mean values of the states. Kalman filter is a recursive linear unbiased

estimator and gives optimal results for linear systems when process noises and mea-

surement noises are independent, mean zero Gaussian random variables.

For non-linear systems, extensions of Kalman filtering algorithm have been de-

veloped. One such extension is extended Kalman filter (EKF) which linearizes the

system at the current estimates of the states and given inputs. As we will see that the

dynamical system governing the evader’s kinematics is a non-linear system, we em-

ploy EKF algorithm to obtain better estimates of evader’s position and speed. Other

extensions include Unscented Kalman filter (UKF) and particle filters. UKF calcu-

lates linearized approximation of the states based on linearization values of function

at selected points. Particle filters are nonparametric implementations of Bayes filters

(unlike Kalman filter which estimates only the mean and variance of the random vari-

ables with linear dynamics) and correct the estimates based on the measurements.

Instead of representing the distribution by a parametric form, particle filters repre-

sent a distribution by set of samples drawn from this distribution. These filters are
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well-suited for non-linear systems because of their efficient algorithms, but are com-

putationally intensive. As a first step in designing an estimator to address the filtering

problem, we design EKF and analyse its performance.

4.1.1 EKF algorithm

Consider the system with model

xk = f (xk−1,uk )+ vk

zk = h(xk )+wk

(4.1)

u, z are input and output of the system. vk , wk are mean zero independent Gaus-

sian distributed process noise and measurement noise. Let the process error covari-

ance matrix be Q and measurement error covariance matrix be R. If the model per-

fectly describes the system, Q is zero. Q usually models the modeling, linearization

and discretization errors. Matrix Q is usually treated as the tuning parameter and is

used to exact best performance from Extended Kalman filter.

Kalman observer model:

x̂k|k−1 = f (x̂k−1|k−1,uk ) (4.2)

Linearization of model and output is done at current estimates and applied input.

An = ∂ f

∂x

∣∣∣
x̂k−1|k−1,uk

Cn = ∂h

∂x

∣∣∣
x̂k|k−1

(4.3)

If initial state estimates are not available, they can be back calculated from output

if no. of outputs and no. of states are equal. The initial P matrix,P0|0 reflects how

close the initial estimates of states are to the actual state values. P matrix conveys to



31

the Kalman observer how important are the initial estimates in estimating the state

variables and so is initialized accordingly.

To design an observer, the system must be observable. A system is said to be

locally weakly observable if the observability matrix On , of the pair An ,Cn is non-

singular. The full-rank condition on On is only sufficient to declare that system is

locally weakly observable. If in case On is rank-deficient, EKF can only estimate

states which are observable.

Algorithm 1 Kalman filter iteration process

Initialization:
X̂0|0 = h−1Z0,
loop:
Prediction:
X̂n|n−1 = f (X̂n−1|n−1,un)
Pn|n−1 = AnPn−1|n−1 AT

n +Q
Correction:
Measurement residual: ỹn = Zn −h(X̂n|n−1)
Near-optimal Kalman gain: K̂n = Pn|n−1C T (C Pn|n−1C T +R)−1

X̂n|n = X̂n|n−1 +Kn ỹn

Pn|n = (I −KnC T )Pn|n−1

goto loop.
close;

The algorithm of EKF is shown in Alg. 1. The computational ease of the Kalman

filter is because of the brevity of its algorithm which allows for its use in many real

world estimation problems.

4.2 Extended Kalman Filter with evader coordinates

and k as states

Pursuer and evader move in a straight line toward the interception point which re-

mains stationary if both players play optimally. As pursuer doesn’t have accurate

data to calculate (xIn , yIn ) his path will be suboptimal. Every instant evader senses

the current location of pursuer and moves toward instantaneous interception point.
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The difference equations governing evader’s kinematics are

xen+1 = xen + (knVp∆T )cosθen +η (4.4)

yen+1 = yen + (knVp∆T )sinθen +α (4.5)

kn+1 = kn +β (4.6)

θp = t an−1
(

yIn − ypn

xIn −xpn

)
θe = t an−1

(
yIn − yen

xIn −xen

)

where k = Ve
Vp

. Input to the system, (xpn , ypn ) is the position of the pursuer. θen is

heading angle of evader and (xIn , yIn ) is interception point pursued by evader at time

instant ’n’. The expressions for xIn , yIn can be obtained by solving the line passing

through target, (xT , yT ) and center of Apollonius circle (xc , yc ) (4.7), and Apollonius

circle (2.2).

y − yT = M(x −xT ) (4.7)

xIn = xcn + sg n(xT −xcn )

√√√√ k2
n

(1−k2
n )2 ((xen −xpn )2 + (yen − ypn )2)

1+M 2
(4.8)

yIn = yT +M(xIn −xT ) (4.9)

sg n(xT − xcn ), sign function, distinguishes between closest point and farthest point

of the two solutions depending on the relative position of xcn with respect to xT

xcn = xen −xpn k2
n

1−k2
n

ycn = yen − ypn k2
n

1−k2
n

M = yT − ycn

xT −xcn

η,α,β are assumed to be white noise with process error covariance matrix Q to ac-

count for discretization errors. As the speed ratio is constant, we could let β to be

zero.But considering β with very small value of variance, gives us the flexibility to
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tune Q matrix in order to improve the performance of EKF [7]. There’s no input

noise as the input to the system, pursuer’s coordinates, is known to both evader and

pursuer.

Output

Pursuer measures evader’s location (xe , ye ) and speed ratio 1 k inaccurately.

So, the output is

Zn =C Xn +


ηm

αm

βm


where

Xn =


xen

yen

ken


C is identity matrix of order 3. ηm ,αm ,βm are assumed to be i.i.d noise with

measurement error covariance matrix R.

