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ABSTRACT

KEYWORDS: Computer Arithmetic; Floating points; Posits; Unum com-

puting; Valid arithmetic.

A new data type called a posit is designed as a direct drop-in replacement for IEEE

Standard 754 floating-point numbers (floats). Unlike earlier forms of universal

number (unum) arithmetic, posits do not require interval arithmetic or variable

size operands; like floats, they round if an answer is inexact. However, they

provide compelling advantages over floats, including larger dynamic range, higher

accuracy, better closure, bitwise identical results across systems, simpler hardware,

and simpler exception handling. Posits never overflow to infinity or underflow

to zero and NaN indicates an action instead of a bit pattern. A posit processing

unit takes less circuitry than an IEEE float FPU. With lower power use and smaller

silicon footprint, the posit operations per second (POPS) supported by a chip can

be significantly higher than the FLOPS using similar hardware resources.

The HDL that has been used to implement the posit operations is Bluespec

System Verilog (BSV).
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CHAPTER 1

Floating Point Arithmetic

1.1 Introduction

There are several ways to represent real numbers on computers. Fixed point places

a radix point somewhere in the middle of the digits, and is equivalent to using

integers that represent portions of some unit. For example, one might represent

1/100ths of a unit; if you have four decimal digits, you could represent 10.82, or

00.01. Another approach is to use rational, and represent every number as the

ratio of two integers. Floating-point representation - the most common solution

- basically represents reals in scientific notation. Scientific notation represents

numbers as a base number and an exponent. For example, 123.456 could be

represented as 1.23456 × 102. In hexadecimal, the number 123.ABC might be

represented as 1.23ABC × 162 .

Floating-point solves a number of representation problems. Fixed-point has a

fixed window of representation, which limits it from representing very large or

very small numbers. Also, fixed-point is prone to a loss of precision when two

large numbers are divided.

Floating-point, on the other hand, employs a sort of ”sliding window” of pre-

cision appropriate to the scale of the number. This allows it to represent numbers

from 1,000,000,000,000 to 0.0000000000000001 with ease.



1.2 Scientific Notation of Floating Point Numbers

Floating-point notation can be used conveniently to represent both large as well

as small rational and mixed numbers. This makes the process of arithmetic op-

erations on these numbers relatively much easier. Floating-point representation

greatly increases the range of numbers, from the smallest to the largest, that can be

represented using a given number of digits. Floating-point numbers are in general

expressed in the form

N = m × be (1.1)

where m is the fractional part, called the significand or mantissa, e is the integer

part, called the exponent, and b is the base of the number system or numeration.

Fractional part m is a p-digit number of the form (±d.dddd..) with each digit d being

an integer between 0 and b-1 inclusive. If the leading digit of m is nonzero, then

the number is said to be normalized.

In the case of decimal, hexadecimal and binary number systems will be written

as follows:

Decimal System:

N = m × 10e (1.2)

Hexadecimal System:

N = m × 16e (1.3)

Binary System:

N = m × 2e (1.4)
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For example, decimal numbers 0.0003754 and 3754 will be represented in

floating-point notation as 3.754 × 10−4 and 3.754 × 103 respectively. A hex number

257.ABF will be represented as 2.57ABF × 162 . In the case of normalized binary

numbers, the leading digit, which is the most significant bit, is always ’1’ and thus

does not need to be stored explicitly. Also, while expressing a given mixed binary

number as a floating-point number, the radix point is so shifted as to have the most

significant bit immediately to the right of the radix point as a ’1’. Both the man-

tissa and the exponent can have a positive or a negative value. The mixed binary

number (110.1011)2 will be represented in floating-point notation as .1101011×23 =

.1101011e+0011 . Here, .1101011 is the mantissa and e+0011 implies that the exponent

is +3. As another example, (0.000111)2 will be written as .111e−0011, with .111 being

the mantissa and e−0011 implying an exponent of -3. Also, (−0.00000101)2 may be

written as−.101× 2−5 =-.101e−0101, where -.101 is the mantissa and e0101 indicates an

exponent of -5.

1.3 Desirable properties

Specifying a floating-point arithmetic (formats, behavior of operators, etc.) re-

quires us to find compromises between requirements that are seldom fully com-

patible. Among the various properties that are desirable, one can cite:

• Speed: Tomorrow’s weather must be computed in less than 24 hours;

• Accuracy: Even if speed is important, getting a wrong result right now is
about as bad as getting the correct one too late;

• Range: We may need to represent big as well as tiny numbers;

• Portability: The programs we write on a given machine must run on different
machines without requiring modifications;

• Ease of implementation and use: If a given arithmetic is too arcane, almost
nobody will use it.
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CHAPTER 2

IEEE Standard 754 Floats

2.1 Evolution

The world of numerical computation changed much in 1985, when the IEEE 754-

1985 Standard for Binary Floating-Point Arithmetic was released [1]. This standard

specifies various formats, the behavior of the basic operations and conversions,

and exceptional conditions. As a matter of fact, the Intel 8087 mathematic co-

processor, built a few years before, in 1980, to be paired with the Intel 8088 and

8086 processors, was already extremely close to what would later become the

IEEE 754-1985 standard. Now, most systems of commercial significance offer

compatibility with IEEE 754-1985. This has resulted in significant improvements

in terms of accuracy, reliability, and portability of numerical software. William

Kahan played a leading role in the conception of the IEEE 754-1985 standard and

in the development of smart algorithms for floating-point arithmetic.

IEEE 754-1985 and 854-1987 have been under revision since 2001. The new

revised standard, called IEEE 754-2008 in this book, merges the two old standards

and brings significant improvements. It was adopted in June 2008 [2].

The standard defines:

• Arithmetic formats: sets of binary and decimal floating-point data, which
consist of finite numbers (including signed zeros and subnormal numbers),
infinities, and special ”not a number” values (NaNs)

• Interchange formats: encodings (bit strings) that may be used to exchange
floating-point data in an efficient and compact form



• Rounding rules: properties to be satisfied when rounding numbers during
arithmetic and conversions

• Operations: arithmetic and other operations (such as trigonometric func-
tions) on arithmetic formats

• Exception handling: indications of exceptional conditions (such as division
by zero, overflow, etc.)

