
Implementation and Verification of NAND flash
Controller using ONFI4.0

A Project Report

submitted by

Y RATHAIAH
EE16M047

in partial fulfilment of the requirements
for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

May 2018

THESIS CERTIFICATE

This is to certify that the thesis entitled Implementation and Verification of NAND

flash Controller using ONFI4.0, submitted by Y.Rathaiah bearing roll number of

EE16M047, to the Indian Institute of Technology, Madras, for the award of the

degree of Master of Technology, is a bonafide record of the research work carried

out by him under my supervision. The contents of this thesis, in full or in parts,

have not been submitted to any other Institute or University for the award of any

degree or diploma.

Prof. V. Kamakoti
Research Guide
Professor
Dept. of Computer Science and Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 17 May 2018

ACKNOWLEDGEMENTS

My foremost gratitude and respects to my guide Dr. V. Kamakoti for his guidance,

motivation and moral support in my execution of this project work. Despite a very

busy schedule, he always gave me a patient hearing.

I would like to extend a special thanks to my Co-guide Prof. Saurabh Saxena

who supported me in my academcs with his advise. My special thanks to Mr. G.S.

Madhusudan for his inputs and motivation through out the project.

I thank Vishvesh for his passionate talks about the subject and many hour-long

discussions which renewed the zeal in me to keep trying for results. His patience

has been incredible.

My special thanks to Dr.Neel Gala for giving me this project. I thank Arjun,

Rahul, Rama Muni and other rise labmates for lending their immense help in my

work.

I thank my fellow batchmates Naveen, Shashi, Wing Commander Sandeep

Singh, Neelesh, Shiva, Mani krishna and others for their help and support.

Finally I thank God for making all of this happen.

i

ABSTRACT

KEYWORDS: SSD, HDD, PCIe, NVMe, NFC, ONFI

Solid State Drives (SSDs) are gaining momentum in memory applications,

replacing Hard Disk Drives(HDDs) by offering higher performance and lower

power. CPU performance growing exponentially for the past two decades in the

case of SSD, while HDD performance has improved linearly for the same period.

Additionally, multi-core CPU designs have increased randomness of storage I/Os.

These trends have shifted from HDD to SSD.

The storage controller used for Shakti processor has host, PCIe, NVMe, NFC

and NAND flash chips. For maximum utilization of SSD performance NVMe is

being used. Communication between host and NVMe is through PCIe. Between

NVMe and NFC, ONFI interface is used. ONFI4.0 specification defines a stan-

dardized NAND Flash device interface that provides the means for a system to be

designed that supports a range of NAND Flash devices.

The NAND Flash Controller(NFC) part has been verified for basic operations

such as program, read and erase in NAND flash chips. AXI4 interface has been

used to send request from testbench to NFC for operations. Multi-plane operations

also verified.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vi

LIST OF FIGURES ix

ABBREVIATIONS x

1 INTRODUCTION 1

1.1 Overview . 2

1.2 My contribution . 3

1.3 Organization of the Thesis . 3

2 BACKGROUND 4

2.1 Nand Flash Memory . 5

2.1.1 Flash Memory . 5

2.1.2 Basic NAND Flash Cell . 5

2.1.3 Reading a NAND flash cell 6

2.1.4 Write in a NAND flash cell 7

2.1.5 Erase a NAND flash cell . 7

2.1.6 NAND cell life . 8

2.2 Bluespec System Verilog . 9

2.2.1 Key Features of BSV . 9

2.2.2 Bluespec SystemVerilog Constructs 10

2.2.3 LFSR . 12

3 AXI4 INTERFACE 13

iii

3.1 Write Transaction . 14

3.1.1 Write Channel . 14

3.2 Read Transaction . 18

3.2.1 Read Channel . 18

3.3 AXI Interconnect . 20

3.4 Summary . 20

4 Nand Flash Description 21

4.1 Functional Overview . 21

4.1.1 NAND Flash Architecture 21

4.2 Addressing and Memory map . 25

4.2.1 Memory Organization . 25

4.2.2 16GB NAND flash array organization 26

4.2.3 Device Organization . 27

4.2.4 Addressing . 28

4.3 ONFI Commands . 30

4.3.1 RESET operation . 31

4.3.2 Status definitions . 33

4.3.3 SELECT CACHE REGISTER 34

4.3.4 READ Operations . 35

4.3.5 Program Operations . 37

4.3.6 Erase Operations . 41

5 Interleaving Commands 43

5.1 Multi plane interleaving . 43

5.2 Mega Block . 44

5.2.1 Logical address to Physical address 45

6 Design, Implementation and Simulation results 49

6.1 Introduction . 49

6.2 Design of NAND Flash Controller 49

6.2.1 Overview of Full flow of commands 50

iv

6.3 Implementation of Nand Flash Controller 50

6.3.1 RESET . 52

6.3.2 Bad Block Management . 53

6.3.3 READ STATUS operation 54

6.3.4 PROGRAM operation . 55

6.3.5 READ operation . 60

6.3.6 ERASE Operation . 65

6.4 Simulation results . 67

6.4.1 RESET Waveform . 67

6.4.2 SET FEATURE Waveform 68

6.4.3 STATUS Waveform . 68

6.4.4 PROGRAM PAGE(80-10h) 69

6.4.5 PROGRAM PAGE MULTI-PLANE(80-11h) 70

6.4.6 PROGRAM PAGE CACHE(80-15h) 70

6.4.7 READ PAGE(00-30h) . 71

6.4.8 READ PAGE MULTI-PLANE(00-32h) 71

6.4.9 READ MODE(00h) . 72

6.4.10 ERASE BLOCK(06-D0h) . 72

6.4.11 ERASE BLOCK MULTI- PLANE(06-D2h) 73

6.5 Conclusion . 73

7 CONCLUSION AND FUTURE WORK 74

7.1 Future Work . 74

LIST OF TABLES

2.1 State of NAND flash cell based on charge 5

3.1 Signal description of Write Address Channel 16

3.2 Signal description of Write Data Channel 17

3.3 Signal description of Write Response Channel 17

3.4 Signal description of Read Address Channel 19

3.5 Signal description of Read Data Channel 19

4.1 Signal description . 22

4.2 Address cycles . 29

4.3 Mode Selection . 30

4.4 Command description . 31

4.5 Status Register . 33

5.1 Physical addressing . 45

5.2 Logical addressing . 46

vi

LIST OF FIGURES

1.1 Memory Subsystem . 2

2.1 Types of silicon memories . 4

2.2 Basic NAND flash cell . 6

2.3 Value ’1’ is stored as current is flowing from Source to Drain . . . 6

2.4 Value ’0’ is stored as no path for current from Source to Drain . . 7

2.5 Writing/programming a NAND flash cell 8

2.6 Erase a NAND flash cell . 8

2.7 LFSR interface and Module instantiation 12

3.1 AXI Block diagram . 13

3.2 Axi Write Bus example . 15

3.3 Write channel Architecture . 15

3.4 Read channel Architecture . 18

4.1 LUN functional block diagram . 23

4.2 Data transfer . 24

4.3 Target Memory Organization . 25

4.4 LUN flash array . 27

4.5 Device organization . 27

4.6 Width of address . 28

4.7 Address bits . 29

4.8 RESET Command . 32

4.9 STATUS Command . 32

4.10 STATUS Command description . 33

4.11 Select CACHE register Command 34

4.12 READ page command . 36

vii

4.13 Read page command Timing diagram 36

4.14 Read page Multi-Plane . 37

4.15 Program Page . 39

4.16 Program Page Multi Plane . 40

4.17 Architecture of program page Cache operation 40

4.18 Block Erase Operation . 42

5.1 Mega Block . 44

6.1 Full flow of NAND flash Controller 51

6.2 Reset . 52

6.3 Bad block . 53

6.4 Read Status state machine . 55

6.5 WRITE State Machine . 57

6.6 Flow of Program operation . 58

6.7 Flow of Program operation . 59

6.8 Read State Diagram . 62

6.9 Flow of READ operation . 64

6.10 Flow of READ operation . 65

6.11 Erase State Diagram . 66

6.12 Flow of ERASE operation . 66

6.13 RESET operation . 67

6.14 SET Feature operation . 68

6.15 STATUS command operation . 68

6.16 PROGARM PAGE Starting command, address and data 69

6.17 PROGARM PAGE final data, spare data and end command 69

6.18 PROGARM PAGE MULTI-PLANE final data, spare data and end
command . 70

6.19 PROGARM PAGE CACHE final data, spare data and end command 70

6.20 READ PAGE request . 71

6.21 READ PAGE MULTI-PLANE request 71

6.22 READ MODE request . 72

viii

6.23 ERASE BLOCK REQUEST . 72

6.24 ERASE BLOCK MULTI- PLANE REQUEST 73

ix

ABBREVIATIONS

SSD Solid-State Drive

HDD Hard Disk Drive

ONFI Open NAND Flash Interface

NFC NAND Flash Controller

NVMe Non-volatile memory Express

PCIe Peripheral Component Interconnect

AXI Advanced eXtensible Interface

LUN Logical Unit / Logical Unit Number

CLE Command Latch Enable

ALE Address Latch Enable

RPM Rotations per minute

IOPS Input/output operations per second

x

CHAPTER 1

INTRODUCTION

Semiconductor technology is advancing everyday by which processing power also

increasing. Moore’s law states that number of transistors in an Integrated circuit

would double every two years. This effectively means that processing power

of computers will also double every two years. With this rapid growth, chip

capacity has grown very fast and SOC(System-On-Chip) has become very crucial

to integrate hardware,software and other applications. But there is no much

improvement in IOPS(Input/output operations per second). Hard disk is where

everything else is stored. It stores all of your programs, documents and other files.

