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ABSTRACT

KEYWORDS: PID,Endpoint, packet,Bulk Transfer, Isochronous Transfer

USB is a serial bus which can realize the Plug and Play feature for easy con-

nection of peripherals to PCs. It is a point to point interface in which data rate of

over 480Mbit/s can be transferred as per new USB 2.0 Specification. It provides

bi-directional, low- cost and high speed serial interface for data transfer. Multiple

devices can be attached through a hub to the host. The USB Communication im-

plemented complies with USB 2.0 Specifications essential for basic data transfer

and can operate at USB Full speed (12 Mbit/s) and High speed (480Mbit/s).

This project deals with designing of USB 2.0 function core that will provide func-

tional interface between usb devices and host.The heart of the project is the pro-

tocol layer block that handles all the standard USB protocols. The designing is

done by writing the code in Bluespec System Verilog hardware description lan-

guage.Compiling and linking of code is done on Bluespec Workstaiton. The differnt

types of data transations done by the USB core are verified by simulating the code

using testbench waveforms and checking the results on Bluesim simulator.
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CHAPTER 1

INTRODUCTION

The Universal Serial Bus provides standard communication interface between

peripheral devices and Host i.e computer. The peripheral devices include mouse,

keyboard, printer, data storage devices and many more. With the new USB 2.0

specifications provided by USB.org, data rates of over 480Mb/s are possible.

The USB 2.0 standard can support up to 127 devices and has three different

data transfer rates

• Low speed: For keyboards and mice with a data transfer rates at 1.5 Mbps

• Full speed: The USB 1.1 standard rate with a data transfer rates at 12 Mbps

• High speed: The USB 2.0 standard rate with a data transfer rates at 480 Mbit/s

1.1 USB Background

USB was developed by a group of seven companies namely COMPAQ, IBM,

INTEL, MISCROSOFT, DEC, NEC and NORTEL in the year 1994.Though the

USB 1.0 specification was developed in January 1996 which produced data rates of

1.5Mbit/s (LOW SPEED) and 12 Mbit/s (HIGH SPEED) , the widely used version

was 1.1 released in September 1998. The later version, USB 2.0 was released in

April 2000. The companied Hewlett-Packard, Alcatel Lucent, Philips and above

mentioned firms took a joint initiative so as to generate a high data transfer rate of

480Mbit/s. A supplement release of USB-On-The-Go specification was carried out



in December 2006. This specification enabled two USB devices to communicate

with each other without the need of a separate USB host. The latest release is USB

3.0, released in November 2008 and had the objectives to increase the data rate and

reduce the power consumption as well as to increase the output power.

1.2 Problem Specification

To design USB 2.0 Core using Bluespec System Verilog Hardware description

language that will provide functional interface between peripheral devices and

host. The core fully complies to USB 2.0 specifications provided by USB 2.0 org.

• The core supports low speed, full speed and high speed data transfer rates.

• The core handles all USB standard protocols that consists of token packet,
data packet and handshake packets.

• It supports diffrent data transfer types that is isochronous transfer, bulk
transfer and interrupt transfer and control transfer.

• The core Includes reciever/ transmitter interface, it is provide by UTMI.

• The core provides direct memory access through internal DMA engine to
reduce the work load on the function controller or host controller.

2



CHAPTER 2

SPECIFICATIONS

2.1 System Description

A USB system has the following intrinsic areas

• USB Interconnect

• USB Devices

• USB Host

USB Interconnect:-It describes the manner in which the USB devices are con-

nected and communicates with the attached host. This includes

• Bus topology: The connection model between Host and USB devices

• Inter-layer Relationships: In terms of stack capability, the USB tasks are
performed at each layer in the system.

• Data Flow Models: It is the manner in which data traverses in the system
over the USB between producers and consumers.

• USB Schedule: The USB provides a shared interconnect. The access to the
interconnect are scheduled so as to support isochronous data transfers and
to eliminate arbitration overhead.

Bus Topology:-It follows a tier-star topology in which the Hub is at the center of

each star and there is a point to point connection between host and hub /function

or hub connected to hub/function. The maximum number of tiers allowed is 7

including the root hub.Each compound device covers two tiers; hence it can not

be enabled if it is attached at tier-7.This is because only functions can be enabled



Figure 2.1: USB Bus Topology

at tier-7.

USB Devices:-The USB devices can be either a hub or a function. A hub provides

additional attachment points to the USB. A USB device may comprise of many

logical sub-devices which are known as device functions. Up to 127 devices can

be attached to a single host controller.

USB Host:- In any USB system there is only one Host. A root hub is integrated

within the host system to provide one or more attachment points. The USB in-

terface to the Host is known as Host Controller, which may be implemented in a

combination of hardware, software or firmware.
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2.2 USB data flow

USB systems consist of a host, which is typically a personal computer (PC) and

multiple peripheral devices connected through a tiered-star topology. This topol-

ogy may also include hubs that allow additional connection points to the USB

system. The host itself contains two components, the host controller and the root

hub. The host controller is a hardware chipset with a software driver layer that is

responsible for these tasks:

• Detect attachment and removal of USB devices

• Manage data flow between host and devices

• Provide and manage power to attached devices

• Monitor activity on the bus

At least one host controller is present in a host and it is possible to have more

than one host controller. Each controller allows connection of up to 127 devices

with the use of external USB hubs. The root hub is an internal hub that connects

to the host controller(s) and acts as the first interface layer to the USB in a sys-

tem.Generally on every computer, there are multiple USB ports.These ports are

part of the root hub in the computer. For simplicity, look at the root hub and host

controller from the abstract view of a black box that is referred as the host.

USB devices consist of one or more device functions, such as a mouse, keyboard,

or audio device for example. Each device is given an address by the host, which

is used in the data communication between that device and the host. USB device

communication is done through pipes. These pipes are a connection pathway from

the host controller to an addressable buffer called an endpoint. An endpoint stores

received data from the host and holds the data that is waiting to transmit to the

5



host. A USB device can have multiple endpoints and each endpoint has a pipe

associated with it.