2.2 IEEE Standard 754 Representation

An integer can be represented as a binary string of certain amount of bits which is

a combination of three fields: sign, exponent and fraction as below:

S Exponent Fraction

(X)10 = (−1)S
× 2Exponent−Bias

× (1.Fraction)2 (2.1)

The MSB of the bit string is the sign(S) of the number. If MSB is 0, the number

is positive and if it is 1 the number is negative. The n-bit exponent field is an

unsigned integer. The exponent field should be able to represent both positive

and negative exponent value. To achieve this we add a bias of 2n−1
− 1 to the

actual exponent while representing as IEEE float. When it comes to their precision

and width in bits, the standard defines four basic formats : Half precision, Single

precision, Double precision and Quadruple precision. The Bias coefficient is equal

to 127 for an 8bit exponent of a single precision format and 1023 for 11 bit exponent

of 64 bit double precision format. This allows useage of exponents in the range of

-127 to +128 which corresponds to 0 to 255 for an 8 bit exponent of single precision

format and -1023 to +1024 corresponding to 0 to 2047 for a 11bit exponent of double
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precision format. The single-precision format offers a range from 2127 to 2127, which

is equivalent to 10−38 to 1038 and it ranges from 2−1023to 21023, which is equivalent

to the range of 10−308 to 10308in case of double precision format.[3]

Precision No.of Bits Exponent Bits Fraction Bits Exponent Bias

Half Precision 16 5 10 15

Single Precision 32 8 23 127

Double Precision 64 11 52 1023

Quadruple Precision 128 15 112 16383

Table 2.1: Characteristic parameters of IEEE-754 formats

2.3 Exceptions of IEEE 754 standard

The standard reserves all 0s and all 1s of the exponent field to handle some excep-

tional cases:

• Zero As mentioned above, zero is not directly representable in the straight
format, due to the assumption of a leading 1 (we’d need to specify a true
zero mantissa to yield a value of zero). Zero is a special value denoted with
an exponent field of zero and a fraction field of zero. Because of the sign bit
there is a distinct representations for -0 and +0, though they both compare as
equal.

• Denormalized Numbers If the exponent have all 0s, but the fraction is non-
zero (else it would be interpreted as zero), then the value is a denormalized
number, which does not have an assumed leading 1 before the binary point.
Thus, this represents a number (−1)s

× 0. f × 2−126 , where s is the sign bit
and f is the fraction. For double precision, denormalized numbers are of the
form (−1)s

× 0. f × 2−1022 . From this you can interpret zero as a special type
of denormalized number.

• Infinity The values +infinity and -infinity are denoted with an exponent of
all 1s and a fraction of all 0s. The sign bit distinguishes between negative
infinity and positive infinity. Being able to denote infinity as a specific value
is useful because it allows operations to continue past overflow situations.
Operations with infinite values are well defined in IEEE floating point.
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• NaN The value NaN (Not a Number) is used to represent a value that does
not represent a real number. NaN’s are represented by a bit pattern with an
exponent of all 1s and a non-zero fraction. There are two categories of NaN:
QNaN (Quiet NaN) and SNaN (Signalling NaN). They have the following
format, where s is the sign bit:

– QNaN: s 11111111 10000000000000000000000

– SNaN: s 11111111 00000000000000000000001

A QNaN is a NaN with the most significant fraction bit set. QNaN’s prop-
agate freely through most arithmetic operations. These values pop out of
an operation when the result is not mathematically defined. An SNaN is
a NaN with the most significant fraction bit clear. It is used to signal an
exception when used in operations. SNaN’s can be handy to assign to unini-
tialized variables to trap premature usage. Semantically, QNaN’s denote
indeterminate operations, while SNaN’s denote invalid operations.

2.4 Special Operations

Operations on special numbers are well-defined by IEEE. In the simplest case, any

operation with a NaN yields a NaN result. Other operations are as follows:

Table 2.2: Special results for some special combination of inputs

Operation Resut

n ÷ ±In f inity 0

±In f inity × ±In f inity ±In f inity

±non − zero ÷ 0 ±In f inity

±In f inity + ±In f inity ±In f inity

±0 ÷ ±0 NaN

In f inity − In f inity Nan

±in f inity ÷ ±in f inity NaN

±in f inity Nan

7



2.5 Issues With IEEE Floats

• Wasted Bit Patterns - 32-bit IEEE floating point has around sixteen million
ways to represent Not-A-Number (NaN) while 64-bit floating point has nine
quadrillion. A NaN is an exception value for invalid operations such as
division by zero.

• Mathematically Incorrect - The format specifies two zeroes, a negative and
positive zero which have different behaviors.

• Overflows to ±inf and underflows to 0 - Overflowing to ±inf increases
the relative error by an infinite factor, while underflowing to 0 loses sign
information.

• Complicated Circuitry - One of the reasons why IEEE floating points have
complicated circuitry is because the standard defines support for denormal-
ized numbers. Denormalized floating point numbers have a hidden bit of 0
instead of 1.

• No Gradual Overflow and Fixed Accuracy - If accuracy is defined as the
number of significand bits, IEEE floating point have fixed accuracy for all
numbers except denormalized numbers because the number of signficand
digits is fixed. Denormalized numbers are characterized by a decreased
number of significand digits when the value approaches zero as a result of
having a zero hidden bit. Denormalized numbers fill the underflow gap (i.e.
the gap between zero and the least non-zero values). The counterpart for
gradual underflow is gradual overflow which does not exist in IEEE floating
point.

8



CHAPTER 3

Posit Arithmetcis

Whats wrong with IEEE 754?

