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ABSTRACT

When a design progresses from simulation to hardware implementation, a users

control and understanding of the systems current state drops dramatically. To help

bring up and debug low level software and hardware, it is critical to have good

debugging support built into the hardware.

This thesis outlines a standard architecture for external debug support on

SHAKTI platforms.This architecture allows a variety of implementations like C-

class,I-class,E-class.At the same time, this architecture defines common interfaces

to allow debugging tools and components to target a variety of platforms.It can

connect ”blind” to any SHAKTI platform, and discover everything it needs to

know without depending on the quality of a vendor’s debugging toolchain.

It is regarded as the best friend of a software programmer as it externally allows

us to run the program up to a certain point, then stop and print out the values of

certain variables at that point, or step through the program one line at a time and

print out the values of each variable after executing each line.

It consists of basic features like selecting harts, halt-resume,abstract com-

mands,program buffer,single stepping.
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CHAPTER 1

Introduction

1.1 Supported Features

The debug interface described in this thesis supports the following features:

1. Processor 32,64, and future 128 are all supported.

2. Any hart in the platform can be independently debugged.

3. A debugger can discover almost everything it needs to know itself, without
user configuration.

4. Each hart can be debugged from the very first instruction executed.

5. The hart can be halted when a software breakpoint instruction is executed.

6. Hardware single-step can execute one instruction at a time.

7. Debug functionality is independent of the debug transport used.

8. The debugger does not need to know anything about the microarchitecture
of the cores it is debugging.

9. Arbitrary subsets of harts can be halted and resumed simultaneously. (Op-
tional)

10. Registers can be accessed without halting. (Optional)

1.2 Terminology

A platform is a single integrated circuit consisting of one or more components.Some

components may be processor cores, while others may have a different function.

Typically they will all be connected to a single system bus. A single core contains

one or more hardware threads, called harts.



CHAPTER 2

System Overview

The figure shown below 2.1 shows the main components of External Debug Sup-

port.The user interacts with the Debug Host (eg. laptop), which is running a

debugger (eg. gdb).The debugger communicates with a Debug Translator (eg.

OpenOCD, which may include a hardware driver) to communicate with De-

bug Transport Hardware (eg. Olimex USB-JTAG adapter).The Debug Transport

Hardware connects the Debug Host to the Platforms Debug Transport Module

(DTM).The DTM provides access to the Debug Module (DM).

The DM allows the debugger to halt any hart in the platform.Abstract com-

mands provide access to GPRs.Additional registers are accessible through abstract

commands or by writing programs to the optional Program Buffer.The Program

Buffer allows the debugger to execute arbitrary instructions on a hart. This mech-

anism can be used to access memory. An optional system bus access block allows

memory accesses without using a hart to perform the access.



Figure 2.1: Debug System Overview
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CHAPTER 3

Bluespec System Verilog

Bluespec System Verilog is a Hardware Description Language (HDL), which is

used for specification, synthesis, modeling and verification of ASIC and FPGA

design. With a radically different approach to highlevel synthesis, bluespec offers

significantly higher productivity. It allows designers to express intended hardware

through high-level constructs, where all behavior is described as a set of guarded

atomic actions.

3.1 Limitation of Verilog

Verilog focusses more on simulation than logic synthesis.The source text of verilog

often explicitly contains aspects of circuit that could be readily determined by the

compiler, such as size of registers, width of busses etc. This makes the design less

portable. Handling concurrency in hardware is relatively difficult in verilog as the

designer should manage all the aspects of handshaking between combinational

circuits. Shared use of register and other memory resources should also be elab-

orated. The behavioral specification of design in verilog often consumes multiple

clock cycles. Attempts to resolve this problem results in a highly unreadable code

with possible bugs. In practice,this problem is solved by separating the combina-

tional and sequential parts of the circuit. Due to these shortcomings, the synthesis

and verification of hardware in verilog is slowed down. This is a huge problem

during the design of SOC.



3.2 Bluespec

Bluespec is based on atomic transactions, which increases the level of concurrency

abstraction above SystemC and RTL without compromising the control over hard-

ware design. It enables automatic synthesis of complex control logic, which is

the source of many bugs. This results in highly adaptable, reusable and reconfig-

urable designs. Control adaptive parametrization in bluespec provides flexibility,

where a significantly different micro-architecture can be generated by changing

the parameters in the design with the associated control structures generated au-

tomatically. Bluespec allows user defined data types and static type checking. It

provides several features of the modern high level languages and all of them can

be synthesized.

In recent times, several attempts have been made to move the hardware design

language towards a more software like specification of the circuit behaviour. Lan-

guages like C, C++ are used to express designs as sequential programs. However,

the semantic gap between the software model and the hardware results in subop-

timal designs with unpredictable speed and area.Bluespec System Verilog tackles

this problem by building upon the traditional hardware semantics. It exploits ad-

vanced concepts from software only for static elaboration and staticverification.It

uses the standard hardware structure model of verilog such as modules, module

instances, hierarchy etc. For communication between modules it uses the Sys-

tem verilog model of interfaces and interface instances. These added with the

advanced features of the high level languages, makes designing and verification

in bluespec much faster.
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3.3 Features of Bluespec

3.3.1 Modules and Interfaces

Module is the basic element of the hardware design hierarchy in bluespec. A

module can be instantiated multiple times, and also different parameters can be

passed during every instantiation. Unlike verilog, bluespec does not have input,

output and in-out pins as interface to modules. Methods are used to drive signals

and busses in and out of modules. These methods are grouped together into

interfaces. Modules contain rules, which use methods in other modules.

Figure 3.1: Block Diagram:Representation of Methods,Interfaces,Rules in a mod-
ule hierarchy

In BSV, the interface declaration is done separately, outside the module defini-

tion. This allows declaration of common interfaces which can be used in multiple

6



modules,without having to methods and therefore share same number and type

of inputs and outputs.