Figure 2.2: USB Pipe Model

2.2.1 Device Endpoints

Endpoints are the terminal points of a communication flow between the host and

a device. Each device consists of independent endpoints and has a unique address

assigned to it by the system at the time of device attachment. At the time of design

each endpoint is given a unique device specific identifier, known as endpoint

number. Each endpoint has a device specific direction of data flow. Each endpoint

is uniquely referenced by its device address, endpoint number and direction of

data flow. The data flow is simplex in nature: either input (device to host) or

output (host to device).

Endpoint Characteristics:

• Bandwidth requirement

• Endpoint Number

• Maximun Payload size

6



• Transfer type

• Data transfer direction

• Bus access frequency

Figure 2.3: Endpoint communication flow

2.2.2 Pipes

USB pipe brings out connectivity between the endpoint on a device and software

on the host. It represents the ability to move data between the host software

through the memory buffer and device endpoint. Pipes communication exists in

two types.

Stream Pipe: The data packet moving in this mode has no USB-defined structure.

Stream pipe is unidirectional. It supports isochronous, bulk and interrupt trans-

fers. The data coming in from one end and coming out of the other end has the

same order.

7



Message Pipe: The data packet moving in this mode has some USB-defined struc-

ture. Message pipe is bi directional and it supports control transfer. It requires

single endpoint number during the communication in both directions. The default

control pipe always represents a message pipe.

There are two types of pipes in a USB system, control pipes and data pipes. The

USB specification defines four different data transfer types. Which pipe is used

depends on the data transfer type.

• Control Transfers Used for sending commands to the device, make inquiries,
and configure the device. This transfer uses the control pipe.

• Interrupt Transfers Used for sending small amounts of bursty data that
requires a guaranteed minimum latency. This transfer uses a data pipe.

• Bulk Transfers Used for large data transfers that use all available USB band-
width with no guarantee on transfer speed or latency. This transfer uses a
data pipe.

• Isochronous Transfers Used for data that requires a guaranteed data delivery
rate. Isochronous transfers are capable of this guaranteed delivery time due
to their guaranteed latency, guaranteed bus bandwidth, and lack of error
correction. Without the error correction, there is no halt in transmission
while packets containing errors are resent. This transfer uses a data pipe.

2.2.3 Descriptor Table

when a device is connected to a USB host, the device gives information to the

host about its capabilities and power requirements. The device typically gives this

information through a descriptor table that is part of its firmware. A descriptor

table is a structured sequence of values that describe the device; these values are

defined by the developer. All descriptor tables have a standard set of information

that describes the device attributes and power requirements. If a design conforms

to the requirement of a particular USB device class, additional descriptor informa-

8



tion that the class must have is included in the device descriptor structure.

A descriptor is a data structure with a specific format. Each descriptor states

with a byte-wide field which contains the total number of bytes in it followed by a

byte sized field that identifies the descriptor. A device descriptor table includes the

general information about a USB device. This information is applicable globally

to the device and its entire device configuration. Each USB device had only one

device descriptor.

2.3 Communication Protocol

If we look at the USB communication from a time perspective, it contains a series

of frames. Each frame consists of a Start of Frame (SOF) followed by one or more

transactions. Each transaction is made up of a series of packets. A packet is

preceded with a sync pattern and ends with an End of Packet (EOP) pattern. At a

minimum, a transaction has a token packet. Depending on the transaction, there

may be one or more data packets and some transactions may or may not have a

handshake packet. Transactions are an exchange of packets and are comprised

of three different packets; a token packet, optional data packet, and a handshake

packet. Each packet can contain different pieces of information. What information

is included depends on the packet type.

2.3.1 Packet Description

The data transmitted in USB communication are called packets. The packets are

sending from host to devices via USB hubs. The packets follow a specific format. It

9



Figure 2.4: USB Transaction

starts with a SYNC pattern which allows the receiver bit clock to synchronize with

the data, followed the data bytes of the packet (Pay Load) and concludes with EOP

(End of Packet) signal. The data is NRZI (Non Return to Zero Inverted) encoded

and in order to ensure sufficiently frequent transitions, it is bit-stuffed. Before and

after the packet transmission, the bus remains in the idle state.

USB Packet Fields

On the USB data bus, the LSBit is transmitted first for any data transmission. The

USB packet consists of the following fields.

• SYNC
All packets begin with the SYNC field which is 8 bits long at low and full
speed or 32 bits long for high speed. It is used to synchronize the receiver
clock with that of the transmitter clock. The last 2 bits indicates the end of
SYNC field and start of PID field.

• PID
PID or Packet identifier comes immediately after the SYNC field. It consists
of 4 bit packet type field followed by a 4 bit check field. This check field is
generated by doing one’s complement of the packet type field. Error occurs
if the Check bits are not complement of the Packet type bits.

The PID indicates the type of packet i.e. format of the packet and type of
error detection applied to the packet. According to USB 2.0 specifications

10



there are 17 different PID values are defined. These are mentioned in the
Table 2.1

• DATA
The data field must be an integral number of bytes and ranges from 0-1024
bytes. The shifting of data begins from the LSBit. The size of packet varies
according to the transfer type used.

• ADDR
The address field (ADDR) specifies the destination of the data packet based
on the value of token PID. It is 7 bits in length hence allowing a maximum of
127 devices to be used concurrently. Address 0 is considered invalid because
any device which has not been assigned any address must respond to the
packets sent at address 0.

• ENDP
The Endpoint field (ENDP) allows flexible addressing of the functions which
require more than one endpoint. It is 4 bits long thus providing 16 possi-
ble endpoints. A function can support a maximum of 16 IN and 16 OUT
endpoints.

• Frame Number Field
This field is 11 bits long and is incremented by the host on per-frame basis.
Its maximum value is 7FFH and it is sent in SOF tokens at the beginning of
each frame/micro frame.

• CRC
A Cyclic Redundancy Check (CRC) is a value calculated from a number of
data bytes to generate a unique value which is transmitted along with the
data bytes, and then it is used to validate the correct reception of the data.
Token packets have CRC of 5 bits while data packets have a CRC of 16 bits.

• EOP
The packet field concludes with End of Packet (EOP). It is signaled by SE0
(Single Ended Zero) for approximately 2 bit times and then followed by a J
for 1 bit time.

