

Monitoring and Control of IITM campus water distribution network using GSM

as a redundant system

 A Project Report

 submitted by

 PARTHA PAUL

 in partial fulfillment of the requirements
 for the award of the degree of

 MASTER OF TECHNOLOGY

 DEPARTMENT OF ELECTRICAL ENGINEERING

 INDIAN INSTITUTE OF TECHNOLOGY, MADRAS.

 May 2018

THESIS CERTIFICATE

This is to certify that the report entitled”Monitoring and Control of IITM campus
water distribution network using GSM as a redundant system”,submitted by
Partha Paul, to the Indian Institute of Technology, Madras, for theaward of the
degree of Master of Technology, is a bonafide record of the research workcarried
out by him under my supervision. The contents of this report, in full or in
parts,have not been submitted to any other Institute or University for the award
of any degree ordiploma.

Dr. SridharaKumar Narasimhan Dr. RamkrishnaPasumarthy
Research Guide Research Co-Guide
Associate Professor Associate Professor
Dept. of Chemical Engineering Dept. of Electrical Engineering
IIT-Madras, 600 036 IIT-Madras, 600 036

Place: Chennai
Date:

ACKNOWLEDGEMENTS

Successful completion of this project work would not have been possible without
the guidance,support and encouragement of many people. I take this opportunity
to express mysincere gratitude and appreciation to them.

First and foremost I offer my earnest gratitude to my guide, Dr. SridharaKumar
Narasimhan who has supported me throughout my project work with his patience
and knowledge while allowing me freedom and flexibility to follow my own
thought process.

A special thanks is also to my Co-Guide, Dr. RamkrishnaPasumarthy who
patientlylistened, evaluated, criticized and guided me periodically. The invaluable
inputs andsuggestions from him were instrumental in steering the project work in
the right direction.

I would like to express my sincere gratitude and thanks to Mr. N Murali
whosepersistent efforts and pursuit of practical knowledge has been
motivational.

My special thanks and deepest gratitude to Saravanan Chinnusamy, Prasanna
Mohandoss, , Rohit R who has been very supportive. They have enriched the
projectexperience with their activeparticipation, deep understanding and
knowledge of the subjectmatter and invaluable suggestions.

I would like to thank my parents for supporting and encouraging me throughout
mystudies at IIT and for tolerating my prolonged absence from home.

ABSTRACT

Water supply in most of the Indian cities is intermittent with poor levels of
service. The poor service levels can be attributed to constraints on available water
and resources, limited instrumentation, improper operation of the system and
poor network maintenance. To monitor and control these geographically
distributed networks, measuring instruments should be placed in appropriate
locations and manual valves should be automated and appropriate
communication between the devices enabled. The proposed method involves real
time water level monitoring of storage reservoirs in Water Distribution Networks
(WDN) and remote actuation of valves using Internet of Things (IoT) enabled
devices. A low power wireless sensor and actuator network is developed for
monitoring and control of water distribution networks and deployed in the IIT
Madras water distribution network. The network consists of low cost water level
measurement module (Remote Nodes), electrically actuated valves and, gateway
nodes. LoRa/GSM is used to communicate between the nodes. The remote node
is installed in one storage reservoirs and electrical actuators. A Raspberry Pi based
gateway is developed which collects the level data from all Remote nodes and
sends the data to local server and sends control signals to the actuator. A php
based web application, an android application, and a open source SCADAare used
for data visualization and also serves as a human machine interface for
manipulating the valve remotely.LoRa is used as a primary communication
between sensors and gateway. Incase LoRa communication fails, GSM will act as
a secondary communication to collect data from sensor and actuator.

This work involves real time data acquisition from level sensors and remote
control of an actuator through GSM. This work also involves checking of
availability of primary communication by sending random values from the
gateways. As LoRA acts as primary communication channel, and GSM acts as
secondary communication channel, the work involves clear understanding of loRA
communication protocol.

This project also involves design of web application and mobile application
including configuration of an open source SCADA system. SCADA stands for
supervisory control and data acquisition. The work includes simulation in order to
decide correctness of implementation. This report presents various high level and
low level design considerations and decisions to describe the design of the overall
system. It also presents the interfaces among various modules. The project mostly
involves software design aspects.

1.1 IoT in WDN monitoring 7

1.2 Related work 7

1.3 system architecture 10

1.4 HARDWARE DESIGN 10

1.4.1 Remote Node 10

1.4.1 Actuator Node 11

1.4.3 Gateway Node 12

2.1 Use of python program for interfacing devices and communication redundancy 13
2.2 Data storage 15

3.1 Design of web application 25
3.2 Design of mobile application 33
3.2.1 open/close command 34
3.2.2 Displaying data 34
3.3 Installation and configuration of SCADA 35
3.3.1 Supproted datatypes 36
3.3.2 Dara source 36
3.3.3 Datapoints 37
3.3.4 Sound alarm 38
3.3.5 Graphics 38
3.3.7 Adding Data Sources 39
3.3.6 Adding Data Points 40
3.3.7 Viewing the data through Watch List and Graphs 40
3.3.8 Alarm configuration 43
3.3.9 SQL query and daily report 43

THESIS CERTIFICATE
ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

CHAPTER-1
INTRODUCTION

CHAPTER-2

CHAPTER-3

 Device interface and data storage

Design of user interface

4.1 Introduction 46
4.2 How 4G can be implemented? 47
4.3 Why are we using 2G? 50
4.4 2G operation mode 50
4.5 Algorithm 51
4.5.1 AT command 51
4.5.2 Checking by Arduino that modem is available for operation 52
4.5.3 Sending SMS 53
4.5.4 Receiving SMS 54
4.5.6 Function of the Arduino connected to the level sensor 55
4.5.7 Function of the Arduino installed with actuator 56
4.5.8 Reading SMS by the Arduino installed on the server 57
4.5.9 How the data is stored in database through GSM? 58
4.6 How Redundancy in communication is achieved? 59
4.6.1 updating random values by Gateway-1 59
4.6.2 updating random value by Gateway-2 60
4.6.3 Updating primary link availability in database 61
4.6.4 Sending SMS automatically by the server when primary link fails 62
4.6.5 Getting data through GSM manually 63

5.1 Simulation for the actuator: 77
5.1.1 Getting actuator status on mobile phone: after sending a SMS(@mobile#), 77
5.1.2 Sending an open command from user interface 79
5.2 Getting data from the level sensor installed at RR sump through GSM 80
5.2.1 Getting level data manually from the user interface: 82

88

88

 Simulation

GSM operation and communication redundancy

CONCLUSION
REFERENCES

CHAPTER-4

 CHAPTER-5

TABLE OF FLOWCHART

AT command 64
Checking by Arduino that modem is available for operation 65
Sending SMS 66
Receiving SMS 67
Function of the Arduino connected to the level sensor 68
Function of the Arduino installed with actuator 69
Reading SMS by the Arduino installed on the server 70
How the data is stored in database through GSM? 71
updating random values by Gateway-1 72
updating random value by Gateway-2 73
Updating primary link availability in database 74
Sending SMS automatically by the server when primary link fails(Arduino) 75
Sending SMS automatically by the server when primary link fails(Server) 76

CHAPTER-1
 INTRODUCTION

1.1 IoT in WDN monitoring

Drinking water distribution systems carry potable water from water sources to
consumers through complex pipe networks. Service reservoirs are used as
intermediate storage devices to smooth and meet demands. Most households
also own local storage tanks to further mitigate the variability of water supply.
Though the WDN is initially designed to supply water continuously, rapid
population growth and unplanned expansion of network results in intermittent
supply. Poor service is further compounded by lack of instrumentation, improper
operation and poor network maintenance. Continuous monitoring of WDN
parameters such as, pressure, flow, water quality and water levels in storage
reservoirs can improve the quality of service, reduce the Non-Revenue Water
(NRW) by balancing supply and demand. The proposed method involves real time
water level monitoring of reservoirs in Water Distribution Network (WDN) and
remote actuation of valves using Internet of Things (IoT) enabled devices. IoT in
WDN is used to collect crucial data about the system for monitoring, scheduling
and equitable supply of water to consumers.

1.2 Related work

Recently smart WDN monitoring using Internet of things (IoT) has received
more attention.The deployment of IoT devices in water distribution network
monitoring is limited by the technical challenges such as long communication
distance and cost. 3G/4G/LTE communication is still expensive for monitoring
WDN and not energy efficient for remote monitoring devices which are
resource and power constrained. Also, using 3G/4G need procurement of
router/firewall and public static IP address which are expensive. For cost
effectiveness, GSM has been used as secondary communication.Collecting of
data from WDN and remote control of electrical actuator is the primary goal of
this project. Data are collected from level sensors installed on underground
water tank to know the water level. Level sensor and the actuator are
connected to two controllers, one for GSM, one for LoRA. Sensors are installed
at Lake-well, children park , staff-club, and RR sump. The actuator and the

sensors installed at Lake-well, children park , and staff-club are directly or
indirectly connected to a gateway (gateway-1) installed at staff club. The level
sensor installed at RR sump is directly connected to another gateway(gateway-
2) installed at RR sump. Level data are stored in a database server placed in
the process control lab. Data are stored in two ways.