3.3.2 Rules

Rules manage the movement of data from one state to another,within the mod-

ule.It consists of two parts: rule conditions and rule body.Rule conditions are

boolean expressions which decide whether the rule can be fired. Rule body is a

set of actions for state transitions. Rules in BSV are atomic. The actions within

the rule completely describes the state transition. The process of determining the

functional correctness of a design is greatly simplified by one-rule-at-a-time se-

mantics. That is, because of the atomic property of rules, each rule can be looked

at declare them repeatedly. All the modules which share the same interfaces also

share samein isolation, without considering the actions of the other rules to deter-

mine functional correctness. Multiple rules can be executed concurrently in the

hardware implementation.

The actions in a rule are executed simultaneously. This can be thought of as

similar to the execution of non-blocking statements in always blocks of verilog.

Also, as the rule has atomic property, the entire body of rule is executed and there

is no partial exe- cution of a rule. When there are several rules within a module,

the execution of rules is ordered by the compiler. No two rules can execute

simultaneously. The ordering of the rules by the compiler is called scheduling.

7



3.3.3 Methods

Method is a procedure which takes arguments and returns a value. It could also

return a value without taking any arguments. It becomes a bundle of wires when

translated into RTL. The method definition is written within the definition of the

interface and it can be different in different modules sharing a common interface.

A method also contains implicit conditions which are handshaking signals and

logic automatically generated by the compiler. Methods are of three types: Value

Methods, Action Methods and Action Value Methods. Value methods return a

value. They do not alter any state within the module. Action methods cause

actions to occur. They create state changes within the module. Action value

methods are a combination of value methods and action methods. They cause

state changes and also return values.

3.3.4 TLM Library

The TLM package includes definitions of interfaces, data structures, and module

constructors which allow users to create and modify bus-based designs in a manner

that is independent of any one specific bus protocol. Designs created using the

TLM package are thus more portable as it allows the core design to be easily

applied to multiple bus protocols.

The TLM interfaces define how TLM blocks interconnect and communicate.

The TLM package includes two basic interfaces: The TLMSendIFC interface and

the TLMRecvIFC interface.These interfaces use basic Get and Put sub-interfaces as

the requests and responses. The TLMSendIFC interface generates (Get) requests

and receives (Put) responses. The TLMRecvIFC interface receives (Put) requests

8



and generates (Get) responses. Additional TLM interfaces are built up from these

basic blocks. The TLMSendIFC interface transmits the requests and receives the

responses. The TLMRecvIFC interface receives the requests and transmits the

responses.

Figure 3.2: Block Diagram: Representation of TLMSendIFC and TLMRecvIFC

The two basic data structures defined in the TLM package are TLMRequest

and TLMResponse. By using these types in a design, the underlying bus protocol

can be changed without having to modify the interactions with the TLM objects.

A TLM request contains either control in- formation and data, or data alone. A

TLMRequest is tagged as either a RequestDescriptor or RequestData. A Request-

Descriptor contains control information and data while a RequestData contains

only data.

9



CHAPTER 4

JTAG TAP

4.1 JTAG Debug Transport Module

This Debug Transport Module is based around a normal JTAG Test Access Port

(TAP). The JTAG TAP allows access to arbitrary JTAG registers by first selecting

one using the JTAG instruction register (IR), and then accessing it through the

JTAG data register (DR).

4.1.1 JTAG Background

JTAG refers to IEEE Std 1149.1. It is a standard that defines test logic that can be

included in an integrated circuit to test the interconnections between integrated

circuits,test the integrated circuit itself, and observe or modify circuit activity

during the components normal operation.The JTAG standard defines a Test Access

Port (TAP) that can be used to read and write a few custom registers, which can be

used to communicate with debug hardware in a component.

4.1.2 TAP controller state diagram

The operation of the test interface is controlled by the Test Access Port (TAP) con-

troller.This is a 16-state finite state-machine whose state transitions are controller

by the TMS signal.The state transition diagram is shown in Figure 4.2.The TAP



controller can change state only at the rising edge of TCK and the next state is de-

termined by the logic level of TMS.The TAP consists of four mandatory terminals

plus one optional terminal as shown in Figure 4.1.

Figure 4.1: Top level view of TAP Controller

The main functions of the TAP controller are:

• To select the output of instruction or test data to shift out to TDO.

• To provide control signals to load instructions into Instruction Register.

• To provide signals to shift test data from TDI and test response to TDO.

• To provide signals to perform test functions such as capture and application
of test data.

11



Figure 4.2: State transition diagram of TAP controller

4.1.3 JTAG DTM Registers

JTAG TAPs used as a DTM must have an IR of at least 5 bits.When the TAP is reset,

IR must default to 00001, selecting the IDCODE instruction. A full list of JTAG

registers along with their encoding is in Table 4.1.The only regular JTAG registers a

debugger might use are BYPASS and IDCODE.Unimplemented instructions must

select the BYPASS register.

4.1.4 IDCODE (at 0x01)

This register is selected (in IR) when the TAP state machine is reset.Its definition

is exactly as defined in IEEE Std 1149.1.This entire register is read-only.

12



Table 4.1: JTAG DTM TAP Registers

Address Name Description Page
0x00 BYPASS JTAG recommends this encoding
0x01 IDCODE JTAG recommends this encoding
0x10 DTM Control and Status For Debugging 14
0x11 Debug Module Interface Access For Debugging 16
0x12 Reserved (BYPASS) Reserved for future RISC-V debugging
0x13 Reserved (BYPASS) Reserved for future RISC-V debugging
0x14 Reserved (BYPASS) Reserved for future RISC-V debugging
0x15 Reserved (BYPASS) Reserved for future RISC-V standards
0x16 Reserved (BYPASS) Reserved for future RISC-V standards
0x17 Reserved (BYPASS) Reserved for future RISC-V standards
0x1f BYPASS JTAG requires this encoding

31 28 27 12 11 1 0

Version PartNumber Manu f Id 1

4 16 11 1

Field Description Access Reset

Version Identifies the release version of this part. R Preset

PartNumber Identifies the designer’s part number of

this part.