11



Table 2.1: PID Description table

PID Type PID
Name

PID<3:0> Description

Token OUT 0001B address and endpoint number in host
to device transaction

IN 1001B address and endpoint number in de-
vice to host transaction

SOF 0101B Start of Frame marker and frame num-
ber

SETUP 1101B address and endpoint number in host
to device transaction for SETUP to a
control pipe

Data DATA0 0011B Data packet PID even
DATA1 1011B Data packet PID odd
DATA2 0111B Data packet PID high speed, high

bandwidth isochronous transaction in
a microframe

MDATA 1111B Data packet PID high speed for
split and high bandwidth isochronous
transactions

Handshake ACK 0010B Receiver accept error free data packet
NAK 1010B Receivig device can not accept data or

transmitting device can not send data
STALL 1110B Endpoint is halted or a control pipe

request is not supported
NYET 0110B No response yet from receiver

Special PRE 1100B (Token) Host issued preamble. En-
ables downstream bus traffic to low
speed devices.

ERR 1100B (Handshake) Split transaction Error
Handshake(reuses PRE value)

SPLIT 1000B (Token) High speed Split Transaction
Token

PING 0100B (Token) High speed flow control
probe for a bulk/control endpoint

Reserved 0000B Reserved PID

12



USB Packet Types

There are four different packet formats depending on the type of PID used at the

beginning of the packet.

• Token Packet
Token packet indicates the type of transaction to be followed and identify the
targeted endpoints. There are 3 types of Token packet IN, OUT and SETUP.
IN packet indicates the USB device that the Host wants to read information.
OUT packet indicates the USB device that the Host wants to send information
SETUP packet is used to begin control transfers.

Table 2.2: Token Packet Format

Field PID ADDR ENDP CRC5
Bits 8 7 4 5

• Data Packet
Data PIDs DATA0 and DATA1 are used transmitting data of size up to 1024
bytes. These PIDs are used in Low and Full speed links. Data PIDs DATA2
and MDATA are used in High speed mode.

Table 2.3: Data Packet Format

Field PID DATA CRC16
Bits 8 (0-1024)*8 16

• Handshake Packet
Handshake packets reports the status of data transaction and returns values
indicating successful data reception or rejection, flow control and halt con-
ditions. There are 4 types of handshake packets: ACK. NACK, NYET, and
STALL.

Table 2.4: Handshake Packet Format
Field PID
Bits 8

• Start of Frame Packet
SOF (Start of Frame) indicates the start of a new frame. It is sent every 1ms
on full speed links.

Table 2.5: Start of frame Packet Format

Field PID Frame No. CRC5
Bits 8 11 5

13



CHAPTER 3

BLUESPEC SYSTEM VERILOG

Bluespec System Verilog is a Hardware Description Language (HDL), which is

used for spec- ification, synthesis, modeling and verification of ASIC and FPGA

design. With a radically different approach to highlevel synthesis, bluespec offers

significantly higher productivity. It allows designers to express intended hardware

through high-level constructs, where all behav- ior is described as a set of guarded

atomic actions.

3.1 Limitation of Verilog

Verilog focusses more on simulation than logic synthesis. The source text of verilog

often ex- plicitly contains aspects of circuit that could be readily determined by the

compiler, such as size of registers, width of busses etc. This makes the design less

portable. Handling concurrency in hardware is relatively difficult in verilog as the

designer should manage all the aspects of hand- shaking between combinational

circuits. Shared use of register and other memory resources should also be elab-

orated. The behavioral specification of design in verilog often consumes multiple

clock cycles. Attempts to resolve this problem results in a highly unreadable code

with possible bugs. In practice,this problem is solved by separating the combina-

tional and sequential parts of the circuit. Due to these shortcomings, the synthesis

and verification of hardware in verilog is slowed down. This is a huge problem

during the design of SOC.



3.2 Bluespec

Bluespec is based on atomic transactions, which increases the level of concurrency

abstraction above SystemC and RTL without compromising the control over hard-

ware design. It enables automatic synthesis of complex control logic, which is

the source of many bugs. This results in highly adaptable, reusable and reconfig-

urable designs. Control adaptive parametrization in bluespec provides flexibility,

where a significantly different micro-architecture can be gener- ated by changing

the parameters in the design with the associated control structures generated au-

tomatically. Bluespec allows user defined data types and static type checking. It

provides several features of the modern high level languages and all of them can

be synthesized.

In recent times, several attempts have been made to move the hardware design

language to- wards a more software like specification of the circuit behaviour. Lan-

guages like C, C++ are used to express designs as sequential programs. However,

the semantic gap between the soft- ware model and the hardware results in subop-

timal designs with unpredictable speed and area. Bluespec System Verilog tackles

this problem by building upon the traditional hardware se- mantics. It exploits

advanced concepts from software only for static elaboration and staticverification.

It uses the standard hardware structure model of verilog such as modules, module

instances, hierarchy etc. For communication between modules it uses the Sys-

tem verilog model of interfaces and interface instances. These added with the

advanced features of the high level languages, makes designing and verification

in bluespec much faster.
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3.3 Features of Bluespec

3.3.1 Modules and Interfaces

Module is the basic element of the hardware design hierarchy in bluespec. A

module can be instantiated multiple times, and also different parameters can be

passed during every instan- tiation. Unlike verilog, bluespec does not have input,

output and in-out pins as interface to modules. Methods are used to drive signals

and busses in and out of modules. These meth- ods are grouped together into

interfaces. Modules contain rules, which use methods in other modules.

In BSV, the interface declaration is done separately, outside the module definition.

Figure 3.1: Methods, Interfaces and Rules in a module hierarchy

This allows declaration of common interfaces which can be used in multiple mod-
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ules,without having to declare them repeatedly. All the modules which share the

same interfaces also share same methods and therefore share same number and

type of inputs and outputs.

3.3.2 Data Types

In verilog, all the representation is done in bits. Also, ultimately in hardware all

computation is done in bits. However, representation in terms of integers, floating

point numbers, fixed point numbers etc, makes the process of coding much easier.

Different representations may be more appropriate depending on the application

environment. By separating out the type abstraction from its bit representation,

we can easily change representations without modifying or breaking the rest of

the program.

In BSV, every variable has a type and only the values of compatible types

can be assigned to a variable. The BSV compiler provides a strong, static type-

checking environment. Type check- ing is done before the program elaboration

and it ensures that the object types are compatible and the conversion functions

are valid for the context. Bluespec also allows the usage of user- defined types.