R =



σ2
x 0 0

0 σ2
y 0

0 0 σ2
k


(4.10)

Kalman observer model

G := x̂en+1|n = x̂en|n + (k̂en|n Vp∆T )cos θ̂en (4.11)

1Pursuer measures speed of evader. As speed ratio, k = ve
vp

is one of the states and all the ex-
pressions we have been using depend on k, it is convenient to assume that pursuer measures speed
ratio.
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H := ŷen+1|n = ŷen|n + (k̂en|n Vp∆T )sin θ̂en (4.12)

L := k̂n+1|n = k̂n|n (4.13)

where

θ̂en = tan−1
(

ŷen|n − ŷIn

x̂en|n − x̂In

)

x̂In = x̂en|n −xpn k̂2
n

1− k̂2
n

±

√√√√ k̂2
n

(1−k̂2
n )2 ((x̂en|n −xpn )2 + (ŷen|n − ypn )2)

1+ M̂ 2
, (4.14)

ŷIn = yT + M̂(x̂In −xT ) (4.15)

M̂ = yT (1− k̂2
n)− (ŷen|n − ypn k̂2

n)

xT (1− k̂2
n)− (x̂en|n −xpn k̂2

n)
(4.16)

Prediction error covariance matrix, Pn+1|n = AnPn|n AT
n +Q

where

An =



∂G
∂xe

∂G
∂ye

∂G
∂ke

∂H
∂xe

∂H
∂ye

∂H
∂ke

∂V
∂xe

∂V
∂ye

∂V
∂ke


=



∂G
∂xe

∂G
∂ye

∂G
∂ke

∂H
∂xe

∂H
∂ye

∂H
∂ke

0 0 1


(x̂en|n ,ŷen|n ,k̂en|n ,xpn ,ypn )

(4.17)

The linearization operation is performed after substituting (4.8), (4.9) in (4.4) and

(4.5).

4.2.1 Condition to check if evader has won the game

We are interested in finding the set of all evader locations for a constant evader speed,

V which result in same interception point.

For target to be the interception point, it has to satisfy the equation of Apollonius
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circle (2.2). So (4.18) follows.

(xT −xc )2 + (yT − yc )2 = R2
c (4.18)

Substituting expressions for center and radius of Apollonius circle, we get the fol-

lowing the circle equation.

(xe −xT )2 + (ye − yT )2 = k2((xpn −xT )2 + (ypn − yT )2) (4.19)

where k is ratio of speeds of evader and pursuer. Denote the radius of the circle by

RTn .

So the locus of all evader positions (xe , ye ) for which target is the interception

point is a circle with center (xT , yT ). So if distance between target and evader is

smaller than RTn then target will be in the dominance region of evader.

Kalman filter produces the estimates of mean and state error covariance values

of xe , ye ,V . Using the estimated speed of evader, V , the set of all evader positions

whose interception point is target can be found. Denote the circle by CV̂

Consider a rectangle R with length and breadth equal to 6σ̂x ,6σ̂y . Let the center

of this rectangle be at x̂en|n , ŷen|n (refer 4.18).

The following condition is used to check if target is in evader’s dominance region

√
(3σ̂x)2 + (3σ̂y )2 +RTn ≤

√
(xT − x̂en|n )2 + (yT − ŷen|n )2 (4.20)

This condition means that if R and CV̂ intersect, then there is non-zero probabil-

ity that pursuer has lost the game. As the game progresses, σ̂x , σ̂y converge to zero

and estimates of to the actual speed of evader, we can check this condition to find if

evader has won the game. Evader wins the game if R is inside CV̂ .
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Figure 4.1: If evader is inside the circle CV̂ then target is in evader’s dominance re-
gion

Figure 4.2: Flowchart showing the decision making algorithm of pursuer
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Figure 4.3: Flowchart showing the decision making algorithm of evader

4.2.2 Simulation results:

As the system is non-linear, it is through simulations alone, the performance of the

Kalman observer can be analysed. Also as the location of target is independent of

pursuer’s location, pursuer may fail to protect the target because of his sub-optimal

play if he is not close to the target. Simulation study will help put approximate

bounds on the distance of evader to the target at the beginning of the game for given

positions of pursuer and target considering the sub-optimal play of pursuer.

Simulation results are presented for two different sets of measurement and pro-

cess noise variance values. The measure of optimality of pursuer’s path when mea-

surements are corrupted by noise is the distance between target and interception point

when pursuer reaches within specified distance D from the evader.

Auto-covariances of states xe , ye reached non-zero steady state values approxi-

mately after n = 7. This implies Kalman filter was not able to improve the estimates

of these states using measurements after n = 7 ( refer 4.6a and 4.6b). However, the

auto-covariance of the state k settled only after n = 15 which means Kalman filter

improved its estimate of k using measurements until n = 15 and so the estimate of k
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Figure 4.4: Pursuer won in both cases as he reached within a pre-specified distance
from evader. Distance between target and final interception point is ap-
proximately equal to the distance between target and initial interception
point
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Figure 4.5: Estimates of position of evader doesn’t converge onto the true position
because of non-zero process noise.

converged to true value in both cases 4.5a, 4.5b.

Paths followed by pursuer and evader are shown in figures 4.3a and 4.3b. Es-

timates of evaders position during the game given by the Kalman filter for both the

values of variances are shown in figures 4.4a and 4.4b.Estimates of position of evader

doesn’t converge onto the true position as the simulations are run with non-zero pro-

cess noise. If process noise is zero, the error between true position and estimate of

evader’s position converges to zero. Note that process noise is assumed in order to

account for the manueverability limitations of the evader.

Plot 4.7 presents a game where target is close to initial interception point. By the

time pursuer is within D units distance from evader, target is in evader’s dominance

region. Evader wins the game. This is because pursuer’s initial position is far from

the target and so pursuer, owing to his sub-optimal play, couldn’t get enough time to

protect the target. When measurement data is associated with noise, pursuer wins the

game only if he is close to the target at the beginning of the game.
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Figure 4.6: Plots of measured, estimated, true speed
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Figure 4.7: Auto-covariances of states
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Figure 4.8: Evader wins the game as initial position of pursuer is far from the target.

4.3 Only one feasible evader position results in given

interception point as long as game is not won by

evader

Let us assume the following distribution for the random variables xe , ye ,k.

f (x) =


Kx

2πσ2
x

exp[−(x−µx )p
2σ2

x

] |x| É 3σx

0 |x| Ê 3σx

(4.21)

where x ∈ {xe , ye ,k} and Kx is the scaling factor such that
∫ +∞
−∞ f (x)d x = 1. µx is the

true value of the random variable x i.e., we assume Gaussian noise introduced by the

sensor has zero mean.