R Preset

ManufId Identifies the designer/manufacturer of

this part. Bits 6:0 must be bits 6:0 of

the designer/manufacturer’s Identifica-

tion Code as assigned by JEDEC Standard

JEP106. Bits 10:7 contain the modulo-16

count of the number of continuation char-

acters (0x7f) in that same Identification

Code.

R Preset
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4.1.5 DTM Control and Status (dtmcs, at 0x10)

The size of this register will remain constant in future versions so that a debugger

can always determine the version of the DTM.

31 18 17 16 15

0 dmihardreset dmireset 0

14 1 1 1

14 12 11 10 9 4 3 0

idle dmistat abits version

3 2 6 4

Field Description Access Reset

dmihardreset Writing 1 to this bit does a hard reset

of the DTM, causing the DTM to for-

get about any outstanding DMI transac-

tions. In general this should only be used

when the Debugger has reason to expect

that the outstanding DMI transaction will

never complete (e.g. a reset condition

caused an inflight DMI transaction to be

cancelled).

W1 0

dmireset Writing 1 to this bit clears the sticky er-

ror state and allows the DTM to retry or

complete the previous transaction.

W1 0

14



idle This is a hint to the debugger of the

minimum number of cycles a debugger

should spend in Run-Test/Idle after every

DMI scan to avoid a ‘busy’ return code

dmistat of 3. A debugger must still check

dmistat when necessary.

0: It is not necessary to enter Run-

Test/Idle at all.

1: Enter Run-Test/Idle and leave it imme-

diately.

2: Enter Run-Test/Idle and stay there for

1 cycle before leaving.

And so on.

R Preset

dmistat 0: No error.

1: Reserved. Interpret the same as 2.

2: An operation failed (resulted in op of

2).

3: An operation was attempted while a

DMI access was still in progress (resulted

in op of 3).

R 0

abits The size of address in dmi. R Preset
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version 0: Version described in spec version 0.11.

1: Version described in spec version 0.13

(and later?), which reduces the DMI data

width to 32 bits.

15: Version not described in any available

version of this spec.

R 1

4.1.6 Debug Module Interface Access (dmi, at 0x11)

This register allows access to the Debug Module Interface (DMI).In Update-DR,

the DTM starts the operation specified in op unless the current status reported

in op is sticky.In Capture-DR, the DTM updates data with the result from that

operation, updating op if the current op isn’t sticky.

abits+33 34 33 2 1 0

address data op

abits 32 2
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Field Description Access Reset

address Address used for DMI access. In Update-

DR this value is used to access the DM

over the DMI.

R/W 0

data The data to send to the DM over the

DMI during Update-DR, and the data re-

turned from the DM as a result of the

previous operation.

R/W 0
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op When the debugger writes this field, it

has the following meaning:

0: Ignore data and address. (nop)

Don’t send anything over the DMI during

Update-DR. This operation should never

result in a busy or error response. The ad-

dress and data reported in the following

Capture-DR are undefined.

1: Read from address. (read)

2: Write data to address. (write)

3: Reserved.

When the debugger reads this field, it

means the following:

0: The previous operation completed suc-

cessfully.

1: Reserved.

2: A previous operation failed.

3: An operation was attempted while a

DMI request is still in progress. The data

scanned into dmi in this access will be

ignored.

R/W 2
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4.1.7 BYPASS (at 0x1f)

1-bit register that has no effect. It is used when a debugger does not want to

communicate with this TAP.This entire register is read-only.

0

0

1

Figure 4.3: Bypass register
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CHAPTER 5

OpenOCD

5.1 What is OpenOCD?

The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system

programming and boundary-scan testing for embedded target devices.

It does so with the assistance of a debug adapter, which is a small hardware

module which helps in providing the right kind of electrical signal to the target

being debugged.These are required since the debug host (on which OpenOCD

runs) won't usually have native support for such signaling, or the connector needed

to hook up to the target.

Such debug adapters support one or more transport protocols,each of which

involves different electrical signaling (and uses different messaging protocols on

top of that signaling).There are many types of debug adapters, and little uniformity

in what they are called.

For example, a JTAG Adapter supports JTAG signaling, and is used to commu-

nicate with JTAG (IEEE 1149.1) compliant TAPs on your target board.A TAP is a

“Test Access Port ”,a module which processes special instructions and data.JTAG

supports debugging and boundary scan operations.



5.2 Debug Adapter Configuration

Correctly installing OpenOCD includes making your operating system give OpenOCD

access to debug adapters. Once that has been done, Tcl commands are used to select

which one is used, and to configure how it is used.

Debug Adapters/Interfaces are normally configured through commands in an

interface configuration file which is sourced by your openocd.cfg file, or through

a command line -f interface/....cfg option.

5.3 Interface Drivers

Interface driver explicitly enabled when OpenOCD is configured,in order to be

made available at run time. Interface Driver: remote bitbang Drive JTAG from a

remote process.This sets up a UNIX or TCP socket connection with a remote process

and sends ASCII encoded bitbang requests to that process instead of directly

driving JTAG.The remote bitbang driver is useful for debugging software running

on processors which are being simulated.

Config Command: remote bitbang port number Specifies the TCP port of the

remote process to connect to or 0 to use UNIX sockets instead of TCP.

Config Command: remote bitbang host hostname Specifies the hostname of

the remote process to connect to using TCP, or the name of the UNIX socket to use

if remote bitbang port is 0.

For example, to connect remotely via TCP to the localhost you might have

something like:

interface remote bitbang
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remote bitbang port 10000

remote bitbang host localhost

To connect to another process running locally via UNIX sockets with socket

named mysocket:

interface remote bitbang

remote bitbang port 0

remote bitbang host mysocket

5.4 Remote bitbang Jtag driver

The remote bitbang JTAG driver is used to drive JTAG from a remote process.The

remote bitbang driver communicates via TCP or UNIX sockets with some remote

process using an ASCII encoding of the bitbang interface. The remote process pre-

sumably then drives the JTAG however it pleases.The remote process should act as

a server,listening for connections from the openocd remote bitbang driver.The re-

mote bitbang driver is useful for debugging software running on processors which

are being simulated.The bitbang interface consists of the following functions.

blink on

Blink a light somewhere. The argument on is either 1 or 0.

read

Sample the value of tdo.

write tck tms tdi

Set the value of tck, tms, and tdi.
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reset trst srst

Set the value of trst, srst.

