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ABSTRACT

KEYWORDS: Control Symbol,Control Codeword, Scrambler, Descrambler,

Encoder, Decoder,Ordered Sequencing,IDLE,Linear Feed-

back Shift Registers(LFSR),High Speed Serializers

The project describes the design and implementation of ”Encoding of 64b/67b

and control symbol generation in RapidIO Physical Layer ”.In data transmission

in RapidIO, 64b/67b is a line code that transforms 64-bit data to 67-bit line code to

provide enough state changes to allow reasonable clock recovery and alignment

of the data stream at the receiver. It was defined by the IEEE 802.3 working group

as part of the IEEE 802.3ae-2002 amendment which introduced in RapidIO.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This chapter covers the background and motivation to design the encoding of

64b/67b encoder and decoder and control symbol for Serial RapidIO (SRIO) phys-

ical layer. The encoding of 64b/67b is designed using the Bluespec System Verilog

language. The support for Verilog HDL language is also provided along with

this design.The Verilog files are generated using the bluesim compiler. The basic

testbench module is developed using BSV (also available in Verilog HDL) to verify

the functional verification of the design and later, testbench will be enhanced to

cover more corner cases.

1.2 Motivation

Over the last couple of years, the performance of processors has grown phenom-

enally. With this rise in the speed of processors, the need for using high speed

interconnects has also increased. Typical interconnect speeds today are touching

almost 40 Gbps and the speeds are further increasing. Just as we have differ-

ent types of processors for different types of applications, like general purpose

processors, graphics processors, DSPs etc, different types of interconnects have

evolved for different applications. SRIO was mainly designed and developed as



an embedded system interconnect for the processor fabrics. It offers high reliability

operation with a low latency. The SRIO operations are highly deterministic and

support various processor architectures. SRIO supports memory to memory trans-

actions which can be carried out without any software intervention. Peer to peer

transactions are supported by SRIO. Multiple processors communicate through

shared memory to each other. In SRIO, the receiving end of the packet has a desti-

nation ID and the sender is identified with a soured ID. An SRIO switch identifies

the port to which the packet needs to be sent with the help of the destination ID.

With these basic features of both the standards and recognising the fact that the

need for multi core pro-cessing has increased like never before in todays time,there

is a necessity to use this types of interconnects together, with necessary bridging

between them and that is the motivation behind this project.

1.3 Major Contribution

1. Designing control Symbol .

2. Encoding of 64b/67b.

3. Ideal Sequence Generator.

4. Serialising

5. Deserialising

6. Frame Lock Process

7. Scrambling and Descrambling

1.4 Organization of the Thesis

Chapter 3 describes the prerequisites of the first peripheral protocol. In this chapter,

the necessary features of the SRIO protocol including its packet structure and

2



various fields, that have been used in the Logical and Transort Layer are described.

In Chapter 4, describes the architecture and format for control symbol. In this

chapter, the necessary features of the control symbol generation and various fields,

that have been used are described. Using the architecture, functions provided

by the Physical Coding Sublayer (PCS) and Physical Media Attachment (PMA)

sublayer used for 64b/67b encoded links is detailed in Chapter 5. Following this,

the experiments were carried forward. Chapter 7 concludes the work with analysis

and future direction.
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CHAPTER 2

Bluespec System Verilog

The hardware decription language used for coding the arithmetic operations on

posits is BSV.

2.1 Introduction

Bluespec System Verilog is a Hardware Description Language (HDL), which is

used for specification, synthesis, modeling and verification of ASIC and FPGA

design. With a radically different approach to highlevel synthesis, bluespec offers

significantly higher productivity. It allows designers to express intended hardware

through high-level constructs, where all behavior is described as a set of guarded

atomic actions.

2.2 Limitataion of Verilog

Verilog focusses more on simulation than logic synthesis. The source text of verilog

often explicitly contains aspects of circuit that could be readily determined by the

compiler, such as size of registers, width of busses etc. This makes the design less

portable. Handling concurrency in hardware is relatively difficult in verilog as the

designer should manage all the aspects of handshaking between combinational

circuits. Shared use of register and other memory resources should also be elab-

orated. The behavioral specification of design in verilog often consumes multiple



clock cycles. Attempts to resolve this problem results in a highly unreadable code

with possible bugs. In practice,this problem is solved by separating the combina-

tional and sequential parts of the circuit. Due to these shortcomings, the synthesis

and verification of hardware in verilog is slowed down. This is a huge problem

during the design of SOC.

2.3 Bluespec

Bluespec is based on atomic transactions, which increases the level of concurrency

abstraction above SystemC and RTL without compromising the control over hard-

ware design. It enables automatic synthesis of complex control logic, which is the

source of many bugs. This results in highly adaptable, reusable and re-configurable

designs. Control adaptive parametrization in bluespec provides flexibility, where a

significantly different micro-architecture can be generated by changing the param-

eters in the design with the associated control structures generated automatically.

Bluespec allows user defined data types and static type checking. It provides

several features of the modern high level languages and all of them can be synthe-

sized.

In recent times, several attempts have been made to move the hardware design

language towards a more software like specification of the circuit behaviour. Lan-

guages like C, C++ are used to express designs as sequential programs. However,

the semantic gap between the software model and the hardware results in sub op-

timal designs with unpredictable speed and area. Bluespec System Verilog tackles

this problem by building upon the traditional hardware semantics. It exploits

advanced concepts from software only for static elaboration and static verifica-

5



tion. It uses the standard hardware structure model of verilog such as modules,

module instances, hierarchy etc. For communication between modules it uses the

System verilog model of interfaces and interface instances. These added with the

advanced features of the high level languages, makes designing and verification

in bluespec much faster.

Design activities by BSV

• Virtual Platforms - Virtual platforms written in BSV are much faster and
accurate than software virtual platform.

• Architectural Modeling - It is very difficult to decide analytically that a system
component should be hardware or software. BSV gives architecture model
as IP 5 blocks for exploration and validation.

• Design and Implementation - BSV enables designing of IP blocks at a much
higher level of abstraction and with better maintainability.

• Verification Environments - BSV is used for writing synthesizable transactors,
test benches and both system and reference models.

• Executable Specifications.