Let I f (µxe ,µye ,µk ) = (xI , yI ). For the speed ratio µk and interception point (xI , yI ),

one of the elements of solution set S is (µxe ,µye ). Let the other solution be (x∗
e , y∗

e ).

(x∗
e , y∗

e ) ∈ S1 ∪S2. As long as evader hasn’t won the game, any solution belonging to

the set S2 is infeasible because the interception point of element belonging to S2 is

not I f (µxe ,µye ,µk ) but I∗f (µxe ,µye ,µk ). So we assume (x∗
e , y∗

e ) ∈ S1

If µxe ,µye and (x∗
e , y∗

e ) are probable, then

√
(µxe −x∗

e )2 +µye − y∗
e )2 ≤ 3

√
(σ2

xe
+σ2

ye
) (4.22)
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According to Result II, depending on value of µk , (4.22) implies one of the following

inequalities. √
(µxe −xp )2 +µye − yp )2 < 3

√
(σ2

xe
+σ2

ye
) (4.23)

√
(µxe −xI )2 + (µye − yI )2 < 3

√
(σ2

xe
+ (σ2

ye
) (4.24)

Inequality (4.23) is implied when µk ∈ [k(θth),k(θmax)]. Inequality (4.24) is implied

when µk ∈ [k(θmi n),k(θth)].

This means by the time two probable evader locations result in same interception

point, the pursuer is close to evader (in which case the game is considered won by

pursuer) or evader is close to interception point. If true location of evader is (x∗
e , y∗

e ),

then evader is going to pursue target. But as long as there is non-zero probability that

evader belongs to S f , pursuer can try to intercept evader at the interception point.

Hence for the rest of the analysis, we assume that only one probable evader lo-

cation results in the given interception point for a given speed ratio. It is important

to note that this assumption only fails when target belongs to dominance region of

evader.

Appendix C proves that the feasible and probable evader location is the one that

is farthest from the target. So let us define the function FE : R3 →R2 as

FE (xI , yI ,k) =

Ex(xI , yI ,k)

Ey (xI , yI ,k)

= (xe , ye )

where (xe , ye ) is the feasible and probable evader location resulting in (xI , yI ), given

k. The function FE
2 is the solution of (2.7), (2.9) that is farthest from the target.

2As the expressions of this function are highly complex and give no insight into the problem, they
are omitted. These expressions can be derived by solving (2.7) and (2.9) and taking the solution that
is farthest from target (ref Appendix C)
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4.4 Kalman filter with interception point coordinates

and speed ratio, k as states

xIn = fx(xe , ye , xp , yp ) = xen −xpn k2
n

1−k2
n

±

√√√√ k2
n

(1−k2
n )2 ((xen −xpn )2 + (yen − ypn )2)

1+M 2
, ,

(4.25)

yIn = fy (xe , ye , xp , yp ) = yT +M(xIn −xT ) (4.26)

where

M = yT (1−k2
n)− (yen − ypn k2

n)

xT (1−k2
n)− (xen −xpn k2

n)
(4.27)

4.4.1 Difference equations governing interception point dynam-

ics

In the deterministic problem, if both evader and pursuer employ their respective op-

timal strategies, then interception point is stationary.

d xI

d t
= ∂ fx

∂xe

d xe

d t
+ ∂ fx

∂ye

d ye

d t
+ ∂ fx

∂xp

d xp

d t
+ ∂ fx

∂yp

d yp

d t
= 0 (4.28)

⇒ xIn+1 =xIn +
∂ fx

∂xe
(xen+1 −xen )+ ∂ fx

∂ye
(yen+1 − yen )

+ ∂ fx

∂xp
(xpn+1 −xpn )+ ∂ fx

∂yp
(ypn+1 − ypn ) = xIn

(4.29)

d yI

d t
= ∂ fy

∂xe

d xe

d t
+ ∂ fy

∂ye

d ye

d t
+ ∂ fy

∂xp

d xp

d t
+ ∂ fy

∂yp

d yp

d t
= 0 (4.30)

⇒ yIn+1 =yIn +
∂ fy

∂xe
(xen+1 −xen )+ ∂ fy

∂ye
(yen+1 − yen )

+ ∂ fy

∂xp
(xpn+1 −xpn )+ ∂ fy

∂yp
(ypn+1 − ypn ) = yIn

(4.31)

The assumption is that evader plays optimally at every instant, but pursuer plays

sub-optimally. As a result, interception point will no longer be stationary.

Let pursuer’s coordinates at t = n +1 be (an ,bn). Substituting (an ,bn) in equa-
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tions (4.29) and (4.31) leads to

xIn+1 =xIn +
∂ fx

∂xe
(xen+1 −xen )+ ∂ fx

∂ye
(yen+1 − yen )

+ ∂ fx

∂xp
(an −xpn )+ ∂ fx

∂yp
(bn − ypn ) 6= xIn

(4.32)

yIn+1 =yIn +
∂ fy

∂xe
(xen+1 −xen )+ ∂ fy

∂ye
(yen+1 − yen )

+ ∂ fy

∂xp
(an −xpn )+ ∂ fy

∂yp
(bn − ypn ) 6= yIn

(4.33)

(4.32)-(4.29) ⇒

xIn+1 = xIn +
∂ fx

∂xp
(an −xpn+1 )+ ∂ fx

∂yp
(bn − ypn+1 ) (4.34)

(4.33)-(4.31) ⇒

yIn+1 = yIn +
∂ fy

∂xp
(an −xpn+1 )+ ∂ fy

∂yp
(bn − ypn+1 ) (4.35)

where

xpn+1 = xpn + (Vp∆T )cos
(

tan−1(
ypn − yIn

xpn −xIn

)
)

(4.36)

ypn+1 = ypn + (Vp∆T )sin
(

tan−1(
ypn − yIn

xpn −xIn

)
)

(4.37)

xen , yen in ∂ fx
∂xp

, ∂ fx
∂yp

,
∂ fy

∂xp
,
∂ fy

∂yp
are replaced by the expressions Ex ,Ey .

xen

yen

= FE (xIn , yIn ,kn) (4.38)

Note that if other evader location,(x∗
en

, y∗
en

) (i.e., solution belonging to set S1 for

speed ratio kn and interception point (xIn , yIn )) is probable and is the actual evader

location, then evader has already won the game. So the substitution of (4.38) in

(4.34), (4.35) is valid as long as target doesn’t fall in the evader’s dominance region.