An additional function, quit, is added to the remote bitbang interface to indicate

there will be no more requests and the connection with the remote driver should

be closed.These five functions are encoded in ascii by assigning a single character

to each possible request.The assignments are:

B - Blink on

b - Blink off

R - Read request

Q - Quit request

0 - Write 0 0 0

1 - Write 0 0 1

2 - Write 0 1 0

3 - Write 0 1 1

4 - Write 1 0 0

5 - Write 1 0 1

6 - Write 1 1 0

7 - Write 1 1 1

r - Reset 0 0

s - Reset 0 1

t - Reset 1 0

u - Reset 1 1

The read response is encoded in ascii as either digit 0 or 1.
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5.5 Server Configuration

The commands here are commonly found in the openocd.cfg file and are used to

specify what TCP/IP ports are used, and how GDB should be supported.

5.5.1 Configuration Stage

When the OpenOCD server process starts up,it enters a configuration stage which

is the only time that certain commands, configuration commands, may be is-

sued.Normally,configuration commands are only available inside startup scripts.

Those configuration commands include declaration of TAPs, flash banks, the

interface used for JTAG communication, and other basic setup.The server must

leave the configuration stage before it may access or activate TAPs. After it leaves

this stage, configuration commands may no longer be issued.

5.5.2 Entering the Run Stage

The first thing OpenOCD does after leaving the configuration stage is to verify that

it can talk to the scan chain (list of TAPs) which has been configured. It will warn if

it doesnt find TAPs it expects to find, or finds TAPs that arent supposed to be there.

You should see no errors at this point. If you see errors, resolve them by correcting

the commands you used to configure the server. Common errors include using an

initial JTAG speed thats too fast, and not providing the right IDCODE values for

the TAPs on the scan chain.

Config Command: init

This command terminates the configuration stage and enters the run stage.This
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command normally occurs at or near the end of your openocd.cfg file to force

OpenOCD to initialize and make the targets ready.

5.6 Connecting to GDB

OpenOCD can communicate with GDB in two ways:

• A socket (TCP/IP) connection is typically started as follows:
target remote localhost:3333
This would cause GDB to connect to the gdbserver on the local pc using port
3333.

• A pipe connection is typically started as follows:
target remote — openocd -c “gdb port pipe; log output openocd.log ”
This would cause GDB to run OpenOCD and communicate using pipes
(stdin/stdout).
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CHAPTER 6

Debug Module

The Debug Module implements a translation interface between abstract debug

operations and their specific implementation. It might support the following

operations:

1. Give the debugger necessary information about the implementation.

2. Allow any individual hart to be halted and resumed.

3. Provide status on which harts are halted.

4. Provide read and write access to a halted harts GPRs.

5. Provide access to a reset signal that allows debugging from the very first
instruction after reset.

6. Provide a Program Buffer to force the hart to execute arbitrary instructions.

7. Allow multiple harts to be halted, resumed, and or reset at the same time.

8. Allow direct System Bus Access.In order to implement memory access, a
target must implement either the Program Buffer or System Bus Access.

6.1 Selecting Harts

All debug modules must support selecting a single hart. The debugger can select a

hart by writing its index to hartsel. Hart indexes start at 0 and are contiguous until

the final index.Up to 1024 harts can be connected to a single DM. The debugger

selects a hart, and then subsequent halt, resume, reset, and debugging commands

are specific to that hart.



6.2 Run Control

For every hart, the Debug Module contains 3 conceptual bits of state: halt request,

resume request, and hart reset. (The hart reset bit is optional.) These bits all

reset to 0. A debugger can write them for the currently selected harts through

haltreq, resumereq, and hartreset in dmcontrol. In addition the DM receives

halted, running, and resume ack signals from each hart.

When a running hart receives a halt request, it responds by halting and asserting

its halted signal. The halted signals of all selected harts are reflected in the allhalted

and anyhalted bits. haltreq is ignored by halted harts.When a halted hart receives a

resume request,it responds by resuming, clearing its halted signal,and asserting its

running signal and resume ack signals. The resume ack signal is lowered when the

resume request is deasserted.These status signals of all selected harts are reflected

in allresumeack,anyresumeack, allrunning, and anyrunning. resumereq is ignored

by running harts.

6.3 Abstract Commands

The DM supports a set of abstract commands, most of which are optional. Depend-

ing on the implementation, the debugger may be able to perform some abstract

commands even when the selected hart is not halted. Debugger can only deter-

mine which abstract commands are supported by a given hart in a given state

by attempting them and then looking at cmderr in abstractcs to see if they were

successful.

Debugger execute abstract commands by writing them to command. Debug-
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Table 6.1: Meaning of cmdtype

cmdtype command
0 Access Register Command
1 Quick Access

gers can determine whether an abstract command is complete by reading busy in

abstractcs. If the command takes arguments, the debugger must write them to

the data registers before writing to command. If a command returns results, the

Debug Module must ensure they are placed in the data registers before busy is

cleared.

6.4 Abstract Command Listing

This section describes each of the different abstract commands and how their fields

should be interpreted when they are written to command.Each abstract command

is a 32-bit value.The top 8 bits contain cmdtype which determines the kind of

command.The below table lists all commands.

Access Register

This command gives the debugger access to CPU registers and program buffer.It

performs the following sequence of operations:

• Copy data from the register specified by regno into the arg0 region of data,
if write is clear and transfer is set.

• Copy data from the arg0 region of data into the register specified by regno,
if write is set and transfer is set.

• Execute the Program Buffer, if postexec is set.
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If any of these operations fail,cmderr is set and none of the remaining steps

are executed. An implementation may detect an upcoming failure early, and fail

the overall command before it reaches the step that would cause failure.Debug

Modules must implement this command and must support read and write access

to all GPRs when the selected hart is halted.