• It’s a guideline, not a standard

• No guarantee of identical results across systems

• Invisible rounding errors; the ”inexact” flag is useless

• Breaks algebra laws, like a+(b+c) = (a+b)+c

• Overflows to infinity, underflows to zero

• No way to express most of the real number line

3.1 Background: Type I and Type II Unums

The unum (universal number) format is a format similar to floating point, proposed

by John Gustafson as an alternative to the now ubiquitous IEEE 754 format.

3.1.1 Type-I Unums

”Type I” unum is a superset of IEEE 754 Standard floating-point format[4]. It uses

a ”ubit”at the end of the fraction to indicate whether a real number is an exact float

or lies in the open interval between adjacent floats. While the sign, exponent, and

fraction bit fields take their definition from IEEE 754, the exponent and fraction

field lengths vary automatically, from a single bit up to some maximum set by

the user. Type I unums provide a compact way to express interval arithmetic, but



their variable length demands extra management. They can duplicate IEEE float

behavior, via an explicit rounding function.

Figure 3.1: Type I unum representation

A u-bit which determines whether the unum corresponds to an exact number

(u=0), or an interval between consecutive exact unums (u=1). In this way, the

unums cover the entire extended real number line [−∞,+∞].

Figure 3.2: Comparison of IEEE 754 64-bit float and a Type 1 unum representing
the same value

The inclusion of the ”uncertainty bit” (ubit) at the end of the fraction eliminates

rounding, overflow, and underflow by instead tracking when a result lands be-

tween representable floats. Instead of underflow, the ubit marks it as lying in the

open interval between zero and the smallest nonzero number. Instead of overflow,

the ubit marks it as lying in the open interval between the maximum finite float

value and infinity.
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3.1.2 Type II Unums

The ”Type II” unum [5] abandons compatibility with IEEE floats, permitting a

clean, mathematical design based on the projective reals. The key observation

is that signed (two’s complement) integers map elegantly to the projective reals,

with the same wraparound of positive numbers to negative numbers, and the same

ordering. Like Type I, Type II unums ending 1(ubit) represent the open interval

between adjacent exact points (unums ending in 0).

The structure of 5-bit Type II unums is shown in fig3.3. For an n-bit Type II

unum, the upper right quadrant corresponds to an ordered set of 2n−3
− 1 real

numbers xi. The upper left quadrant represents the negative values of xi, the

reflection about the vertical axis represents the opposite numbers of the upper

right quadrant. The lower semi circle, the reflection about the horizontal axis

represents the reciprocals of the numbers in the upper half circle. This horizontal

projection makes ×and÷ symmetrical operation like + and -.

Figure 3.3: Projective real number line mapped to 4-bit two’s complement integers
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3.2 The Posit Format

The below fig3.4 represents the structure of an n-bit posit with es exponent bits.

The n-bits of posit consists of four fields sign, regime, exponet and fraction.

Figure 3.4: Posit format for finite non-zero values

3.2.1 Understanding a n-bit posit

• Sign- The MSB of the n-bits represents the sign of the number represented.
If it is 0, the number is positive and if 1 the number is negative. If sign bit is
1, take 2’s complement of the entire posit before decoding it.

• Regime bits- The identical bits after the sign bit either terminated by opposite
bit or the end of the binary string is reached contribute to the regime bits. Let
there be ’m’ identical bits in the regime. If the m bits are 0, then runlength(k)=
-m; if they are 1s, then k=m-1. Table below gives more clarification about
regime bits and numerical meaning of runlength(k).

Binary 0001 001x 01xx 10xx 110x 1110
Run-length,k -3 -2 -1 0 1 2

Table 3.1: Numerical meaning k of regime bits

The regime contributes to a scaling factor of useedk, where useed = 22es

es 0 1 2 3 4
useed 2 22 = 4 42 = 16 162 = 256 2562 = 65536

Table 3.2: useed as a function of es

• Exponent Bits - Bits after regime bits are exponent bits. There can be up to
es exponent bits. These are regarded as an unsigned integer. They represent
a scaling factor of 2e. There is no bias as there is for floats.
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• Fraction bits - The bits left after the exponent bits represent the fraction, just
like the fraction 1. f in a float, with a hidden bit 1. Posits doesn’t support the
de-normalized format with hidden bit 0.

3.2.2 Exceptions of Posits

There only two exceptions for posits.

1. Zero : All n-bits are 0s.

2. ± Infinity : All the n-bits except the MSB are 0s. (1 followed by all 0 bits).
There is no separate representation for positive and negative infinity.

The decimal equivalent of a posit is calculated as below:

(X)10 = (−1)S
× useedk

× 2exp
× (1.Fraction)2 (3.1)

3.2.3 Representation of posits as projective reals

For understanding, let us start with the simple case of 3-bit posit. The fig3.5 below

shows the right half(positive values) of the projective reals.

Figure 3.5: Positive values represented by 3-bit posit
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The precision of posits increases by appending bits. The value remains where

it is on the circle when a 0 is appended. Adding a 1 bit creates a new value between

two existing values on the circle. Let maxpos be the the largest positive value and

minpos be the smallest positive value on the ring defined with a bit string. In the

above fig3.5, maxpos = useed and minpos = 1/useed.

The interpolation rules are as follows:

• Between the maxpos and±∞ , the new value is maxpos×useed; and between
0 and minpos, the new value is minpos / useed.

• Between existing values x = 2m and y = 2n where m and n differ by more
than 1, the new value is their geometric mean,

√
x.y = 2(m+n)/2 (new exponent

bit).

• Otherwise, the new value is midway between the existing x and y values
next to it, that is, it represents the arithmetic mean ( x + y )/ 2 (new fraction
bit).

As an example, fig3.6 below shows a build up from a 3-bit to a 5-bit posit with

es=2, so useed = 16.

Figure 3.6: Construction of posits with two exponent bits, es=2, useed = 22es
= 16
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3.2.4 Decoding a Posit

X10 =



0, p=0

±∞, p=−2n−1

(−1)S
× useedk

× 2exp
× (1.Fraction), all other p.

The regime and es bits combined serve the function of exponent bits of ieee floats.