Given the position of pursuer at t3 = n +1, (4.34) and (4.35) predict interception

3t refers to time instant
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point at t = n +1 instant. Note that (an ,bn) is where the pursuer will be at t = n +1.

At t = n +1, (an ,bn) is used by evader to calculate (xIn+1 , yIn+1 ).

Now that we have the difference equations governing interception point dynam-

ics, we can use this model to design a Kalman observer for the system. Let the states

of the model be xI , yI and k. Define the function G , H , V as follows.

G(xI , yI , an ,bn , xpn , ypn ,kn) : = xIn+1

= xIn +
∂ fx

∂xp
(an −xpn+1 )+ ∂ fx

∂yp
(bn − ypn+1 ))

H(xI , yI , an ,bn , xpn , ypn ,kn) : = yIn+1

= yIn +
∂ fy

∂xp
(an −xpn+1 )+ ∂ fy

∂yp
(bn − ypn+1 )

V (xI , yI , an ,bn , xpn , ypn ,kn) := kn+1 = kn

as speeds of evader and pursuer are assumed to be constant.

xpn+1 and ypn+1 are according to equations (4.36) and (4.37) respectively.

Figure 4.9: ∆xp and ∆yp
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
xIn+1

yIn+1

kn+1

=


G(xI , yI , an ,bn , xen , yen , xpn , ypn ,k)

H(xI , yI , an ,bn , xen , yen , xpn , ypn ,k)

V (xI , yI , an ,bn , xen , yen , xpn , ypn ,k)

+


η

α

β


where η,α,β are assumed to be white noise in corresponding states with process

error covariance matrix Q, to account for discretization errors.

xIn , yIn ,kn are the states and an ,bn , xpn , ypn are the inputs to the system. xen , yen

are functions of states and inputs.

The dynamics of interception point depends on the pursuer actions which in turn

depend on how good the estimates of the interception point are. So the model and

observer are intertwined.

4.4.2 Kalman observer model

The model used by the Kalman observer in the estimation process is

x̂In+1|n = x̂In|n +
ˆ∂ fx

∂xp
(an − x̂pn+1 )+

ˆ∂ fx

∂yp
(bn − ŷpn+1 )) (4.39)

ŷIn+1|n = ŷIn|n +
ˆ∂ fy

∂xp
(an − x̂pn+1 )+

ˆ∂ fy

∂yp
(bn − ŷpn+1 ) (4.40)

where

x̂pn+1 = xpn + (Vp∆T )cos
(

tan−1(
ypn − ŷIn|n

xpn − x̂In|n
)
)

(4.41)

ŷpn+1 = ypn + (Vp∆T )sin
(

tan−1(
ypn − ŷIn|n

xpn − x̂In|n
)
)

(4.42)

In the Kalman observer, because the states x̂In , ŷIn are the estimates of interception

point, x̂In , ŷIn is pursuer by pursuer. Pursuer reaches the estimate of (xpn+1 , ypn+1 ),

(x̂pn+1 , ŷpn+1 ) at t = n +1 and so (an ,bn) by definition is equal to (x̂pn+1 , ŷpn+1 ).



Substituting (an ,bn) = (x̂pn+1 , ŷpn+1 ) in (4.39), (4.40), we get

x̂In+1|n = x̂In|n

ŷIn+1|n = ŷIn|n

(4.43)

As the input (an ,bn) is a function of states and other inputs in Kalman observer

model, (an ,bn) linearises the system. But in the actual system this is not the case.

The sub-optimal play of the pursuer is the cause of dynamics in interception point.

But according to Kalman filter, at each step, pursuer is playing optimally and so

prediction step in Kalman filter is rendered redundant.

Hence the model used by Kalman filter is X̂n+1|n = AX̂n|n , where A is identity

matrix of order 3.

Prediction error covariance matrix,

Pn+1|n = APn|n AT +Q

Output:

Pursuer gets readings of xen , yen ,kn . We can find the output matrix Cn by lin-

earizing Ex and Ey at (x̂In|n , ŷIn|n , k̂n|n , xpn , ypn ).

Z =


xem

yem

km


n

=


Ex(xIn , yIn ,kn)

Ey (xIn , yIn ,kn)

kn

+


ηm

αm

βm

 (4.44)

Cn =


∂Ex
∂xe

∂Ex
∂ye

∂Ex
∂ke

∂Ey

∂xe

∂Ey

∂ye

∂Ey

∂ke

0 0 1


(x̂In|n−1 ,ŷIn|n−1 ,k̂en|n−1 ,xpn ,ypn )

(4.45)

47



48

where


xem

yem

km


n

is vector of evader’s position and speed measurements at t = n. ηm ,αm ,βm

are assumed to be i.i.d noise in corresponding states with measurement error covari-

ance matrix R.

R =


σ2

xe
0 0

0 σ2
ye

0

0 0 σ2
k


where σxe ,σye ,σk are standard deviations of xe , ye ,k respectively.

States Initialization  x̂I0|0

ŷI0|0

= I f (xe0 , ye0 ,k0)

k0 is the initial measurement of the state k. k̂0|0 = k0

P matrix is initialized such that it is approximates the auto and cross co-variance

values of initial interception point coordinates and speed of evader. Choice of initial

P matrix is not critical as it only affects the initial estimates of EKF unless it is out

of acceptable limits [7].

4.4.3 Simulation results

Simulations of game4 have been performed and the results are thoroughly analyzed.

Note that pursuer is considered to have won the game if by the time pursuer is

within vicinity radius D of the evader, target is in pursuer’s dominance region.

Pursuer and evader employ the decision making algorithms (4.1) and (4.2) re-

spectively except that in this approach, pursuer estimates the interception point lo-

cation and heads toward it. The plots of paths followed by evader and pursuer are

4the same example considered in chapter 4 to analyze the Kalman filter designed for estimating
evader’s position and speed
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shown in 4.9. Pursuer is able to intercept the evader at a point very close to the initial

interception point.