1. Through loRA, gateway, and ethernet combination(Link-1)
2. Directly through GSM(Link-2)

Our primary communication channel for data storage is link-1. In case of link-1
failure, data is stored in the database through link-2. The data stored in the
database is viewed by the user with the help of any one of the followings

1. An open source SCADA (SCADABR)
2. A PHP based web application
3. Android application

It is also possible to control (open/close) the actuator fromtheabove-
mentioned interfaces. Normally, Open/close command reaches the actuator
primarily through link-1. In case of link-1 failure, it reaches through link-2.
Command reaches the actuator through a database server in both the cases.

The project involves following works

1. Storing level data and actuator status in the database through GSM
2. Controlling of the actuator through GSM
3. Providing redundancy in communication
4. Creating a PHP based web application in an existing Apache web server.
5. Configuring an open source SCADA system to display the level database

well as to control the actuator
6. Creating an android application to display the level data as well as to

control the actuator

All these works have been done to mainly perform two tasks.

• Monitor level data/actuator status from user interfaces(operation-1)
• Sending open/close command from user interfaces(operation-2)

The user should not worry about physical layer of the communication, i.e.
regardless of the availability of link-1, above two operations should be done
smoothly. User interfaces can be SCADA, mobile app, or web app.

Operation-1: Operation-1 consists of the following process.
i) Storing level data/actuator status in the database server through link-

1/link2
ii) Fetching the data stored in the database server by the user interfaces.

• Process-i through link-1 is done by the gateway (a python program is
running in the gateway). Process-i through link-2 is done by the
server (a python program is running inthe server) installed in the
process control lab.

• Process-ii is done by respective interfaces in their own ways, but they

do the same job, i.e., reading the database.

Operation-2: Operation-2, which is more critical in nature, consists of the
following process.

• Updating database by user interfaces
• Reading/toggling the data(which is updated by user interfaces)

through link-1/link-2
If the data is read through link-1(a python program in the gateway), we call
that command is given through primary link. If the data is read through link-
2(a python program on the server), we call that command is given through
secondary link.
For storing level data/ actuator status, we prefer link-1 over link-2. Link-2 is
made active, only when link-1 fails. This is ensured by a separate python
program running on the server.

1.3 system architecture

Figure-1.1 system Architecture

1.4 HARDWARE DESIGN
1.4.1 Remote Node

Water level in the reservoirs is usually measured by using float & board level
gauge and dip sticks. The level gauge values are not accurate and require constant
human effort. Improper readings can result in insufficient storage or reservoir
overflow. Remote nodes are installed in the OHSR/UGSR to monitor water levels.
It consists of Arduino MCU, GSM module (SIM-900), Ultrasonic sensor,
LoRAmodule. Arduino collects the water level in the reservoir every minute from

ultrasonic sensor and sends to gateway/server. Arduino Nano MCU is used, due to
its small form factor and low power consumption.

 Figure 1.2. Block diagram of Remote node.

MaxBotix weather proof ultrasonic sensor (MB7060 XL-MaxSonar-WR) is used to
measure water level in the reservoirs. The sensor and electronic devices are
enclosed in IP65 box. GSM (Sim 900A module) is used as a redundant system.
Figure 2 shows the block diagram of the developed module. Separate MCU is used
for both LoRa and GSM. LoRa is connected to Arduino using serial peripheral
interface (SPI). Power supply is designed to supply 5V to Arduino, ultrasonic
sensor and GSM. Power for LoRa is taken from Arduino 3.3V output. Remote
nodes take reading for every minute and send to gateway.

1.4.2 Actuator Node

The block diagram of the actuator node is shown in Figure 4. The actuator has
local status indication (open/close) and button to operate the valve locally. It also
has remote control option, i.e., it can be opened/closed externally using relay or
PLC. As shown in Figure 5, the electric actuator is fixed on top of the valve using
supports and a long stem is used to transfer the torque from actuator to valve.
Potential free contacts are provided to read actuator status. Remote node reads
the actuator status for every five seconds and sends to gateway using LoRa/to the
server using GSM. Actuator status consists of Local/Remote mode, Fully open,
Fully close. Based on the command received, Arduino can energize or de-energize
the relay to open/close the actuator. These nodes are powered from actuator
power supply, so batteries are not used. Power supply is designed to supply 5V to
Arduino and GSM. Incase primary communication LoRa fails, GSM would be used

as a redundant system. To avoid single point failure, Separate MCUs are used for
both LoRa and GSM. Actuator status and controls are connected to both MCUs.
Both LoRa and GSM are initialized during starting. GSM is always in receive mode
to save power.

 Figure 1.3. Block diagram of Actuator node. Figure 1.4. Electrical Actuator

1.4.3 Gateway Node

The gateway node collects the data from remote nodes and actuator nodes,
processes the data and sends to centralized server. Raspberry PI is used for data
processing and internet connectivity. The cost of raspberry Pi based gateway is
low (~75 USD). LoRa Modem is connected to Raspberry Pi using serial Peripheral
interface (SPI). Raspberry Pi is connected to centralized server using local area
network (LAN). The gateway pushes the data to central server whenever it
receives data from any of the remote/actuator node. It receives command from
the centralized server and transmits to the actuator node to open/close the
actuator. Gateway LoRa is always in receive mode. Python is used for
programming Raspberry Pi.

 CHAPTER-2

 Device interface and data storage

2.1 Use of python program for interfacing devices and communication
redundancy

Python has been used as the scripting language to put the data into a database
field, after collecting it from Arduino. Sometimes, it is also used to send the data
to Arduino. It is running in the gateways as an interface to the field devices, and in
the server to ensure redundant communication. Python has the following
advantage.

• Python has extensive support libraries.
• It is open source
• It is easy to learn, and a lot of support is available
• It has a user-friendly data structure
• It has good speed.

Total four python programs have been used, two in the gateways, and two in
the server. For the sake of simplicity, we define the python programs as
Python-S1, Python-S2, Python-G1, Python-G2.

Python-S1: It is running on the server. It communicates with an Arduino which
is connected to a GSM modem through a serial port. This program is doing the
following job.

It establishes serial communication with the Arduino

• It gives a command to the Arduino through serial port-2 to send SMS to
sensors and actuator, when link-1 fails.

• It updates level data and actuator position/mode(local/remote) in the
database field. Incoming SMS received by GSM modem (from level sensors
and actuator) are sent to the Arduino by the modem through serial port-1.
The Arduino places the SMS into the serial port-2(Physically, it is aUSB port,

Arduino has inbuiltUSB to serial converter). Python reads the SMS from
serial port-2, extracts the data(level or actuator status) from the SMS, and
writes to the database, i.e, updates the data in the database fields.

Figure-2.1: Interfacing of GSM modem with server

Python-S2: It is also running on the server. It determines the communication
availability of sensors and actuator with respective gateways and updates in
the database field.

Python-G1: This program is running in the gateway installed in the staff club.
This program is doing the following job.

• It collects a data string which consists oflevel data and loRA address
(installed at lake-well, children-park, and staff club) from the the
Arduino (Arduino gets these data through loRA) through serial, and
updates the levels in the database fields.

Figure-2.2 Interfacing of Arduino with gateway-1

• The data string collected by this program consists of loRA address

(installed at lake-well, children-park,and staff club). Therefore, this
program can understand which LoRAs are reporting to the Arduino. If
the loRA connected to a particular sensor reports to the Arduino, this
program generates a random value for that sensor and updates the
random values in the database.

• It collects a data string which consists of actuator position and
mode(local/remote) from the Arduino (Arduino gets these data through
loRA) through the same serial port , and updates actuator status/mode
in the database fields.

• The data string collected by this program consists ofactuator address.
Therefore, this program can understand if the actuator is reporting to
the Arduino through loRA. If the actuator reports tothe Arduino, the
program generates a random value for the actuator and updates the
random value in the database field.

• It also sends open/close a command to the Arduino through Serial port.
(Arduino sendsa further command to the actuator through loRA)

Python-G2: This program is running in the gateway installed in the main sump.
This program is mainly for the following job.

Figure-2.3 Interfacing of Arduino with gateway-1

• It collects a data string which consists of level data and loRA address
(installed at main sump) from the Arduino (Arduino gets these data
through loRA) through serial port , and updates the levels in the
database fields.

• The data string collected by this program consists of loRA address of the
main sump. Therefore, this program can understand if the loRA is
reporting to the Arduino. If the loRA reports to the Arduino, the
program generates a random value for the main sump sensor and
updates the random value in the database field.

2.2 Data storage

For storing level data, actuator status, and for sending an open/ close command
to the actuator a database has been used instead of using any file, as the
database has better security, flexibility, quick access and better connectivity with
php, python, and java. Data sent by the level sensors through link-1 are stored in
the same table wherethe data sent by the level sensors through GSM are
stored.As MySQL is a powerful, free open-source database management system
that has been around for years and it is very stable and has a big community that

helps maintain, debug and upgrade it, MySQL has been used here. The advantage
of using MySQL is

• MySQL is very fast, reliable, and easy to use
• MySQL uses standard SQL
• MySQL compiles on a number of platforms
• MySQL supports php, python and the open source SCADA software

(SCADABR) and java. We need to connect to MySQL with java for android
application and SCADABR, with python for sending open/close command
to the actuator

• It is very easy to access any data with powerful SQL query.

The data in a MySQL database are stored in tables. A table is a collection of
related data, and it consists of columns and rows. A separate database called
“scada” has been created which is used by php, python,and java. Mobile
app(java), web app and open source “scada” software(SCADABR) use the same
database.