2.4 Features of BSV

BSV is feature rich Hardware Descriptor Language and at the same time uses

important feature of C/C++, and Object Oriented Programming. It includes all

major data types present in a High Level Language. Instead of ports as in Verilog,

it uses Interfaces. Each functional component is defined as Module. Coordination

and Control among different modules are done through interfaces. Methods are

responsible for transferring data and control signals across different modules.

Atomicity and Concurrency is achieved by Rules. Functions written in C and

Verilog can also embedded in BSV.

6



2.4.1 Compilation of BSV code

1. A designer writes a BSV program. It may optionally include Verilog, System
Verilog, VHDL and C components.

2. The BSV program is compiled into a Verilog or Bluesim specification. This
step has two distinct stages:
• Pre-elaboration - parsing and type checking.

• Post-elaboration - code generation.

3. The compilation output is either linked into a simulation environment or
processed by a synthesis tool.

Figure 2.1: Compilation Process of BSV

2.4.2 Modules and Interfaces

Module is the basic element of the hardware design hierarchy in bluespec. A

module can be instantiated multiple times, and also different parameters can be

passed during every instantiation. Unlike verilog, bluespec does not have input,

output and in-out pins as interface to modules. Methods are used to drive signals

7



and busses in and out of modules. These methods are grouped together into

interfaces. Modules contain rules, which use methods in other modules.

In BSV, the interface declaration is done separately, outside the module defini-

tion. This allows declaration of common interfaces which can be used in multiple

modules,without having to declare them repeatedly. All the modules which share

the same interfaces also share same methods and therefore share same number

and type of inputs and outputs.

Figure 2.2: Representation of Methods, Interfaces and Rules in a module hierarchy

2.4.3 Data Types

In BSV, every variable has a type and only the values of compatible types can be

assigned to a variable. The BSV compiler provides a strong, static type-checking

environment. Type checking is done before the program elaboration and it ensures

that the object types are compatible and the conversion functions are valid for the

8



context. Bluespec also allows the usage of user-defined types. BSV has a type class

which can be considered as a set of types. It implements overloading across related

data types. Overloading is the ability to use a common name for a collection of

types, with the specific type for the variable being chosen by the compiler based

on the types on which it is actually used. Functions and operators are shared by

all the data types within a type class.

Some common scalar types used in Bits type class are Bit(n), Bool, UInt(n) and

Int(n). The values stored in registers, FIFOs and other memory elements and also

the values passed by wires, must be in the Bits type class. Other common data

types include Integer, which belongs to the Arith type class and String, which

belongs to the Literal type class etc.

Apart from basic data types BSV has user define data types that really helps in

modeling wires of circuit.

• Typedef - ”typedef” is used to define new and more reliable synonym.

typedef existingDataType NewDataType

typedef bit[63:0] Data;

typedef bool flag;

• Enum - ”enum” defines new data type to a set of scalar values with symbolic
name. Due to strong type-checking enum variables can not be compared
with its equivalent numeric value.

typedef enumIdentifier1 identifier2 ... NewType

typedef enum Reset, Count, Decision State deriving(Bits, Eq);

• Structs- A structure or record (struct) is a composite type made up of a
collection of members. Each member has a particular type and is identified
by a member, or field, name.

typedef structIdentifier1, Identifier2, ... NewType deriving (Bits,Eq)

typedef structint x; int y; Coord;

typedef structAddr pc; RegFile rf; Memory mem; Proc;

• Tagged Union - A tagged union is a composite type made up of a collection
of members. A union value only contains one member at a time while a
structure value contains all of its members.

9



2.4.4 Rules

Rules manage the movement of data from one state to another, within the mod-

ule.It consists of two parts: rule conditions and rule body. Rule conditions are

boolean expressions which decide whether the rule can be fired. Rule body is a

set of actions for state transitions. Rules in BSV are atomic. The actions within

the rule completely describes the state transition. The process of determining the

functional correctness of a design is greatly simplified by one-rule-at-a-time se-

mantics. That is, because of the atomic property of rules, each rule can be looked

at in isolation, without considering the actions of the other rules to determine func-

tional correctness. Multiple rules can be executed concurrently in the hardware

implementation.

The actions in a rule are executed simultaneously. This can be thought of as

similar to the execution of non-blocking statements in always blocks of verilog.

Also, as the rule has atomic property, the entire body of rule is executed and there

is no partial exe- cution of a rule. When there are several rules within a module,

the execution of rules is ordered by the compiler. No two rules can execute

simultaneously. The ordering of the rules by the compiler is called scheduling.

BSV does not have always blocks like Verilog. Rules execute as logically ”in-

stantaneous”, ”complete”, and ”ordered” with respect to the execution of all other

rules. By ”instantaneous” it means that all the actions in a rule body occur at a

single common instant, there is no sequencing of actions within a rule. By ”Com-

plete” it means, when it is fired, the entire rule body executes; there is no concept

of ”Partial” execution of a rule body. By ”ordered” it means that each rule exe-

cution conceptually occurs either before or after every other rule execution, never

simultaneously[4].

10



Rules are made up of two components.

• Rule Condition - A boolean expression which determines, if the rule body
is allowed to execute.

• Rule Body - A set of actions which describe the state updates that occur when
the rule fires.

2.4.5 Methods

Method is a procedure which takes arguments and returns a value. It could also

return a value without taking any arguments. It becomes a bundle of wires when

translated into RTL. The method definition is written within the definition of the

interface and it can be different in different modules sharing a common interface.

A method also contains implicit conditions which are handshaking signals and

logic automatically generated by the compiler. They do not alter any state within

the module. Action methods cause actions to occur. They create state changes

within the module. Action value methods are a combination of value methods

and action methods. They cause state changes and also return values.

Methods are carrier for sending requests and getting responses across Mod-

ules. Methods carry data and commands on wires. Methods are different from

functions because they are associated with some interface, whereas functions are

independent. Methods are of following types:

• Action Method

method Action MethodName(parameter1, parameter2, ...)

• Action Value Method

method ActionValue (returnType ) MethodName(parameter1, parameter2,
...)

• Value Method

method Value(returnType ) MethodName(parameter1, parameter2, ...)