Together they set the power-of-2 scaling of fraction where each useed increment is

a batch shift of 2es bits. The maxpos is useedn−2 and minpos is useed2−n. In the Fig.

3.7 below an example for decoding a posit shown.

Figure 3.7: Example for mathematical meaning of a posit with es=3

The MSB=0 hence the number is positive. The regime bits are 0001, results in

runlength k=-3 and es=3 hence useed = 223
= 256 hence, the exponent contributed

by the regime bits is 256?3. The exponent bits, 101, the binary number represented

is 5 and contribute another scale factor of 25. Finally, the fraction bits 11011101

represent 221 as an unsigned binary integer, so the fraction is 1+(221/256). It works

out to 1.86328125 × 2−19 = 3.55393 × 10−6.
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CHAPTER 4

Posits versus IEEE Floats: A Metric-Based Study

4.1 Comparison between and Float and Posit Formats

Posits doesn’t support ’NaN’(Not-a-number)s. Instead, the calculation is inter-

rupted and the interrupt handler can be set to report the error and invoke a

workaround and continue computing. This simplifies the hardware considerably.

Similarly, posits lack a separate +∞ and −∞ like floats have.

There is no ”negative zero” in posit representation but IEEE standard supports

separate representation for ”negative zero”. With posits, when a=b, f(a) = f(b).

The IEEE 754 standard says that the reciprocal of ”negative zero” is −∞ but the

reciprocal of ”positive zero” is∞, but also says that negative zero equals positive

zero. Hence, floats imply that −∞ = ∞.

Floats have a complicated test for equality, a=b. If either a or b are NaN, the

result is always false even if the bit patterns are identical. If the bit patterns are

different, it is still possible for a to equal b, since negative zero equals positive zero!

With posits, the equality test is exactly the same as comparing two integers: if the

bits are the same, they are equal. If any bits differ, they are not equal. Posits share

the same a ¡ b relation as signed integers; as with signed integers, you have to watch

out for wraparound, but you really don’t need separate machine instructions for

posit comparisons if you already have them for signed integers.



There are no subnormal numbers in the posit format, that is, special bit patterns

indicating that the hidden bit is 0 instead of 1 . Posits do not use ”gradual under-

flow.” Instead, they used tapered precision, which provides the functionality of

gradual underflow and a symmetrical counterpart, gradual overflow. (Instead of

gradual overflow, floats are asymmetric and use those bit patterns for a vast and

unused cornucopia of NaN values.)

Floats have one advantage over posits for the hardware designer: the fixed

location of bits for the exponent and the fraction mean they can be decoded in

parallel. With posits, there is a little serialization in having to determine the

regime bits before the other bits can be decoded. There is a simple workaround for

this in a processor design, similar to a trick used to speed the exception handling

of floats: Some extra register bits can be attached to each value to save the need

for extracting size information when decoding instructions.

4.2 Dynamic Range of Floats Vs Posits

Dynamic range of a number system is defined as the number of decades from

the smallest to the largest finite positive number(minpos to maxpos) that can be

represented.

DynamicRange = log10 maxpos − log10 minpos = log10(maxpos/minpos) (4.1)

For example, an 8-bit posit with es=0, has a value of useed=2, hence the min-

pos=1/64 (useed2−n) and maxpos=64 (useedn−2). So the dynamic range is log10(642)

is about 3.6decades. The posits with es=0 are simple and elegant but their higher

bit versions like 16, 32 and 64 have less dynamic ranges compared to the corre-
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sponding IEEE floats. 32 bit posit system with es=0 has dynamic range of about

only 18 decades whereas in the case of 32 bit single precision IEEE floats it is about

83 decades.

4.2.1 Using the Useed to Match or Exceed the Dynamic Range of

IEEE floats

As we append the exponent bits, the useed keep on scaling by factor of 2es. Consider

the case of 32-bit posits with es=1, has useed=4 and the dynamic range is 60×log10 4

turns out to be around 36 decades. Similarly, for 32-bit posit with es=3, useed=256

and dynamic range is 60 × log10 256 which works out to around 144 decades. This

clearly surpasses the dynamic range of single precision IEEE floats.

Bit IEEE Float Approx. IEEE Float Posit Approx. Posit

size Exp.Size Dynamic Range es value Dynamic Range

16 5 6 × 10−8 to 7 × 104 1 4 × 10−9 to 3 × 108

32 8 1 × 10−45 to 3 × 1038 3 6 × 10−73 to 2 × 1072

64 11 5 × 10−324 to 2 × 10308 4 2 × 10−299to 1 × 10298

128 15 6 × 10−4966 to 1 × 104932 7 1 × 10−4855 to 1 × 104855

Table 4.1: Dynamic range of Floats Vs Posits for same number of bits

These exponent sizes for floats do not follow any mathematical pattern, but

reflect intensely argued compromises by the IEEE committee. Trying to match the

1985-era choices of the IEEE committee results in an equally inexplicable set of es

values for the posits. Frankly, the reason for such enormous dynamic ranges is

that they were trying to save transistors instead of provide what users really need.

Multiplying and dividing floats only requires integer addition and subtraction of
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the exponent field, but the fraction field needs an integer multiplier, and the cost of

that can grow almost as the square of the number of fraction bits. So while almost

no one strays outside the range 10−13 to 1013 in real applications. But the IEEE 754

Standard proudly lets you go from about 10−78984 to 1078913.

4.3 Decimal Accuracy

Decimal error defined as the absolute value of number of decades from the com-

puted value to the exact value.

Decimal Error = |log10(Xcomputed) − log10(Xexact)| = | log10(Xcomputed/Xexact)| (4.2)

Notice that the absolute value makes xcomputed and xexact interchangeable in the above

definition. Also notice that it produces the same result whether you use xcomputed

and xexact as inputs, or 1/xcomputed and 1/xexact . So that looks like a mathematically

sound definition. We have choose base 10 logarithm because it measures the error

in decades. For example, xcomputed = 0.001 and xexact = 0.0001; the decimal error is 1.

That means it’s a decade off.