The database “scada” has 6tables (AI, DI,DO, Login, command,andgsm_test). Each
table has 3 columns (id, name,and value). Id is the primary key which is unique
and is used while querying. Three different types of operations (Read, update and
insert)have been done with this database “scada”. Before doing any operation by
any program, the database is connected to the program, the operation is
performed, and thenthedatabase is closed.Remote access to MySQL has been
enabled so that the gateway can communicate to MySQL. For connecting to the
database, the followings are used.

Username: root

Password: gowsalya

Database name: scada

Hostname: 10.21.160.201

Details of each table are given below.

Figure2.4 Table-1-AI

The table AI has 9 id fields, 9 name fields, and 9 value fields. id and name fields
remain constant. For simplicity, we define value field corresponding to id i=value
i.

Value-1 to value3: These fields are for storing level data for lake-well, children
park, and staff club. Value-iis updated by Python-G1 program when loRA-i is
available(Link-1 is available) and is updated by Python-S1 program when loRA-i is
not available, i.e. when GSM is activated. (i belongs to {1,2,3}). These fields are
also read by php program, android app, and scadaBR to display on user interfaces.

Value-4: This field is for storing level data for the mainsump(RR sump). Value-4 is
updated by Python-G2 program when link-1 isavailable and is updated by Python-
S1 program when link-1 fails, i.e. when GSM is activated. value-4 is also read by
php program, android app, and scadaBR to display on user interfaces.

Value-5 to value7: These fields are for storing random values corresponding to
sensors installed at lake-well, children park, and staff club. These fields are
updated by Python-G-1 and are read by Python-S-2.

Value-8: This field is for storing a random value corresponding to sensor installed
at the main sump. This field is updated by Python-G-2 and is read by the Python-
S-2 program.

Value-9: This field is for storing a random value corresponding the actuator. This
field is updated by Python-G-1 and is read by the Python-S-2 program.

Figure 2.5: Table-2-DI

The table DI has 9 id fields, 9 name fields, and 9 value fields. Id and name fields
remain constant. Value fields corresponding to id-1 and 2 have not been used.

Value-3 to value-7: These fields are used for storing link-1 availability status.
These fields are updated by python-S2.Value- (3+i) of this table is set to 1 by
Python-S2if value- (5+i) of table AI gets updated.(i belongs to {0,1,2,3,4}).

Example: value-6 of table AI updates =>value-4 of table DI=1

So, Python S-2 ensures that if the random value corresponding to a sensor is
coming from the gateway, then link-1 status for that sensor is ok.

This table is not used by php program, android app, and scadaBR.

Figure 2.6: Table-3-command

The table command has 9 id fields, 9 name fields, and 9 value fields. Id and name
fields remainconstant. value-1 and value-2 have not been used.

Value-3 to value-6 are for storing actuator status. These fieldsare updated by
Python-G1when the loRA module (connected to the actuator) communicates to
the gateway. These fields are also updated by Python S-1 when link-1 fails, i.e.
GSM is activated. These fields are also read byPHP, or Androidapp, or ScadaBR to
display on the user interfaces.

Value-7,8 and 9 are the special fields used by the SCADA.

Value-3: If the actuator is in remote mode, Python-G1 updates this field to 1. If
the actuator is in local mode, Python-G1 updates this field to 0. This field is also
updated through GSM, if link-1 fails. This field is read by php, or android aap, or
ScadaBR to display status on the interfaces.

Value-4: If the actuator is fully opened, Python-G1 updates this field to 1. If the
actuator is inan intermediate position or in fully closed condition, Python-G1
updates this field to 0. This field is also updated through GSM, if link-1 fails.

This field is read by PHP, or Androidapp, or ScadaBR to display status on the
interfaces.

Value-5: If the actuator is fully closed, Python-G1 updates this field to 1. If the
actuator is in an intermediate position or in fully opened condition, Python-G1
updates this field to 0. This field is also updated through GSM, if link-1 fails.This
field is read by PHP, or Androidapp, or ScadaBR to display status on the interfaces.

Value-6: If the power supply to the Arduino is available, Python-G1 updates this
field to 1. It is 0 otherwise

Figure 2.7: Table-4-DO

The table “DO” has 9 id fields, 9 name fields, and 9 value fields. Id and name fields
remain constant.

Value-1 and value2: Not used.

Value-3: This field is updated to 1 by PHP when an open command is given by the
user from mobile app/web application. If the command is given from SCADA, the
field is updated by java which is installed in the virtual guest machine (ubuntu-
14.04 LTS). This field is read by Python-S1. If it is 1, Python-S1 updates it to 0, and
does any one of the followings depending onlink-1 availability.

1. Updates value-9 to 1 (when link-1 is available)
2. Sends open command to the actuator through GSM (when link-1 fails)

This field remains 0 until a further open command is given.

Value-4: updated to 1 by PHP when a close command is given by the user from
mobileapp or web application. If the command is given from SCADA, the field is
updated by java. This field is read by Python-S1. If it is 1, Python-S1 updates it to
0, and does any one of the followings depending onlink-1 availability.

1. Updates value-1to 1 (when link-1 is available)
2. Sends close command to the actuator through GSM (when link-1 fails)

This field remains 0 until a further closecommand is given.

Value-8: We call this field as manual data request field for RR sump. Regardless of
availability of primary link, it is possible to get level data manuallythrough GSM
from level sensors. This feature is made available only in the SCADA. A manual
command must be given from the SCADA to get the data manually through GSM.
Value-8 becomes-1, when such command is given. This field is also read by
Python-S1. If it is 1, Python-S1 updates it to 0(initial state)

Value-5 to value-7: These fields have been used to get level data manually
through GSM from lake-well, children Park,and staff club respectively.

Value-9: If value-3 is 1,andtheactuatoris communicating through primary link(link-
1), Python-S2 updates value-9 to 1 and value-3 to 0. If value-9 is 1, Python-G1
updates it to 0 after sending an open command to the actuator through loRA.

Value-10: If value-4 is 1, andthe actuator is communicating through primary link,
Python-S2 updates value-10 to 1 and value-3 to 0. If value-10 is 1, Python-G1
updates it to 0 after sending a closecommand to the actuator through loRA.

Figure 2.8: Table-4-gsm_test

The table “gsm_test” is used to insert a new row whenever an event occurs. The
following events along with the timestamp are stored.

• When the open/close command is sent through loRA
• When the open/close command is sent through GSM
• When manual data requests to the sensors are sent

 Therefore, this table stores historical events.

Figure 2.9: Table-4-Login

The table “Login” has 2 id fields, 2 username fields, and 2 passwords fields. All
fields remain constant. This table is used to store valid username and password.
These username and password fields are read by php. If these usernames and
passwords are entered by the user, he can login to the web application. If the user
enters the username and password as “admin” and “123456” respectively, he can
control the actuator, as well as can monitor the level parameters. If the user
enters the username and password as “root” and “123456” respectively, he can
only monitor the level parameters.

Chapter-3

Design of user interface

3.1 Design of web application

Web application has been designed by HTML, CSS, PHP, and ajax.

HTML (the Hypertext Markup Language) and CSS (Cascading Style Sheets) are two
of the core technologies for building Web pages. HTML provides the structure of
the page, CSS the (visual and aural) layout. Along with php scripting, HTML and
CSS are the basis of building Web pages and Web Applications.

HTML is the language for describing the structure of Web pages. HTML gives
headings, text, tables, lists, photos, etc of a webpage. It also retrieves online
information via hypertext links, at the click of a button.HTML is used to describe
the structure of pages using markup. The elements of the language label pieces of
content such as “paragraph,” “list,” “table,” and so on.

CSS is the language for describing the presentation of Web pages, including
colors, layout, and fonts. It allows one to adapt the presentation to different types
of devices, such as large screens, small screens, or printers. CSS is independent of
HTML and can be used with any XML-based markup language. The separation of
HTML from CSS makes it easier to maintain sites, share style sheets across pages,
and tailor pages to different environments. This is referred to as the separation of
content from presentation.

As usual, in this web application, HTML provides contents of the webpage, and
CSS gives the representation including content location. The static portion has
been designed using HTML and CSS.

PHP which is an acronym for "PHP: Hypertext Preprocessor" is a widely-used,
open source scripting language. PHP scripts are executed on the server having
static IP 10.21.160.201. It is free to download and use. Biggest blogging system on
the web, WordPress and largest social network, Facebook have been designed
with PHP. PHP files can contain text, HTML, CSS, JavaScript, and PHP code. PHP
code are executed on the server, and the result is returned to the browser as
plain HTML (a webpage).PHP files have extension ".php".

 PHP can do the followings.

• PHP can generate dynamic page content
• PHP can create, open, read, write, delete, and close files on the server
• PHP can collect form data
• PHP can send and receive cookies
• PHP can add, delete, modify data in the database
• PHP can be used to control useraccess
• PHP can encrypt data
• PHP file contains php logic (<?php “logic here”?>), HTML, CSS, Javascript.

Advantages of using php are:

• PHP runs on various platforms (Windows, Linux, Unix, Mac OS X, etc.)
• PHP is compatible with almost all servers used today (Apache, IIS, etc.)
• PHP supports a wide range of databases
• PHP is fully open source.
• PHP is easy to learn and runs efficiently on the server side

Apache is the web server which accepts http request from the client and gives a
webpage as a response. As, PHP files are kept on Server, it is a server-
sidecomponent.PHP Interpreter interprets PHP language and executes
instructions as per code. It does not need compilation.