To access a file or run a program, the system needs to load it from the hard disk and

into memory. But there is vast difference between above two speeds. Processing

speed is in nanoseconds while HDD takes milliseconds. Magnetic HDDs have

been used for database applications mostly. These HDD have been becoming

slower as the write and read speed depends on RPM.

Here comes Non Volatile Memory(NVM) based storage devices. Flash based

SSD is opted for better performance speed. So the storage has become little faster.

NAND flash Memory is selected. A memory management unit was designed for

an efficient data transfer between the processor and the main memory. It supports

NVM Express based I/O Subsytem with a PCI Express interface. NAND Flash

Controller is included in the design for non-volatile memory management. It acts

as a controller interface between NVM Express and NAND Flash memory.

Figure 1.1: Memory Subsystem

1.1 Overview

Host/CPU is a single or multi processing entity which uses this memory system

for I/O access to non-volatile memory. This sets I/O submission and completion

queues and submission of I/O commands to the appropriate queues based on the

priority of the I/O command. For full PCIe (Peripheral Component Interconnect

express) is an interconnect between host and NVMe controller. It is designed to

connect peripheral devices to a host processor and has a tree-based structure with

a central root complex and switches connecting the nodes flowing down the tree.

NVM Conttroller is a bridge between host and NFC. Fetching, execution and

dispatch of I/O commands issued by the host into the I/O queues. Pipelined

execution and parallelization of IO commands across channels, deciding the IO

bandwidth and channel utilization.

NAND flash controller is a bridge between NVM controller and ONFI interface

of NAND flash chips. Every channel has an independent NAND flash controller

and each NAND flash controller can control maximum of two NAND chips. It

2

executes NAND commands issued by the NVM Controller and returns the status

of the NAND flash command to the NVM controller. It also implements error

correction for reliable NAND data reads, and also maintains persistent bad block

tables and returns them to the NVM Controller.

1.2 My contribution

NAND flash controller has been implemented previously but not fully legitimate.

So, this has been corrected fully according to ONFI4.0 specification. The focus of

present thesis will be on functioning of basic commands like Write, read and erase

from NAND flash chips. These commands are implemented using ONFI4.0 by

maintaining timing issues. And later they are fully tested for paticular test cases.

1.3 Organization of the Thesis

The remaining part of Thesis has been divided into following chapters for ease of

understanding and coverage.

• Chapter 2 deals with basics NAND flash memory and Bluespec System Ver-
ilog.

• Chapter 3 discusses AXI4 interface and related aspects used.

• In chapter 4 deals with fuctioning, addressing, memory organization of
NAND flash and ONFI commands used.

• Chapter 5 deals with mega block concept used for obtaining parallelism.

• Chapter 6 shows the implementation of NFC and simulation results.

• Chapter 7 concludes thesis and dicusses future work.

3

CHAPTER 2

BACKGROUND

This chapter discuss about the basic building block of Nand flash memory i.e.,

nand flash cell. And then brief introduction of Bluespec System Verilog.

Figure 2.1: Types of silicon memories

Silicon can mainly be divided into Volatile and non-volatile memories. When

power is lost, volatile memories will lose data. While there will be no loss of

data although power is lost. Speed of volatile memories may be greater than non

volatile memory. NAND flash memory is Non volatile memory.

2.1 Nand Flash Memory

2.1.1 Flash Memory

Flash memory is a type of non-volatile memory. This can be electrically erased

and re-programmable. As over-write is not possible, erase must happen before

program in a cell which is already programmed. It is not possible to erase each

cell in a flash memory individually. It may be possible if we add a large additional

circuitry. This will increase cost. So, this approach is dropped and large part is

erased namely block-wise erase.

2.1.2 Basic NAND Flash Cell

Nand flash cell shown in Figure 2.2 is the basic building block of almost every

solid state drive. For storing a single bit of data on a solid state drive, the smallest

building block ”single NAND flash cell” is required. This single cell can be set to

either a ’0’ or ’1’ and it will continue to store that state even after power is removed

as it is a type of Non-volatile memory.The floating gate will remain in it state of

charged or uncharged until it is surrounding circuitory is changed.

Table 2.1: State of NAND flash cell based on charge

Floating gate state Referred as Binary value
assigned

Charged Programmed ’0’
No Charge Erased ’1’

5

Figure 2.2: Basic NAND flash cell

2.1.3 Reading a NAND flash cell

To read a NAND flash cell, voltage is applied to control gate. Then by knowing

the current flow from source to drain will tell whether it is charged or not.

Figure 2.3: Value ’1’ is stored as current is flowing from Source to Drain

If there is current flow, it signifies that floating gate is not charged i.e., value

stored is ’1’ as in Figure 2.3

If there is no current flow, it signifies that floating gate is charged i.e., value

6

Figure 2.4: Value ’0’ is stored as no path for current from Source to Drain

stored is ’0’ as in Figure 2.4

2.1.4 Write in a NAND flash cell

For writing in NAND flash cell, a high voltage is applied to control gate. By

this electrons move from silicon substrate to floating gate. This process is known

as ”Tunneling” as electrons tunnel from substrate to floating gate through oxide

insulator.After write happened, the value in NAND cell is ’0’. Refer Figure 2.5

2.1.5 Erase a NAND flash cell

For erasing NAND flash cell, a high voltage is applied to silicon substrate. By this

electrons move from floating gate to silicon substrate. This also uses Tunneling

process. After erase happened, the value in NAND cell is ’1’. Refer Figure 2.6

7

Figure 2.5: Writing/programming a NAND flash cell

Figure 2.6: Erase a NAND flash cell

2.1.6 NAND cell life

Due to Tunneling process which is required for Write and Erase functions to

happen, stress will be developed on oxide insulating layer. As Tunneling takes

place multiple times, this stress breaks down the oxide layer and floating gate can’t

maintain the charge. At some point the cell is no longer usable and cell must be

8

removed. This is the reason for finite number of write/erase per cell of NAND

flash. So, all these cells which are no longer useful must be noted for no problems

further. Bad block management is done which will be discussed in later chapters

for maitaining these all bad cells. In NAND flash there is no concept of overwrite.

To write in an address in which already once written, first erase should happen

and then write. By this cell life reduces. Endurance is 100,000 PROGRAM/ERASE

cycles.

2.2 Bluespec System Verilog

BSV is a HDL used in design of electronic systems such as FPGA, ASIC etc.

It is high level language and results in synthesizable hardware which can run

on FPGA emulation platforms. BSV substantially extends the design subset of

System Verilog and also increases the programmers coding efficiency. It uses rules

and interface methods for behavioral description, which adds a powerful way to

express complex concurrency and control.

2.2.1 Key Features of BSV

• High level atomic rules in place of Verilogs always block

• High level interfaces instead of Verilogs port list

• Powerful Parametrization and Polymorphism.

• Fully synthesizable at all levels of abstraction.

9

2.2.2 Bluespec SystemVerilog Constructs

Rules

Rules are used to explain how the data shifts from one state to another state, instead

of the Verilog method of uses always blocks. Every Rule has two components:

Rule conditions : In rule condition we declare condition like in while in c. If

condition satisfied then goes to rule body.

Rule body : It is a set of actions these explains state transitions.

Modules

A module has of three kind of things: state, rules that operate on that state, and

an interface that has inputs and outputs of module. A module definition specifies

a scheme that can be instantiated multiple times.

Interfaces

Interfaces give a means to group wires into bundles with mentioned uses, ex-

plained by methods. An interface is a tend to remind one of something of a struct,

where each member is a method. Interfaces may have other interfaces also.

Methods

Signals and buses are driven in and out of modules using methods. These methods

are grouped together into interfaces. There are three kinds of methods:

• Value Methods: It takes zero or more parameters and returns a value

10

• Action Methods: It takes zero or more parameters and it performs an action
inside of module

• Action Value Methods: It takes Zero or more parameters, and performs an
action, and returns the result

Functions

Functions are simply parametrized combinational circuits. Function application

simply connects a parametrized combinational circuit to actual inputs. Can be

used multiple times.

Data Types

Common scalar types like Bit(n), Bool, UInt(n)and Int(n) in bits type class. Other

common data types include Integer, which belongs to the Arith type class.

Typedef:typedef is used to define new and more reliable synonym.

typedef existingDataType NewDataType;

typedef bit[63:0] Data;

typedef bool flag;

Tagged Union: A tagged union is a composite type made up of a collection of

members. A union value only contains one member at a time while a structure

value contains all of its members.