40 50 60 70 80 90 100

20

30
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50

60

70

80

90

Initial Apollonius circle

Evader's path

Target

Pursuer's path

Evader's position estimates

corresponding to estimates

 of interception point

Measured evader's positions

Final interception point

Initial interception point

Figure 4.10: Pursuer won this game as he reached within a pre-specified distance, D
from evader

The auto-covariance plots of the states reveal the complete performance of the

Kalman filter for this system. As can be seen from the plots of 4.11, auto-covariance

of speed of evader5 reached a non-zero steady state value approximately after n = 20

which means that the Kalman filter couldn’t improve further the estimates of k using

the measurements (refer plot 4.10). Also the convergence time of the speed of evader

estimate to true value is smaller for K F 1 compared to that of K F 2. Comparing the

performance of the Kalman filter (K F 2) with the performance of Kalman filter de-

signed in chapter 4 (K F 1), estimating the evader’s position and speed and pursuing

the corresponding interception point gives better performance (in terms of conver-

gence to true value) than estimating directly the instantaneous interception point.

The estimates of states xI , yI are poorer (as game reached the end) compared to the

estimates of xe , ye by K F 1. So if the vicinity radius D is small and target is closer

to the initial interception point, the probability of pursuer losing the game is higher

when pursuer uses K F 2 than when he uses K F 2.

5State k and speed of evader differ by a constant multiple. Plots related to evader’s speed are
presented here for ease of understanding
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Figure 4.11: Plots of estimated, measured and true values of speed ratio Estimated
speed ratio follows the variations in measurements
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Figure 4.12: Auto-covariance plots of states



CHAPTER 5

Miscellaneous approaches

5.1 Introduction

In chapter 4 we presented Kalman filtering approach that filters the noise present in

the measurements. Usually, instead of single sensor, multiple sensors are used to

measure the position and speed of evader. At every instant pursuer gets the measure-

ments from the sensors and so the average and standard deviation of these readings

can be known. According to central limit theorem, if each of the readings from sen-

sors is assumed to be corrupted by Gaussian noise, then the average and standard

deviation of all the readings from sensors give the true mean and standard deviation

of the Gaussian distributed measurand. In this chapter, we examine two approaches,

namely mean pursuit and most probable point pursuit. These strategies are not im-

plemented on the developed testbed because of their computationally-intensive algo-

rithms. So the study of these two strategies is based only on the simulation results.

We assume the following density functions for the random variables xe , ye ,k for

rest of the analysis.

f (x) =


Kx

2πσ2
x

exp[−(x−µx )p
2σ2

x

] |x| É nσx

0 |x| Ê nσx

(5.1)

where x ∈ {xe , ye ,k} and Kx is the scaling factor such that
∫ +∞
−∞ f (x)d x = 1. n-σx

is the confidence level assumed for random variable x. µx is the mean value of the

random variable x. Note that µx is not the true value of the random variable. This

forms a cuboid region for the set of all probable points of evader position and speed.

Let this region be R.
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5.2 Mean interception point pursuit

Let the coordinates of evader, pursuer, target respectively be (xe , ye ), (xp , yp ), (xT , yT ).

The corresponding interception point be at (xI , yI ). Let us denote the expressions for

the coordinates of interception point, (5.2), (5.3) as Ix(xe , ye ,k), Iy (xe , ye ,k).

xI = Ix(xe , ye ,k) = xe −xp k2

1−k2
±

√√√√√ ((xe −xp )2 + (ye − yp )2) k2

(1−k2)2

1+ (
yT (1−k2)−ye+yp k2

xT (1−k2)−xe+xp k2 )2
, (5.2)

yI = Iy (xe , ye ,k) = ye − yp k2

1−k2
e

±

√√√√√ ((xe −xp )2 + (ye − yp )2) k2

(1−k2)2

1+ (
xT (1−k2)−xe+xp k2

yT (1−k2)−ye+yp k2 )2
(5.3)

Let the functions Ix , Iy map the region R to the region I . As we know the

average values and standard deviations of xe , ye ,k, we can find the mean of the inter-

ception point from the formulae.

µx =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
Ix(xe , ye ,k)F (xe , ye ,k)d xe d ye dk

µy =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
Iy (xe , ye ,k)F (xe , ye ,k)d xe d ye dk

µα =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
t an−1

(
Iy (xe , ye ,k)− yp

Ix(xe , ye ,k)−xp

)
F (xe , ye ,k)d xe d ye dk

(5.4)

where µx ,µy are mean values of x and y coordinates of interception point respec-

tively. µα is the mean heading angle. F (xe , ye ,k) is the joint distribution function of

the independent random variables xe , ye ,k.

F (xe , ye ,k) = f (xe ) f (ye ) f (k)

Let the functions Ix , Iy map the region R to the region I . As the functions Ix , Iy

are highly non-linear, it is not possible to characterize the set I and so is difficult

to comment on its convexity. The mean interception point (µx ,µy ) can lie outside

the set I . This means for the interception point pursued by pursuer, there need not

exist an inverse point lying in the region R. But pursuing mean point can lead him
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towards the region I .

Note that as pursuer is finding (µx ,µy ) at every instant and heading towards it,

his decision at every instant is affected by evader locations whose regions of dom-

inance contain the target (if target is inside the region I , it means that there are

evader position-speed combinations with non-zero probability whose corresponding

dominance regions include target).

Define D as the minimum distance between pursuer and evader required for the

pursuer to get uncorrupted measurements of evader’s position and speed. Pursuer is

considered to have won the game if by the time he is within distance D from evader,

target is not in evader’s dominance region.

5.2.1 Simulation results

Simulations of the game for two different values of D are presented in this section.

• Let D = D1. Pursuer is able to intercept the evader before evader is too close
to the target (refer Fig 5.1). The initial interception point and final interception
point pursued by evader are very close.
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70

80

90

Apollonius circle C at the

 beginning of the game

Evader's path

Target

Pursuer's path

interceptions points

pursued by evader

Figure 5.1: Plot showing the suboptimal path of when pursuer heads towards instan-
taneous mean interception point. D = D1

• Let D = D2
1 < D1. In this case also, pursuer is able to intercept the evader

but only after evader reaches much closer point to target than he does when
D = D1. This is expected because D2 < D1. So when pursuer uses mean point
pursuit, D has to be very high in order for him to protect the target before target
falls in evader’s dominance region.