LAMP stack has been used to develop this web application. LAMP is an open
source Web development platform that uses Linux as the operating
system, Apache as the Web server, MySQL as the relational database
management system and PHP as the object-oriented scripting language. Because
the platform has four layers, LAMP is sometimes referred to as a LAMP stack.

An Architecture Diagram showing how each of the components in a system is
connected to each other and how are the data flowing between is given below.

https://whatis.techtarget.com/definition/open-source
https://whatis.techtarget.com/definition/open-source
https://whatis.techtarget.com/definition/open-source
https://searchdatacenter.techtarget.com/definition/Linux-operating-system
https://searchmicroservices.techtarget.com/definition/Apache
https://searchoracle.techtarget.com/definition/MySQL
https://whatis.techtarget.com/definition/PHP-Hypertext-Preprocessor
https://searchsoftwarequality.techtarget.com/definition/layer

Figure-3.1 Architecture of web application

At first,anyuser accesses the website through a browser, i.e.userenters the URL of
the website (like:10.21.160.201/test.html) inthebrowser. The page request on
browser first reaches to the Web Server (Apache). Web server collects that
requested page (HTML or PHP or Image file etc) from its document root (www
folder). Now, if it is a static element like HTML,CSS, image file or JavaScript file,
then Apache sends it directly to the browser, and Browser will render it to the
user on the screen.

If the user enters link containing PHP file (like 10.21.160.201/Login2.php) on the
address bar of the browser, Apache sends the content of the file to PHP
Interpreter. PHP interpreter interprets the PHP code and executes it. if DB
operation is written in the PHP file, the interpreter performs the same.

PHP Interpreter generates output (if the PHP code is to generate any output) and
sends to Apache. Apache sends that content to the browser, and the browser
renders it to users' screen

All static components like HTML, CSS files, ImageFiles, Java Scripts etcdon't need
an interpreter. Our web browsers are built to render them and display on screen

properly. Only if the requested page is a PHP page Apache will send it to PHP
interpreterto get it translated and executed.

In this web application, PHP programs have been used to perform 4 tasks mainly.
Some of the PHP files return a webpage, some of them update a particular field in
the database, some of them call another PHP program, and some of them return
a particular portion of a webpage, instead of returning the whole webpage(using
ajax technology).The link to access the web application is
http://10.21.160.201/Login2.php.

Security of the application

If "http://10.21.160.201/Login2.php" is entered in the address bar of any
browser, the page request first reaches to the Apache server (IP:
10.21.160.201).Apache sends the content of Login2.php file to PHP Interpreter.
PHP interpreter interprets the PHP code and executes it. PHP Interpreter
generates output and sends to Apache. Apache sends that content to the
browser, and the browser renders it to users' screen. As a result, usergets the
following webpage.

Figure-3.2: webpage returned by apache on execution of Login2.php

http://10.21.160.201/Login2.php

The webpage returned by apache hasausername and password textbox field,
Login and reset button.

A html form for user login has been created using http POST method. There are
two methods to create a html form-GET and POST. Both GET and POST create an
array with key-value pair, where keys are the names of the form controls and
values are the input data from the user.

Both GET and POST are treated as $_GET and $_POST. These are global, which
means that they are always accessible, regardless of scope. It can be accessed
from any function or file.

$_GET is an array of variables passed to the current script via the URL parameters.

$_POST is an array of variables passed to the current script via the HTTP POST
method.

Information sent from a form with the GET method is visible to everyone (all
variable names and values are displayed in the URL). GET may be used for sending
non-sensitive data.

Information sent from a form with the POST method is invisible to others and
has no limits on the amount of information to send.As client needs to enter a
password which is sensitive, http POST method has been used here.

“username” and “password” are the id of username and password textbox field,
i.e whatever the username is entered by the user, it gets automatically assigned
to the variable $_POST['username'] (This is a property of POST method). Similarly,
the password entered by the user gets assigned to $_POST['password'].

Therefore,

$_POST['username']=username entered by user

$_POST['password'].=password entered by user

Similarly, “submit” and “reset” are the name of the Login and reset button
respectively. Unlike id is used for text-field, name is used for button. The variable
$_POST['submit'] remains “NULL” until Login button is pressed by the user. After
pressing Login button, $_POST['submit'] gets a value automatically.

The isset () function is used to check whether a variable is set or not. If a variable
is already unset with unset() function, it will no longer be set. The isset() function
return false if testing variable contains a NULL value.Unset() function has not
been used here.

isset($_POST['submit'])=TRUE if login button is pressed.

isset($_POST['submit'])=FALSE if login button is not pressed.

When login button is pressed by the user, one PHP file gets called to connects to
the database “scada” of MySQL server if no connection error is there.

We have used the concept of session in our web application.

A session is a way to store information (in variables) to be used across multiple
pages.Unlike a cookie, the information is not stored on the user's computer. A
session here is working with this application, logging in it, doing something, and
then logging out of it. Php knows the user logged in to do something. It knows
when userlogs in the application and when ends.

Session variables stores user information to be used across multiple pages.Here,
session variables last until the user logs out of the application.

So, Session variables hold information about one single user and are available to
all pages in our application.

A session is started with the session_start() function.

Session variables are set with the PHP global variable: $_SESSION.
$_SESSION[‘variable1’], $_SESSION[‘variable2’] etc are used as global variable and
can be accessed by any PHP file inside the folder.

If userpresses the login after entering the username and password in the textbox
fields, PHP connects the database, and start a session. Then, whatever the

username and password are entered by the user get assigned the variable
$username and $password respectively.

Then PHP search the Login table of the database “scada” for $username and
$password.

If the username and the password entered by the user matches with the
username and password stored in the database, a global variable
$SESSION[login_user] is created and is assigned by the username entered by the
user. Then, a new PHP program “watert.php”(http://10.21.160.201/watert.php)
gets called.So, the PHP program “watert.php” gets called if and only if
$SESSION[login_user] is not NULL.

Figure-3.3: webpage returned by apache on execution of Login2.php

If any user enters the link http://10.21.160.201/watert.php without logging in, he
is redirected to http://10.21.160.201/Login2.php automatically ensuring that it is

http://10.21.160.201/watert.php
http://10.21.160.201/Login2.php

not possible to monitor/control without logging in. Thus using POST method,
session variable, and database connectivity, the application is made secured.

Ajax technology has been used to create this web application to ensure the
followings.

• Manual page refresh is not required by the user to get updated data

• Processing is same for all browser types because JavaScript is used.

• Using ajax it is possible to develop faster and more interactive web
applications.

• Ajax based application use less server bandwidth, because no need to reload
complete page..

Updating data:

Level data is read from databasewatert.phpfile, and is displayed on thisweb page.

An empty HTML table (green color) with variable height indicates the water level
of the tank on the basis of dynamic level data obtained from the database.

Actuator mode(local/remote), and position(opened/closed) are also read from
the database and displayed on this page. A red colored image (present in www
directory) for the valve is called by the phpfile, when actuator status is open in
the database. The green colored image is used for displaying closed condition.
Date and time also get updated on the top of the page. Updating of level data,
HTML table, and time are done with ajax.

Open/close command: When open/close button is pressed, open/close command
is reached to the actuator either through the gateway (primary link), or through
GSM(when primary link fails).

3.2 Design of mobile application

Like the web application, a mobile application has also been developed for
monitoring/controlling purpose. The mobile application reads the same data
which are read by the web application. As android application cant read data from
MySQL database directly, a web service is created, which acts as an interface
between android application, and MySQL database.

Figure-3.4: android app

I have integrated PHP and MYSQL with android application. This can be done, as I
created a webserver which is present on the intranet, and I wanted to access its
data on an android application.

MYSQL is used as a database on the webserver and PHP is used as a web service
which will read data from database/update database.

3.2.1open/close command:When open/close command is given, Android
communicates with the PHP page, which acts as web services, with a variable
which is shared by both PHP and java. The variable is first created by java, and is
shared with php. When open command is given from android application, java
assigns this variable to 1. As this variable is shared by php, php updates the
database field to 1.

When this field is 1, command reaches to the actuator either through primary
link or GSM.

3.2.2 Displaying data: When the button "refresh reading" is pressed from the
mobile app, java requests the web services,i.ePHP contacts MYSQL database and
fetches all data and returns the results to us in JSON format. Java parses the
JSON, and shows the reading on the application

Following steps have been followed to create the application:

• Existing database has been used as data sources
• Web services have been created with PHP
• Android Studio IDE has been used to create the application
• Modifiedsrc/MainActivity.java file to add Activity code. (button press)
• Modified layout XML file res/layout/activity_main.xml add any GUI

component if required.
• Modified AndroidManifest.xml to add INTRANET permissions.

3.3 Installation and configuration of SCADA

SCADA is an acronym for Supervisory Control and Data Acquisition. SCADA
systems serve as an interface between the operator and processes of the most
varied types, such as industrial machines, automatic controllers and sensors of
the most varied types. With SCADA systems, they are built from simple sensing
and automation applications to the famous "Control Panels" in various industries.

A typical SCADA should offer communication drivers with equipment, a system for
continuous data logging ("datalogger") and a graphical user interface known as
"HMI" or Human Machine Interface. At the HMI, graphic elements such as
buttons, icons and displays are represented, representing the actual process
being monitored or controlled.

Among some of the most commonly used functions in SCADA systems are:

• Generation of charts and reports with the history of the process;
• Alarm detection and event logging in automated systems;
• Process control including remote sending of parameters and set-points,

activation
• command of equipment;
• Use of scripting languages to develop automation logic

ScadaBR software is an open-source model with a free license.