31 24 23 22 20 19

cmdtype 0 size 0

8 1 3 1

18 17 16 15 0

postexec trans f er write regno

1 1 1 16

Field Description

cmdtype This is 0 to indicate Access Register Com-

mand.

size 2: Access the lowest 32 bits of the register.

3: Access the lowest 64 bits of the register.

4: Access the lowest 128 bits of the regis-

ter.

If size specifies a size larger than the reg-

ister’s actual size, then the access must

fail. If a register is accessible, then reads

of size less than or equal to the register’s

actual size must be supported.

postexec When 1, execute the program in the Pro-

gram Buffer exactly once after perform-

ing the transfer, if any.
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Field Description

transfer 0: Don’t do the operation specified by

write.

1: Do the operation specified by write.

This bit can be used to just execute the

Program Buffer without having to worry

about placing valid values into size or

regno.

write When transfer is set: 0: Copy data from

the specified register into arg0 portion of

data.

1: Copy data from arg0 portion of data

into the specified register.

regno Number of the register to access, as de-

scribed in Table ??. dpc may be used as an

alias for PC if this command is supported

on a non-halted hart.
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Quick Access

Perform the following sequence of operations:

• If the hart is halted, the command sets cmderr to halt/resume and does not
continue.

• Halt the hart. If the hart halts for some other reason (e.g. breakpoint), the
command sets cmderr to halt/resume and does not continue.

• Execute the Program Buffer. If an exception occurs, cmderr is set to excep-
tion and the program buffer execution ends, but the quick access command
continues.

• Resume the hart.

Implementing this command is optional.

31 24 23 0

cmdtype 0

8 24

Field Description

cmdtype This is 1 to indicate Quick Access com-

mand.

6.5 Program Buffer

To support executing arbitrary instructions on a halted hart,a Debug Module can

include a Program Buffer that a debugger can write small programs to. Systems
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that support all necessary functionality using abstract commands only may choose

to omit the Program Buffer.

A debugger can write a small program to the Program Buffer, and then execute

it exactly once with the Access Register Abstract Command, setting the postexec

bit in command.The debugger can write whatever program it like, but the program

must end with ebreak or c.ebreak.

If the debugger executes a program that does not terminate with an ebreak

instruction, the hart will remain in Debug Mode until it is reset.

While these programs are executed, the hart does not leave Debug Mode. If

an exception is encountered during execution of the Program Buffer, no more

instructions are executed, the hart remains in Debug Mode, and cmderr is set to 3

(exception error). If the debugger executes a program that doesn’t terminate,then

it loses control of the hart.

Executing the Program Buffer may clobber dpc. If that is the case, it must be

possible to read/write dpc using an abstract command with postexec not set.The

debugger must attempt to save dpc between halting and executing a Program

Buffer, and then restore dpc before leaving Debug Mode.

The Program Buffer may be implemented as RAM which is accessible to the

hart. A debugger can determine if this is the case by executing small programs that

attempt to write and read back relative to pc while executing from the Program

Buffer.If so, the debugger has more flexibility in what it can do with the program

buffer.
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6.6 Overview of States

Figure 6.1 shows a conceptual view of the states passed through by a hart during

run/halt debugging as influenced by the different fields of dmcontrol,abstractcs,abstractauto,

and command.

6.7 System Bus Access

When a Program Buffer is present, a debugger can access the system bus by having

a RISC-V hart perform the accesses it requires.A Debug Module may also include

a System Bus Access block to provide memory access without involving a hart,

regardless of whether Program Buffer is implemented.The System Bus Access

block uses physical addresses.

6.8 Debug Module DMI Registers

Table 6.4: Debug Module Debug Bus Registers

Address Name Page
0x04 Abstract Data 0 50
0x0f Abstract Data 11
0x10 Debug Module Control 38
0x11 Debug Module Status 35
0x12 Hart Info 43
0x13 Halt Summary 45
0x16 Abstract Control and Status 46
0x17 Abstract Command 49
0x18 Abstract Command Autoexec 50
0x20 Program Buffer 0 51
0x2f Program Buffer 15
0x30 Authentication Data 51
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Figure 6.1: Run/Halt Debug State Machine. As only a small amount of state is
visibile to the debugger, the states and transitions are conceptual.
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6.8.1 Debug Module Status (dmstatus, at 0x11)

This register reports status for the overall debug module as well as the currently

selected harts, as defined in hasel.

31 27 26 24 23 22 21 20 19

0 dmerr 0 impebreak 0 allhavereset

5 3 1 1 2 1

18 17 16 15 14 13

anyhavereset allresumeack anyresumeack allnonexistent anynonexistent allunavail

1 1 1 1 1 1

12 11 10 9 8 7

anyunavail allrunning anyrunning allhalted anyhalted authenticated

1 1 1 1 1 1

6 5 4 3 0

authbusy 0 devtreevalid version

1 1 1 4

Field Description Access Reset

dmerr Gets set if the Debug Module was ac-

cessed incorrectly.

0 (none): No error.

1 (badaddr): There was an access to an

unimplemented Debug Module address.

7 (other): An access failed for another

reason.

R/W1C 0
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impebreak If 1, then there is an implicit ebreak in-

struction at the non-existent word imme-

diately after the Program Buffer. This

saves the debugger from having to write

the ebreak itself, and allows the Program

Buffer to be one word smaller.

This must be 1 when progbufsize is 1.

R Preset

allhavereset This field is 1 when all currently selected

harts have been reset but the reset has not

been acknowledged.

R -

anyhavereset This field is 1 when any currently selected

hart has been reset but the reset has not

been acknowledged.

R -

allresumeack This field is 1 when all currently selected

harts have acknowledged the previous

resume request.

R -

anyresumeack This field is 1 when any currently selected

hart has acknowledged the previous re-

sume request.

R -

allnonexistent This field is 1 when all currently selected

harts do not exist in this system.

R -

anynonexistent This field is 1 when any currently selected

hart does not exist in this system.