11

2.2.3 LFSR

LFSR means Linear Feedback Shift Registers. LFSR’s used to generating pseudo

random numbers.

Interfaces and Methods

LFSR package provides an interface which contains three methods namely seed,

value and next. For setting the value of shift register the seed method is called

with the parameter seedvalue. The value is for reading with the value method.

The next method is used to shift the register on to the next value.

Figure 2.7: LFSR interface and Module instantiation

12

CHAPTER 3

AXI4 INTERFACE

ARM introduced the Advanced Microcontroller Bus Architecture (AMBA)4.0 spec-

ifications, which includes Advanced eXtensible Interface (AXI)4.0. The AXI speci-

fications describe an interface between a single AXI master and a single AXI slave,

representing how they exchange information with each other. Memory mapped

AXI masters and slaves can be connected together using a structure called an In-

terconnect block. The block diagram of AXI bus having single master and slave is

shown in Figure 3.1.

Main components of AXI interface are

• AXI Master

• AXI Slave

• AXI Interconnect

Figure 3.1: AXI Block diagram

AXI Master: Master requests the slave based on Write and Read requirements.

And the responses from the slave is received here.

AXI Slave: Slave receives requests from the master based on Write and Read

requests. And the response is given to master.

AXI Interface: AXI interconnect can take multiple masters simultaneously and

configured with required priority scheme. It has five channels and they are:

• Write Address channel

• Write Data channel

• Write Response channel

• Read Address channel

• Read Data channel

Data is transferred from master to slave using a Write data channel. Starting

Address is sent by Write address channel. A response is sent from slave to master

by Write response channel. Starting address to read data is sent through Read

address channel. Response Data is transferred from slave to master using a read

data channel.The AXI protocol supports burst-based transactions.

3.1 Write Transaction

3.1.1 Write Channel

In write channel, Data, Address and control information is sent from Master to

slave. Slave receives data and gives response to Master. Figure 3.3 shows how

write address and write data channels are used in write transactions.

14

Figure 3.2: Axi Write Bus example

Figure 3.3: Write channel Architecture

Write Address Channel

Through write address channel, address and control information are sent from

master to slave. The address is starting address of the required transaction. Control

15

information means length, size and type of transaction. Table.3.1 describes the few

signals of Write Address channel.

Table 3.1: Signal description of Write Address Channel

Signal Source Description
AWADDR[63:0] Master It gives the address of the first

transfer in a write burst transac-
tion.

AWLEN[9:0] Master This is burst length. This signal
gives the number of transfers in
a burst.

AWUSER[12:0] Master This is user defined signal. This
has been used as page length ini-
tially. But later removed as it
can’t be configured directly.

AWSIZE[3:0] Master This is Burst size. This signal
gives the size of each transfer in
the burst.

AWBURST[1:0] Master Burst type. This tells how the
next address is calculated. AW-
BURST: 00-FIXED 01-INCR 10-
WRAP

AWID[3:0] Master This id tag signal. By this we can
know which master is sending
address and control information
on this read address channel.

Write Data Channel

Through write data channel, write data is sent from Slave to Master. Data can

be 8, 16, 32, 64, 128, 256, 512, or 1024 bits. Read response indicates the status of

transaction whether it is completed or not. Table.3.2 describes the few signals of

Write Address channel.

16

Table 3.2: Signal description of Write Data Channel

Signal Source Description
WDATA[63:0] Master Write data signal has a write data

bus with 8, 16, 32, 64, 128, 256,
512, or 1024 bits wide

WSTRB[7:0] Master This signal when high,indicates
the bytelanes of data bus that
has vali information. One write
strobe for eight bits of write data
bus in which WSTRB[n] corre-
sponds to WDATA[(8n)+7:(8n)].

WLAST Master This signal is a Bool type. And
will be true for last transfer from
Master to Slave

Write response Channel

By Write response channel, the slave responds to master about write transac-

tions.This is done once for each burst but not for individual transfer within burst.

Table.3.3 describes the few signals of Write Address channel.

Table 3.3: Signal description of Write Response Channel

Signal Source Description
BID Slave This signal tells which master is

the slave driving the Write Re-
sponse signal. The value of BID
and AWID must be same for the
write transaction.

BRESP Slave This BRESP signal describes the
status of write transaction.

17

3.2 Read Transaction

3.2.1 Read Channel

In read channel, Address and control information is sent from Master to slave.

Slave drives data and response to Master. Figure 3.4 shows how read address and

read data channels are used in read transactions.

Figure 3.4: Read channel Architecture

Read Address Channel

Through read address channel, address and control information are sent from

master to slave. The address is starting address of the required transaction. Control

information means length, size and type of transaction.

18

Table 3.4: Signal description of Read Address Channel

Signal Source Description
ARADDR[63:0] Master It gives the address of the first

transfer in a read burst transac-
tion.

ARLEN[9:0] Master This is burst length. This signal
gives the number of transfers in
a burst.

ARUSER[12:0] Master This is user defined signal. This
has been used as page length ini-
tially. But later removed as it
can’t be configured directly.

ARSIZE[3:0] Master This is Burst size. This signal
gives the size of each transfer in
the burst.

ARBURST[1:0] Master Burst type. This tells how the
next address is calculated. AR-
BURST: 00-FIXED 01-INCR 10-
WRAP

Read Data Channel

Through read data channel, both read data and read response are sent from Slave

to Master. Data can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits. Read response

indicates the status of transaction whether it is completed or not.

Table 3.5: Signal description of Read Data Channel

Signal Source Description
RDATA[63:0] Slave Read data signal has a read data

bus with 8, 16, 32, 64, 128, 256,
512, or 1024 bits wide

RRESP Slave This signal gives response based
on read transaction.

RLAST Slave This signal is a Bool type. And
will be true for last transfer from
slave to Master

19

3.3 AXI Interconnect

A system may have any number of masters and slaves. They are connected

through an interconnect. Interconnect comes into play when there are multiple

masters and/or multiple slaves. As this project has only one master and one slave.

There will be only one interface between master and slave.

3.4 Summary

In this project data is 64 bit wide. And address also 64 bits. So, AWDATA,

AWADDR, RDATA, RADDR all are 64 bit wide.

20

CHAPTER 4

Nand Flash Description

Each Nand flash controller can have a maximum of 2 Nand flash chips/target. A

chip can have a number of LUNs. A LUN has planes which must be multiple of 2.

A plane has multiple blocks. A block has pages which are multiple of 32. A page

has user data bytes without including spare must be multiple of 2.

NAND Flash device has two data interfaces: synchronous and asynchronous.

It highly multiplexed 8-bit bus for transferring data,address and commands. This

design will deals with only asynchronous interface. A Chip/target is controlled by

CE(chip enable) signal.Along with CE there are some more control signals that are

used to implement NAND flash protocol.

4.1 Functional Overview

4.1.1 NAND Flash Architecture

The hardware of NAND flash interface is a low pin count device. As data, address

and commands are multiplexed onto same pin and received. A highly multiplexed

8-bit bus (I/O[7:0]) to transfer data, addresses, and commands. So this reduces the

pin count. There are five command pins namely CLE, ALE, CE, RE, WE for

implementing NAND Flash interface protocol. Additional R/B is used to monitor

device status.

Table 4.1: Signal description

Signal Type Logic level Description
CE(Chip Enable) Input Active Low An Asynchronous only signal

that enables or disables one or
more LUN’s. Enables transfer
between the host system and the
NAND flash device.

ALE(Address latch
enable)

Input Active High When ALE is HIGH, on the ris-
ing edge of WE address istrans-
ferred from I/O[7:0] into on chip
address register. ALE should be
LOW when address is not being
sent.

CLE(Command latch
enable)

Input Active High When CLE is HIGH, on the ris-
ing edge of WE the information
in I/O[7:0] is transferred from
I/O[7:0] to on chip command reg-
ister. CLE should be LOW, when
command is not being sent.

DQ[7:0](Data input-
s/outputs) (x8)

In/Out NA Bidirectional I/Os transfer ad-
dress, data, and commands.
Data is output only during
READ operations. And remain-
ing time I/O are used as input.

RE(Read Enable) Input Active Low Controls transfer of data from
the NAND flash device to the
host system i.e., reading data
from NAND flash device

WE(Write Enable) Input Active Low Controls the transfer of com-
mands, addresses, and serial
data from the host system to
NAND flash device

R/B(Ready/Busy) Output High/Low This signal indicates if LUN is
Ready/Busy

In NAND Flash memory random access of any location in the memory is not

allowed.Page is the least addressable for read and write operations.In read opera-

tion,the required page is internally transferred from the flash array to the associated

page register.Then page data is accessable in a serial way byte by byte starting.The

address within the active page can be freely changed to read other bytes from the

given memory page.Changing page address requires to send read command.

22

Figure 4.1: LUN functional block diagram

Data, commands and addresses are multiplexed onto the same pins and re-

ceived by I/O control circuits. The commands received at the I/O control circuits

are latched by a command register and are transferred to control logic circuits for

generating internal signals to control device operations. The addresses are latched

by an address register and sent to a row decoder or a column decoder to select

a row address or a column address, respectively. Address is written to address

register on the rising edge of WE and CE,CLE must be low and ALE should be

high.