The source code of the system is available, including being allowed to modify and
re-distribute the software if necessary. ScadaBR is a cross-platform Java-based
application, ie PCs running Windows, Linux and other operating systems and can
run the software from an application server (Apache Tomcat being the default
choice). When running the application, it can be accessed from an Internet
browser, preferably Firefox or Chrome. The main interface of the ScadaBR is easy
to use and already offers visualization of the variables, graphs, statistics, the
configuration of the protocols, alarms, construction of screens type HMI and a
series of configuration options.

 After configuring communication protocols with the equipment and defining the
variables(inputs and outputs, or "tags") of an automated application, it is possible
to set up web operator interfaces using the browser itself.

SCADABR can be installed on ubuntu or windows. It requires javajdk, apache
tomcat, and mysql database. Development of a software like SCADABR requires 2-
3 years. I have only configured it.

3.3.1 Supproted datatypes

Five types of data are supported.

Binary (or Boolean) values can have only two states, referenced in the system
with zero (0) and one (1) values. We can use converters to display binary values
on any necessary labels, such as on / off.

Multiple States values have multiple distinct states. By this approach, the binary
type is a particular case of a multiple state. Values are primitively represented as
integers (eg 0, 1, 2, 7, ...), but as in binary values it is possible to assign labels to
each value such as "opened/ closed / intermedddiate"

Numeric (or analog) values are decimal values represented in the system with
afloating-point variable. Examples of numerical values can be cited:
temperature,humidity, price and altitude. Text renderers can be used to
determine the display of features such as number of decimal places, thousands
separation (with periods or commas), display of suffixes (° F, kW / h, moles, etc.).

Alphanumeric values are simply strings, such as the "COMM FAIL/COMM OK".

Values in Images are binary representations of image data. They are stored in
filesin the file system of the host server (not in the database).

We have used binary(LOCAL/REMOTE status of actuator), neumaric(level data),
multistate(actuator position-opened, closed and intermediate), and
alphaneumeric (COMM OK/COMM FAIL) as our data types.

3.3.2 Dara source

Data sources are a fundamental part of the operation of this application. A data
source is a "place" from which data is received. Virtually anything can be a data
source, as long as the communication protocol is supported by the application.

Some examples: If we have a Modbus network accessible via RS232, RS485, TCP /
IP or UDP / IP, It is possible to create a Modbus data source that will "poll" the
network at a defined interval. If we have equipment or applications that can send
data over HTTP, It is possible to start a data source HTTP receiver that will listen
for incoming connections and send the data to the appropriate points. Values can
be "polled" at defined intervals. Data can be read and updated in a SQL database
external to the system. Data can be generated randomly or predictably using a
Virtual data source. Data values received or collected by a data source are stored
in data points. We have used MySQL database as our data-source.

3.3.3 Datapoints

The data point is a collection of associated historical values. For example, the
particular point may be the temperature reading of a quarter, while another point
could be the humidity reading of the same room. Points can also be control
values, such as an indicator to turn an equipment on or off.

There are many attributes that are used to control the behavior of points. The
logical separation of data source and data point depends on the communication
protocol in question.

Data point attributes can also determine many other aspects of the point, such as
its name, how it should be recorded (all data, only value changes, or none), how
long to maintain the data, how to format the data for display, and how chart with
the values. It is possible to set up data points with value detectors, which are
used to detect conditions of interest in point values, such as whether the value
has been too high for too long, too low, frequently changes, if not changes, etc.

Points can be arranged in a hierarchy, or tree, to simplify their management and
display using the Hierarchy functionality.

We have used our datapoints as level data, actuator mode(local/remote),
actuator position(opened/closed/intermediate) , communication availability(loRA
OK/FAIL), and open/close command.

Events:

An event is the occurrence of a condition defined in the system. There are both
system- defined and user-defined events. System-defined events include data

source operation errors, user logins, and system startup and shutdown. User-
defined events include value detectors, scheduled events, and compound events
that detect conditions on multiple points using logical arguments. There are also
"automated events" that occur when users make changes (additions,
modifications, and removals) that affect run-time objects, including data sources,
data points, value detectors, scheduled events, compound events, and event
handlers.Once an event has been detected, it is handled by handlers. An event
handler is a user-defined behavior that must be performed when a particular
event occurs, such as sending e-mail or "setting" the value to a set point.

3.3.4 Sound alarm

ScadaBR can play sounds when alarms are active. By default, sounds for alarms
are executed for urgent, critical alarms, not for informational alarms, but the
alarm sounds can be set individually. To enable private alarm sounds, valid files in
mp3 format must be placed defined directory.

3.3.5 Graphics

ScadaBR contains a small graphics library that can be found in the graphics folder.
Each sub-folder contains all the images in that image definition and an optional
properties file called info.txt. This property file contains name / value pairs for
thefollowing attributes (all optional):

name: The name that will be used to describe the image in the user interface.

width: The width of the image. By default, all images are of the same size.

height: The height of the image. By default, all images are of the same size.

text.x: The text position relative to the left border of the image, in pixels. The
default value is 5

text.y: The text position relative to the upper limit of the image, in pixels. The
default value is 5.

Since an image definition is used in the views, the folder should not be renamed.
The folder name is used internally as the image definition identifier. Image files
are arranged alphabetically by name and are case sensitive. Name / value pairs
are separated by '='. Lines beginning with '#' are considered comments.

'Thumbs.db' files are ignored. Compressed files (zip, gz, tar, etc) can not be used
because image files must be accessed by the web server. The image settings are
loaded at system startup, so any changes require restart.

3.3.7Adding Data Sources

We have used data source as our existing database with jdbc driver, as java is
used by SCADABR,

 Figure-3.5 used data source

To use data-source, as MySQL database, SQL query is used. In the following
example, data has been take from table AI(level data).

Figure-3.6used SQL query (Table-AI)

3.3.6 Adding Data Points

After selecting the data source(table here), a particular data is selected. This is
called datapoint. We can think it as atag. In the following example, Level data
corresponding to row-4 of AI table of database “scada” has been used as a
datapoint.

Figure-3.6 used SQL query (Table-AI)

3.3.7 Viewing the data through Watch List and Graphs

Once, datapoint is added, it is automatically added into the a list, called watch list

Figure-3.7Watch list

It is possible to view graph(selecting time-from, and time upto) for a particular
data point, after clicking on the point on the watch-list.

Figure-3.8 Graph of datapoints from watch-list

To create more elaborate visualizations of the data, we can construct "Graphical
Representations". In the main menu, After choosing the Graphical representation
option, we have to click on new Representation then to choose a name for our
first picture. Then, we have to select an image and to upload that. Then we have
to assign a datapoint to that image.

Figure-3.9 Graphical representation-Uploadingimage

Figure-3.10 Graphical representation-Assigning datapoint to image

3.3.8Alarm configuration

Alarm can be configured, if any critical events occurred. We have configured
alarm, critical events as “deletion of data points” ,”creation of new datapoints” ,
“user login” “server shutdown” etc.

Figure-3.10Alarm window

3.3.9SQL query and daily report

SQL query can be performed. ScadaBR has its own report generator. We
generatesdaily report.

Figure-3.11SCADABR login page

 Figure-3.12 Level data

Figure-3.13 Actuator control

Figure-3.14 Communication availability

CHAPER-4

 GSM operation and communication redundancy

4.1 Introduction

GSM stands for Global System for Mobile Communication. It is a digital cellular

technology used for transmitting mobile voice and data services.

• GSM is the most widely accepted standard in telecommunications and it is

implemented globally.

• GSM is a circuit-switched system that divides each 200 kHz channel into

eight 25 kHz time-slots. GSM operates on the mobile communication bands

900 MHz and 1800 MHz in most parts of the world.

• GSM makes use of narrowband Time Division Multiple Access (TDMA)

technique for transmitting signals.

• GSM was developed using digital technology. It has an ability to carry 64

kbps to 120 Mbps of data rates.

The uplink frequency range specified for GSM is 933 - 960 MHz (basic 900 MHz

band only). The downlink frequency band 890 - 915 MHz (basic 900 MHz band

only).

Further improvements were made with the introduction of GPRS and EDGE that

extended the capabilities of GSM networks. Multimedia messaging was added to

its list of features allowing subscribers to send pictures, audio clips, and even short

video clips to each other. EDGE also increased the speed of mobile internet

browsing to Dial-up speeds.

2G – The second generation of cell phone transmission. A few more features were
added to the menu such as simple text messaging.

3G/4G/LTE is a whole new technology that was introduced as a replacement to
the aging GSM technology. It offers substantial improvements over its
predecessor in almost all aspects imaginable. For starters, mobile internet speeds
for 3G/4G/LTE networks varies from Mbps to Gbps.

http://www.differencebetween.net/technology/difference-between-gprs-and-3g/
http://www.differencebetween.net/technology/difference-between-edge-and-3g/

Data can be updated with high rate into database using OFC link, MPLS-VPN

connection, and 3G/4G/LTE. Laying of OFC cable or using MPLS_VPL service from

ISP is associated with very high cost. So, a better option is to use 4G or 2G.

4.2 How 4G can be implemented?

Figure-4.1 Data upload to cloud server using 4G

Figure-4.2 Data upload to local server using router

 Figure-4.3 Data upload to local server using dual LAN port technique

Why option-2a is best?