The decimal error can be used to define decimal accuracy. Accuracy is the

inverse of error. If we want to know the number of decimals of accuracy, we again

take the log base 10.

Decial Accuracy = log10(
1

Decimal Error
) = − log10 | log10(

Xcomputed

Xexact
)| (4.3)
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4.4 Comparing floats with posits performing unary

operations

4.4.1 Reciprocation

We can compare the reciprocal closure, that is, the percentage of cases where 1/x is

exactly representable as a member of the set. Compare the percentage of the entire

set of floats or posits for which a reciprocal is exact, finite but inexact, produces a

NaN, overflows, or underflows:

Only 34 of the float values have exact reciprocals. In contrast, 48 of the 256

unum values have exact reciprocals, and never experience catastrophic loss of

accuracy through overflow. The IEEE float definition is a ”kludge” in that it has

subnormal numbers at the low end (the reciprocals of which incorrectly overflow

to infinity), but replaces the high end numbers with NaN values.

The following graph makes it much easier to visualize the relative performance

of floats and posits. The entire set of decimal losses in computing 1/x is sorted

from smallest to largest, and plotted.
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The graph of posit decimal losses grows more slowly than that for floats, and

never goes to infinity.

4.4.2 Square Roots

We can also compare square root closure, that is, the percentage of cases where
√

x

is exactly representable as a member of the set. The sqrtbarchart routine also finds

out the fraction of the time a square root is exact, finite but inexact, or produces a

NaN. The square root operation cannot overflow or underflow. Negative inputs

produce NaN results, but since the posit ”±∞” really means unsigned infinity, the

square root of ”±∞” is ”±∞” and thus is closed for that input.
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Posits do better, but at first glance it looks like the advantage is slight. The bar

chart does not reveal just how much more inexact the floats are. The difference

in the sorted losses is more dramatic than it was for computing 1/ x. Here are the

sorted losses for every
√

x value that is not a NaN:

The posit errors are about half those of the floats (for the results that are not

indeterminate).
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4.4.3 Square

Another common unary operation is x2 . Overflow and underflow are a common

disaster when squaring floats. Posits experience their largest decimal loss for

squares that would overflow or underflow by IEEE rounding rules, but at least the

loss is a few decimals and not infinite.

Posits do much better, mainly by not having any exception cases at all.

Every posit can be squared. (The square of unsigned infinity is again unsigned

infinity.) In contrast, almost half the squarings of floats result in complete loss of

information about the result.
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4.4.4 Logarithm (base 2)

We can also compare the logarithm base 2 closure, that is, the percentage of cases

where log2(x) is exactly representable as a member of the set. As with square roots,

about half the values produce a NaN since the logarithm of a negative value is a

complex number. Note: we allow posits to return ±∞ as the logarithm of zero and

the logarithm of ±∞. Remember, posit infinity is unsigned, like zero.

Posits do better, and again at first glance it looks like the advantage is slight.

There are more integer powers of 2 in the posit environment, for which the loga-

rithm base 2 is expressible exactly. Here are the sorted losses for every value that

is not a NaN or infinity:

The posit errors are again about half those of the floats.
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CHAPTER 5

Bluespec System Verilog

The hardware decription language used for coding the arithmetic operations on

posits is BSV.

5.1 Introduction

Bluespec System Verilog is a Hardware Description Language (HDL), which

is used for specification, synthesis, modeling and verification of ASIC and FPGA

design. With a radically different approach to highlevel synthesis, bluespec offers

significantly higher productivity. It allows designers to express intended hardware

through high-level constructs, where all behavior is described as a set of guarded

atomic actions.

5.2 Limitataion of Verilog

Verilog focusses more on simulation than logic synthesis. The source text of

verilog often explicitly contains aspects of circuit that could be readily determined

by the compiler, such as size of registers, width of busses etc. This makes the design

less portable. Handling concurrency in hardware is relatively difficult in verilog

as the designer should manage all the aspects of handshaking between combina-

tional circuits. Shared use of register and other memory resources should also



be elaborated. The behavioral specification of design in verilog often consumes

multiple clock cycles. Attempts to resolve this problem results in a highly unread-

able code with possible bugs. In practice,this problem is solved by separating the

combinational and sequential parts of the circuit. Due to these shortcomings, the

synthesis and verification of hardware in verilog is slowed down. This is a huge

problem during the design of SOC.

5.3 Bluespec

Bluespec is based on atomic transactions, which increases the level of con-

currency abstraction above SystemC and RTL without compromising the control

over hardware design. It enables automatic synthesis of complex control logic,

which is the source of many bugs. This results in highly adaptable, reusable and

re-configurable designs. Control adaptive parametrization in bluespec provides

flexibility, where a significantly different micro-architecture can be generated by

changing the parameters in the design with the associated control structures gen-

erated automatically. Bluespec allows user defined data types and static type

checking. It provides several features of the modern high level languages and all

of them can be synthesized.

In recent times, several attempts have been made to move the hardware de-

sign language towards a more software like specification of the circuit behaviour.

Languages like C, C++ are used to express designs as sequential programs. How-

ever, the semantic gap between the software model and the hardware results in sub

optimal designs with unpredictable speed and area. Bluespec System Verilog tack-

les this problem by building upon the traditional hardware semantics. It exploits
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advanced concepts from software only for static elaboration and static verifica-

tion. It uses the standard hardware structure model of verilog such as modules,

module instances, hierarchy etc. For communication between modules it uses the

System verilog model of interfaces and interface instances. These added with the

advanced features of the high level languages, makes designing and verification

in bluespec much faster.

Design activities by BSV

• Virtual Platforms - Virtual platforms written in BSV are much faster and
accurate than software virtual platform.

• Architectural Modeling - It is very difficult to decide analytically that a system
component should be hardware or software. BSV gives architecture model
as IP 5 blocks for exploration and validation.

• Design and Implementation - BSV enables designing of IP blocks at a much
higher level of abstraction and with better maintainability.

• Verification Environments - BSV is used for writing synthesizable transactors,
test benches and both system and reference models.