23

Figure 4.2: Data transfer

The data are transferred to or from the NAND Flash memory array, byte by

byte (x8),through a data register and a cache register. The cache register is closest

to I/O control circuits and acts as a data buffer for the I/O data, whereas the data

register is closest to the memory array and acts as a data buffer for the NAND Flash

memory array operation. The NAND Flash memory array is programmed and

read in page-based operations and is erased in block-based operations. During

normal page operations, the data and cache registers are tied together and act as

a single register. During cache operations the data and cache registers operate

independently to increase data throughput. These devices also have a status

24

register that reports the status of device operation. Data is written into data

register when CE, CLE and ALE are low and the device must not be busy.

4.2 Addressing and Memory map

4.2.1 Memory Organization

Figure 4.3: Target Memory Organization

25

Figure 4.3 is a target/chip. A chip is organized with one or more LUNs.A

LUN(Logical Unit) is the minimum unit that can execute commands and reporting

status independently. LUNs can operate on command sequences in parallel. For

example, a program page operation can be started on LUN0 and before completing

that operation, Read operation can be started on LUN1. By this parallelism is

achieved. This is called Multi LUN operation which will be discussed in later

chapters. A LUN contains Flash array. Flash array has multiple number of blocks.

Each LUN has atleast one page register. Page register is used for storing data

temporarily before it is being moved to a page within flash array or after it is being

moved from a page in the flash array.

A LUN consists of planes. Each plane has equal number of blocks. Further

parallelism can be achieved with multi-plane operations within a LUN. These

operations can be used to execute additional commands in parallel. Block is the

smallest erasable unit of data. Number of pages in a block should be in a multiple

of 32. A page is the smallest unit for read and write operations. A page consists of

user data bytes.

4.2.2 16GB NAND flash array organization

A 16GB NAND flash device has 2 LUNs. A LUN has 2 planes. A plane consists of

2048 blocks. So, a LUN has 4096 blocks. There are 512 pages per block with each

page having size of 4224bytes. This memory include ECC memory. 4KB is used

for data storage and the remaining 128bytes are used for ECC and other sofware

functions.

Total memory of current chip from Figure 4.4 = 2*2*2048*512*4KB = 16GB.(This

is excluding Spare data)

26

Figure 4.4: LUN flash array

4.2.3 Device Organization

Figure 4.5: Device organization

27

4.2.4 Addressing

Addresses are loaded using a five-cycle sequence as NAND flash devices doesn’t

have dedicated address pins. WIdth of LUN is 1 bit, Plane is 1 bit, Block is 11, Page

is 9 bit and Column is 12.

Figure 4.6: Width of address

Addressing mainly divided into two types. Row addressing and Column ad-

dressing. By Column addressing, each column can be accessed. So it has all the five

addresses CA(Column address), PA(Page address), BA(Block address), Pl.A(Plane

address), LA(LUN address). But in row addressing page is least addressable. So, it

has PA,BA,Pl.A,LA. Here CA bits are all ’0’. Operations like Erase use row address-

ing. The addressing is done in 8 bit address cycles. While sending five address

cycles, first column is sent and then row address. Column addressing is sent first

two cycles and row address is sent in next three cycles. For both addressing first

address cycle has LSB bits and last address cycle has MSB bits.

28

Table 4.2: Address cycles

Cycle DQ7 DQ6 DQ5 DQ4 DQ3 DQ2 DQ1 DQ0
First CA7 CA6 CA5 CA4 CA3 CA2 CA1 CA0
Second LOW LOW LOW LOW CA11 CA10 CA9 CA8
Third PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0
Fourth BA6 BA5 BA4 BA3 BA2 BA1 BA0 PA8
Fifth LOW LOW LA0 BA11 BA10 BA9 BA8 BA7

Multi Plane Addressing

For achieving parallelism, multi plane addressing is done. As there are 2 planes

per LUN, it requires only one bit. If Pl.A ia ’0’ then Plane0 else Plane1. This Pl.A

is LSB of BA. Pl.A is represented as BA0.

Figure 4.7: Address bits

There are some restrictions in multi-plane addressing in an LUN.

• The plane address bit must be different from any other multi-plane operations

• page address must be the same as any other multi-plane operations

Block address must be different for multi plane operations. This means there

can be no multi plane operation between block 0 of plane 0 and block 0 of plane 1

in LUN0.

29

4.3 ONFI Commands

For designing a NAND flash controller, commands of ONFI4.0 are used. While

implementing these commands, NAND flash controller willbe in different modes

which are described in Table 4.3.

Table 4.3: Mode Selection

CE ALE CLE WE RE Mode
1 X X X X Standby
0 0 0 1 1 Standby
0 0 1 Falling

Edge
1 Command Input

0 1 0 Falling
Edge

1 Address Input

0 0 0 Falling
Edge

1 Data Input or WRITE

0 0 0 1 Falling
Edge

Data output or READ

0 1 1 X X Undefined

Here H-Logic level High and L-Logic level Low

For all the modes above R/B should be enabled. Then only these modes can

operate. But there are some exceptions like Status, Erase commands can be issued

although Busy. Commands have been described in table 4.4. Each command has

specific requirements. Some need row address while some need column address.

The number of address cycles required for command to execute, starting command,

ending command and whether they need data cycles is discussed. Both power up

commnads like RESET, SET FEATURES and operational commands like READ,

PROGRAM and ERASE and STATUS registers have been discussed.

30

Table 4.4: Command description

Command Command
Cycle1

Address
cycles

Data
input
cycles

End
com-
mand

Acceptable
while Accessed
LUN is Busy

RESET FFh 0 - - YES
SET FEATURES EFh 1 4 - NO
READ STATUS 70h 0 - - YES
SELECT LUN WITH
STATUS

78h 3 - - YES

SELECT CACHE
REGISTER

06h 5 - E0h NO

READ MODE 00h 0 - - NO
READ PAGE 00h 5 - 30h NO
READ PAGE MULTI
PLANE

00h 5 - 32h NO

PROGRAM PAGE 80h 5 YES 10h NO
PROGRAM PAGE
MULTI PLANE

80h 5 YES 11h NO

PROGRAM PAGE
CACHE

80h 5 YES 15h NO

ERASE BLOCK 60h 3 - D0h NO
ERASE BLOCK
MULTI PLANE

60h 3 - D1h NO

4.3.1 RESET operation

RESET(FFh) command is used to put a target into a known condition. When

reset happens command sequences in progress will be aborted. Reset is issued

irrespective of R/B value. As part of the Reset command, all LUNs are also reset.

Reset may be issued when target in any state, except during power ON. When this

is issued all operations are cancelled. If program or Erase is being happpening

when reset is issued then those operations are cancelled although data is partially

programmed or erased. Reset is issued as first command to target after power

ON. SELECT LUN WITH STATUS(78h) is prohibited during power on reset. Read

status(70h) can be used to know when target is ready.

31

Figure 4.8: RESET Command

Figure 4.9: STATUS Command

32

Table 4.5: Status Register

Value 7 6 5 4 3 2 1 0
Status Register WP RDY ARDY - - - FAILC FAIL

Figure 4.10: STATUS Command description

4.3.2 Status definitions

Status of a LUN whether it is ready for next operation or busy executing current

operation is checked by a 8 bit status register. Starting command of READ STATUS

is 70h. No address cycles are given as it checks the status of last selected LUN on

a target. Accepted by last LUN although it is busy. This is best command used to

33

check status of LUN, if only one LUN is there per target. For devices having more

than one LUN per target, SELECT LUN WITH STATUS (78h) command is used

for getting status of particular LUN. 3 address cycles i.e., row address is sent. The

contents of the status register are returned on DQ[7:0] after some delay. Can be

issued although LUN is busy.

4.3.3 SELECT CACHE REGISTER

When SELECT CACHE REGISTER is issued the data output from the selected

LUN and cache register at column address enabled. After multi plane read page

commands, SELECT CACHE REGISTER command is issued to select the cache

register for enabling data output. This command is accepted by a LUN when it

is ready. After data output is completed, the command can be issued to other

plane. After dataout of any read command like figure 4.11, 06h is starting address,

5 cycles of address cycles and end command of E0h is given after address. After

some delay of end command data out starts from DQ[7:0].

Figure 4.11: Select CACHE register Command

34

4.3.4 READ Operations

Page is the least addressable or readable unit. Read operations are used to copy

data from NAND flash array of any plane to their respective cache registers and

enable data out to host by DQ bus only.

READ MODE

The READ MODE(00h) command disables status output and enables data output

for the last selected LUN and cache register after a READ operation has been

monitored with a STATUS operation . This command is accepted by the LUN

when it is ready. In devices that have more than one LUN per target, during and

following multi-LUN operations the SELECT LUN WITH STATUS command must

be used to select only one LUN prior to the issue of the READ MODE command.

This prevents bus contention.