• The advantage of using option-2a is that, we don’t need to buy any additional

public static static IP address from ISP. But, in this case, NAT must be

configured in existing router.

• In option-2b , we have to procure a public static IP address and a firewall

device. The server must have two LAN cards.

• Data can be imported into local database in both the configuration using

modern IoT protocol like MQTT or COAP

4.3 Why are we using 2G?

• We are using 2G as redundant communication system

• LORA is highly reliable

• We don’t need to buy any firewall or router

• We don’t need public static IP

• 3G/4G/LTE modem is costly

• Though data rate for 2G is very less(100 SMS per day for SMS pack, it is

suitable in our application.

4.4 2G operation mode

The server is connected to a controller (Arduino) along with GSM modem. To

send/receive sms, server(Python-S1) communicates to the .ino program running on

the Arduino. Each sensor/actuator is also connected to a controller(arduino) along

with a GSM modem.

 Two different types algorithm are used

• Each level sensor sends a response SMS to the server, each time it receives

a request SMS from the server (Time period: 15 min)

• When the actuator receives a open/close command from the server, it starts

sending SMS to the server with a time period of 1 min. Total 4 sms are sent.

SMS consists of status of the actuator along with the actuator address.

We can receive SMS on our mobile phone from the nodes.

4.5 Algorithm

4.5.1 AT command

GSM modem is connected to an Arduino through a serial port. To send/delete a

SMS, or to monitor network parameter, Arduino sends an AT command to the

modem. If Arduino gets a valid response, within 2 sec, the AT command is valid. For

example, to send a SMS, Arduino, after giving corresponding AT command to the

modem, should get a response “OK” from the modem within 2 sec. A flowchart

(Flow chart-1) shows how AT command works. Before sending AT command to the

modem, Arduino ensures, that no character is available on the serial port.

4.5.2 Checking by Arduino that modem is available for operation

First Arduino pings the modem by sending corresponding AT command to the

modem. AT command is sent until ping response is not obtained. After getting a

ping response, The followings are checked.

• SIM is plugged in

• Signal strength is available

• SIM is registered to the network

If these are satisfied, then it is assumed by the Arduino that Modem is ready for

operation. A flowchart (Flow chart-2) shows how this checking is done.

4.5.3 Sending SMS

Before sending any SMS, the modem must be set in text mode. Arduino sends AT

command to set the modem in text mode. If the response is “OK”, then text mode

is set. Then Arduino creates a message, assigns it to sms1, assign any number to

number1, sends AT command to the modem for sending sms1 to number1. If the

response is “OK”, SMS is sent. A flowchart (Flow chart-3) shows how the SMS is

sent.

4.5.4 Receiving SMS

Arduino waits for any string available on the serial port. The string is not AT

command responses, it is an incoming SMS. Any SMS which is received by the GSM

modem is forwarded to the serial port by the modem. If the incoming SMS has a

start marker(@ here), and end marker(# here), then Arduino reads the SMS. A

flowchart (Flow chart-4) shows how SMS is received.

4.5.6 Function of the Arduino connected to the level sensor

• The level sensor is connected to a Arduino which is further connected to a

GSM modem through Serial port. A firmware is written on the Arduino to

perform the following task.

• The Arduino first ensure that the modem is ready for operation.

• Then it waits for any incoming SMS.

• If the incoming SMS consists of the word “start” and it is from the server, the

Arduino reads the distance measured by the sensor. This is a count value

(The sensor output is (0-5)V which is read by the Arduino. The ADC of the

Arduino converts this analog voltage into a corresponding count value (0 to

1024). Maximum distance that can be measured by the sensor is 10 m=1000

cm. As 1000 cm corresponds to 1024 which is nearly equals to 1000, count

value x corresponds to x cm approximately) which is related to tank level.

Then, it makes a SMS(let sms1) consisting of the count value(converted into

string first), and the sensor address in the format @deviceDp256q# (where,

deviceD is the address of the sensor installed at RR sump, “256” is the count

value, i.e. distance measured by the sensor = 256 cm approximately.)

• Finally, sms1 is sent to the server. If the incoming SMS is from a mobile

phone, then sms1 is sent to the mobile phone.

• After sending sms-1 either to mobile or to the server, incoming sms is

deleted.

• A flowchart (Flow chart-5) shows the sequence.

4.5.7 Function of the Arduino installed with actuator

If incoming sms is @mobile#, it sends a reply SMS (let sms-1) in the format

@actuator-p676q#. SMS-1 is sent to the SIM card from where incoming SMS is

received. Here “actuator” is the address of the actuator. “676” is the status of the

actuator, which is understood by the server.

If incoming SMS is @open# from the server, actuator starts opening and sends

SMS-1 to the server. Sms is sent four times after each 1 min.

If incoming SMS is @close# from the server, actuator starts closing and sends SMS-

1 to the server. Sms is sent four times after each 1 min.

A flowchart (Flow chart-6) shows the sequence.

4.5.8 Reading SMS by the Arduino installed on the server

The Arduino (having 2 serial ports) is connected to the modem through serial port-

1, and to the server through serial port-2. First, the Arduino ensures that the

modem is ready for operation, then it waits for any for incoming SMS. If incoming

SMS contains the character(‘@’ and ‘#’), Arduino read this SMS, and places on serial

port-2. Now, the data (ex: @deviceDp256q#) sent by nodes are available on serial

port-2. This is read by the server (Python-S1) to store in Database. A flowchart (Flow

chart-7) shows the sequence.

4.5.9 How the data is stored in database through GSM?

As mentioned above, It is done by the server (Python-S1) program. Python S-1 has

two subroutines, Subroutine-1 is for storing data to database, and subroutine-2 is

for sending SMS to nodes. . A flowchart (Flow chart-8) shows the

sequence.Incoming data from Arduino is the data available on Serial Port-2.

4.6 How Redundancy in communication is achieved?

Data is updated into database through primary link(Link-1). In case of primary link

failure, a SMS is sent is the node, response SMS is received, required data extracted

from response SMS, and is stored in the database. Therefore we need to know if

primary communication is available. Gateway-1 and Gateway -2 send some random

value in the database for various nodes installed at the various locations with some

time period as mentioned below.

Lake well-90 sec, Children Park-60 sec, Staff Club-30 sec, RR sump-30 sec

Random value for the actuator is updated with a period of 5 sec.

This is done by the gateways (Python-G1, and Python-G2)

4.6.1 updating random values by Gateway-1

The data received through LoRA by gateway-1 is a string, consisting of loRA address,

and level data of the nodes. LoRA addresses of lake well, children Park, and staff

club are 2, 3, and 4 respectively. 1st element of the string is the address. If 1st

element is 2, then data is coming from lake-well through children Park, and staff

club. If 1st element is 3, then data is coming from children park through staff club,

but data is not coming from lake well. If 1st element is 4, the data is coming from

the staff club only. So depending on the 1st element of the string, random values

for the nodes installed at the following locations are updated on the database.

First element of the string Random value update for

 2 lake-well, children Park, Staff club

 3 children Park, Staff club

 4 Staff club

 5 actuator

 Table-4.1 Updating random value according to the string received by gateway

4.6.2 updating random value by Gateway-2

Updating of Random values for the node installed at RR sump is done, as done by

Gateway-1(Python-G2). It is simpler, as only one node is there.

Flow charts show how the random values are updated. Flowchart-9 is for gateway-

1, Flowchart-10 is for gateway-2

4.6.3 Updating primary link availability in database

Random values updated by the gateways are read by a Python Program(Python-S2)

to identify communication availability. communication availability is also updated

in the database. Random values are read by the program with the following time

duration.

For RR sump: 40 sec

For Lake well, and children Park: 2 min

For staff club: 40 sec

Flowchart-11 shows for RR sump, and actuator only.

4.6.4 Sending SMS automatically by the server when primary link fails

Primary link availability of various nodes through primary channel is known now. If

this communication is not available for a particular node, a SMS is sent to that

node, by the server automatically. If actuator is not available through primary link,

and open command is given from any interface, then SMS(@open#) is sent to the

actuator by the server.

For sending open command to the actuator, server (Subrotine-2, Python-S1) writes

‘x’ on Serial Port-2. Arduino sends the open command to the actuator after reading

this ‘x’ from the serial port.

All othe SMS sending procedures are given the the flowchatrs. AT command is given

through Serial port-1, as modem is connected to that port. Once sms is sent

successfully, status is sent to Serial port-2 for reading it by the server (Suroutine-2,

Python-S1).

Figure-4.4 GSM modem connectivity with server

Flowchart-12 shows the job sequence of the Arduino, and the Flowchart-13 shows

the job sequence of the server.

4.6.5 Getting data through GSM manually

Manual data request fields are the fields in the database ‘scada’ corresponding to

id-5 to id -8(value-5 to value-8). Subrotine-2 of Python-S1 updates value-8 to 10

and sends a message to the nodes installed at RR sump. This is the way how

manually data is obtained through GSM. This event happens automatically after

each 15 min, if the node installed at the RR sump is not available through primary

link. Same concept is applied for sending open/close command to the actuator. If

refresh button(under RR sump graphics) is pressed, value-8 is updated to1.

 Figure-4.5 Refresh button on SCADA

START

response=0

Any character available in serial port?

clean serial port

 True

delay(1000)

 False

Send the AT command through serial port

time=t1

response string received from GSM modem?

Is received string=our desired string?

 True

Is response == 0 && present time - t1 < 2 sec?