BSV has a type class which can be considered as a set of types. It implements

overloading across related data types. Overloading is the ability to use a common

name for a collection of types, with the specific type for the variable being chosen

by the compiler based on the types on which it is actually used. Functions and

operators are shared by all the data types within a type class.

Some common scalar types used in Bits type class are Bit(n), Bool, UInt(n) and

Int(n). The values stored in registers, FIFOs and other memory elements and also
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the values passed by wires, must be in the Bits type class. Other common data

types include Integer, which belongs to the Arith type class and String, which

belongs to the Literal type class etc.

3.3.3 Rules

Rules manage the movement of data from one state to another, within the mod-

ule.It consists of two parts: rule conditions and rule body. Rule conditions are

boolean expressions which decide whether the rule can be fired. Rule body is a

set of actions for state transitions. Rules in BSV are atomic. The actions within

the rule completely describes the state transition. The process of determining the

functional correctness of a design is greatly simplified by one-rule-at-a- ime se-

mantics. That is, because of the atomic property of rules, each rule can be looked

at in isolation, without considering the actions of the other rules to determine func-

tional correctness. Multiple rules can be executed concurrently in the hardware

implementation.

The actions in a rule are executed simultaneously. This can be thought of as similar

to the execution of non-blocking statements in always blocks of verilog. Also, as the

rule has atomic property, the entire body of rule is executed and there is no partial

exe- cution of a rule. When there are several rules within a module, the execution

of rules is ordered by the compiler. No two rules can execute simultaneously. The

ordering of the rules by the compiler is called scheduling.
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3.3.4 Methods

method is a procedure which takes arguments and returns a value. It could also

return a value without taking any arguments. It becomes a bundle of wires when

translated into RTL. The method definition is written within the definition of the

interface and it can be different in different modules sharing a common interface.

A method also contains implicit conditions which are handshaking signals and

logic automatically generated by the compiler. Methods are of three types: Value

Methods, Action Methods and Action Value Methods. Value methods return a

value. They do not alter any state within the module. Action methods cause

actions to occur. They create state changes within the module. Action value

methods are a combination of value methods and action methods. They cause

state changes and also return values.
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CHAPTER 4

FUNCTIONAL ARCHITECTURE AND OPERATION

4.1 Core Architecture

The following diagram gives the overall view of the core architecture. The host

interface acts like a bridge between the internal data memory and control registers

with the function controller. The control registers and the data memory interface

to the Protocol Layer (PL). The PL interfaces to the UTMI block. Then the UTMI

interface to the PHY. Each of the blocks has been described below.

Figure 4.1: USB Core Architecture



4.1.1 Host Interface

It provides a consistent interface between the internal functions of the USB core and

the function-defined host or micro-controller. The maximum theoretical through-

put of the USB is 480 Mb/s or 60MB/s. On a bus size of 32 bits, 4 bytes are

transferred in one cycle. Hence the minimum bandwidth required now for the

host is 15 Mwords/s. (1 word = 4 bytes).

4.1.2 Memory Interface and Arbiter

This block arbitrates between the USB core and the host interface so as to access

the memory. This block uses a standard single port SRAM (synchronous). This

block also performs dataflow management and flow control.

Figure 4.2: Memory Interface and Arbiter

4.1.3 Buffer Memory(SSRAM)

The SSRAM (Synchronous Static Random Access Memory) block is used for buffer-

ing the input and the output data.
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4.1.4 Protocol Layer

The protocol layer is responsible for all USB data Input/Output and control communica-

tions.

Figure 4.3: Protocol Layer

DMA and Memory Interface

This block interfaces to the data memory. It provides random memory access and

also DMA block transfer.According to the instructions given by protocol engine it
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perform the data transfer(IN or OUT).

Protocol Engine

Protocol Engine handles all the standard USB protocol handshakes and control

correspondence. Those are SOF tokens, acknowledgment of data transfers (ACK,

NACK, NYET), replying to PING tokens.This is the main controlling block.It takes

decoded informatin from the packet disassembler block and reads the status of con-

trol and status registers, according to that information it decides which action to

perform, and accordingly it gives instruction to DMA engine and packet assembler.

Packet Assembly

This block assembles data and handshake packets. Data packet consists of PID,

data information and CRC check.So according to the insturction given by protocol

engine, it first places the pid information and then data(if requested ) and finaly

CRC bits.Handshake packet consists of only PID information, so it assembles only

PID bits.

Packet Disassembly

This block extracts information from packets.It extracts PID information form to-

ken packet and sends it to protocol engine. From data packet it extracts PID and

data information, it does not extract CRC bits because that is not useful informa-

tion.
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4.2 UTMI Interface

The UTMI stands for USB 2.0 Macrocell Transceiver Interface. This block takes

care of low lever USB protocols and signaling. The features which are included

in signaling are data serialization and deserialization, bit stuffing and unstuffing,

clock recovery and synchronization.The primary focus of this block is to shift the

clock domain of the data from the USB 2.0 rate to one that is compatible with the

general logic in the ASIC or FPGA.

Figure 4.4: UTMI Interface Block

Interface state engine This block tracks the interface state. It controls suspend/re-

sume modes and Full Speed/High Speed switching. An internal state machine

keeps track of the state and the switching of the operating modes.
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Speed Negotiation Engine This block negotiates the speed of the USB interface

and handles suspend and reset detection.

Rx and Tx FIFOs The FIFOs hold the temporary receive and transmit data. The

receive FIFO temporarily hold received bytes before the DMS writes them to the

SSRAM buffer. The transmit FIFO temporarily holds the bytes to be transmitted.

Rx and Tx FIFOs These blocks ensure proper handshaking with the receive and

transmit inter- faces of the PHY.

4.2.1 UTMI Signal Description

Description about various UTMI signals is given in Table 4.1,4.2,4.3,4.4

4.2.2 NRZI Decoder

The received data on DP, DM lines are NRZI decoded. The NRZI Decoder simply

XOR the present bit with the provisionally received bit. During the NRZI decoding,

receive state machine remains in RX wait state.