READ PAGE

The READ page command copies a page from NAND array to its cache register and

data output is enabled. LUN should be ready for issuing this command. So, check

status of LUN before issuing this command. Starting command of 00h is given

which is followed by 5 cycles of address. End command is 30h which indicates

normal read page operation. After end command dataout enables and continues

packets of data is received. This READ page command is also final command of

read page multi plane operation.

35

Figure 4.12: READ page command

Figure 4.13: Read page command Timing diagram

Read Page Multi Plane

The Read page multi plane(00h-32h) command sends pages of different plane from

NAND flash array to its respective cache register. Data is sent to cache register

based on plane address. After that data out is enabled at cache register. From cache

register the data is read by host through DQ[7:0] control signal. This command

can be issued multiple times and ended with READ PAGE command(00-30h). It

has five address cycles. As we are not dealing column level, column address

36

is ignored(given ’0’). In the figure 4.14, first read page multi-plane is issued.

Then second page is read by normal READ page(00-30h) command. The data

from NAND array is read into DQ[7:0] after both the commands are issued. So,

continuously two pages are read.

Figure 4.14: Read page Multi-Plane

4.3.5 Program Operations

Page is least addressable/programmable unit. In Program page operations data is

move data from data registers or cache registers to NAND flash array. First data is

sent from host and loaded into data registers or cache registers. Then thsi program

operation starts. Pages are programmed or written sequentially from first page to

512th page in a block. Random page programming is prohibited within a block.

As program page operation takes much time, multiple commands like Program

page(80-10h), Program page multi-plane(80-11h) and Pragram page cache(80-15h)

37

are used increasing throughput. These commands are issued when LUN is ready.

During program operations, the LUN is busy. After completion of operations,

LUN will be ready. This should be confirmed by checking status. RDY and ARDY

must be ’1’. And host must check FAIL bit to verify whether operation is success

or not.

Program Page

In a single page program, starting command is 80h, then 5 address cycles are being

sent. Then the data in cache register is sent to the issued page in particular block

of LUN in NAND flash array according to the address. And after sending all data

through DQ[7:0] operation is closed by issuing 10h. This is also final command

issued in multi plane program page. Host must check status of operation by status

operations.

Program Page Multi-Plane

Program page Multi plane operations(80-11h) is used for increasing system per-

formance as by this command more than one page can moved from cache registers

to different planes of NAND flash array. This is ended by either program page(80-

10h) or program page cache(80-15h). First 80h is issued as starting command.

Then 5 address cycles are sent. Then data cycles are sent through DQ[7:0]. After

all the data cycles are being sent this operation is ended by issuing 11h. And next

command may be program page cache or program page. All of the queued planes

will move the data to the NAND array.

38

Figure 4.15: Program Page

Program Page Cache

Program page cache gives performance improvement over normal PROGRAM

PAGE operations. Program page cache operation is a technique that enables host

to input data into cache register and data register is used as a holding area which

supplies data for programming the array. By this the cache register will be free

fastly so that the next page operation can be loaded and done in parallel. With

the program page cache command, the data register is used to maintain the data

throughput. In a single page program, starting command is 80h, then 5 address

cycles are being sent. Then the data from host is sent to cache register and then to

data register to the issued page in particular block of LUN in NAND flash array

according to the address. And after sending all data through DQ[7:0] operation

39

Figure 4.16: Program Page Multi Plane

is closed by issuing 10h. This is can also final command issued in multi plane

program page. Host must check status of operation by status operations.

Figure 4.17: Architecture of program page Cache operation

40

4.3.6 Erase Operations

This is row addressable operation. Only 3 address cycles of row address is given.

Block is least erasable unit. A complete block is erased i.e., 512 pages or 2048KB is

erased totally. After erasing the data will be all ’1’.

BLOCK ERASE

The Block erase(60-D0h) operation erases a full block. To issue a BLOCK ERASE

operation, use the WE signal to clock in the ERASE when issuing starting com-

mand(60h) with CLE enabling. In Next clock three row address cycles are issued,

keeping ALE high. These three address cycles include block address, page address

and LUN address. The page address portion i.e., 9 lower order bits is ignored,

and only the block address portion is used. After the address is issued completely,

the end command D0h, which is sent in with WE while CLE is high. Then device

goes busy. When the device completes erase operation, it is ready for another

command. READ STATUS command can be issued at any time, even when the

device is busy during the ERASE operation.

Multi plane Block Erase

The ERASE BLOCK MULTI-PLANE command queues a block in the specified

plane to be erased. This command can be issued multiple times. Everytime new

plane address is specified and the new plane also queued. Finally Block erase

operation is given like read and program multi plane operations. In multi plane

block erase, starting command is 60h, then 3 address cycles of row address are

being sent. Then end command D1 is issued. Host must check status of operation

41

Figure 4.18: Block Erase Operation

by status operations for verifing last operation sucess or fail.

42

CHAPTER 5

Interleaving Commands

Although this implementation of NAND flash memory is faster than typical mag-

netic hard drives, there are some limitations. Using multi plane operations in a

better way increases the performance of NAND flash devices. With multi plane

commands PROGRAM, READ and ERASE can performance is increased.

5.1 Multi plane interleaving

Only one page of PROGRAM(READ) can be done at a time in a block. So, for

PROGRAM(READ) next page, we have to wait until previous operation is done.

This is not efficient way of using multi plane oprations. For example if we want to

PROGRAM 4 pages, 2nd page operation must wait until 1st page completes, 3rd

page must wait until 2nd page completes it operation and 4th should wait for 3rd.

So, this increase latency. This consecutive page operations can divied between

adjacent planes in same LUN.

In the above method consecutive page operations are done in such a way that

all 4 pages are written into Block0 of plane0 in LUN0 as page0, page1, page2,

page3 if we give starting address as 0. In case of multi plane operations 1st page

is written into block0 of plane0 and second page is written into another plane.

But there are some restictions in implementing multiple page operations. In

particular two page operations cannot take place on two adjacent blocks, i.e the

block address bits other than the plane select bit must be different. And page ad-

dress must also be same. taking these into consideration, 4 pages are programmed

in such a way that 1st page falls as page0 of block0 plane0 in LUN0. 2nd page falls

as page0 of block1 plane1 in LUN0. 3rd page falls as page0 of block0 plane0 in

LUN1. 4th page falls as page0 of block1 plane1 in LUN1. All 4 pages with same

page address are written such that no two consecutive pages falls on same block.

Combining these 4 blocks creates a ’Mega block’ having 4 blocks.

Mega Block combining 4
blocks from all 4 Planes

BLOCK0 of
PLANE0 in LUN0

EVEN PLANE

BLOCK1 of
PLANE1 in LUN0

ODD PLANE

BLOCK0 of
PLANE0 in LUN1

EVEN PLANE

BLOCK1 of
PLANE1 in LUN1

ODD PLANE

Figure 5.1: Mega Block

5.2 Mega Block

Mega block has 2 blocks from LUN0 and two from LUN1. In LUN0 Block B and

Block B+1 will be used. And in LUN1 block B and block B+1 are used. Refer to

44

Table 5.1: Physical addressing

LUN0 LUN1
PLANE0 PLANE1 PLANE0 PLANE1
BLOCK0 BLOCK0 BLOCK0 BLOCK0
000000(0)
000001(1)
000010(2)
000011(3)

000100(4)
000101(5)
000110(6)
000111(7)

100000(32)
100001(33)
100010(34)
100011(35)

100100(36)
100101(37)
100110(38)
100111(39)

BLOCK1 BLOCK1 BLOCK1 BLOCK1
001000(8)
001001(9)
001010(10)
001011(11)

001100(12)
001101(13)
001110(14)
001111(15)

101000(40)
101001(41)
101010(42)
101011(43)

101100(44)
101101(45)
101110(46)
101111(47)

BLOCK2 BLOCK2 BLOCK2 BLOCK2
010000(16)
010001(17)
010010(18)
010011(19)

010100(20)
010101(21)
010110(22)
010111(23)

110000(48)
110001(49)
110010(50)
110011(51)

110100(52)
110101(53)
110110(54)
110111(55)

BLOCK3 BLOCK3 BLOCK3 BLOCK3
011000(24)
011001(25)
011010(26)
011011(27)

011100(28)
011101(29)
011110(30)
011111(31)

111000(56)
111001(57)
111010(58)
111011(59)

111100(60)
111101(61)
111110(62)
111111(63)

Figure 5.1. So, 4 consecutive logical pages are present as 4 consecutive pages in

one mega block but physically they are in 4 different blocks. This megablock is

from our view only but physically there will be normal memory organization. The

physical addressing is shown in table 5.1. So proper addressing must be done.

5.2.1 Logical address to Physical address

Consider an example of a NAND flash having 2 LUNs, 2 planes per LUN, 4 blocks

per plane and 4 pages per block. So, 1 bit for LUN, 1 bit for plane, 2 bits for block

and 2 bits for page addressing. Here not considering column address as that is

beyond this implementation. Page is the least addressable in this implementation.