R -

allunavail This field is 1 when all currently selected

harts are unavailable.

R -
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anyunavail This field is 1 when any currently selected

hart is unavailable.

R -

allrunning This field is 1 when all currently selected

harts are running.

R -

anyrunning This field is 1 when any currently selected

hart is running.

R -

allhalted This field is 1 when all currently selected

harts are halted.

R -

anyhalted This field is 1 when any currently selected

hart is halted.

R -

authenticated 0 when authentication is required before

using the DM. 1 when the authentication

check has passed. On components that

don’t implement authentication, this bit

must be preset as 1.

R Preset

authbusy 0: The authentication module is ready to

process the next read/write to authdata.

1: The authentication module is busy.

Accessing authdata results in unspecified

behavior.

authbusy only becomes set in immediate

response to an access to authdata.

R 0
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devtreevalid 0: devtreeaddrzero–devtreeaddrthree

hold information which is not relevant

to the Device Tree.

1: devtreeaddrzero–devtreeaddrthree

registers hold the address of the Device

Tree.

R Preset

version 0: There is no Debug Module present.

1: There is a Debug Module and it con-

forms to version 0.11 of this specification.

2: There is a Debug Module and it con-

forms to version 0.13 of this specification.

15: There is a Debug Module but it does

not conform to any available version of

this spec.

R 2

6.8.2 Debug Module Control (dmcontrol, at 0x10)

This register controls the overall debug module as well as the currently selected

harts, as defined in hasel.
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31 30 29 28 27

haltreq resumereq hartreset ackhavereset 0

1 1 1 1 1

26 25 16 15 2 1 0

hasel hartsel 0 ndmreset dmactive

1 10 14 1 1

Field Description Access Reset

haltreq Writes the halt request bit for all currently

selected harts. When set to 1, each se-

lected hart will halt if it is not currently

halted.

Writing 1 or 0 has no effect on a hart

which is already halted, but the bit must

be cleared to 0 before the hart is resumed.

Writes apply to the new value of hartsel

and hasel.

W -

resumereq Writes the resume request bit for all cur-

rently selected harts. When set to 1, each

selected hart will resume if it is currently

halted.

The resume request bit is ignored while

the halt request bit is set.

Writes apply to the new value of hartsel

and hasel.

W -
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hartreset This optional field writes the reset bit for

all the currently selected harts. To per-

form a reset the debugger writes 1, and

then writes 0 to deassert the reset signal.

If this feature is not implemented, the bit

always stays 0, so after writing 1 the de-

bugger can read the register back to see if

the feature is supported.

Writes apply to the new value of hartsel

and hasel.

R/W 0

ackhavereset Writing 1 to this bit clears the havereset

bits for any selected harts.

Writes apply to the new value of hartsel

and hasel.

W -
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hasel Selects the definition of currently selected

harts.

0: There is a single currently selected hart,

that selected by hartsel.

1: There may be multiple currently se-

lected harts – that selected by hartsel, plus

those selected by the hart array mask reg-

ister.

An implementation which does not im-

plement the hart array mask register

should tie this field to 0. A debugger

which wishes to use the hart array mask

register feature should set this bit and

read back to see if the functionality is sup-

ported.

R/W 0

hartsel The DM-specific index of the hart to se-

lect. This hart is always part of the cur-

rently selected harts.

R/W 0
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ndmreset This bit controls the reset signal from the

DM to the rest of the system. The sig-

nal should reset every part of the system,

including every hart, except for the DM

and any logic required to access the DM.

To perform a system reset the debugger

writes 1, and then writes 0 to deassert the

reset.

R/W 0
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dmactive This bit serves as a reset signal for the

Debug Module itself.

0: The module’s state, including authen-

tication mechanism, takes its reset values

(the dmactive bit is the only bit which

can be written to something other than

its reset value).

1: The module functions normally.

No other mechanism should exist that

may result in resetting the Debug Mod-

ule after power up, including the plat-

form’s system reset or Debug Transport

reset signals.

A debugger may pulse this bit low to get

the debug module into a known state.

Implementations may use this bit to aid

debugging, for example by preventing

the Debug Module from being power

gated while debugging is active.

R/W 0

6.8.3 Hart Info (hartinfo, at 0x12)

This register gives information about the hart currently selected by hartsel.

This register is optional. If it is not present it should read all-zero.
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If this register is included, the debugger can do more with the Program Buffer

by writing programs which explicitly access the data and/or dscratch registers.

This entire register is read-only.

31 24 23 20 19 17 16 15 12 11 0

0 nscratch 0 dataaccess datasize dataaddr

8 4 3 1 4 12

Field Description Access Reset

nscratch Number of dscratch registers available

for the debugger to use during pro-

gram buffer execution, starting from

dscratchzero. The debugger can make no

assumptions about the contents of these

registers between commands.

R Preset

dataaccess 0: The data registers are shadowed in the

hart by CSR registers. Each CSR register

is XLEN bits in size, and corresponds to

a single argument, per Table ??.

1: The data registers are shadowed in the

hart’s memory map. Each register takes

up 4 bytes in the memory map.

R Preset
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datasize If dataaccess is 0: Number of CSR reg-

isters dedicated to shadowing the data

registers.

If dataaccess is 1: Number of 32-bit words

in the memory map dedicated to shadow-

ing the data registers.

R Preset

dataaddr If dataaccess is 0: The number of the first

CSR dedicated to shadowing the data

registers.

If dataaccess is 1: Signed address of RAM

where the data registers are shadowed,

to be used to access relative to zero.

R Preset

6.8.4 Halt Summary (haltsum, at 0x13)

This register contains a summary of which harts are halted.Each bit contains the

logical OR of 32 halt bits. When there are a large number of harts in the system, the

debugger can first read this register, and then read from the halt region (0x40–0x5f)

to determine which hart is the one that is halted.

This entire register is read-only.