11



CHAPTER 3

Prerequisites of the Peripheral Protocol: Serial
RapidIO

3.1 Why RapidIO

RapidIO interconnect standard was primarily developed for embedded sys-
tems applications. It is being used these days to interconnect processors,
general purpose computing platforms, memories, storage devices. The stan-
dard promises performance levels upto 60 Gbit/s for board to board and
chip to chip communications. There are two variants of the RapidIO ar-
chitecture: Parallel and Serial. The parallel interface is used for processor
and sys- tem connectivity and the serial one is used for serial control, DSP
and serial backplane applications. Both variants have the same addressing
mechanisms, transactions and programming models. Serial variant has been
used for the current project. Layered architecture approach is followed in
RapidIO, to keep it backward compatible and to allow scala- bility for future
requirements. There are three layers in the SRIO hierarchy viz. the Logical
Layer, the Transport Layer and the Physical Layer. The packet formats and
the protocols are defined in the Logical Layer. The Transport Layer is the
middle layer and provides necessary routing information for the movement
of the packet. The bottom most layer i.e. the Physical Layer is responsible
for handling the electrical characteristics at the device level and error control
etc.

3.2 SRIO Transaction Flow

Request and response transactions form the basis of SRIO operation. The
communication between endpoints happens through packets. A request
transaction is generated by the initiator and is transmitted towards the tar-
get. A response packet is generated by the target and is sent to the initiator
to complete the transaction. Packets contain important fields that are re-
sponsible for ensuring the delivery of required information to the target in
a reliable manner. Typically, there exists a SRIO fabric that is a group of
switches which provides system connectivity to link all the endpoints to-
gether. There are a group of control symbols that manage the transaction
flow in the interconnect.

The operation begins when a request transaction is generated by the initiator.
The fabric receives the packet and acknowledges it with a control symbol



Figure 3.1: SRIO Transaction Flow†

and forwards it towards the target device. A response transaction is then
generated by the target a complete the request which is passed onto the
fabric and this response reaches the initiator with the help of the control
symbols. The operation is complete when the response is acknowledged at
the initiator.

3.2.1 Read Operations

The read operation is used by a processing element to read data from a
specified address. It consists of the NREAD and RESPONSE transactions
as shown in Figure ?? . Data of requested size is returned in the response
packet.

Figure 3.2: NREAD OPERATION
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3.2.2 Write and Streaming-Write Operations

Whenever data is required to be written to a specified address, write and
streaming-write(SWRITE) operations are used. These comprise of the NWRITE
and SWRITE transactions. In an NWRITE transaction, multiple double-
word, word, half-word and byte writes are allowed with properly padded
and aligned data payload. The SWRITE transaction has less header overhead
and is a double-word-only version of the NWRITE. There are no responses for
NWRITE and SWRITE transactions, and hence sender has no information as
to when the transaction has completed at the destination. These transaction
can be shown as in Figure 5.4

Figure 3.3: NREAD OPERATION

3.2.3 Write with Response Operations

The write with response operation is identical to the write operation with only
difference that it receives a response to notify the sender that the write has
completed at the destination. These transaction comprise of the NWRITE(R)
and RESPONSE transactions. This is shown in Figure 5.5.

Figure 3.4: NWRITE OPERATION

3.2.4 Write with Response Operations

The read-modify-write operation is used by processing elements to carry out
synchronization using non- coherent memory. It consists of the ATOMIC and
RESPONSE transactions (typically a DONE response). The atomic operation
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is a read and write operation combined. Here, the destination reads the data
at the specified address, returns the read data to the requester, performs the
required operation to the data, and then writes the modified data back to the
specified address. No intervening activity is allowed to that address. The
operation is as shown in Figure 5.6.

Figure 3.5: ATOMIC(read modify write) OPERATION

3.2.5 Packet Formats

A typical SRIO packet can be represented as shown in Figure5.15.

Figure 3.6: ATOMIC(read modify write) OPERATION

The packet consists of the following fields:

– Ftype : It is the Format type, which is as a 4-bit value. The first four bits
in the logical packet stream indicate Ftype value .

– Wdptr: Word pointer.It is used in conjunction with the data size (rdsize
and wrsize) fields

– Rdsize : It is the Data size for read transactions, used in conjunction
with the word pointer (wdptr) bit

– Wrsize: It is the Write data size for sub-double-word transactions, used
along with the word pointer (wdptr) bit.

– Rsrv : Reserved

– SrcTID: The packets transaction ID 18

– Transaction : It is also called type or Ttype.It indicates the specific
transaction within the format class to be performed by the recipient.

– Extended Address: Optional. Specifies the most significant 16 bits of a
50-bit physical address or 32 bits of a 66-bit physical address.
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– Xamsbs: These are the most significant bits of the extended address.
The address specified by the address and extended address fields can
be extended by 2 bits using this field.

– Address : Indicates the address value

Table 3.1: SRIO Packet Types

Ftype Ttype Packet Type
0010 0100 NREAD

0101 0100 NWRITE
0101 NWRITE R

0110 - SWRITE

1000

0000 MAINTENANCE(CONFIG READ REQ)
0001 MAINTENANCE(CONFIG WRITE REQ)
0010 MAINTENANCE(CONFIG READ RESP)
0010 MAINTENANCE(CONFIG WRITE RESP)

1010 - DOORBELL
1011 - MESSAGE

1101 0000 RESPONSE WITHOUT DATA
1000 RESPONSE WITH DATA

3.2.6 Packet Details for SRIO

The bit positions for various fields for different packet types as being
used for the Bridge are explained as follows: The NREAD packet has the
structure shown in Figure 5.16. The packet is identified with the help of
the Ftype and Ttype fields. The address field length used for this project
is 50 bits of which the first 24 bits are received in the first clock cycle and
the remaining 26 bits in the second clock cycle. The other fields are as
per the packet format explained in Section 3.6. Priority, Destination Id,
Source Id fields of the packet belong to the Transport Layer.