4.2.3 Bit Unstuff Logic

This logic can operates on both FS or HS data rates. The Bit Unstuffer checks each

bit of the data stream and if a zero is detected after six consecutive 1s that zero

bit is deleted. In FS mode, if error is detected then RxError signal is asserted.
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Table 4.1: System Interface Signals

Name Direction Active
level

Description

CLK Output Rising
Edge

This output is used for clocking re-
ceive and transmit parallel data.

Reset Input High Reset all state machines in the UTMI.
Xcvr Select Input N/A Transceiver Select: It selects between

FS/HS transceivers
0: HS transceiver enabled
1: FS transceiver select

Term select Input N/A Termination Select: It selects between
FS/HS terminations
0: HS termination enabled
1: FS termination enabled

SuspendM Input Low It places the Macrocell in that mode
which draws minimal power from the
sources.
0: Macrocell drawing Suspend cur-
rent
1: Macrocell not drawing suspend
current

Line State(0-
1)

Output N/A Line State: It shows the current state
of the receivers.
DM DP Description
0 0 : SE0
0 1 : ’J’ State
1 0 : ’K’ State
1 1 : SE1

OpMode(0-
1)

Input N/A Operation Mode: It selects the opera-
tional modes
[1] [0] Description
0 0 0: Normal Operation
0 1 1: Non-Driving
1 0 2: Disable Bit Stuffing and NRZI
encoding
1 1 3: Reserved

Table 4.2: USB Interface Signals

Name Direction Active
level

Description

DP Bidirectional N/A USB data pin: Data+
DM Bidirectional N/A USB data pin: Data-
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Table 4.3: Data Interface Signals(Transmit)

Name Direction Active
level

Description

DataIn Input N/A 8 bit parallel data input bus
TxValid Input N/A Transmit Valid: It Indicates that

the DataIn bus is valid
TxReady Output High Transmit data ready: If Tx-

Valid and TxReady are high then
UTMI loads DataIn to Tx register

Table 4.4: Data Interface Signals(Receive)

Name Direction Active
level

Description

DataOut Output N/A 8 bit parallel data Output bus
RxValid Output N/A Receive Valid: It Indicates that

the DataOut bus is valid
RxActive Output High Receive Active: It indicates that

SYNC has been detected and is
active

RXError Output High Receive Error
0: No error
1: Receive error has been de-
tected
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Whereas in HS mode, an EOP signal is generated using the bit stuff errors. Hence

RxError signal is not asserted in HS mode.

4.2.4 Rx Shift/Hold Registers

This block deserializes the received data , recovered by the DLL and transmit 8-bit

parallel data to the bus interface. This module is primarily an 8-bit shift register

which does serial to parallel conversion and buffers the deserialized data byte.

4.2.5 Receive State Machine

Figure 4.5: Receive State Machine

When the Reset signal is negated, the Receive State Machine enters the Wait

state as shown. There it starts looking for a SYNC pattern. When it has detected

a SYNC pattern, the state machine will enter the Strip SYNC state and assert
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Figure 4.6: Receive Timing for Data Packet

RXActive. After receiving 8 bits of valid serial data, the state machine enters the

RX Data state where the data is loaded into the RX Holding Register on the rising

edge of CLK and RXValid is asserted. Stuffed bits are then stripped from the data

stream. Each time 8 stuffed bits are accumulated, state machine will enter the RX

Data Wait state, negating the RXValid. When the EOP signal is detected, the state

machine will enter the Strip EOP state and negate RXActive and RXValid. After

the EOP has been stripped the RX State Machine will re-enter the Wait state and

begin looking for the next packet. If a Receive Error is detected in the process,

the state machine enters Error State and RXError is asserted. Then state machine

enters either the Abort 1State where RXActive, RXValid, and RXError signals are

negated, or the Abort 2 State where only RXValid, and RXError signals are negated.

4.2.6 NRZI Encoder

The transmitted data on DP, DM lines are NRZI encoded. During the NRZI

encoding, transmit state machine remains in TX wait state. When bit 1 is received
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in the serial data it is negated and transmitted to DP, DM lines. Whereas when bit

0 is encountered, it is directly transmitted on to the DP, DM lines.

4.2.7 Bit Stuff Logic

Bit stuffing is carried out so as to ensure adequate signal transition when sending

data. A 0 is inserted after every 6 consecutive 1s before the data is NRZI encoded.

This is done to enforce a transition in the NRZI data stream. SYNC pattern enables

Bit stuffing. After every 8 bits stuffed into the data stream, TxReady gets negated

for one byte time so as to hold up the data on to the DataIn bus.

4.2.8 Tx Shift/Hold Registers

The module receieves 8bit parallel data and buffers in the Tx Hold Reg and then

sends to 8- bit shift register. This block primarily converts parallel data to serial

data.

When Reset signal is negated the, transmit state machine enters the TX Wait state.

In the TX Wait state, the TX state machine looks for the assertion of TXValid and

when it is detected, the state machine will enter the Send SYNC state and begin

transmission of the SYNC pattern. When the transmitter is ready for the first byte

of the packet (PID), it enters the TX Data Load state, TXReady is asserted and the

TX Holding Register is loaded. The state machine may enter the TX Data Wait state

on completion of the SYNC pattern transmission.The state machine remains in the

TX Data Wait state until the TX Data Holding register is available for some more

data. In the TX Data Load state, the state machine loads the Transmit Holding

register.
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Figure 4.7: Transmit State Machine

Figure 4.8: Transmit Timing for Data Packet

The state machine will remain in TX Data Load state as long as the transmit state

machine can empty the TX Holding Register before the next rising edge of CLK.

When TXValid is negated, the TX state machine enters the Send EOP state where it
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sends the EOP. During the EOP transmission, TXReady signal is negated and the

state machine will remain in the Send EOP state. After the EOP is transmitted the

Transmit State Machine returns to the TX Wait state, looking for more data.

4.3 Endpoint Registers

USB 2.0 core can support upto 16 endpoints, there are four registers associated

with each endpoint.All registers have same defination for each endpoint.Access

specifies the valid access types to that register.RW stands for read and write access,

RO for read only access."C" appended to RW or RO indicates that some or all of

the bits are cleared after a read.