 False

response = 1

 True

 False

 True

is response=1?

 False

AT responsr is valid

 True

2 sec is over. GSM modem not responding properly

 False

END

FLOWCHART-1
AT COMMAND

START

answer=0

send AT command to modem

got response?

answer=1

answer = 0?

 True

modem is ready to accept all commands

 False

 True

 False

Send AT command to GSM modem to check whether
SIM is plugged or not

got response 'OK'?

SIM is plugged

 True

END

 False

delay(500 ms)

Sent AT command to GSM modem to check whether
signal strength is available or not

got response 'OK'?

good signal available

 True

 False

delay(500 ms)

Sent AT command to GSM modem to check whether
SIM is registered to network or not

got response 'OK'?

SIM registered to network

 True

 False

modem is ready for operation

FLOWCHART-2
CHECK IF MODEM IS READY

START

Send AT command to set the modem in text mode

Got response "OK"?

"text mode set"

 True

"Error setting text mode"

 False

make a message, and assign it to sms1

assign any number to number1

Send AT command to the modem for sending sms1 to number1

Got response "OK"?

"sms sent"

 True

"sms send failure"

 False

END

FLOWCHART-3
SENDING SMS

START

newData = false

recvInProgress = false

index = 0

startMarker = '@'

endMarker = '#'

Any character available in serial port, and newdata=false?

read that character, let x

 True

END

 False

rc = x

recvInProgress == true?

rc not equal to endMarker?

 True

rc == startMarker?

 False

String[index] = rc

 True

String[ndx] = '\0'

 False

increament ndx

index >= Serial buffer size?

 False

ndx = Serial buffer size - 1

 True

recvInProgress = false

index = 0

newData = true

 False

recvInProgress = true

 True

 terminate the string

FLOWCHART-4
RECEIVING SMS

START

is gsm modem ready for operation?

started=true

 True

 False

started=true?

any sms received?

 True

modem issue

 False

newdata=true

 True

newData == true?

 False

 False

Is the sms from server, and Does the string contain "start"?

 True

Read count value corresponding to level data

 True

Does the string contain "mobile"?

 False

convert this count value into string(say str)

Make sms1 like sms1=@deviceDpstrq#
Send sms1 to the server

Delete all sms

newData = false

 False

Read count value corresponding to level data

 True

convert this count value into string(say str)

Make sms1 like sms1=@deviceDpstrq#
Send sms1 to the mobile

Delete all sms

newData = false

END

FLOWCHART-5
Function of the Arduino connected to the level sensor

START

is gsm modem ready for operation?

started=true

 True

started=true?

 False

Send delete command to modem to delete all sms

 True

 False Got "OK" response from modem?

all sms deleted

 True

 False

started=true?

Is actuator in remote mode?

 True

modem issue

 False

data[0]='1'

 True

data[0]='0'

 False

Is actuator fully opened?

data[1]='1'

 True

data[1]='0'

 False

Is actuator fully closed?

data[2]='1'

 True

data[2]='0'

 False

make a sms (let sms1) like
sms1=@actuator-pdata[0]data[1]data[2]q#

read received sms if any

does the received sms contain keyword "mobile" and is it from server?

send sms1 to the server

 True

does the received sms contain keyword "open" and is it from server?

 False

sms sending success?

sms send success

 True

Send delete command to modem to delete all sms

 False

Got "OK" response from modem?

all sms deleted

 True

 False

open=true

 True

does the received sms contain keyword "close" and is it from server?

 False

Send delete command to modem to delete all sms

Got "OK" response from modem?

all sms deleted

 True

start sending status to server at an interval 1 min for 4 min

 False

close=true

 True

Is actuator not fully opened and in remote?

 False

Send delete command to modem to delete all sms

Got "OK" response from modem?

all sms deleted

 True

start sending status to server at an interval of 1 min for 4 min

 False

Is open=true?

 True

Is actuator not fully closed and in remote?

 False

cut close command if any

 True

 False

delay for 5 msec

open actuator until it is fully opened

make open=false

 False

Is close=true?

 True

 False

cut open command if any

 True

delay for 5 msec

close actuator untill itis fully closed

make close=false

END

FLOWCHART-6
Function of the Arduino connected to the actuator

START

define serial port-1=comm port for modem

define serial port-2=comm port for server

Is GSM modem ready?

send "modem is ready" to serial port-2

 True

 False

started=true

true

started=true?

 True

 False

read incoming sms and number

 True

Is the SMS from selected numbers?

 False

does the SMS contain '@' and '#'?

 True

 False

receive the sms from serial port-1

 True

place the sms to serial port-2

FLOWCHART-7
Reading SMS by the Arduino connected to the server

START

true

START

 True

connect to database

Is incoming serial data from arduino available?

read the data

 True

close database connection

 False

is the serial data a sms ?

split the data

 True

 False

Is the data received from actuator?

collect data between 'p' and 'q'

 True

Is the sms received from lake well?

 False

remote status=data

opened status=data

 0

closed ststus=data

 1

update remote, local, and closed status into the database

 2

insert a new row into the database mentioning the timestamp and the data received from actuator

collect data between 'p' and 'q'. let x

 True

Is the sms received from children Park?

 False

lake_well_level=20-32.8(x/820-0.2488) ft

update lake_well_level into database

insert a new row into the database mentioning the timestamp and the data received from lakewell

collect data between 'p' and 'q'. let x

 True

Is the sms received from stuff club?

 False

children_park_level=20-32.8(x/820-0.2488) ft

update children_park_level into database

insert a new row into the database mentioning the timestamp and the data received from children Park

collect data between 'p' and 'q'. let x

 True

Is the sms received from RR sump?

 False

stuff_club_level=20-32.8(x/820-0.2488) ft

update stuff_club_level into database

insert a new row into the database mentioning the timestamp and the data received from stuff club

collect data between 'p' and 'q'. let x

 True

 False

RR_sump_level=20-32.8(x/820-0.2488) ft

update RR_sump_level into database

insert a new row into the database mentioning the timestamp and the data received from RR sump

delay 100 ms

FLOWCHART-8
How the data is stored in database through GSM?

START

true

data-1=data received from loRA

 True

length of data-1 is not zero

 False

connect to database

 True

data[1]=4

put a random value in stuff_club_random_field

 True

data[1]=3

 False

put a random value in stuff_club_random_field

 True

data[1]=2

 False

put a random value in children_park_random_field

put a random value in stuff_club_random_field

 True

data[1]=5

 False put a random value in children_park_random_field

put a random value in lake_well_random_field

put a random value in actuator_random_field

 True

close database connection

 False

FLOWCHART-9
How gateway-1 updates random value in database

START

true

data received from LoRA?

 True

 False

connect to database

 True

put a random value in rr_sump_random_field

close database connection

FLOWCHART-10
How gateway-2 updates random value in database

START

rr_sump_prev_time = current time

actuator_prev_time = current time

true

current time - rr_sump_prev_time>40 sec?

 True

connect to database

 True

current time - actuator_prev_time>10 sec?

 False

select rr_sump_random_field from db

Assign it to new_random_value

new_random_value not equal to old_random_value?

sensor comm status=true

 True

sensor comm status=false

 False

old_random_value = new_random_value

update comm status in db

close database connection

rr_sump_prev_time=current time

 False

connect to database

 True

select actuator_random_field from db

Assign it to new_random_value1

new_random_value1 not equal to old_random_value1?

actuator comm status=true

 True

actuator comm status=false

 False

old_random_value1 = new_random_value1

update comm status in db

close database connection

actuator_prev_time=current time

FLOWCHART-11
Updating primary link availability in database

START

started=false

define serial port-1=comm port for modem

define serial port-2=comm port for server

Is GSM modm ready for operation?

started=true

 True

 False

started=true?

IsCharacter received= false

 True

modem issue

 False

character available on serial port-2?

read the character

 True

IsCharacter received= true

 False

IsCharacter received= true

 False

received character=='l'?

 True

Send AT command to modem through Serial port-1 to
send sms(@start#) to lakewell

 True

received character=='c'?

 False

response="OK"?

place the string-"sms sent to lake well" on Serial port-2

 True

IsCharacter received= false

 False

Send AT command to modem through Serial port-1 to
send sms(@start#) to children park

 True

received character=='s'?

 False

response="OK"?

place the string-"sms sent to children park" on Serial port-2

 True

IsCharacter received= false

 False

Send AT command to modem through Serial port-1 to
send sms(@start#) to stuff club

 True

received character=='r'?

 False

response="OK"?

place the string-"sms sent to stuff club" on Serial port-2

 True

IsCharacter received= false

 False

Send AT command to modem through Serial port-1 to
send sms(@start#) to RR sump

 True

receivedChar=='x'

 False

response="OK"?

place the string-"sms sent to RR sump" on Serial port-2

 True

IsCharacter received= false

 False

Send AT command to modem through Serial port-1 to
send sms(@open#) to actuator

 True

receivedChar=='y'

 False

response="OK"?

 False place the string-"open command sent to actuator" on Serial port-2

 True

 False

Send AT command to modem through Serial port-1 to
send sms(@close#) to actuator

 True

response="OK"?

 False place the string-"close command sent to actuator" on Serial port-2

 True

END

FLOWCHART-12
Sending SMS automatically by the server when primary link fails
function of the Arduino connected to the server

START

true

read loRA communication status of all level sensor and actuator with their gateways from database

 True

read actuator open and close command field from database

read all data request field for all level sensor and actuator from the database

Lake well loRA is not available?

last sms sent to lake well before 15 min or more?