Figure 3.7: NREAD Request Packet (Ftype=2)

The NWRITE packet has the structure shown in Figure 5.17. The packet
is identified with the help of the Ftype and Ttype fields. The address
field length is 50 bits of which the first 24 bits are received in the first
clock cycle and the remaining 26 bits in the second clock cycle. The
NWRITE packet has a fixed data length of 64 bits of which the first 35
bits are received in the second clock cycle and the remaining 29 bits are
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received in the third clock cycle. The other fields are as per the packet
format explained in Section 3.6. Priority, Destination Id, Source Id fields
of the packet belong to the Transport Layer.

Figure 3.8: NWRITE Request Packet (Ftype=5)

The SWRITE packet has the structure similar to the NWRITE packet and
is shown in Figure 5.18. Here a sample packet is shown for 3 data cycles.
The difference here is that the data keeps continuously coming till the
eof signal is received. Other difference here is that the address starts
immediately after Srcid field. The other fields have the same meaning
as explained earlier.

Figure 3.9: NWRITE Request Packet (Ftype=5)

The Response with data packet looks like as shown in Figure 5.19 .
Response with data packet has a fixed data length of 64 bits which start
after the target id field and continues in the second clock cycle as well.

Figure 3.10: Response with Data packet (Ftype=13,Ttype=8)

Response without data packet is similar to with data case and since there
is no data, the packet gets delivered in one clock cycle itself. The packet
is shown in Figure 5.20.
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Figure 3.11: Response without Data packet (Ftype=13,Ttype=0)
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CHAPTER 4

Architecture and Implementation

The user interface of SRIO contains four ports - Initiator Request, Initia-
tor Response, Target Request, and Target Response. A packet is issued
or consumed using one of these four ports. The SRIO wrapper feeds
these ports for packet generation and consumption.
The user interface of SRIO contains four ports - Initiator Request, Initia-
tor Response, Target Request, and Target Response. A packet is issued
or consumed using one of these four ports. The SRIO wrapper feeds
these ports for packet generation and consumption.

4.1 Control Symbols

4.1.1 Introduction

This chapter specifies RapidIO LP-Serial Physical Layer control symbols.
Control symbols are the message elements used by ports connected by a
LP-Serial link to manage all aspects of LP-Serial link operation. They are
used for link maintenance, packet delimiting, packet acknowledgment,
error reporting, and error recovery.



Control Symbol Field Definitions

Table 4.1: Control Symbol Field Definitions

Field Definition
stype0 Encoding for control symbols that use parameter0 and parameter1.

The encodings are defined for Control Symbol 64
parameter0 Used in conjunction with stype0 encodings.

For the description of parameter0 encodings.
parameter1 Used in conjunction with stype0 encodings.

For the description of parameter1 encodings
stype1 Encoding for control symbols
cmd Used for Control Symbol 24 and Control Symbol 48 in conjunction with the

stype1 field to define the link maintenance commands.
reserved Set to logic 0s on transmission and ignored on reception
alignment Fixed value of 0b00. These bits are discarded when the control symbol is

encoded into codewords and reinserted when it is decoded from codewords.
CRC-5 5-bit code used to detect transmission errors in Control Symbol 24.
CRC-13 13-bit code used to detect transmission errors in Control Symbol 48.
CRC-24 24-bit code used to detect transmission errors in Control Symbol 64.

4.2 Control Symbol Format

There are three kind of control symbol

1. Control Symbol 24,

2. Control Symbol 48 and

3. Control Symbol 64

4.2.1 Control Symbol 64

Figure 4.1: Format of Control Symbol 64
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The functions encoded in stype0 are status functions that convey some
type of status about the port transmitting the control symbol. The
functions encoded in stype1 are requests to the receiving port or trans-
mission delimiters. The alignment fields are used to bring the length
of the unencoded control symbol up to 64 bits, the number of bits en-
coded into a 64b/67b codeword. The alignment fields are positioned
to allow a Control Symbol 64 to be split across codewords. Control
symbols are defined with the ability to carry at least two functions so
that a packet acknowledgment and a packet delimiter can be carried in
the same control symbol. Packet acknowledgment and packet delimiter
control symbols constitute the vast majority of control symbol traffic on
a busy link. Carrying an acknowledgment (or status) and a packet de-
limiter whenever possible in a single control symbol allows a significant
reduction in link overhead traffic and an increase in the link bandwidth
available for packet transmission. A control symbol carrying one func-
tion is referred to using the name of the function it carries. A control
symbol carrying more than one function may be referred to using the
name of any function that it carries. For example, a control symbol
with stype0 set to packet-accepted and stype1 set to NOP is referred
to a packet-accepted control symbol. A control symbol with stype0 set
to packet-accepted and stype1 set to restart-from-retry is referred to as
either a packet-accepted control symbol or a restart-from-retry control
symbol depending on which name is appropriate for the context.

4.2.2 Stype0 Control Symbols

The encoding and function of stype0, and the information carried in
parameter0 and parameter1 for each stype0 encoding,

Table 4.2: Stype0 Control Symbol 64 Encoding

stype0 Function
0b0000 packet-accepted
0b0001 packet-retry
0b0010 packet-not-accepted
0b0011 timestamp
0b0100 status

The packet-accepted, packet-retry and packet-not-accepted control sym-
bols are collectively referred to as packet acknowledgment control sym-
bols. Status is the default stype0 encoding, and is used when a control
symbol does not convey another stype0 function.

4.2.3 Packet-Accepted Control Symbol

The packet-accepted control symbol indicates that the port sending the
control symbol has taken responsibility for sending the packet or packets

21



to its final destination and that resources allocated to the packet or
packets by the port receiving the control symbol can be released. This
control symbol shall be generated only after the entire packet or packets
has been received and found to be free of detectable errors.

Table 4.3: Packet-Accepted Control Symbol field usage and values.

Format stype0 Parameter0 Parameter1
Control Symbol 64 0b0000 packet ackID buf status

4.2.4 Packet-Retry Control Symbol

A packet-retry control symbol indicates that the port sending the con-
trol symbol was not able to accept the packet due to some temporary
resource conflict such as insufficient buffering and the packet must be
retransmitted.

Table 4.4: Packet-Retry Control Symbol field usage and values.