Figure 4.9: Endpoint Registers

4.3.1 Endpoint Control/Status Register (EP_CSR)

This is 32 bit register, it gives the information about the endpoint i.e type of

endpoint(IN,OUT or Control), type of trasfer it supports and reports any status

back to the controller.Details about every bit of this register is given in Table 4.5
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Table 4.5: Endpoint CSR

Bit Access Description
31:30 RO UC_BSEL (Buffer select)

This bits must be initialized to zero (first Buffer 0 is used).
The USB core will toggle these bits, in order to know which
buffer to use for the next transaction.
00: Buffer 0
01: Buffer 1
1X: Reserved

29:28 RO UC_DPD
These two bits are used by the USB core to keep track of the
data PIDs for high speed endpoints and for DATA0/DATA1
toggling.

27:26 RW EP_TYPE (Endpoint Type)
00: Control Endpoint
01: IN Endpoint
10: OUT Endpoint
11: RESERVED

25:24 RW TR_TYPE (Transfer Type)
00: Interrupt
01: Isochronous
10: Bulk
11: RESERVED

23:22 RW EP_DIS:Temporarily Disable The Endpoint
00: Normal Operation
01: Force the core to ignore all transfers to this endpoint
10: Force the endpoint in to HALT state
11: RESERVED

21:18 RW EP_NO (Endpoint Number)
17 RW LRG_OK

1: Accept data packets of more than MAX_PL_SZ bytes (RX
only)
0: Ignore data packet with more than MAXPL_SZ bytes (RX
only)

16 RW SML_OK
1: Accept data packets with less than MAX_PL_SZ bytes
(RX only)
0: Ignore data packet with less than MAXPL_SZ bytes (RX
only)

15 RW DMAEN
1: Enables external DMA interface and operation
0: No DMA operation

14 RO RESERVED
13 RW OTS_STOP:When set, this bit enables the disabling of the

endpoint when in DMA mode, an OUT endpoint receives a
packet smaller than MAX_PL_SZ. The disabling is achieved
by setting EP_DIS to 01b

12:11 RW TR_FR
Number of transactions per micro frame (HS mode only)

10:0 RW MAX_PL_SZ:Maximum payload size in bytes
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4.3.2 Endpoint Interrupt Mask/Source Register

This register tells about the cause and source of the interrupt.It is also 32 bit wide,

details are given in Table 4.6

Table 4.6: Endpoint Interrupt Register

Bit Access Description
31:30 RO RESERVED
29 RW Interrupt A Enable: OUT packet smaller than MAX_PL_SZ
28 RW Interrupt A Enable: PID Sequencing Error
27 RW Interrupt A Enable: Buffer Full/Empty
26 RW Interrupt A Enable: Unsupported PID
25 RW Interrupt A Enable: Bad Packet(CRC 16 Error)
24 RW Interrupt A Enable: Time Out (waiting for ACK or DATA

packet)
23:22 RO RESERVED
21 RW Interrupt B Enable: OUT packet smaller than MAX_PL_SZ
20 RW Interrupt B Enable: PID Sequencing Error
19 RW Interrupt B Enable: Buffer Full/Empty
18 RW Interrupt B Enable: Unsupported PID
17 RW Interrupt B Enable: Bad Packet(CRC 16 Error)
16 RW Interrupt B Enable: Time Out (waiting for ACK or DATA

packet)
15:7 RO RESERVED
6 ROC Interrupt Status:OUT packet smaller than MAX_PL_SZ
5 ROC Interrupt Status:PID Sequencing Error
4 ROC Interrupt Status:Buffer 1 Full/Empty
3 ROC Interrupt Status:Buffer 0 Full/Empty
2 ROC Interrupt Status:Unsupported PID
1 ROC Interrupt Status:Bad packet (CRC 16 error)
0 ROC Interrupt Status:Time Out (waiting for ACK or DATA

packet)

4.3.3 Endpoint Buffer Registers(EP_BUF)

Endpoint Buffer register contains the address of the buffer for that endpoint and

specifies the size of the buffer.Each endpoint has two buffer registers, thus allowing

double buffering.
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Table 4.7: Endpoint Buffer Register

Bit Access Description
31 RW USED

This bit is set by the USB core after it has used this buffer.
The function controller must clear this bit again after it has
emptied/refilled this buffer.This bit must be initialized to 0.

30:17 RW BUF_SZ
Buffer size (number of bytes in the buffer) 16383 bytes max.

16:0 RW BUF_PTR
Buffer pointer (byte address of the buffer)

4.4 Operation

4.4.1 Buffer Operations

The buffer operations are carried out by buffer pointers which points to the I/O

data structures in the memory. If the value of buffer pointer is 7FFFh, then it

indicates that the buffer has not been allocated yet. The core responds with a NAK

to the USB host if all the buffers are not allocated. Data transfer within buffer takes

place in a Round Robin fashion. Buffer 0 is used first when data is sent to/from an

endpoint. The function controller is notified through an interrupt when the Buffer

0 is empty/full. Buffer 0 can now be refilled/emptied by the function controller.

When the second buffer is empty/full, the function controller is interrupted, and

the USB core will use buffer 0 again, and so on.

A buffer can be larger than the MAXIMUM_PAYLOAD_SIZE. In that case, many

packets can retrieved/placed from/to a buffer. For an OUT endpoint, a buffer must

always be multiples of maximum payload size. The buffer size field should always

be checked by the software. When the entire buffer has been used, the buffer size

is 0. If it is not 0, then the size field indicates, the number of bytes of the buffer that

has not been used.

There is no such limitation in case of IN buffers. The core will always transmit
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the maximum possible number of bytes, which is the minimum of the payload

size and remaining buffer size.Control endpoints can receive and transmit data.

Hence in this case, Buffer0 is always an OUT buffer and Buffer1 always an IN buffer.

Buffer Underflow

A buffer underflow condition is specified, when either the expternal DMA engine

or the function controller has not filled the, the internal buffer with enough data for

one MAXIMUM_PAYLOAD_SIZE packet. In this condition, the USB core replies

a NACK to the host when an IN token is received.

Buffer Overflow

A buffer overflow is specified when a packet, that has been received, does not fit

into the buffer. The packet is discarded and a NACK is sent to the host. The USB

core will continue discarding the received data, and reply with NACK to each OUT

token when payload size does not fit into the buffer.