 True

children Park loRA is not available?

 False

write 'l' to the serial port

 True

 False response= "sms sent to lakewell"?

insert "sms sent to lakewell through GSM" into database

 True

 False

last sms sent to children Park before 15 min or more?

 True

stuff club loRA is not available?

 False

write 'c' to the serial port

 True

 False response= "sms sent to children Park"?

insert "sms sent to children Park through GSM" into database

 True

 False

last sms sent to stuff club before 15 min or more?

 True

RR sump loRA is not available?

 False

write 's' to the serial port

 True

 False response= "sms sent to stuff club"?

insert "sms sent to stuff club through GSM" into database

 True

 False

last sms sent to RR sump before 15 min or more?

 True

Actuator loRA is not available?

 False

write 'r' to the serial port

 True

 False response= "sms sent to RR sump"?

insert "sms sent to RR sump through GSM" into database

 True

 False

open field=true?

 True

Actuator loRA available?

 False

write 'x' to the serial port

 True

close field=true?

 False

response= "open commend sent to actuator"?

insert "open commend sent to actuator through GSM" into database

 True

update open field=false

 False

write 'y' to the serial port

 True

 False

response= "close commend sent to actuator"?

insert "close commend sent to actuator through GSM" into database

 True

update close field=false

 False

open field=true?

 True

Actuator loRA available?

 False

update l_open field=true in the database

 True

 False update open field=false in the database

insert "open commend sent to actuator through lora" into database

close field=true?

 True

lake_well_mannual_data_request field =true?

 False

update l_close field=true in the database

 True

 False update close field=false in the database

insert "close commend sent to actuator through lora" into database

write 'l' to the serial port

 True

children_park_mannual_data_request field =true?

 False response= "sms sent to lakewell"?

insert "sms sent to lakewell through GSM in mannual mode" into database

 True

 False

write 'c' to the serial port

 True

stuff_club_mannual_data_request field =true?

 False response= "sms sent to children park"?

insert "sms sent to children park through GSM in mannual mode" into database

 True

 False

write 's' to the serial port

 True

rr_sump_mannual_data_request field =true?

 False response= "sms sent to stuff club"?

insert "sms sent to stuff club through GSM in mannual mode" into database

 True

 False

write 'r' to the serial port

 True

close database connection

 False response= "sms sent to RR sump"?

insert "sms sent to RR sump through GSM in mannual mode" into database

 True

 False

delay 100ms

FLOWCHART-13
Sending SMS automatically by the server when primary link fails
function of the server

CHAPTER-5

 Simulation

5.1 Simulation for the actuator:

5.1.1 Getting actuator status on mobile phone: after sending a SMS(@mobile#),

from the mobile(which is allowed), a response SMS(@actuatotp676q) is received

by the mobile.676 is the status of the actuator, which indicated that the actuator

is in local mode, and is in opened condition.

Figure-5.1 SMS received from actuator node

5.1.2. Sending an open command from user interface: The program running on

the gateway is stopped to ensure, that primary link is down. After clicking

on the open button from the web application, status of the program

running on the arduino(connected to the actuator) is monitored. It is

observed that the SMS(@open#) is received by the arduino. The arduino,

then, starts sending the status to the server.

 Figure-5.2 Open command received by the arduino through GSM

Figure-5.3 Arduino starts sending SMS to the server after getting an open

command

 5.2 Getting data from the level sensor installed at RR sump through GSM

5.2.1 Getting count value corresponding to distance measured by the sensor

on mobile phone: After sending a SMS(@mobile#), from the mobile(which is

allowed), a response SMS(@deviceDp230q#) is received by the mobile. 230 is

the count value corresponding to the distance measured by the sensor

Figure-5.4 SMS received from sensor node

5.2.1 Getting level data manually from the user interface:

Before clicking on the refresh button on the scada, RR sump reading was 10.26 ft.

After clicking on the refresh button, a SMS is sent to the node.

 Figure 5.5 Sending SMS to node at RR sump by the server

Then a SMS is received by the server

 Figure-5.6 SMS received by the server from RR sump

Then, same reading(9.64 ft) gets displayed on scada, mobile app, and on the web

application.

 Figure-5.7 RR sump reading 9.64 feet on web application

 Figure-5.8 RR sump reading 9.64 feet on SCADABR

 Figure-5.9 RR sump reading 9.64 feet on android application

CONCLUSION
This project presents a low cost IoT based solution using LoRa/GSM for monitoring and control
of campus water distribution network. GSM is used as a redundant system to ensure continuous
monitoring and control. Initial deployment results are encouraging. LoRA can easily be
interfaced with industrial PLC (24 V DC) system for DI and DO data. Our GSM implementation
can easily be used to implement 3G/4G using IoT protocol(MQTT/COAP). All codes have been
uploaded on https://github.com/tansquire

REFERENCES

VavaliyaJaladhi, Bhavsar Dhruv, KavadiUtkarsha, Mohammad Mahroof, “OnlinePerformanc 5

essessment System for Urban Water Supply and Sanitation Services in India”, Aquatic
Procedia,Volume 6, August 2016, Pages 51-63.

I. Stoianov, L. Nachman, S. Madden, T. Tokmouline, and M. Csail, “PIPENET: A Wireless Sensor
NetwoRKfor Pipeline Monitoring,” Information Processing in Sensor Networks, 2007. IPSN
2007. 6th International Symposium on, pp. 264–273, 2007.

http://www.dragino.com/downloads/downloads/UserManual/LG01_LoRa_Gateway_User_Manual.pdf

https://www.cookinghacks.com/form/viewtopic.php?f=43&t=5919https://electro
nics.stackexchange.com/questions/274065/gsmmodule-gets-into-reboot-loop

https://arduino.stackexchange.com/questions/33214/is-the-a6-module-broken

https://www.youtube.com/watch?v=6snnAE3Pp9U

https://github.com/MarcoMartines/GSM-GPRS-GPS-Shield

https://www.youtube.com/channel/UC59K-uG2A5ogwIrHw4bmlEg

https://www.learnpython.org/

https://www.androidhive.info/2012/05/how-to-connect-android-with-php-
mysql/https://www.androidhive.info/2012/05/how-to-connect-android-with-
phpmysql/

https://www.androidhive.info/2012/05/how-to-connect-android-with-php-mysql/
https://github.com/andresarmento/modbus-arduino

https://github.com/tansquire
https://electronics.stackexchange.com/questions/274065/gsmmodule-gets-into-reboot-loop
https://electronics.stackexchange.com/questions/274065/gsmmodule-gets-into-reboot-loop
https://arduino.stackexchange.com/questions/33214/is-the-a6-module-broken
https://www.youtube.com/watch?v=6snnAE3Pp9U
https://github.com/MarcoMartines/GSM-GPRS-GPS-Shield
https://www.youtube.com/channel/UC59K-uG2A5ogwIrHw4bmlEg
https://www.learnpython.org/
https://www.androidhive.info/2012/05/how-to-connect-android-with-php-mysql/
https://www.androidhive.info/2012/05/how-to-connect-android-with-php-mysql/
https://www.androidhive.info/2012/05/how-to-connect-android-with-php-mysql/
https://www.androidhive.info/2012/05/how-to-connect-android-with-php-mysql/
https://github.com/andresarmento/modbus-arduino

	certificate
	index1
	Sheet1

	index2
	Sheet2

	CHAPTER-1-2 only
	IoT in WDN monitoring
	Drinking water distribution systems carry potable water from water sources to consumers through complex pipe networks. Service reservoirs are used as intermediate storage devices to smooth and meet demands. Most households also own local storage tanks...
	1.2 Related work
	system architecture
	/
	HARDWARE DESIGN
	Remote Node

	Water level in the reservoirs is usually measured by using float & board level gauge and dip sticks. The level gauge values are not accurate and require constant human effort. Improper readings can result in insufficient storage or reservoir overflow....
	/
	Figure 1.2. Block diagram of Remote node.
	MaxBotix weather proof ultrasonic sensor (MB7060 XL-MaxSonar-WR) is used to measure water level in the reservoirs. The sensor and electronic devices are enclosed in IP65 box. GSM (Sim 900A module) is used as a redundant system. Figure 2 shows the bloc...
	1.4.2 Actuator Node
	The block diagram of the actuator node is shown in Figure 4. The actuator has local status indication (open/close) and button to operate the valve locally. It also has remote control option, i.e., it can be opened/closed externally using relay or PLC....
	/
	Figure 1.3. Block diagram of Actuator node. Figure 1.4. Electrical Actuator
	1.4.3 Gateway Node

	The gateway node collects the data from remote nodes and actuator nodes, processes the data and sends to centralized server. Raspberry PI is used for data processing and internet connectivity. The cost of raspberry Pi based gateway is low (~75 USD). ...
	CHAPTER-2
	Device interface and data storage

	CHAPTER-3
	chapter-4 GSM
	GSM
	Binder2
	actuator
	comm_status
	gateway-1
	modem_ready_for_operation
	read python
	read server side
	receive_sms
	rr_sump
	send sms
	sensor_flowchart
	server side command
	server_side_command.py
	AT command

	CH-5
	CONCLUSION
	CONCLUSION
	This project presents a low cost IoT based solution using LoRa/GSM for monitoring and control of campus water distribution network. GSM is used as a redundant system to ensure continuous monitoring and control. Initial deployment results are encouragi...
	REFERENCES