For creating mega block, consider block ’B’ of plane0 and block ’B=1’ of plane1

45

Table 5.2: Logical addressing

LUN0 LUN1
PLANE0 PLANE1 PLANE0 PLANE1
BLOCK0 BLOCK0 BLOCK0 BLOCK0
000000(0)
000100(4)
001000(8)
001100(12)

010001(17)
010101(21)
011001(25)
011101(29)

000010(2)
000110(6)

001010(10)
001110(14)

010011(19)
010111(23)
011011(27)
011111(31)

BLOCK1 BLOCK1 BLOCK1 BLOCK1
010000(16)
010100(20)
011000(24)
011100(28)

000001(1)
000101(5)
001001(9)
001101(13)

010010(18)
010110(22)
011010(26)
011110(30)

000011(3)
000111(7)
001011(11)
001111(15)

BLOCK2 BLOCK2 BLOCK2 BLOCK2
100000(32)
100100(36)
101000(40)
101100(44)

110001(49)
110101(53)
111001(57)
111101(61)

100010(34)
100110(38)
101010(42)
101110(46)

110011(51)
110111(55)
111011(59)
111111(63)

BLOCK3 BLOCK3 BLOCK3 BLOCK3
110000(48)
110100(52)
111000(56)
111100(60)

100001(33)
100101(37)
101001(41)
101101(45)

110010(50)
110110(54)
111010(58)
111110(62)

100011(35)
100111(39)
101011(43)
101111(47)

in LUN0 and block ’B’ of plane0 and block ’B+1’ of plane1 in LUN1. This satisfies

the conditons of multi plane addressing we discussed in before chapter.

Logical address to physical address is obtained from table 5.2 and 5.1. By this

logical addressing no two adjacent blocks will not be accessed simultaneously in

multi plane operations.

Page Address Map:

PhysicalAddr[0] = LogicalAddr[2]

PhysicalAddr[1] = LogicalAddr[3]

Block Address Map:

PhysicalAddr[2] = LogicalAddr[0]

PhysicalAddr[3] = LogicalAddr[0] ⊕LogicalAddr[4]

46

PhysicalAddr[4] = LogicalAddr[5]

LUN Address Map:

PhysicalAddr[5] = LogicalAddr[1]

If PW is page width, BW is block width(including Plane width), LW is LUN

width in binary. Then general mapping is shown below,

Page Address Map:

PhysicalAddr [PW - 1 : 0] = LogicalAddr [(PW + LW) : (LW + 1)]

Block Address Map:

PhysicalAddr [PW] = LogicalAddr[0]

PhysicalAddr [PW + 1] = LogicalAddr[0] ⊕LogicalAddr[PW + LW + 1]

PhysicalAddr[(BW + PW− 1) : (PW + 2)] = LogicalAddr[(BW + PW) : (PW + LW + 2)]

LUN Address Map:

PhysicalAddr[LW + BW + PW1] = LogicalAddr[1]

In this thesis discussion, Logical address is given as input in testbench and by

using above mapping it is converted to physical address for performing operations

in a mega block. Taking the values of PW = 9, BW = 12(including plane width)

and LW = 1 of this implementation,

Page Address Map:

PhysicalAddr [8 : 0] = LogicalAddr [10 : 2]

Block Address Map:

PhysicalAddr [9] = LogicalAddr[0]

PhysicalAddr [10] = LogicalAddr[0] ⊕LogicalAddr[11]

47

PhysicalAddr[20 : 11] = LogicalAddr[21 : 12]

LUN Address Map:

PhysicalAddr[21] = LogicalAddr[1]

The conversion of physical address to logical address is shown below with the

above values.

LogicalAddr[0] = PhysicalAddr [9]

LogicalAddr [1] = PhysicalAddr [21]

LogicalAddr [10 : 2] = PhysicalAddr [8 : 0]

LogicalAddr [11] = PhysicalAddr [9] ⊕PhysicalAddr[10]

LogicalAddr[21 : 12] = PhysicalAddr[20 : 11]

48

CHAPTER 6

Design, Implementation and Simulation results

6.1 Introduction

In the previous chapters, ONFI commands have been described. This chapter will

discuss about the designing and implementation of NAND flash power-ON com-

mands and operational requests such as write, read and erase. Finally simulation

results are shown.

6.2 Design of NAND Flash Controller

In full implementation of memory subsystem, host will request NVMe for some

operation like read, write, erase etc through PCIe. This NVMe provides the op-

erational requests which needs to be translated ONFI commands by Nand flash

controller. The NVMe gives the number of pages, address for reading data from

Nand flash cells. For write number of pages, address and data needs to be sent.

For erase, block address. But this thesis deals with Nand flash controller only. So,

in place of NVMe the operational requests are sent from testbench. Nand flash

controller has been designed in such a way that it can write, read and erase data

in Nand flash chips.

6.2.1 Overview of Full flow of commands

If any operational request such as write or read is sent from testbench(NVMe),

Nand flash controller needs to wait for power ON. After power ON NFC needs

to send RESET command(FFh) to Nand flash memory. Any operation must not

be started before RESET as it is used for getting the target into a known state. To

abort any command sequences which are in progress RESET can be used. This

RESET operation must be monitored till it completes and this is can be known by

Ready/Busy signal.

After target is free, SET FEATURE(EFh) command needs to be sent for setting

operating timing mode of Nand flash device.

Then Nand flash memory has to be scanned for bad blocks. All the bad blocks

needs to tabulated which can be used from not doing any operations in those

blocks.

After the bad block table is done. Status request needs to sent for confirming

whether operation is completed or not. If target is free, operational request such

as read, write and erase can be given from testbench(NVMe). After completing

the operation, responses are sent to testbench(NVMe).

6.3 Implementation of Nand Flash Controller

Detailed state diagrams of commands and operations such as RESET, READ,

WRITE and ERASE have been discussed in this section. These state machines

are implemented using Bluespec System Verilog. BSV provides higher level of ab-

straction than verilog. BSV has default clock. A rule in BSV is an atomic block and

50

IDLE

RESET Target
flash

WAIT

SET
FEATURES

Bad Block Scan

IDLE

Operation
(WRITE,READ,

ERASE)

Flash
Memory
Busy

Power ON

Flash Memory Free

Flash
Memory
Busy

Command sent

Command sent

Command sent

Bad Block Table created

Request from NVMe Operation
 Done

Figure 6.1: Full flow of NAND flash Controller

BSV introduces scheduling of the rules in a module. There must not be any conflict

between resources that are shared between rules. State machines are created by

combining rules and specifying when to fire a particular rule. Upon achieving

no conflict between resource the BSV compiler generates a scheduling logic to

obtain the desired functionality. Connections are taken in and out of the module

51

through interfaces. Interfaces in-turn consist of methods. Finally a synthesizable

verilog RTL is generated which performs the required function. State machines

are discussed in the order mentioned in fig 6.1.

6.3.1 RESET

Send RESET
command

WAIT1

WAIT2

DONE

Previous State

R/B=1
R/B = 0

R/B =0

R/B = 1

Next State

CLE=1
DQ =FFh
WE =0
To Target

Figure 6.2: Reset

This is the first command issued immediately after power ON. When Nand

Flash memory is free after power ON, RESET command(FFh) is sent into both the

chips. Ready/Busy signal is observed for knowning whether NAND flash is free

or not. Refer fig. 6.2.

52

6.3.2 Bad Block Management

START

Block Address =
Block0

DATA
=FFh?

Start Operation

Increment Block
Address

LAST
BLOCK?

Update BAD Block
Table

YES

YES

NO

NO

Figure 6.3: Bad block

After RESET is done, SET FEATURES command is issued for setting timing

mode. Then Bad block management is done. There may be chance that initial bad

blocks that are marked by flash vendor, could be erased, destroyed or used by a

user. For avoiding this location of bad blocks need to be known which eliminates

the chance of programming in that bad blocks. So, initially before any operation,

bad block scan is done and the bad blocks which are located are tabulated. In

future operations program or erase must be avoided in these bad blocks.

53

The host controller need to scan all the blocks from block 0 to last block using

page read command and check the 1st byte in the spare area of the last page. If the

read data is not FFh, the block is interpreted as an invalid block and added to bad

block table. These factory marked bad blocks must not be erased or programmed.

The host controller must be able to recognize the initial invalid block information

and to create a corresponding bad block table for managing block avoiding pro-

gram or erase in a bad block. For avoiding any erase or program operation on bad

blocks, bad block algorithm is implemented immediately after SET FEATURES as

shown in 6.3.

Bad block are scanned w.r.t mega block concept. A bit 1 is stored in the table,

in case of a bad Mega block(which is nothing but a bad physical block among the

four blocks) and bit 0 for a valid Mega block. For bad block scan, the first spare

byte of last page in every block is read and equal to FFh then bit 1 is stored and if

not equal to FFh then bit 1 is stored. This is continued until we reach last block in

both chips. At end bad block table with bad mega blocks is formed.

6.3.3 READ STATUS operation

Status of a LUN must be known for executing next commands if they are free.

The STATUS commans(70h or 78h) are sent and status is known by reading the

data I/O signal. For reading the status, RE signal is toggled from high to low. The

difference between 70h and 78h is there will be no address cycles in 70h command.