4.4.2 DMA Operation

DMA operation allows a complete transparent movement of data from the USB

core to the functions attached. Each point is associated with a pair of dma_req

and dma_ack signals. The USB core will use these signals for DMA flow control

when the dma_en bit is set in the CSR register. When the buffer contains data or

when the buffer is empty and needs to be filled, the dma_req signal is asserted.

The DMA responds with a dma_ack signal for each word transferred.

Only Buffer 0 is used in DMA mode. The function controller is notified with an

interrupt when the received packet is less that the MAX_PL_SZ. In addition to it,
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the Buffer1 is set to the local buffer address of that received packet. So as to carry

out uninterrupted DMA transfers, the buffer is padded by the USB core with the

MAX_PL_SZ bytes.

4.4.3 USB Core Main Flow Chart

Figure 4.10: USB Core Main Flow chart
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The figure 4.10 illustrates the main loop for USB core.It will sit Idle until token

is received. After receiving token it will decode the token, extract all the important

information from the token and according to that information USB Function Core

will decide what operation to perform next.

IN Data Cycle

Figure 4.11: IN Data Cycle Flow chart
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In this cycle, Data is sent from device to host.If Data transfer is done succesfully

then host replies with ACK handshake signal. USB core first checks for the HALT

mode,if this mode is on then it will reply with STALL handshake otherwise it will

check for the availablity of buffer.If buffer is available then it will send the data

packet to host and will wait for ACK from the host.After receiving ACK from host

it will toggle PID bits and increament the buffer pointer.The figure 4.11 shows the

flow chart for the IN Data Cycle.

OUT Data Cycle

In this cycle, Data is sent from host to device.USB core first checks the HALT

mode,if this mode is on then it will reply with STALL handshake otherwise it will

wait for the data packet from the host.It will check for the CRC and PID error,if

error is there it will reply with NACK handshake signal.If it detects no error then

it will accept the data packet and increament the buffer pointer.After succesfull

completion of data transfer it will reply with ACK handshake signal.The figure

4.12 shows the flow chart for OUT Data Cycle.

Special Token Processing

The USB Core currently supports only two special tokens in addition to SETUP, IN

and OUT tokens. These tokens are SOF and PING. When a SOF token is received,

the FRM_NAT register is updated.

The PING token is a special query token for high speed OUT endpoints. It allows

the host to query whether there is space in the output buffer or not.The figure 4.13

shows the flow chart for Special Token Processing Cycle.
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Figure 4.12: OUT Data Cycle Flow chart
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Figure 4.13: Special Token Processing Flow chart
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CHAPTER 5

SIMULATION AND RESULTS

5.1 Packet Disassembly Simulation

Packet Diassembler receives packet through UTMI interface, decodes it to know

the information contained in the packet.It extracts the PID information and sends

the decoded PIDs to protocol engine.It extracts rest of the information from the

packet and performs error check and reports to the protocol engine.

5.1.1 Token Packet Disassembly

Figure 5.1 shows the simulation result of disassembling the token packet.We know

that token packet consists of PID, address field, endpoint field and CRC field.The

token packet is received through UTMI interface through 8-bit sigal rx_data.The

data will be valid only when signal rx_valid and rx_active is high and rx_err is

low.Token packet consists of 24 bits, first 8 bits is the PID information. In the

figure PID information is E1.PID information is extracted when pid_ld_en signal

is high and this PID information is stored in m_pid register.Rest of the 16 bits of

information containing address field, endpoint field and crc field is stored in token0

and token1 register.When load enable for token0 becomes high i.e token_le1, token0

stores the next 8 bit information succeeding PID information.Here token0 stores

E1.When load enable for token1 becomes high i.e token_le2, token1 stores the last

8 bit information of token packet.Here token1 stores last 8 bits that is 6C.From the



Figure 5.1: Disassembling Token Packet
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PID information it is inferred that the token packet is OUT packet, so pid_OUT

signal becomes high.With the information contained in token0 and token1 register,

endpoint field and address field information is extracted and stored in token_endp

and token_fadr registers respectively.

5.1.2 Data Packet Disassembley

Figure 5.2 shows the simulation result of disassembling the data packet.Data packet

consists of PID, data field and CRC field.Data packet is recieved through 8-bit

rx_data signal.rx_active signal is high and rx_err signal is low that means data

can be received.First 8 bit of data packet consists of PID bits, in the figure C3 is

PID data.Next bits after PID bits contain data payload, here next 8 bits i.e E1 is

data payload.Last 16 bits of data packet consists of CRC check, here 6C62 are the

CRC bits of data packet.When pid_ld_en signal is high,PID information i.e C3 is

extracted and stored in pid register.From the PID information it is inferred that it is

data packet and the type of data packet is DATA0, so pid_DATA and pid_DATA0

signal become high.Main goal is to extract data information from the data packet.

CRC information is just for error check, it should not be extracted.Data information

is stored in delay registers d0, d1 and d2, the purpose of these registers is to delay

the extraction of data information so that CRC data is neglected successfully.When

rx_data_done signal becomes high and at the same time rx_data_valid is also

high, the data information i.e E1 is stored in rx_data_st register.This stored data

information in rx_data_st register becomes input to IDMA engine, where it does

the further transaction as directed by protocol engine.
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Figure 5.2: Disassembling Data Packet
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5.2 Packet Assembley Simulation

Figure 5.3: Assembling Data Packet

Figure 5.3 shows the simulation result of assembling the data packet.Packet

assembler assembles the packet according to the instructions given by protocol en-

gine.It receives the data information sent by IDMA engine through 8-bit tx_data_st

signal.It assembles the data packet by first inserting data PID, then inserting data

information and at last inserting 16 bits CRC information.CRC 16 value is stored

in crc16_REV register and its value is 80C1. signal data_pid contains the PID value

of data packet and its value is 87, send_data signal is high so this PID value is put
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first in the tx_data register.The data received from IDMA engine is contained in

tx_data_st signal and its values is A9.Now this data value is inserted in the tx_data

register.After thar send_data signal becomes low that means no more data need

to be sent.When crc_sel1 signal goes high then higher order 8 bits of CRC16 (here

it is 80) are inserted in tx_data register.When crc_sel2 signal goes high then lower

order 8 bits of CRC16(here it is C1) are inserted in tx_data register.So data packet

is assembled, tx_ready and tx_valid signal is high so this data is sent to UTMI

interface.