Format stype0 Parameter0 Parameter1
Control Symbol 64 0b0001 packet ackID buf status

4.2.5 Packet-Not-Accepted Control Symbol

The packet-not-accepted control symbol indicates that the port sending
the control symbol has either detected an error in the received character
stream or, when operating in multiple VC mode, has insufficient buffer
resources and as a result may have rejected a packet or control symbol.
The control symbol contains an arbitrary/ackID status field and a cause
field.

Table 4.5: Packet-Not-Accepted Control Symbol field usage and values.

Format stype0 Parameter0 Parameter1
Control Symbol 64 0b0010 arbitrary/ackID status 0b000 0000,cause

The cause field is used to provide information about the type of er-
ror that was detected for diagnostics and debug use. The content of
the cause field is informational only. The contents of both the arbi-
trary/ackID status field and the cause field are informational only, unless
bit 9 of the Port n Latency Optimization CSR register is set within both
the transmitting and receiving port’s configuration space. If both ports
support Error Recovery with ackID in PNA Enabled, then the contents
of the Parameter0 and Parameter1 fields are functional for packet-not-
accepted control symbols.
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Table 4.6: Cause Field Definition

Cause Definition
0b00000 Reserved
0b00001 Received a packet with an unexpected ackID
0b00010 Received a control symbol with bad CRC
0b00011 Non-maintenance packet reception is stopped
0b00100 Received a packet with bad CRC
0b00101 Received an invalid character or codeword, or valid

but illegal character
0b00110 Packet not accepted due to lack of resources
0b00111 Loss of descrambler sync
0b01000-0b11110 Reserved
0b01000-0b11110 General error

4.2.6 Timestamp Control Symbol

Timestamp control symbols are used to set the timestamp generator
value of the link partner with a high degree of accuracy, and for links
operating at Baud Rate Class 1 or Baud Rate Class 2 as a response
to a loop-timing request (loop-response). Timestamp control symbols
contain 10 bits of a time value that is spread across the parameter0 and
parameter1 fields.

Table 4.7: Timestamp Control Symbol field usage and values

Format stype0 Usage
Control Symbol 64 0b0011 Timestamp

4.2.7 Status Control Symbol

The status control symbol indicates receive status information about
the port sending the control symbol. The control symbol contains the
ackID status and the buf status fields. The ackID status field allows
the receiving port to determine if it and the sending port are in sync
with respect to the next ackID value the sending port expects to receive.
The ackID status field is informational. The buf status field indicates
to the receiving port the number of maximum length packet buffers the
sending port has available for reception on VC0.

Table 4.8: Status Control Symbol field usage and values

Format stype0 Parameter0 Parameter1
Control Symbol 64 0b0100 ackID status buf status
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4.3 Stype1 Control Symbols

Table 4.9: Stype1 Control Symbol 64 Encoding

stype1(8 bits) Functions Packet Delimiter
0x00-0x07 Reserved
0x00-0x07 Stomp yes
0x09-0x0F Reserved
0x10 End-of-packet-unpadded yes
0x11 End-of-packet-padded yes
0x12-0x17 Reserved
0x18 Restart-from-retry *
0x19-0x21 Reserved
0x10,ackID[0:5] Start-of-packet-unpadded yes
0x11, ackID[0:5] Start- of - packet - padded yes

4.3.1 Start-of-Packet Control Symbol

The start-of-packet control symbol is used to delimit the beginning of a
packet. The Control Symbol 64 start-of-packet control symbol has two
variants start-of-packet-unpadded and start-of-packet-padded to indi-
cate if a previous packet has padding appended to achieve a total length
that is a multiple of 8 bytes. The start-of-packet-unpadded control sym-
bol shall be used for cases where the start-of-packet does not terminate
a previous packet or where the start-of-packet terminates a packet that
was not padded. The start-of-packet-padded control symbol shall be
used when the start-of-packet terminates a packet that was padded to
multiple of 8 bytes. It is needed to differentiate between padded and
non-padded packets so devices like switches that do not completely
decode the packet can separate link overhead from the packet. For Con-
trol Symbol 64, the stype1[2:7] bits contain the most significant 6 bits
of the packet ackID. The stype1[2:7] bits are reserved when the link is
operating in Error Free Mode.

Table 4.10: Start-of-Packet Control Symbol field usage and values.

Format stype0 Parameter0 Parameter1
Control Symbol 64 0b0100 ackID status buf status

4.3.2 Stomp Control Symbol

The stomp control symbol is used to cancel a partially transmitted
packet. The protocol for packet cancellation
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Table 4.11: Stomp Control Symbol field usage and values

Format stype1 cmd
Control Symbol 64 0x08 N/A

4.3.3 End-of-Packet Control Symbol

The end-of-packet control symbol is used to delimit the end of a packet.

Table 4.12: End-of-Packet Control Symbol field usage and values.

Format stype1 cmd
Control Symbol 64 0x08 N/A

4.3.4 Restart-From-Retry Control Symbol

This control symbol is used to mark the beginning of packet retransmis-
sion, so that the receiver knows when to start accepting packets after
the receiver has requested a packet to be retried. The restart-from-retry
control symbol cancels a current packet and may also be transmitted on
an idle link.

Table 4.13: Restart-From-Retry Control Symbol field usage and values.

Format stype1 cmd
Control Symbol 64 0x18 N/A
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CHAPTER 5

64b/67b PCS and PMA Layers

5.1 Introduction

This chapter specifies the functions provided by the Physical Coding
Sublayer (PCS) and Physical Media Attachment (PMA) sublayer used
for 64b/67b encoded links. (The PCS and PMA terminology is adopted
from IEEE 802.3).
The aim of the experiment is to design and impplement the 64b/67b
encoding.

5.1.1 PCS Layer Functions

The Physical Coding Sublayer (PCS) function is responsible for idle
sequence generation, lane striping, scrambling and encoding for trans-
mission and decoding, lane alignment, descrambling and destriping on
reception. The PCS uses a 64b/67b encoding for transmission over the
link. The PCS also provides mechanisms for determining the opera-
tional mode of the port as Nx or 1x operation, and means to detect link
states. It provides for clock difference tolerance between the sender and
receiver without requiring flow control.