• Executable Specifications.

5.4 Features of BSV

BSV is feature rich Hardware Descriptor Language and at the same time uses

important feature of C/C++, and Object Oriented Programming. It includes all

major data types present in a High Level Language. Instead of ports as in Verilog,

it uses Interfaces. Each functional component is defined as Module. Coordination

and Control among different modules are done through interfaces. Methods are

responsible for transferring data and control signals across different modules.

Atomicity and Concurrency is achieved by Rules. Functions written in C and

Verilog can also embedded in BSV.
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5.4.1 Compilation of BSV code

1. A designer writes a BSV program. It may optionally include Verilog, System
Verilog, VHDL and C components.

2. The BSV program is compiled into a Verilog or Bluesim specification. This
step has two distinct stages:
• Pre-elaboration - parsing and type checking.

• Post-elaboration - code generation.

3. The compilation output is either linked into a simulation environment or
processed by a synthesis tool.

Figure 5.1: Compilation Process of BSV

5.4.2 Modules and Interfaces

Module is the basic element of the hardware design hierarchy in bluespec. A

module can be instantiated multiple times, and also different parameters can be

passed during every instantiation. Unlike verilog, bluespec does not have input,

output and in-out pins as interface to modules. Methods are used to drive signals
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and busses in and out of modules. These methods are grouped together into

interfaces. Modules contain rules, which use methods in other modules.

In BSV, the interface declaration is done separately, outside the module defi-

nition. This allows declaration of common interfaces which can be used in multiple

modules,without having to declare them repeatedly. All the modules which share

the same interfaces also share same methods and therefore share same number

and type of inputs and outputs.

Figure 5.2: Representation of Methods, Interfaces and Rules in a module hierarchy

5.4.3 Data Types

In BSV, every variable has a type and only the values of compatible types can

be assigned to a variable. The BSV compiler provides a strong, static type-checking

environment. Type checking is done before the program elaboration and it ensures

that the object types are compatible and the conversion functions are valid for the
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context. Bluespec also allows the usage of user-defined types. BSV has a type class

which can be considered as a set of types. It implements overloading across related

data types. Overloading is the ability to use a common name for a collection of

types, with the specific type for the variable being chosen by the compiler based

on the types on which it is actually used. Functions and operators are shared by

all the data types within a type class.

Some common scalar types used in Bits type class are Bit(n), Bool, UInt(n)

and Int(n). The values stored in registers, FIFOs and other memory elements and

also the values passed by wires, must be in the Bits type class. Other common

data types include Integer, which belongs to the Arith type class and String, which

belongs to the Literal type class etc.

Apart from basic data types BSV has user define data types that really helps in

modeling wires of circuit.

• Typedef - ”typedef” is used to define new and more reliable synonym.

typedef existingDataType NewDataType

typedef bit[63:0] Data;

typedef bool flag;

• Enum - ”enum” defines new data type to a set of scalar values with symbolic
name. Due to strong type-checking enum variables can not be compared
with its equivalent numeric value.

typedef enumIdentifier1 identifier2 ... NewType

typedef enum Reset, Count, Decision State deriving(Bits, Eq);

• Structs- A structure or record (struct) is a composite type made up of a
collection of members. Each member has a particular type and is identified
by a member, or field, name.

typedef structIdentifier1, Identifier2, ... NewType deriving (Bits,Eq)

typedef structint x; int y; Coord;

typedef structAddr pc; RegFile rf; Memory mem; Proc;

• Tagged Union - A tagged union is a composite type made up of a collection
of members. A union value only contains one member at a time while a
structure value contains all of its members.
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5.4.4 Rules

Rules manage the movement of data from one state to another, within the

module.It consists of two parts: rule conditions and rule body. Rule conditions

are boolean expressions which decide whether the rule can be fired. Rule body is

a set of actions for state transitions. Rules in BSV are atomic. The actions within

the rule completely describes the state transition. The process of determining the

functional correctness of a design is greatly simplified by one-rule-at-a-time se-

mantics. That is, because of the atomic property of rules, each rule can be looked

at in isolation, without considering the actions of the other rules to determine func-

tional correctness. Multiple rules can be executed concurrently in the hardware

implementation.

The actions in a rule are executed simultaneously. This can be thought of as

similar to the execution of non-blocking statements in always blocks of verilog.

Also, as the rule has atomic property, the entire body of rule is executed and there

is no partial exe- cution of a rule. When there are several rules within a module,

the execution of rules is ordered by the compiler. No two rules can execute

simultaneously. The ordering of the rules by the compiler is called scheduling.

BSV does not have always blocks like Verilog. Rules execute as logically

”instantaneous”, ”complete”, and ”ordered” with respect to the execution of all

other rules. By ”instantaneous” it means that all the actions in a rule body occur

at a single common instant, there is no sequencing of actions within a rule. By

”Complete” it means, when it is fired, the entire rule body executes; there is no

concept of ”Partial” execution of a rule body. By ”ordered” it means that each rule

execution conceptually occurs either before or after every other rule execution,

never simultaneously[4].
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Rules are made up of two components.

• Rule Condition - A boolean expression which determines, if the rule body
is allowed to execute.

• Rule Body - A set of actions which describe the state updates that occur when
the rule fires.

5.4.5 Methods

Method is a procedure which takes arguments and returns a value. It could

also return a value without taking any arguments. It becomes a bundle of wires

when translated into RTL. The method definition is written within the definition

of the interface and it can be different in different modules sharing a common

interface. A method also contains implicit conditions which are handshaking

signals and logic automatically generated by the compiler. They do not alter any

state within the module. Action methods cause actions to occur. They create state

changes within the module. Action value methods are a combination of value

methods and action methods. They cause state changes and also return values.

Methods are carrier for sending requests and getting responses across Mod-

ules. Methods carry data and commands on wires. Methods are different from

functions because they are associated with some interface, whereas functions are

independent. Methods are of following types:

• Action Method

method Action MethodName(parameter1, parameter2, ...)