5.3 Protocol Engine Simulation

Protocol engine receives decoded information from packet assembler and it reads

the information stored in register files i.e CSR register. Based on this information

it comes to know that which type of transaction to perform Isochronous, bulk

or Interrupt and the direction of transaction IN or OUT.Then it instructs packet

assembler and IDMA to perform required transaction.

5.3.1 Isochronous IN Transfer

Figure 5.4 and 5.5 show the simulation result of Isochronous IN transfer,that means

data flows from device to host and transfer type is Isochronous.From the received

CSR register information it is inferred that the buffer0 is to be used, endpoint type

is IN and transfer type is Isochronous.So txfr_iso signal becomes high to repre-

sent Isochronous transfer, in_ep and pid_IN signal become high to indicate IN

cycle.Maximum payload size(here 7C0) and endoint number(here 1) information

is obtained through CSR register and represented by max_pl_sz and ep_sel sig-
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Figure 5.4: Isochronous IN Transfer
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Figure 5.5: Isochronous IN Transfer continued..

49



nal respectively.Signal data_pid_sel indicates the type of data to be transfered i.e

DATA0,DATA1,DATA2 or MDATA.Here data_pid_signal value is 00 that means

DATA0 transfer will take place.Buffer0 address i.e 1555 and size i.e 2AAA are

represented by buf0_adr and buf0_sz respectively.Signal dma_en is set to high to

enable DMA operation whenever required.crc5_err and crc16_err signals are low,

these are the error check information received through packet dissembler.After

reading CSR register information and packet dissembler information Protocol En-

gine comes to know that it has to do Isochronous IN transcation, so Protocol

Engine instructs IDMA engine to start the transaction by making tx_dma_en sig-

nal high.IDMA engine will do the transaction and it will indicate end of the transfer

by making idma_done signal high.In Isochronous IN transfer, USB core does not

wait for acknowledgement signal from host.After that protocol engine will set the

bufo_set signal high, that means reload buf0 with next data.
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5.3.2 Bulk OUT Transfer

Figure 5.6 and 5.7 show the simulation result of Bulk OUT transfer,that means data

flows from device to host and transfer type is Bulk.Like we have seen in case of

Isochronous IN transfer here also CSR register is read and it is inferred that buf0 is

to be used, endpoint type is OUT and transfer type is bulk.So out_ep signal turns

high to represent OUT endpoint and txfr_bulk signal turns high to represent bulk

transfer.Buffer0 address and size are represented by buf0_adr and buf0_sz respec-

tively.Endpoint number 1 is selected that is shown by ep_sel signal, max_pl_sz

represnts maximum payload size(here it is 7C0).Here data_pid_sel value is 01 that

means DATA1 transfer will take place.Signal pid_OUT is high that says that direc-

tion of transfer is OUT i.e from host to device.Now protocol engine has to instruct

the IDMA engine to perform OUT transaction, it does that by turning rx_dma_en

signal high(refer Figure 5.6).Now DMA operation takes place until rx_data_done

signal becomes high.IDMA engine indicates the end of the transfer by turning

idma_done signal high.Afer the successful transfer acknowledgement(ACK) sig-

nal is sent,ACK is represented by the value 00 on token_pid_sel signal.Signal

send_token turns high(refer Figure 5.7) instructing packet assembler to send hand-

shake(ACK) packet.Afrer that buf0_set signal becomes high that means buffer 0

should be reloaded with next data.
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Figure 5.6: Bulk OUT Transfer
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Figure 5.7: Bulk OUT Transfer continued..
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5.4 Internal DMA Engine Simulation

Figure 5.8: Internal DMA Engine OUT cycle

Figure 5.8 shows the simulation result of Internal DMA Engine for OUT

cycle.Basically IDMA Engine transfers data between memory and UTMI Inter-

face.During OUT cycle it takes data from packet dissembler and stores it into

memory and during IN cycle it takes data from memory and gives it to packet
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assembler. Address and size of the buffer are represented by signals adr and

buf_size respectively.Contents of buffer0 register are stored in rd_buf0 register.The

signal rx_data_st contains the data coming from packet dissembler and needs to

be stored in the memory.Here memory is represented by mdout register,dtmp_r

is the register that temporary holds the data and sends it to mdout register.Signal

rx_data_valid is high that means data is valid and can be transferred.The signal

rx_dma_en is high that means IDMA engine will start the data transfer, data trans-

fer will be done until rx_data_done signal becomes high.rx_data_done becomes

high after two cycles, so only the data AA and AF should be transferred to mdout

register.mreq is memory request signal sendt by IDMA Engine to Memory Arbiter

Interface requesting for memory access.The signal mwe stands for memory write

enable, it turns high to indicate that data is to be written to the memory.The register

mdout stores the data sent by packet dissembler, here it stores first two bytes of

data that is AFAA.The data which is sent first is stored first so the final contents of

mdout register becomes 0000AFAA.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

The USB 2.0 Function Core provides functional Interface between USB peripherals

and Host or Computer and enables data transfer between them.As We know that

heart of the Function Core is protocol layer, that handles all the standard USB

protocols.Protocol layer simulation was successfully done.Protocol Layer consists

of different modules including packet assembler, packet disassembler, protocol

engine and Internal DMA Engine.Each of the module of the protocol layer is

simulated for different inputs and results were verified by checking the waveforms

through Bluesim simulator and gtkwave.USB 2.0 supports differnt types of transfer

such as Isochronous Transfer, Bulk Transfer and Interrupt Transfer.Simulation for

protocol engine is done for both Isochronous and Bulk transfer for IN and OUT

cycle respectively by providing the test inputs through testbench and verifying the

expected output through gtkwave waveforms.Internal DMA Engine is simulated

for OUT cycle that is host to device transaction.So the standard USB protocol that

consists of token packet, data packet and handshake packet are verified through

simulation.

The code for UTMI Interface and Register file interface is successfully written but

In future the goal is to interface all the blocks that is protocol layer, UTMI Interface

and Register file Interface successfully so that they can be combined to form USB

2.0 Function Core and that can be synthesized on FPGA to give the hardware that

is required.
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