5.1.2 PMA Layer Functions

The Physical Medium Attachment (PMA) Layer is responsible for se-
rializing / de-serializing 67-bit parallel codewords to/from a serial bit-
stream on a lane-by-lane basis. Upon receiving data, the PMA func-
tion provides alignment of the received bitstream to 67-bit codeword
boundaries, independently on a lane-by-lane basis. It then provides a
continuous stream of 67-bit codewords to the PCS, one stream for each
lane. The 67-bit codewords are not observable by layers higher than the
PCS. If a LP-Serial port supports either baud rate discovery or adaptive
equalization, these functions are also performed in the PMA Layer.

5.2 Architecture of 64b/67b Encoding



Figure 5.1: Architecture for 64b/66b Encoding

5.3 64b/67b Transmission Code

The 64b/67b transmission code used by the PCS encodes 64-bit blocks of
data and/or control information into 67-bit codewords for transmission
and reverses the process on reception. There are two types of codewords:
data codewords and control codewords. Data codewords encode 64
bits of data. Control codewords encode 64 bits of control information
or some combination of data and control information. Codewords are
scrambled to statistically achieve an acceptable transition density for
baud rate recovery in the receiver. Codewords are selectively inverted
based on the running disparity and codeword disparity to ensure that
the transmitted signal on each lane is DC balanced within +/- 66 1s or
0s at all times.

The inverted bit indicates whether the data field has been inverted to
control the running disparity of the transmitted signal: 0b0 - data field[0:63]
has not been inverted. 0b1 - data field[0:63] has been inverted. The type
bit indicates the type of codeword: 0b0: Control, the codeword encodes
a block that contains control information and may contains data infor-
mation. 0b1: Data, the codeword encodes a block that contains only
data information. The !type bit is the complement of the type bit. The
transition between the !type and type bits indicates a fixed offset from
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Figure 5.2: 64b/67b codeword format

the beginning of the codeword, for use in codeword lock state machine
in Section 5.19.4. The format and content of the data field depends on
the information encoded in the codeword. Codewords shall be trans-
mitted from left to right, bit 0 to bit 66 starting with the inverted bit and
progressing to data field[63].

5.3.1 Data Codeword

The format of a data codeword (type bit = 0b1) shall be as shown in
Figure5.2.

Figure 5.3: 64b/67b Data codeword format

5.3.2 Control Codeword

The format of a control codeword (type bit = 0b0) depends on the infor-
mation the codeword encodes. The 2 bits at location [30:31] of a control
codeword data field are a cc type field that specifies the contents and
format of data field[0:29,32:63]. The general format of a control code-
word shall be as shown in Figure 6.3.
The encoding of the control codeword functions are shown in Table
Control codewords can be further sub-divided into two categories: Sym-
bol Bearing and Non-Symbol Bearing. Symbol Bearing control code-
words include: CSB, CSE and CSEB. Non-Symbol Bearing control code-
words include: Skip-Marker, Lane Check, Descrambler Seed, Skip and
Status/Control.
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Figure 5.4: General 64b/67b Control Codeword Format

Table 5.1: Control Codeword function encoding

cc type[0:1] data field[32:35] Name
4’b1011 Skip-Marker

2’b00 4’b1100 Lane Check
4’b1101 Descrambler
4’b1110 Skip
4’b1111 Status/Control

2’b01 – Control Symbol Begin
2’b10 – Control Symbol End
2’b11 – Control Symbol End and Begin

5.3.3 Skip Marker Control Codeword

The Skip-Marker control codeword is used together with the Skip control
codeword to provide clock compensation.

Figure 5.5: Skip-Marker Control Codeword Format

5.3.4 Lane Check Control Codeword

The Lane-Check control codeword is used to monitor the BER of the
lanes in the link. The Lane-Check control codeword is only intended to
be used for bit error rate estimation and shall not influence or trigger
error recovery.

5.3.5 Descrambler Control Codeword

The format of the Descrambler Seed control codeword shall be as shown
in Figure 5-6. Seed codewords transmitted on lane k of a link shall
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Figure 5.6: Lane-Check Control Codeword

contain the value of the lane k transmit scrambler (seed) which would
have been used to scramble the Descrambler Seed Control Codeword
if it was a codeword that is scrambled before transmission. The lane
k transmit scrambler state (seed) is used to set or check the state of
the lane k descrambler in the connected receiver at the time that the
Seed codeword would have been descrambled. The Descrambler Seed
control codeword is transmitted only as part of a Seed ordered sequence.
For more information, refer to Section 5.9.1, ”Seed Ordered Sequence”.

Figure 5.7: Descrambler Seed Control Codeword Format

5.3.6 Skip Control Codeword

The Skip control codeword is used together with the Skip-Marker control
codeword to provide clock compensation. The format of the Skip control
codeword shall be as shown in Figure 5-7. The codeword data field has
a disparity of 0 and a Hamming distance of 32 from the Skip-marker
control codeword. The codeword shall be transmitted only as part of
a Skip ordered sequence. For more information, refer to Section 5.9.3,
”Skip Ordered Sequence”.

Figure 5.8: Skip Control Codeword Format
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5.3.7 Status/Control Control Codeword

The Status/Control control codeword is use to communicate various
link level information between two link partners, this includes link
training control, link initialization and asymmetric link width control.
The format of the Status/Control control codeword shall be as shown in
Figure 5-8.

Figure 5.9: Status/Control Control Codeword Format

The format of the CSB control codeword shall be as shown in Figure .

Figure 5.10: CSB Control Codeword Format

5.3.8 CSE Control Codeword

The format of the CSE control codeword shall be as shown in Figure .