• Action Value Method

method ActionValue (returnType ) MethodName(parameter1, parameter2,
...)

• Value Method

method Value(returnType ) MethodName(parameter1, parameter2, ...)
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CHAPTER 6

Operations on Posits

Once the standard has been explained it is time to start with the im-
plementation of the arithmetic operations using the posit representation. In
this chapter we deal with different arithmetic operations such as Addition,
Subtraction, Multiplication, Division and Square root operations and theri
corresponding algorithms.

6.1 Addition/Subtraction

Addition is the fastest of the fundamental arithmetic operations, but
also surprisingly complex. The change from fixed to floating-point turns the
simple addition into a 10 step process:

1. Convert to internal representation

2. Find exponent difference

3. Allign significands

4. Add/Subtract significands

5. Round

6. Detect leading one

7. Normalize result

8. Adjust exponent

9. Convert to Posit format

First the input posits are decoded and exponents and mantissa bits are
seperated. The exponents are compared and the the absolute difference
between them is found. The mantissa with the lower exponent is aligned so
that they have same exponents. The result exponent will be max(Exp1,Exp2).
Then the two mantissas are added or subtracted depending on the effective
addition/subtraction operation.

After the addition/subtraction the significand may not fit in the format
anymore as it may be a digit too large, or it may be unnormalized. A Leading
One Detector(LOD) finds the position of first non-zero digit and a shifter
normalizes the result to a format obeying the input format. The exponent is
updated with the shift. After normalization inexact results must be rounded
according to the current rounding modes. As the rounding may overflow the
significand has to be normalized again and the exponent must be updated
accordingly. Finally the internal format must be converted to posit format.



Figure 6.1: Steps involved in implementing addition operation
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6.2 Multiplication

Floating-point multiplication is much simpler in concept compared to
addition, but it is also slower. In total it is a 7 step process where step 2 to 4
conceptually differ from addition:

1. Convert to internal representation

2. Multiply significands and add exponents in parallel

3. Detect leading one

4. Normalize result

5. Round

6. Adjust exponent

7. Convert to posit format

Figure 6.2: Steps involved in implementing multiplication operation
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After decoding the input posits, the exponents are added and is assigned
as the result exponent. The product of the mantissas is found and then
leading zero is detected from the product for normalizing. The product is
normalized by shifting and adjusting the result mantissa. Rounding the
result of the mantissas product is done if necessary according to the round
rules followed. The regime bits and the exponent bits are deducted from the
result exponent. The leading 1 one from the mantissas product is removed
before converting into posit format.

6.3 Division

Like floating-point subtraction is similar to addition, division is similar
to multiplication. Conceptually only the second step is different.

1. Convert to internal representation

2. Divide significands and subtract the exponents in parallel

3. Detect leading one

4. Normalize result

5. Round

6. Adjust exponent

7. Convert to posit format

But the algorithms for division of the significands is not similar to mul-
tiplication at all. Where a fixed-point multiplier consists of three simple
often combinatorial steps, fixed-point division is a sequencial operation with
many possible implementation. There are three common algorithms which
are called SRT, Newton-Raphson reciprocal approximation and multiplica-
tive normalization.

6.3.1 Division Alogrithm

Step 1: Set the value of Divisor in register Divisor

Step 2: Set the value of Dividend in register Dividend

Step 3: Set the value of register Quotient as 0

Step 4: Intialize a new register Ext.Dividend with a size of doble the number

of bits in Divisor and set it to 0.

Step 5: Add Dividend to Ext.Dividend (zero extended version of dividend)
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Step 6: Repeat this step for ”n” number of times (n is no. of bits in divisor)

If (Ext.Dividend ≥ Divisor)

Ext.Dividend = Ext.Dividend −Divisor
Quotient = (Quotient << 1)|1

Else

Ext.Dividend = Ext.Dividend << 1

If Ext.Dividend is still less than Divisor, repeat the follwoing steps

until Ext.Dividend ≥ Divisor
Ext.Dividend = Ext.Dividend << 1

Quotient = (Quotient << 1)

After n iterations the value in Quotient is the resultant quotient of the divison
of two mantissas.

Figure 6.3: Steps involved in implementing division operation
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6.4 Square Root

The non-restoring square root determination algorithm focuses on the
”partial remainder” with every iteration and not on ”each bit of the square
root” [11]. At each iteration, this algorithm requires only one traditional
adder or subtractor, i.e., it does not require other hardware components,
such as multipliers, or even multiplexors. It generates the correct result even
for the last bit position. Based on the result of the last bit, a precise remainder
is obtained immediately without any addition or correction operation. It can
be implemented at very fast clock rate as it has very simple operations at
each iteration [12]. The alogorithm is as follows:

Initial conditions:
– Set value of register Remainder as value 0

– Set the value of register Quotient as value 0

– Set the register D as the value of the number whose square root is to be
obtained.

Do the following for ”n” times (n is half the number of bits in D)

Step 1: If the value of register Remainder is greater than or equal to 0, do

Set the value of register Remainder as (Remainder << 2)|((D >> (2 ∗ i))&3)

Then set the value of register Remainder as Remainder((Quotient << 2)|1)

Step 2: Else do

Set the value of register Remainder as (Remainder << 2)|((D >> (2 ∗ i))&3)

Then set the value of register Remainder as Remainder+((Quotient << 2)|3)

Step 3: If the value of register Remainder is greater than or equal to 0 then do

Set the value of Quotient as ((Quotient << 1)|1)

Step 4: Else do

Set the value of Quotient as ((Quotient << 1)|0)

Step 5: If the value of register Remainder is less than 0 then do,

Set the value of register Remainder as Remainder + ((Quotient << 1)|1)

Finally the value of square root is obtained from the register Q and the
value of remainder is obtained from the register Remainder. The algorithm
is generating a correct bit of result in each iteration including the last one.
For each iteration addition or subtraction is based on the sign of the result
obtained from previous iteration. The partial remainder is generated in each
iteration which is used in the successive iteration even if it is negative (satis-
fying the meaning of non-restoring our new algorithm). In the last iteration,
if the partial remainder is positive, it will become the final remainder. Oth-
erwise, we can get the final remainder by addition to the partial remainder.
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CHAPTER 7

Simulations and Synthesis Results

The arithmetic operations are implemented in Bluespec System Verilog
(BSV) Hardware Description Language(HDL) and the complete functionality
was verified by writing a number of testcases.