1D considered in K F 1 and K F 2 is less than D2
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Mean evader positions obtained  from the set of measurements 

given by sensors at each instant

Interception points pursued by evader during game

Figure 5.2: Plot showing the suboptimal path of pursuer when pursuer heads towards
instantaneous mean interception point. D = D2 < D1

5.3 Heading along µα

Let pursuer heads with heading angle equal to mean heading angle at every instant.

We investigate this strategy to see whether pursuer can intercept evader before target

falls in evader’s dominance region.
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Initial Apollonius circle

Evader's path

Target

Pursuer's path

Mean evader points obtained 

from set of measurements given 

by sensors at each instant

Interception points pursued by evader

Figure 5.3: Plot showing the suboptimal path of pursuer when pursuer heads with
mean heading angle at every instant. D = D1. As D1 is large enough,
pursuer is able to intercept evader.

• When D = D2 < D1, unlike in mean interception point pursuit case, pursuer
is able to intercept evader before evader reaches very close to target. So we
conclude heading along mean heading direction is a better strategy compared
to mean interception point pursuit.
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Figure 5.4: Pursuer is able to intercept evader at a point very close to initial intercep-
tion point. D = D2 < D1

5.4 Characterization of S f ,S1,S2,

In chapter 2, we studied the geometry of the game and found the set of all evader

locations which result in the same interception point. We defined this set as S f . In

this section, we characterize this set and find the probability density map of (xI , yI ).

Set S is the set of all evader positions and speeds satisfying the equations (2.17),

(2.20) (reproduced below for quick reference).

Cm : (xe −xcm)2 + (ye − ycm)2 = R2
m (5.5)

k2 = (xe −xI )2 + (ye − yI )2

((xp −xI )2 + (yp − yI )2)
(5.6)

where

xcm = xI − H M

2
, ycm = yI + H

2

R2
m = (xI −xcm)2 + (yI − ycm)2 = H 2(M 2 +1)

4

H = (xp −xI )2 + (yp − yI )2

(yp −M xp − c)

M = yT − yI

xT −xI

c = yT −xT ;
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Parametric equations corresponding to (5.5) and (5.6) are

xe (θ) = xcm +Rm cosθ (5.7)

ye (θ) = ycm +Rm sinθ (5.8)

k(θ) =
√

(xI − (xcm +Rm cosθ))2 + (yI − (ycm +Rm sinθ))2√
(xI −xp )2 + (yI − yp )2

(5.9)

where

θ = tan−1
( ye − ycm

xe −xcm

)
(5.10)

We defined θmi n ,θmax in section 2.5 as

θmax = argmax
θ

k(θ)

θmi n = argmin
θ

k(θ)

θth = θmi n +θmax

2

Assuming θmi n < θmax , from Appendix B, θmax −θmi n = 1800. This means the

line joining (xe (θmi n), ye (θmi n)) and (xe (θmax), ye (θmax)) is a diameter to the circle

Cm . Let the equation of this line be

Lθ : y −mθx − cθ = 0

Note that md ×M =−1 i.e., line L (2.7) is perpendicular to Lθ.

The hyperplane Lθ separates the 2-dimensional Cartesian space, R2 into two half

planes.

R2
1 : y −mθx − cθ < 0

R2
2 : y −mθx − cθ > 0

Let (xT , yT ) ∈R2
i where i = 1 or 2. Let us define two sets A1,A2 as
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Figure 5.5: Cm ,Ce ,Lθ,L are such that Lθ ⊥ L

A1 = {(x, y)|(x, y) ∈Cm , (x, y) ∈R2
i }

A2 = {(x, y)|(x, y) ∈Cm , (x, y) ∈R2
j , j 6= i }

Suppose (xT , yT ) ∈R1
1. A1 is set of all points lying on the circle Cm in the region

R2
1 and A2 is set of all points lying on the circle Cm in the region R2

2

Out of the two elements of the set S, the element that is farthest from target

belongs to S f (refer Appendix C). Extending this result to to case where k is also

variable, we find that the elements of set A2 belongs to S f . Hence, identities (5.11)

and (5.12) follow.

S f ≡A2 (5.11)

S1 ∪S2 ≡A1 (5.12)

Note that target demarcates the centers of S1,S2 (refer Fig 2.6). So position of

target is enough to segregate the set A1 into S1 and S2



58

5.5 Finding probability density map of (xI , yI )

Given (xI , yI ,θ), corresponding (xe , ye ,k) can be calculated from the equations (5.7),

(5.8), (5.9). (xI , yI ,θ) corresponding to the given (xe , ye ,k) can be calculated from

the equations (5.2), (5.3), (5.10). This implies we can find the Jacobian of the trans-

formation T : (xI , yI ,θ) → (xe , ye ,k) from the formula (5.13).

J
(xe , ye ,k

xI , yI ,θ

)
=


∂xe
xI

∂ye
xI

∂k
xI

∂xe
yI

∂ye
yI

∂k
yI

∂xe
θ

∂ye
θ

∂k
θ

 (5.13)

The joint probability distribution function of the random variables (xI , yI ,θ) can

be determined from the formula (5.14)

FT (xI , yI ,θ) = J
(xe , ye ,k

xI , yI ,θ

)
F (T −1(xe , ye ,k)) (5.14)

where T −1 : (xe , ye ,k) → (xI , yI ,θ)

The set of all evader positions along with associated speeds which result in given

interception point (xI , yI ) is S f ∪S1. The intersection of the region R (defined in

section 5.1) with S f ∪S1 gives the set of all evader positions along with the associ-

ated speeds, {(xe , ye ,k)} with non-zero probabilities which result in interception point

(xI , yI ).

Given (xI , yI ), we can find S and hence we can find the sets S f ,S1,S2. Also from

section 2.4, we know that the function I f is continuous over S f ,S1,S2. The elements

of the set S f ,S1 are functions of θ (We parametrized the set S in section 2.4). So

bounded curve R ∩ (S f ∪S1) gives the boundary values of θ. Let these boundary

values be θ1,θ2 with θ1 ≤ θ2

Using FT (xI , yI ,θ) from (5.14), we can find the probability density of any given
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Figure 5.6: Intersection of solution set S with region R

interception point (xI , yI ) from the marginal density formula (5.15)

F I (xI , yI ) =
∫
R∩(S f ∪S1)

FT (xI , yI ,θ) dθ =
∫ θ2

θ1

FT (xI , yI ,θ) dθ (5.15)

Unlike in the mean point pursuit approach, we can make pursuer’s decisions un-

affected by solutions of the set S1 by integrating over R∩(S f ) instead of integrating

over R∩ (S f ∪S1). By not integrating over R∩ (S f ∪S1), we are considereing fea-

sible and probable solutions of set S. Let the new bounds on θ be θ1,θ2 with θ1 ≤ θ2.