Figure 5.11: CSE Control Codeword Format

5.3.9 CSEB Control Codeword

The format of the CSEB control codeword shall be as shown in Figure .
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Figure 5.12: CSEB Control Codeword Format

5.3.10 Scrambling

A scrambler is a device which maps a digital sequence into a second
sequence whose statistical properties are ’more random’ in some sense.
One simple form of scrambling consists of the addition of a pseudo-
random sequence to the input data sequence. At the receiving end,
descrambling is performed by subtraction of the same sequence.
The pseudo-random sequence is generated by a linear feedback shift reg-
ister (see diagram). The serial data enters the LFSR, where each stage
is a D-type flip-flop equivalent to one time unit of delay. The delayed
signal is tapped, with XOR (modulo-2) feedback with the input sig-
nal. For the descrambler, the XOR process is feed-forward. Scrambling
smooths the spectrum of the ports’s transmit signal and reduces the spec-
trum’s peak values.It reduces the electromagnetic interference and DC
component.For idle encoding our encoder should be bit-synchronized.
Scrambling is used to get a DC-balanced output before transmission of
the data over the optical link. Otherwise long strings of binary ones or
zeros cause the average signal at the AC-coupled receiver to drift up
and down. If the receiver input drifts to near the threshold value, any
noise will cause bit errors.
In addtion, scrambling is quite useful for clock recovery. Long strongs of
binary ones or zeros have no state transitions from which timing infor-
mation can be extracted. By increasing the density of state transistions,
it becomes much easier for the PLL at the receiving end to extract the
clock signal from the data, lock onto the clock, and minimize jitter (and
bit errors).

5.3.11 Scrambling Rules

The first three bits:Invert,!type and type should not be scrambled. For
Symbols that need to be scrambled, the least significant bit is scrambled
first and the most significant bit is scrambled last. The scrambling
function can be implemented with one or many Linear Feedback Shift
Registers(LFSRs) on a multi-Lane Link.
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Figure 5.13: Scrambler

Table 5.2: Scrambler Initialization Values

Lane Initilization Value
[x1
− x58]

0 0x1ec f564 79a8 b120
1 0x1a1 af7d 7264 5f9e
2 0x2ef 2b62 302b d094
3 0x14a da90 3a26 68aa
4 0x1fe d572 55e7 da1d
5 0x283 8ff2 c69c 3618
6 0x3bc 111d 3429 3ece
7 0x1c0 3994 44ae 4a2b
8 0x09f ebc2 faee 77fb
9 0x239 7200 3b8e 9cff
10 0x00a 45db c14e f218
11 0x36d 3a42 6876 e9c4
12 0x2c1 a537 55d7 8dea
13 0x2b9 e833 dd9d 6b34
14 0x1cb c090 ab7f 79b3
15 0x26f aa25 7342 3ae5

5.3.12 Descrambler Synchronization

Each lane descrambler shall synchronize itself to the data stream it is re-
ceiving by using Seed ordered sequences.If a descrambler sync test fails
while receive enable is asserted, an initialized port shall immediately
enter the Input Error-stopped state if it is not already in that state and
resynchronize the descrambler.

5.3.13 Selective Codeword Inversion

Selective codeword inversion is used to bound the running disparity of
the signal transmitted over each lane of a LP-Serial link that uses 64b/67b
encoding.
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Figure 5.14: Descrambler

Selective Codeword Inversion Rules

Selective codeword inversion shall be applied to the signal transmitted
over each lane of an LP-Serial link according to the following rules.

1. The transmitter shall start with 0 as the initial value for the running
disparity calculation for each lane.

2. After each codeword is formed and if appropriate, scrambled, compute
the disparity of the resulting codeword.

3. If the signs of the codeword disparity and the running disparity of the
lane over which the codeword will be transmitted are different, the
codeword shall be transmitted as is without inversion. The running
disparity at the end of the codeword shall be the running disparity at
the beginning of the codeword plus the disparity of the codeword.

4. If the signs of the codeword disparity and the running disparity of
the lane over which the codeword will be transmitted are the same,
invert bits [0,3:66] of the codeword and transmit the resulting codeword.
The running disparity at the end of the codeword shall be the running
disparity at the beginning of the codeword minus the disparity of the
codeword before inversion.

5. At the receiver, invert bits [0,3:66] of each received codeword if code-
word bit[0] = 0b1 (the codeword was inverted before transmission).

5.4 Transmission Order

The parallel 67-bit codeword output of the encoder shall be serialized
and transmitted with bit 0 transmitted first and a sequential bit ordering
towards bit 66. This is shown in Figure. Figure gives an overview of
a set of characters passing through the encoding, serializing, transmis-
sion, deserializing, and decoding processes. The left side of the figure
shows the transmit process of encoding a character stream using 64b/67b
encoding and the 67-bit serialization. The right side shows the reverse
process of the receiver deserializing and using 64b/67b decoding on the
received codewords. The dotted line shows the functional separation
between the PCS, that provides 67-bit codewords, and the PMA Layer
that serializes the codewords. The drawing also shows on the receive
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side the bits of the type field containing the pattern that is used by the
receiver to establish 67-bit codeword boundary synchronization.

Figure 5.15: Transmission

5.5 Ordered Sequencing

To facilitate error detection, the Seed, Status/Control, Lane Check, Skip
Marker and Skip control codewords shall be transmitted only in ”or-
dered sequences”. Each ordered sequence is comprised of a sequence
of two or more control codewords with fixed ordering and with suffi-
cient known content and redundancy to detect corruptions in a received
ordered sequence.

Figure 5.16: Seed Ordered Sequence

Figure 5.17: Status Ordered Sequence
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Figure 5.18: Skip Ordered Sequence

5.5.1 IDLE Sequencing

The idle sequence defined for 64b/67b encoded links is referred to as
IDLE3.
The IDLE3 sequence is a sequence of codewords transmitted by a LP-
Serial port on each of its active output lanes when the port is not ini-
tialized, and when the port is initialized and there are no packets or
control symbols to transmit. The IDLE3 sequence enables a LP-Serial
receiver to acquire and retain bit, codeword and lane alignment, as well
as supporting clock compensation.

The IDLE3 Sequence shall be a continuous sequence of ordered se-
quences and data codewords containing pseudo-random data. Data
codewords containing pseudo-random data will be referred to as ”pseudo-
random data codewords”. The exact sequence of ”ordered sequences”
and pseudo-random data codewords comprising a specific IDLE3 se-
quence is implementation dependent. The IDLE3 sequence shall be
generated according to the following rules.

1. Pseudo-random data codewords shall be generated by first forming
data codewords filled with bytes of 0x00 and then scrambling those
data codewords with the transmitters per lane scrambler(s).