7.1 Verification Setup

The Bluespec code that is written in .bsv format is given to the Bluespec
compiler in the Bluespec Development Workstation (BSW). The Bluespec
Compiler compiles and generates the Verilog code in .v format. The Verilog
code is synthesized in Xilinx Vivado to get the clock frequency and to know
about the amount of hardware generated by the design. Figure 7.1 shows
the verification steps in Bluespec.

Figure 7.1: Verification Steps in Bluespec

The hardware utilization reports and the simulation results for sample test
cases for different operations are shown in the following sections.



7.2 Simulation and Synthesis Results of Addition/-
Subtraction

7.2.1 Addition

Figure 7.2: Hardware utilization report of Addition on Nexys 4 DDR board

Sample test case1:

Inputa : 01110100011110000000000000000000 = (74780000)16 = (1540096)10

Inputb : 01100111010100000000000000000000 = (67500000)16 = (3392)10

Sum : 01110100011110001101010000000000 = (7478D400)16 = (1543488)10

Figure 7.3: Simulation result of addition operation for a sample test-case:1

Sample test case2:

Inputa : 10010011010101000000000000000000 = (93540000)16 = (−21888)10

Inputb : 01100111010100000000000000000000 = (67500000)16 = (3392)10
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Sum : 10010011101111100000000000000000 = (93BE0000)16 = (−18496)10

Figure 7.4: Simulation result of addition operation for a sample test-case:2

7.2.2 Subtraction

Figure 7.5: Hardware utilization report of Subtraction on Nexys 4 DDR board

Sample test case1:

Inputa : 01110100011110000000000000000000 = (74780000)16 = (1540096)10

Inputb : 01100111010100000000000000000000 = (67500000)16 = (3392)10

Subtract : 01110100011101110010110000000000 = (74772C00)16 = (1536704)10
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Figure 7.6: Simulation result of subtraction for sample test-case:1

Sample test case2:

Inputa : 00010000101010100000000000000000 = (10AA0000)16 = (2.032518387×
10−5)10

Inputb : 11110000010101010000000000000000 = (F0550000)16 = (−1.272559166×
10−5)10

Subract : 00010010001010101000000000000000 = (122AB000)16 = (3.305377553×
10−5)10

Figure 7.7: Simulation result of subtraction for a sample test-case:2
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7.3 Multiplication

Figure 7.8: Hardware utilization report of Multiplication on Nexys 4 DDR board

Sample test case1:

Inputa : 01110100011110000000000000000000 = (74780000)16 = (1540096)10

Inputb : 01100111010100000000000000000000 = (67500000)16 = (3392)10

Product : 01111100000011011101100000000000 = (7C0DD800)16 = (5224005632)10

Figure 7.9: Simulation result of Multiplication for sample test-case:1

Sample test case2:

Inputa : 01110000010101010000000000000000 = (70550000)16 = (87296)10

Inputb : 10010000101010100000000000000000 = (90AA0000)16 = (−54656)10

Product : 10000011111110001110011100100000 = (83F8E720)16 = (−4771250176)10
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Figure 7.10: Simulation result of Multiplication for sample test-case:2

7.4 Division

Figure 7.11: Hardware utilization report of Division on Nexys 4 DDR board

Sample test case1:

Inputa : 01100111010100000000000000000000 = (67500000)16 = (3392)10

Inputb : 01110100011110000000000000000000 = (74780000)16 = (1540096)10

Division : 00011110010000010101110010011000 = (1E415C98)16 = (2.202460077×
10−3)10

Figure 7.12: Simulation result of Division for sample test-case:1
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Sample test case2:

Inputa : 01110000010101010000000000000000 = (70550000)16 = (87296)10

Inputb : 10010000101010100000000000000000 = (90AA0000)16 = (−54656)10

Division : 10111101100111000111101010000000 = (BD9C7A80)16 = (−1.59718895)10

Figure 7.13: Simulation result of Division for sample test-case:2

7.5 Square Root

Figure 7.14: Hardware utilization report of Square Root on Nexys 4 DDR board

Sample test case1:

Inputa : 01100111010100000000000000000000 = (67500000)16 = (3392)10

Sqrt : 01010111010001111011000000000000 = (5747B000)16 = (58.24023438)10

Figure 7.15: Simulation result of Square Root for sample test-case:1

45



Sample test case2:

Inputa : 00001101101010000000000000000000 = (0DA80000)16 = (3.159046173×
10−6)10

Sqrt : 00011101101000111101100000000000 = (1DA3D800)16 = (1.77350903 ×
10−3)10

Figure 7.16: Simulation result of Square Root for sample test-case:2

7.6 Conclusions

Posits provide higher accuracy, larger dynamic range, and better closure.
They can replace floats for producing better answers with the same number
of bits as floats, or an eually good answer with fewer bits.

Because they work like floats, not intervals, they can be regarded as a
drop-in replacement for floats, as demonstrated here. If an algorithm has
survived the test of time as stable and ”good enough” using floats, then it
will run even better with posits. The fused operations available in posits
provide a powerful way to prevent rounding error from accumulating, and
in some cases may allow us to safely use 32-bit posits instead of 64-bit floats
in high-performance computing. Doing so will generally increase the speed
of of a calculation 2 to 4 times, and save energy and power as well as the cost
of storage.

Unlike floats, posits produce bitwise-reproducible answers across com-
puting systems, overcoming the primary failure of the IEEE 754 float defi-
nition. The simpler and more elegant design of posits compared to floats
reduces the circuitry needed for fast hardware. As ubiquitous as floats are
today, posits could soon prove them obsolete.
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