FI (xI , yI ) =
∫
R∩S f

FT (xI , yI ,θ) dθ =
∫ θ2

θ1

FT (xI , yI ,θ) dθ (5.16)

Note that we can use (5.16) only if we know θ1,θ2. But θ1,θ2 depend on the

transformation T which in turn depends on (xI , yI ).
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5.6 Most probable point pursuit

Before proceeding, let us define sets Na , N , I as

Na = {a|a ∈ {−nσa +µa ,−(n −1)σa +µa ......µa ......(n −1)σa +µa ,nσa +µa}}

N =Nxe ×Nye ×Nk

I = {(xI , yI )|I f (xe , ye ,k) = (xI , yI )∀(xe , ye ,k) ∈N }

(5.17)

where µa ,σa are mean and standard deviation of the random variable a. Na is set of

all values of a at confidence levels ±σa ,±2σa ,±3σa .....±nσa . Note that N ⊂R.

Figure 5.7: Flowchart showing the decision making algorithm of pursuer

The algorithm in this approach can be well explained through the flowchart 5.7.

Pursuer pursues the interception point whose probability density value is highest,
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(xI , yI )M at every instant of time, where

(xI , yI )M = argmax
I

FI (xI , yI )

until he reaches within D distance from evader.

Note that we are finding interception point with highest FI instead of F I . This

way we can make pursuer’s decision not affected by probable position-speed combi-

nations of evader whose dominance regions contain target.

5.6.1 Simulation results

Three examples are presented to draw conclusions from the performance of this strat-

egy and to compare with the other strategies presented so far.
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Figure 5.8: Game-I

In all three games, pursuer is able to intercept evader before he reaches close to

target even though pursuer is initially away from the target (refer game-I ). From

the results, we conclude that both heading along µα and pursuit of interception point

with highest density strategies render almost same performance. The former strategy

is computationally more efficient and so is practically employable. Even though
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Figure 5.9: plots of pursuer’s path and evader’s path

Bayesian Nash equilibrium strategy could be the best strategy for pursuer to employ,

it demands huge computational resources and so if means and variances of evader’s

position and speed are known, best strategy (considering the computational effort)

for pursuer is to head along µα.



CHAPTER 6

Experimental results

6.1 A test bed for implementing control laws in a two

player difference game

We build an algorithm testing platform using LEGO Mindstorms kits and validate the

performance of Kalman Observers designed in chapter 4. The platform consists of

two LEGO robots and a ceiling mounted camera with a bird’s-eye view. Each LEGO

robot has a differential drive system with PID controllers for each of the two motors

which precisely control the motion of the robot. Matlab supports NatNet SDK which

is a set of client/server library used to access the data from motion tracking system.

Tracking data from cameras is streamed in an optical motion capture software pro-

vided by OptiTrack called Motive. Calibration of play field is done in this software.

The commands generated by the control law under validation are used to calculate

the desired position and yaw angle of robot. The desired position and yaw of robot

are used to generate control commands for robots to correct the position and yaw of

the robot which are tracked in Motive software.

6.1.1 Tracking and controlling the robots

Retro-reflective markers are mounted on robot and a rigid body is created in Motive.

Motive finds the centroid of the rigid body and streams the position and quaternion

angles to be used in Matlab through NatNet SDK library. Asymmetry is the key to

avoiding the congruency for tracking multiple marker sets. For example, a perfect

square marker arrangement will have ambiguous orientation and frequent mislabels
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Figure 6.1: Block diagram showing how the position and yaw angle of robot are
controlled

may occur throughout the capture. In order to track all the yaw angles without am-

biguity and differentiate between two rigid bodies, markers are mounted asymmetri-

cally.

Figure 6.1 depicts how control commands are communicated to robot to achieve

the desired position and orientation. Placement of markers is shown in Figure 6.2.

Figure 6.2: Markers are placed asymmetrically on each of the two robots used for
experiments
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6.2 Practical considerations

So far, in devising strategies for the pursuer to win the game in-spite of the unavail-

ability of perfect information of evader’s position and speed, we have assumed both

players to be zero-dimensional robots with infinite turn rate. Neither of these as-

sumptions hold true in real time and so the optimal strategies are affected by size and

turn rate of players. The time taken for the robot to align in the instantaneous opti-

mal heading angle direction affects the overall performance of the player. Also while

turning the translation speed of the robot need not be zero. After the robot aligns in

the optimal heading angle direction, the position of the robot changes and heading

angle of the robot need not be optimal with respect to its new position. These two

non-idealities are modelled as Gaussian noise in the system and can be accounted for

through the process noise covariance matrix Q.

Data acquisition:

As the in-house ceiling mounted cameras measure position accurate upto mil-

limetre, Gaussian noise is added to the acquired measurement data.

6.3 Experimental results

Evader may lose an otherwise winning game even if pursuer is playing sub-optimally

because of practical limitations causing evader to take sub-optimal path. Same is

the case with pursuer. Figure 6.3 shows that the distance between target and final

interception point is higher than in simulation. Both the robots deviate from their

respective simulation paths. If limitations on pursuer’s motion do not allow free

maneuver of pursuer, they add up to his sub-optimal play and allow evader (if evader

has better maneuverability compared to that of pursuer) to come even more closer

to the target than in simulations. Same is the case with the evader. If pursuer has

faster turn rate than that of evader, evader path becomes sub-optimal and compensates
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pursuer’s sub-optimal play.
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Figure 6.3: Experimental versus simulation results. Black circles indicate approxi-
mate sizes of robots

Figures 6.4a and 6.4b validate the satisfactory operation of the Kalman filter de-

signed to estimate evader’s position and speed. Like in simulations, Kalman filter

was able to use the measurements of speed to improve the estimates. Measurements

of states xe , ye were not useful much after n = 6 in improving corresponding esti-

mates. But pursuer was able to intercept evader at a point close to initial interception

point. So, if the initial distance between target and pursuer is small and target is

in pursuer’s dominance region, pursuer can win the game by pursuing interception

point corresponding to estimates of evader’s position and speed.