2. An ordered sequence, once begun, shall be transmitted in its entirety.

3. When IDLE3 sequence is being transmitted: A Status/Control ordered
sequence shall be transmitted once every 18 to 53 codewords transmitted
per lane. A Seed ordered sequence shall be transmitted at least once
every 53 codewords transmitted per lane. The Seed ordered sequences
transmitted as part of Skip ordered sequences can be counted as part of
the Seed ordered sequences that are transmitted to meet the minimum
Seed ordered sequence transmission rate.

4. If a port is transmitting in 1x mode: The IDLE3 sequence may begin with
a pseudo-random data codeword or any ordered sequence. An ordered
sequence may begin at any codeword boundary that is not interior to
another ordered sequence. The IDLE3 sequence may be terminated after
the last codeword of an ordered sequence or after any data codeword.
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5. If a port is transmitting in a multi-lane mode: The IDLE3 sequence
begins at a column boundary An IDLE3 sequence shall be transmitted
in parallel on all active lanes The sequence of ordered sequences and
pseudo-random data codewords shall be exactly the same for all active
lanes. The IDLE3 sequence and each ordered sequence in the IDLE3
sequence shall begin in the same column for all active lanes and shall
end in the same column for all active lanes, i.e. the IDLE3 sequence
and all ordered sequences in the IDLE3 sequence are aligned across the
active lanes. The IDLE3 sequence may begin with a pseudo-random data
codeword or any ordered sequence, subject to the following restriction
on Status/Control ordered sequence spacing. Status/Control ordered
sequences shall be separated by at least 16 non-Status/Control codeword
columns, regardless of whether the last Status/Control ordered sequence
was part of this IDLE3 sequence or a previous IDLE3 sequence. (This
requirement is to ensure that Status/Control ordered sequence columns
that are used for lane alignment are separated by a minimum of 16
codeword columns.) An ordered sequence may begin at any codeword
column boundary that is not interior to another ordered sequence.

Idle Sequence 3 Generation

A primitive polynomial of at least 7th degree is recommended as the
generating polynomial for the pseudo-random sequence that is used in
the generation of the idle sequence. The polynomials [x7 + x6 + 1] and
[x7 + x3 + 1]
are examples of primitive 7th degree polynomials which may be used
as generator polynomials. The pseudo-random sequence generator is
clocked (generates a new pseudo-random sequence value) once per idle
sequence codeword (column). Five of the pseudo-random sequence
generator state bits may be selected to generate the pseudo-random
value for Status/Control ordered sequence spacing. The selection of the
state bits and their weighting has an impact on the distribution of values
for Status/Control ordered sequence spacing. One way to achieve the
random spacing requirements from Section 5.9.1 is to repeatedly send
one of the following sequences depending on the need to transmit Skip
ordered sequences:

1. Sequence starting with a Seed ordered sequence: One Seed ordered
sequence A pseudo-random number between 14 and 45 of Data code-
words A Status/Control ordered sequence

2. Sequence starting with a Skip ordered sequence: One Skip ordered se-
quence A pseudo-random number between 9 and 40 of Data codewords
A Status/Control ordered sequence
The above sequences provide the required spacing of 16 to 47 codewords
between Status/Control ordered sequences. Transmission of Skip or-
dered sequences should be minimized, as completion of the seven code-
word Skip sequence delays the start of packet transmission. It should
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be kept in mind that transmitting Skip ordered sequences too often can
impact link efficiency if packets arrive for transmission when a Skip
ordered sequence is being transmitted. This is because the Skip ordered
sequence is seven codewords long and it has to be completed before
packet transmission can start.

Figure 5.19: IDLE sequence generator

5.5.2 Frame Lock Process

The recovery of DME training frame boundaries in a lane receiver shall
be controlled and monitored by the Frame Lock state machine. There
shall be one Frame Lock state machine for each lane receiver. The frame
lock state diagram determines when the PCS control function has de-
tected the frame boundaries in the received data stream.

frame lock
Boolean variable that is set to TRUE when the receiver acquires training
frame delineation and is set to FALSE otherwise.
good markers
Count of the number of consecutive frame marker matches.
bad markers
Count of the number of consecutive frame marker mis-matches.
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SLIP
Causes the next candidate frame sync position to be tested. The precise
method for determining the next candidate frame sync position is not
specified and is implementation dependent. However, an implementa-
tion shall ensure that all possible bit positions are evaluated.

Figure 5.20: Frame Lock State Machine
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CHAPTER 6

Experiments and Result

This cahpter describes the experimental setup. It includes data sets and
configuration of Bluespec Tool. It also deccribes, timing diagram of
simulations performed in BlueSim and the complete functionality was
verified by writing a number of testcases.

6.1 Verification Setup

The Bluespec code that is written in .bsv format is given to the Bluespec
compiler in the Bluespec Development Workstation (BSW).The Bluespec
Compiler compiles and generates the Verilog code in .v format.

Table 6.1: COMPARATIVE OVERVIEW 8B/10B AND 64B/67B ENCODING

Encoding Tech. 8B/10B 64B/67B
Run Lendth 5 Relies on Scrambler
DC Balance Running Disparity of 2 Not Guaranteed
Word Synchronisation ”Comma” K-Characters Synchronisation Header
Implementation Technique Scrambler and Descrambler Scrambler and Descrambler
Overhead Fraction 25 percentage 3.175 percentage

Input= 1111111111111111111111111111111111111111111111111111111100001111
one count = 60
zero count = 4
one count = 64
Running Disparsity of Data = 56

6.2 Simulation

The simulated result of Encoded bit.

The simulated result of Scrambler and Descrambler.
Decoded 64bit



Figure 6.1: Encoding of 64 bit

Figure 6.2: Scrambling and Descrambling

Figure 6.3: Decoding of 64 bit
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this project, a encoding of 64 bit codeword was done to 67bit,it was
developed at the physical layer level of SRIO, the data packet and control
symbol was coming from upper layer . Also I designed the differnt
control symbol for my packets.Like when packet is ready to go from
transmitter to reciever start of packet control symbol will be generated.
When the packet will completly transferred then the end of packet will
be generated. These control symbol later used in encoding. For making
control symbol control codeword. In future we can implement lane
stripping and lane alignment.For that we need different states machine
as per our requirement of RapidIO specification.
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