State diagram is shown in fig. 6.4

54

Send
STATUS

command

Send
ADDRESS
Cycle 1

Previous state
Data = 78h
CLE = 1
WE = 0

To Target

Data = Addr1
ALE = 1
WE = 0

To Target

Send
ADDRESS
Cycle 2

Data = Addr2
ALE = 1
WE = 0

To Target

Send
ADDRESS
Cycle 3

Data = Addr3
ALE = 1
WE = 0

To Target
RE LOW

RE = 0

To Target

READ
STATUS

REGISTER
FROM I/OFrom Target

RE HIGH
RE=1

To Target

Next State

Status= Free

Status= Busy

Figure 6.4: Read Status state machine

6.3.4 PROGRAM operation

In Program is higher latency operation compared to read. So, use of multi plane

operations and cache operations make job simple. For a write request, starting ad-

dress, pagelength(number of pages) and data is being sent from testbench(NVMe)

to Nand flash controller. As AXI4 bus is used only starting address is enough as

next address is incremented automatically if we give awburst as ’01’. The data will

then be buffered by the NFC and the buffer size is one-page size.

In programming operations all three PROGRAM PAGE(80h-10h), PROGRAM

55

PAGE MULTI PLANE(80h-11h) and PROGRAM PAGE CACHE(80h-15h) have

same starting command, same number of address cycles but different end com-

mands. Data is sent after sending all 5 address cycles. A full page of data is sent

at a time i.e., data will be sent until column address has reached the final value in

page and data is sent at falling edge of WE signal. After sending 4096Bytes of data

ECC data must be sent so as to store it in the spare area of 224Bytes. So a total of

4320Bytes are sent per page. After sending all the data, end command is issued

according to type of program page operation. See the flow in fig. 6.5.

Before starting PROGRAM operation, status of LUN needs to be checked.

From status register, present LUN status whether it is free or busy is known and

previous operation is success or failure can also be known. Logical which is given

by testbench(NVMe) needs to be converted to physical address as per mega block

architecture. Total of 4096 Bytes excluding spare data is sent by AXI4 bus. The

data width is 64. So, totally 512 AXI requests are sent. To send the data into flash,

it has to be split into single bytes starting from LSB. Few cases of program page

will be discussed based on length.

Length=1: After getting write request and address from testbench(NVMe), status

of LUN is read. If free then PROGRAM PAGE is executed as shown in 6.5 with

end command as 10h. After this operation again status of LUN is checked to know

the operation is completed and successful.

Length=2: For writing 2 pages, there are two cases. Both the pages fall on smae

LUN i.e., address of first page is on even plane or both pages fall on different LUN

i.e., address of first page is on odd plane. In first case i.e., even plane address case,

first status of LUN is checked and if it free, then data is sent with PROGRAM PAGE

MULTI PLANE(11h) command. And next page is sent through PROGRAM PAGE

56

Send
PROGRAM
command

Send
ADDRESS
Cycle 1

Previous state
Data = 80h
CLE = 1
WE = 0

To Target

Data = Addr1
ALE = 1
WE = 0

To Target

Send
ADDRESS
Cycle 2

Data = Addr2
ALE = 1
WE = 0

To Target

Send
ADDRESS
Cycle 3

Data = Addr3
ALE = 1
WE = 0

To Target

Send
ADDRESS
Cycle 4Data = Addr4

ALE = 1
WE = 0

To Target

Send
ADDRESS
Cycle 5

Data = Addr5
ALE = 1
WE = 0

To Target

Send Data

Data
WE = 0

To Target

Column Addr != max

Send
END

COMMAND

Column Addr == max

Data = 10h/11h/15h
CLE = 1
WE = 0

To Target

Next Command

Figure 6.5: WRITE State Machine

command. Status is checked to confirm completion of operation and operation

status whether it is done or fail. If any one page has failed to program, the fail

acknowledgment is interrupted else a success is interrupted, which completes the

operation.

For second case, both the pages use PROGRAM page commands only but will

fall in different LUN’s. After reading the status of starting address i.e., odd plane

57

Get Addr,
Page Length

Write Request

A

Buffer Data

Length=1 ?H

Read Status
Present LUN

Actual
Length>4?

PROGRAM
PAGE CACHE

PROGRAM
PAGE

Length =
Length - 1

Actual
Length>1?

Length=2?

EEVEN
Plane?

D

G

Read Status
Present LUN

Buffer Data

PROGRAM
PAGE

MULTI-PLANE

Actual
Length>4?

PROGRAM
PAGE CACHE

PROGRAM
PAGE

Length =
Length - 2

F

B

Read Status
Present LUN

Interrupt
NVMe

C

Length==0?

Read Status
Previous LUN

B

FalseTrue

True

False

True False
False True

True

True

False
False

False True

A

DONE

Figure 6.6: Flow of Program operation

58

Actual
Length>2?

B

False True

D

Read Status
Present LUN

Program Page

Even Plane

H

FalseTrue

F

C

A

E

G

Figure 6.7: Flow of Program operation

LUN status, PROGRAM page operation is done. Then status of second(present)

LUN is read and PROGRAM page operation is done. Finally after completion

of both operations, status of both(present and previous) the LUN’s are checked

and should also check whether fail or pass. The interrupt and response is sent to

testbench(NVMe).

Length=3: There are two possibilities. First address in even plane then first two

pages in that LUN same as first case of length=2. One PROGRAM page and other

PROGRAM page Multi-plane. And third page will fall in even plane of other LUN

same like length=1.

In second case starting address may fall in odd plane. Then first page is

PROGRAM page as of length=1. Remaining two pages will fall in even and odd

planes of other LUN. This is same as first case of length=2.

After completing operation status is checked for both the LUN’s and responses

are sent to testbench(NVMe).

Length=4: For 4 pages programming, one page will fall in each block of mega

block. If request falls in even plane or odd plane of one LUN. If even plane LUN,

then two pages in two planes of one LUN and two pages in two planes of other

59

LUN. These both are as first case of length=2. Checking the status of both the

LUN’s is compulsory.

In second case, if starting is odd plane, the sequence of execution will be like

this: Check status of present LUN, PROGRAM page operation in this LUN, check

status of second LUN, PROGRAM PAGE MULTI PLANE opeartion of two pages

in second LUN, check status of first LUN again, last page is PROGRAM PAGE

operation in first LUN. Finally we have to check the status of both the LUN’s

whether operations are successful or failed.

Length greater than 4 pages: In this case atleast one LUN is guaranteed to have

consecutive page program operations within a physical block(not Mega block).

Hence PROGRAM PAGE CACHE is used instead of PROGRAM PAGE command

for all writes of length greater than 4. Remaining data flow is same.

Proper timing has to be maintained especially multi plane operations. After

sending one page the host must wait until Ready/Busy signal becomes free to send

next page data. Once the whole operation is done Ready/Busy signal will assert

status and returns whether operation is fail or success.

6.3.5 READ operation

The READ operation commands are used to read data from the target(NAND flash)

into the corresponding plane registers. In read operations, cache commands will

not be used as reading a page from flash memory into respective cache register

is not a high latent operation as program operation. Adding cache commands

will not contribute much since pages have to be read out from cache before any

other opration starts on LUN. This time is comparable to reading from target plane

60

to cache register. For reading from NAND flash memory, starting address and

pagelength(number of pages) are required. Before sending these parameters, the

address must be converted from logical address which is given in testbench to

physical address. After requesting for data, the data is arrived from flash in terms

of Bytes and this data is sent to testbench(NVMe) in 64 bits.

READ PAGE and READ PAGE MULTI PLANE have same states except end

command. Starting command is 00h, then 5 address cycles and end command 30h

for READ PAGE and 32h for READ PAGE MULTI PLANE. After end command

the RE signal is toggled and for every toggle a Byte of data is received through

I/O signal. Toggling read enable until maximum column address will give all the

valid data. In READ MODE command(00h), previous state is status read state and

present state command is 00h issued and toggling of read enable to read the data.

The SELECT CACHE REGISTER command is same as READ MODE except that

this need not be preceded by a status operation and can be used to read the data

from the specified cache register. State diagram is shown in 6.8. Before sending

the read commands, status of LUN’s must be checked.

Length=1: First status is checked and then READ PAGE(00h-30h) command is

sent. Once end command is sent, READ MODE command is sent for reading

data from cache register. The interrupt is provided and data can be read by

testbench(NVMe).

Length=2: There are two cases. If starting address falls in even plane then two

pages are to read from same LUN. So, first status of LUN is checked and then

READ PAGE MULTI-PLANE is issued and then READ PAGE command is issued

for second page. The status of LUN is checked and if it is free READ MODE(00h)

command is issued for reading first page and the data is buffered and sent to the

61

Send
READ

command

Send
ADDRESS
Cycle 1

Previous state
Data = 00h
CLE = 1
WE = 0

To Target

Data = Addr1
ALE = 1
WE = 0

To Target

Send
ADDRESS
Cycle 2

Data = Addr2
ALE = 1
WE = 0

To Target

Send
ADDRESS
Cycle 3

Data = Addr3
ALE = 1
WE = 0

To Target

Send
ADDRESS
Cycle 4Data = Addr4

ALE = 1
WE = 0

To Target

Send
ADDRESS
Cycle 5

Data = Addr5
ALE = 1
WE = 0

To Target

Send
END

COMMAND

Data = 30h/32h
CLE = 1
WE = 0

To Target

Column Addr != max

Receive
Data

WE = 0 (To Target)

To Target

Next State

Column Addr == max

Figure 6.8: Read State Diagram

testbench(NVMe). After reading data, SELECT CACHE REGISTER command is

issued for reading second page, data is buffered and sent to testbench(NVMe).