Similar experiments to validate the performance of K F 2 were performed. As

expected, experimental results showed that performance of K F 1 is better than that of

K F 2. To avoid repetition, experimental results are not presented in this document.

6.4 Conclusion and future work

In this work, game geometry of target guarding problem was extensively studied.

PSBNE of TGP was found. Algorithms for pursuer to follow in order to win the game

when he is uncertain of evader’s position and speed were proposed. Two Kalman
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filters, one to estimate evader’s position and speed and other to estimate interception

point were designed. From results we argued that estimating evader’s position and

speed gives better results in terms of intercepting evader at farther distance from

target. Probability density map of the interception point was found and performances

of the pursuer’s play when he pursues mean, most probable interception point and

mean heading angle were studied.

No constraints on the target location in order for pursuer to win the game in-

spite of his sub-optimal play have been determined. Hence, the future work points

to finding bounds on minimum initial distance between target and evader in order to

guarantee success for pursuer when measurements are associated with noise.
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APPENDIX A

Locations of evader and pursuer with respect to

Apollonius circle

The equation of Apollonius circle is

(x −xc )2 + (y − yc )2 = R2

where

xc =
xe −xp k2

1−k2
, yc =

ye − yp k2

1−k2
(A.1)

R =
√

x2
c + y2

c −
x2

e + y2
e

1−k2
+k2

x2
p + y2

p

1−k2
(A.2)

=
√( k

1−k2

)2
((xe −xp )2 + (ye − yp )2)

Let

De = (xe −xc )2 + (ye − yc )2 −R2 (A.3)

Dp = (xe −xc )2 + (ye − yc )2 −R2 (A.4)

Substituting (A.1), (A.2) in (A.3) leads to

De =
( 1

1−k2

)2
(xe (1−k2)− (xe −xp k2))2 + (ye (1−k2)

− (ye − yp k2))2 −
( k

1−k2

)2
((xe −xp )2 + (ye − yp )2)

=
( 1

1−k2

)2((
(xe −xp )k2)2 + (

(ye − yp )k2)2 − (k)2((xe −xp )2 + (ye − yp )2))

=
( k4 −k2

(1−k2)2

)(
(xe −xp )2 + (ye − yp )2

)

=
( −k2

1−k2

)(
(xe −xp )2 + (ye − yp )2

)
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As k2
(
(xe − xp )2 + (ye − yp )2

)
is a positive quantity, De < 0 if k < 1 and De > 0

if k > 1. This implies evader lies inside the Apollonius circle when his speed is less

than pursuer’s speed and lies outside the Apollonius circle when his speed is greater

than the pursuer’s speed.

In similar lines we can show that pursuer lies inside the Apollonius circle when

his speed is less than evader’s speed and lies outside the Apollonius circle when his

speed is greater than the evader’s speed.



APPENDIX B

Criterion for the existence of single evader point that

results in the given interception point (when k is

constant)

Speed ratio k is given by (2.27).

k2(θ) = (xI − (xcm +Rm cosθ))2 + (yI − (ycm +Rm sinθ))2

(xI −xp )2 + (yI − yp )2

= ((xI −xcm)2 + (yI − ycm)2 +R2
m +2(xI −xcm)Rm cosθ+2(yI − ycm)Rm sinθ

(xI −xp )2 + (yI − yp )2

(B.1)

∂(k2(θ))

∂θ
= −2(xI −xcm)Rm sinθ+2(yI − ycm)Rm cosθ

(xI −xp )2 + (yI − yp )2

∂(k2(θ))

∂θ
= 0 ⇒ tanθ = yI − ycm

xI −xcm
(B.2)

Substituting expressions of xcm , ycm from (2.18) in (B.2), we get

tanθ = −1

M
=−

(xI −xt

yI − yt

)
(B.3)

Define θmax ,θmi n as

θmax = argmax
θ

ke (θ)

θmi n = argmin
θ

ke (θ)

From (B.2), |θmax −θmi n | = 1800

i.e., Line L (2.7) becomes tangent to circle Ce (2.9) when k = {k(θmi n),k(θmax)}.
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Note that

k(θmi n) = 0

xe (θmi n) = xI

ye (θmi n) = yI

(B.4)



APPENDIX C

Out of two elements of set S, the one that is farthest

from target belongs to the set S f

Let the elements of set S be E1(xe1, ye1),E2(xe2, ye2). Let C1,C2 be the Apollonius

circles of E1,E2 respectively. Let the O1(a,0),O2(b,0) be centers of C1,C2 respec-

tively. From Appendix A we know that for k < 1, Ei lies inside Ci , i = 1,2. Let target

T (xT ,0) be outside C1.

Without loss of generality, we can assume 0 < xT < xI < b. If 0 < xT < a < xI ,

then E1 ∈ S2. If 0 < a < xT < xI , then E1 ∈ S1 (refer Fig 2.4, 2.5 and definitions of

S1,S2). E2 belongs to set S f .

(xe1 −xI )2 + (ye1 − yI )2 < (xe1 −xT )2 + (ye1 − yT )2 ⇒ E2 ∈ S2

(xe1 −xI )2 + (ye1 − yI )2 ≥ (xe1 −xT )2 + (ye1 − yT )2 ⇒ E2 ∈ S1

I lies on C1 and C2. As Ce of (2.9) is a circle with center I and is constrained to

pass through E1 and E2, E2 lies outside C1 and E1 lies outside C2. Note that I is

equidistant from E1 and E2.

Let I f (xe1, ye1,k) = (xI , yI ). As E1 and E2 satisfy equations (2.7),

(2.9) xe1 ≤ xI ≤ xe2. ye1 = ye2 as slope of line T I is equal to slope of E1E2. So the

inequalities (C.1), (C.2) hold

(xe2 −xI )2 + (ye2 − yI )2 ≤ (xe2 −xt )2 + (ye2 − yt )2 (C.1)

(xe1 −xT )2 + (ye1 − yT )2 ≤ (xe2 −xT )2 + (ye2 − yT )2 (C.2)

Inequality (C.2) means that the element of S that is farthest from target belongs to

S f .
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