31 30 29 28 27 26

halt1023 : 992 halt991 : 960 halt959 : 928 halt927 : 896 halt895 : 864 halt863 : 832

1 1 1 1 1 1
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25 24 23 22 21 20

halt831 : 800 halt799 : 768 halt767 : 736 halt735 : 704 halt703 : 672 halt671 : 640

1 1 1 1 1 1

19 18 17 16 15 14

halt639 : 608 halt607 : 576 halt575 : 544 halt543 : 512 halt511 : 480 halt479 : 448

1 1 1 1 1 1

13 12 11 10 9 8

halt447 : 416 halt415 : 384 halt383 : 352 halt351 : 320 halt319 : 288 halt287 : 256

1 1 1 1 1 1

7 6 5 4 3 2

halt255 : 224 halt223 : 192 halt191 : 160 halt159 : 128 halt127 : 96 halt95 : 64

1 1 1 1 1 1

1 0

halt63 : 32 halt31 : 0

1 1

6.8.5 Abstract Control and Status (abstractcs, at 0x16)

31 29 28 24 23 13 12 11 10 8 7 5 4 0

0 progbu f size 0 busy 0 cmderr 0 datacount

3 5 11 1 1 3 3 5

Field Description Access Reset

progbufsize Size of the Program Buffer, in 32-bit

words. Valid sizes are 0 - 16.

R Preset
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busy 1: An abstract command is currently be-

ing executed.

This bit is set as soon as command is

written, and is not cleared until that com-

mand has completed.

R 0
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cmderr Gets set if an abstract command fails. The

bits in this field remain set until they are

cleared by writing 1 to them. No abstract

command is started until the value is re-

set to 0.

0 (none): No error.

1 (busy): An abstract command

was executing while command, ab-

stractcs,abstractauto was written, or

when one of the data or progbuf regis-

ters was read or written.

2 (not supported): The requested com-

mand is not supported. A command that

is not supported while the hart is running

may be supported when it is halted.

3 (exception): An exception occurred

while executing the command (eg. while

executing the Program Buffer).

4 (halt/resume): An abstract command

couldn’t execute because the hart wasn’t

in the expected state (running/halted).

7 (other): The command failed for an-

other reason.

R/W1C 0
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datacount Number of data registers that are imple-

mented as part of the abstract command

interface. Valid sizes are 0 - 12.

R Preset

6.8.6 Abstract Command (command, at 0x17)

Writes to this register cause the corresponding abstract command to be exe-

cuted.Writing while an abstract command is executing causes cmderr to be set.If

cmderr is non-zero, writes to this register are ignored.

31 24 23 0

cmdtype control

8 24

Field Description Access Reset

cmdtype The type determines the overall function-

ality of this abstract command.

W 0

control This field is interpreted in a command-

specific manner, described for each ab-

stract command.

W 0
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6.8.7 Abstract Command Autoexec (abstractauto, at 0x18)

This register is optional.Including it allows more efficient burst accesses.Debugger

can attempt to set bits and read them back to determine if the functionality is

supported.

31 16 15 12 11 0

autoexecprogbu f 0 autoexecdata

16 4 12

Field Description Access Reset

autoexecprogbuf When a bit in this field is 1, read or

write accesses the corresponding progbuf

word cause the command in command to

be executed again.

R/W 0

autoexecdata When a bit in this field is 1, read or write

accesses the corresponding data word

cause the command in command to be

executed again.

R/W 0

6.8.8 Abstract Data 0 (data0, at 0x04)

Basic read/write registers that may be read or changed by abstract commands.Accessing

them while an abstract command is executing causes cmderr to be set.Attempts to

write them while busy is set does not change their value.
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31 0

data

32

6.8.9 Program Buffer 0 (progbuf0, at 0x20)

The progbuf registers provide read/write access to the optional program buffer.Accessing

them while an abstract command is executing causes cmderr to be set.Attempts to

write them while busy is set does not change their value.

31 0

data

32

6.8.10 Authentication Data (authdata, at 0x30)

This register serves as a 32-bit serial port to the authentication module.When

authbusy is clear, the debugger can communicate with the authentication module

by reading or writing this register. There is no separate mechanism to signal

overflow/underflow.

31 0

data

32
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CHAPTER 7

Implementation and Design Challenges

7.1 JTAG TAP

Approach-1 is the initial stage of my project started with Jtag TAP code.I wrote a

testbench for that code. This is my first approach of implementing the Jtag TAP. In

this approach I followed clock domain crossing.The shifting of input data TDI takes

place at rising edge of the clock TCK. The shifting of output data TDO takes place

simultaniously at the falling edge of TCK. In bluespec the clock is default.Inorder

to get the falling edge of the clock, I introduced another clock which is inverted

form of TCK.

Figure 7.1: Approach-1

In approach-2 , getting inputs TCK, TMS, TDI and sending output TDO to the

OpenOCD is done. Here one driver is used to interact with OpenOCD which is

called Remote Bitbang driver.



Figure 7.2: Approach-2 Overview

Figure 7.3: Approach-2 in brief

7.2 Debug Module

The debug module is created on the basis of FSM shown in the figure 6.1.The

debug module is instantiated into the soc as shown in the figure 7.4.The updating

of dmiaccess and capturing of it is done here.
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Figure 7.4: Final Approach

7.3 Servers and Clients

The OpenOCD acts as both server and client.First the debugger which is having

remote process waits for the OpenOCD to connect.The OpenOCD listens to the

request of remote process acting as client. After this,the OpenOCD acting as a

server waits for the gdb to connect. The gdb acts as client to the OpenOCD.

Figure 7.5: Servers and Clients
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7.4 Halting and Resuming

Initially the processor will be in running stage and it will be in NORMAL mode.The

OpenOCD sends halt request to the processor using debug module control register

(0x10).When the processor receives halt request,the cpu state will goes into stop

state and cpu mode will goes into DEBUG mode.If the processor completely halts

then it send halt acknowledgement to the debug module.After this, the debug

module status register is updated with the values like allhalted to 1 and allrunning

to 0.The OpenOCD will comes to know about the processor halts state by reading

debug module status register. During this things happening, the pc value is stored

into dpc.

Figure 7.6: Halting the processor

When the processor is in stopped state and in DEBUG mode,the OpenOCD

sends resume request and waits for resume acknowledgement.The processor gets

into running state and enters into NORMAL mode.Here before resuming, the pc

value gets updated with dpc value.After this the debug module status register is

updated with the values like allhalted to 0 and allrunning to 1.
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Figure 7.7: Resuming the processor

7.5 Abstract Commands

The abstract command gives the debugger access to CPU registers and program

buffer.The sequence of operation is shown in below figure 7.8.

Figure 7.8: Use of abstract commands
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7.6 Program Buffer

As mentioned in chapter 5 about program buffer,the debugger can write a small

program to the Program Buffer, and then execute it exactly once with the Access

Register Abstract Command, setting the postexec bit in command.The debugger

can write whatever program it likes (including jumps out of the Program Buffer),

but the program must end with ebreak. Here ebreak instruction is represented

with 32 bits 0x00010073.Whenever ebreak occurs , the processor stops executing

and jumps back to its previous halt state.

Here program buffer register values should be made as memory mapped, so

that it acts as slave to the processor.The program buffer registers are represented

as slave to the system bus.When postexec bit becomes 1, the debugger writes pc

value with 0x00000020 , so that the processor starts fetching the instruction from

0x00000020. Befor making the processor to fetch , we have to flush all the pipeline

stages.Here flushing the pipeline stages in the sence clearing all the pipeline FIFOs.

When the processor runs the ebreak instruction 0x00010073, it agains goes to

halt state.When the openocd send resume request,then dpc value is stored into pc

value and the processor starts fetching the instructions as per pc value.
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Figure 7.9: Program Buffer as Slave to the Syatem Bus

Figure 7.10: Program Buffer Execution process
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7.7 Single stepping

A debugger can cause a halted hart to execute a single instruction and then re-enter

Debug Mode by setting step before setting resumereq. If executing or fetching that

instruction causes an exception, Debug Mode is re-entered immediately after the

PC is changed to the exception handler and the appropriate tval and cause registers

are updated.

After executing single instruction, the hart re-enter into debug mode. When

re-entering into debug mode, the pc value is stored into dpc.
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Figure 7.11: Single Stepping
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CHAPTER 8

RESULTS

8.1 Servers and Clients

As shown in figure 7.5 in implementation chapter, three terminals are required. Ini-

tially in one terminal the remote process acting as server waits for remote bitbang

connection on port 10000.It is shown in figure 8.1.

Figure 8.1: Remote Process as server

Figure 8.2 shows that gdb acting as a client and connecting to the server

OpenOCD.

Figure 8.2: GDB connecting to OpenOCD



8.2 Reading Idcode register

Figure 8.3 shows how the OpenOCD examining the IDCODE register values.

Figure 8.3: Reading IDCODE register

8.3 OpenOCD examining DTM Control register

Figure 8.4: Reading DTM control register

8.4 Getting hart information

Figure 8.5: Getting hart information
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8.5 Halting and Resuming

As per the operation mentinoned in figures 7.6 and 7.7, the results are shown in

figures 8.6 and 8.7 respectively

Figure 8.6: Sending halt request

Figure 8.7: Sending resume request
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8.6 Reading General Purpose registers

To read the genreal purpose registers , the command i r (info registers) is used in

gdb terminal.All the 32 general purpose registers are read.

Figure 8.8: Reading General Purpose Registers
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8.7 Program Buffer

The figure 8.9 shows how OpenOCD writes instructions into the program buffer

registers and how it sets postexecution bit to 1.As per the FSM,the debugger

will be in command start state and when it sets postexec bit to 1 ,the debugger

changes to command programbuffer state. After reaching there, it waits for ebreak

instruction. Whenever ebreak instruction occurs while the processor running it

jumps to command done state.

Figure 8.9: Setting postexec bit value

65



Figure 8.10: Executing Program Buffer registers

8.8 Setting PC value

As per the requirements, we can set PC value with any address.Here I am setting

PC value with 0x80000004.
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Figure 8.11: GDB terminal:Setting PC value

67



Figure 8.12: OpenOCD Terminal:Setting PC value

8.9 Loading instructions and data into memory

With the help of gdb , loading instructions and data into memory is done by using

load command.

Figure 8.13: Loading instructions and data into memory
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8.10 Setting breakpoints

A breakpoint makes your program stop whenever a certain point in the program

is reached. For each breakpoint, you can add conditions to control in finer detail

whether your program stops. You can set breakpoints with the break command.

GDB assigns a number to each breakpoint when you create it; these numbers

are successive integers starting with one. In many of the commands for controlling

various features of breakpoints you use the breakpoint number to say which break-

point you want to change.Inorder to get list of breakpoints,use the info breakpoints

command as shown in figure 8.14.

Figure 8.14: Setting breakpoints and listing them

8.11 stepping

Inorder to perform stepping operation, si command is given through gdb terminal.

After that the OpenOCD will write step bit in dcsr to 1 and dcause bits to 3’b100

as shown in figure 8.15.During this, the dpc value is stored into pc value.The

OpenOCD sends resume request and the hart enters into NORMAL mode.After

executing some instructions, the step bit in dcsr becomes 0 and hart again enters
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into DEBUG mode.During this operation, the pc value is stored into dpc.The

si command is given everytime through gdb for performing step as shown in

figure 8.16.

Inoder to perform stepping operation from particular address, then the PC

value is set to that address as shown in figure 8.17. After this , the stepping

command is given through gdb.

Figure 8.15: Setting step bit in dcsr
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Figure 8.16: Stepping

Figure 8.17: Stepping after setting PC value
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Figure 8.18: Reading dpc value
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CHAPTER 9

CONCLUSION AND FUTURE WORK

This thesis details how an external debugger might use the described debug inter-

face to perform some common operations on Shakti cores using the JTAG DTM.This

debugger architecture allows a variety of implementations like 32,64 and future

128 bit processors.

The future direction of this work is to implement a System Bus Access block to

provide memory access without involving a hart,regardless of whether Program

Buffer is implemented.
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