In second case, starting address is odd plane. So 2 READ PAGE commands

are issued. READ command is sent after checking status of first LUN. Same for

second LUN. The status monitoring is shifted to first LUN and once complete data

is read out using READ MODE. Then status of second LUN is also checked and if

it is free, data is read out again through READ MODE. After that interrupt NVMe

62

reads the data.

Length=3: Here also two cases. If starting address falls in even plane then two

page request and one page request are sent. First status of two LUN’s are checked.

After that both the requests are issued and status is checked for the LUN in which

two page read is happening. Once this is done the data is read from the first cache

register(first page data). Once the NVMe reads it out, the next cache register data

from same LUN is read out(using SELECT CACHE REGISTER) and the NVMe is

interrupted. Then status of second LUN is checked for third page and when free

data is read out. In second case first page falls on odd plane and remaining two

pages fall in same LUN. This is done same as before.

Length=4: In first case, if starting address falls in even plane then 2 two page read

reqquests. Status is read out, if LUN is free then two page request is sent.

If first page falls in odd plane, first single page read request on first LUN,

two pages read request on second LUN and last page read request on first LUN.

First one page read request is executed on first LUN when it is free and status of

other LUN is also checked.for sending two pageread request when it is free. The

status of first LUN must be monitored and when ready data must be read out of

cache register before issuing any more commands on this LUN. after this last page

request is queued. Now switches to second LUN, read the status of the LUN that

was handling the two page read. Once free, the data is read out. Two pages are

read. After this LUN is switched again to first LUN and data is read out from

cache register. NVMe reads out data then request completes. For pagelength more

than 4, the request is split based on even or odd plane into a maximum of two

page requests and data is read out after checking for status. Ready/Busy pin shows

whether operation completed or not. after last request only it will become ready.

63

Get Addr,
Page Length

RMP =0,RP =0
SL = Length

Read Request

C

Length=1 ?F

Read Status
Present LUN

Length=2?

JEVEN
Plane?

F

E

Read Status
Present LUN

READ
PAGE

MULTI-PLANE

True False

FalseTrue

Read Page

Length--
RP++

True False

Length- 2
RMP + +

READ
PAGE

RP=1?

True False
G

Actual
Length=1 ?

Read Status
Present LUN

RP=2 ?

Length=0?

G

DC

Read
Status

Other LUN

G

SL- -

READ
MODE

A

Interrupt & Send
Data

BUFFER DATA

RMP = 2 ?

D

Length = 0?

I

READ STATUS
PRESENT LUN

READ
STATUS

OTHER LUN

K

True False

C

FalseTrue

False
True

False True

True False

Figure 6.9: Flow of READ operation

64

SL - -

READ MODE

INTERRUPT &
SEND DATA

BUFFER DATA

Even Plane

F

FalseTrue

J

E

H

Select CACHE
Register

RMP - -
SL - -

Length = 0
False True

I

SL = 1 &
RP= 1 or 2

False TrueRP=0

C
RMP = 1

SL=0

HDONE

True False

TrueFalse

D
RP - -

G

K

A

Figure 6.10: Flow of READ operation

6.3.6 ERASE Operation

Block erase needs only 2 address cycles as page address and column address is

ignored. ERASE BLOCK(60-D0h) and ERASE BLOCK MULTI -PLANE(60-D1h)

operations are same except end command. The block address is converted to

logical address which is one block out of 4 blocks in a mega block. As mega block

has 4 blocks, address of each LUN needs to be known and status is checked. Once

block in LUN0 is free, BLOCK ERASE MULTI PLANE command is issued. Next

the BLOCK ERASE command is issued for next block address. After this, status of

next LUN is checked and same commands are sent with next two block addresses.

65

Send
ERASE BLOCK

Command

Send ADDRESS
Cycle 1

Send ADDRESS
Cycle 2

Send ADDRESS
Cycle 3

Send END
Command

Previous State

Next State

Data = 60h
CLE = 1
WE = 0

To Target

Data = Addr1
ALE = 1
WE = 0

To Target

Data = Addr2
ALE = 1
WE = 0

To Target

Data = Addr3
ALE = 1
WE = 0

To Target

Data = D0h/D1h
CLE = 1
WE = 0

To Target

Figure 6.11: Erase State Diagram

Get Addr

Map 4 Addr

Read Status
LUN 0

READ
PAGE

Block ERASE
Multi Plane

Block ERASE

Block ERASE
Multi Plane

Block ERASE

Read Status
LUN 0

Read Status
LUN 1

Interrupt &
Send Status

DONE

Read Status
LUN 1

ERASE REQUEST

Figure 6.12: Flow of ERASE opera-
tion

66

6.4 Simulation results

Micron NAND flash device MT29F2G08AABWP have been used. This is of 2GB

but this is extended to 16GB. The NAND flash memory target as shown in fig.

4.3. This target is instantiated twice for obtaining fig. 4.5. For the verification

of the NFC, Bus Functional Model is used as per the requirements of this thesis

implementation. This model is a superset of all supported Micron NAND devices.

All the state machines mentioned have been implemeted in BSV and verified.

In test bench LFSR(Linear Feedbak Shift Register) has been used for generating

random 64 bit data. Along with sending data to NFC while programming, same

data is being stored in BRAM for verification and comparision while reading.

Simulation results will be seen in the same order as 6.1.

6.4.1 RESET Waveform

First command after power on.

Figure 6.13: RESET operation

67

6.4.2 SET FEATURE Waveform

SET feature command waveform

Figure 6.14: SET Feature operation

6.4.3 STATUS Waveform

STATUS check command waveform. ’hE0 means LUN is ready and previous

operation successful. Observe RE signal while reading status.

Figure 6.15: STATUS command operation

68

6.4.4 PROGRAM PAGE(80-10h)

Starting and end wave form is shown. In between data is being sent to memory.

When data is being sent WE signal is toggling.

Figure 6.16: PROGARM PAGE Starting command, address and data

Figure 6.17: PROGARM PAGE final data, spare data and end command

69

6.4.5 PROGRAM PAGE MULTI-PLANE(80-11h)

Starting wave form is same as 6.16. The end command is shown below. Before

ending full page data is being sent to memory.

Figure 6.18: PROGARM PAGE MULTI-PLANE final data, spare data and end com-
mand

6.4.6 PROGRAM PAGE CACHE(80-15h)

Starting wave form is same as 6.16. The end command is shown below. Before

ending full page data is being sent to memory.

Figure 6.19: PROGARM PAGE CACHE final data, spare data and end command

70

6.4.7 READ PAGE(00-30h)

Starting wave form end command is shown below. Before ending full page data

is being sent from memory.

Figure 6.20: READ PAGE request

6.4.8 READ PAGE MULTI-PLANE(00-32h)

Starting wave form end command is shown below. Before ending full page data

is being sent from memory.

Figure 6.21: READ PAGE MULTI-PLANE request

71

6.4.9 READ MODE(00h)

After sending READ PAGE/READ PAGE MULTI-PLANE request, then status is

checked and then controller into READ MODE for reading data. Observe that RE

signal is toggling.

Figure 6.22: READ MODE request

6.4.10 ERASE BLOCK(06-D0h)

After checking status, ERASE BLOCK request is sent. It can be verified by reading

at the same address. Observe that only 3 address cycles have been sent.

Figure 6.23: ERASE BLOCK REQUEST

72

6.4.11 ERASE BLOCK MULTI- PLANE(06-D2h)

After checking status, ERASE BLOCK MULTI-PLANE request is sent. It can be

verified by reading at the same address. Observe that only 3 address cycles have

been sent.

Figure 6.24: ERASE BLOCK MULTI- PLANE REQUEST

6.5 Conclusion

Program, read and erase have been implemented as above. Different test cases

have been tested and verified. Some of the test cases verified are:

• WRITE N pages, READ N pages and comparing data. Where N is 1 to 2047
i.e., from 1 page to one mega block.

• Continuation of above case is to ERASE full mega block. Then READ data
and data should be all 1’s means FFFF in hexadecimal.

• WRITE, READ and ERASE a random block.

• Above all cases are with starting from even plane and odd plane also.

• Above all cases are verified with starting address as random page i.e., first
page of a block.

73

CHAPTER 7

CONCLUSION AND FUTURE WORK

All three basic operations write, read and erase are implemented using ONFI

4.0 and tested well through simulation. Multi-plane operations operations also

implemented and tested. This thesis focus is only on NFC and NAND flash

memory. Requests are given from testbench to NFC and operations have been

performed and verified using BFM model. In test bench LFSR is used for generating

random data. Data has been stored in BRAM while sending data to NFC. So, when

a READ happens BRAM data is compared with the data from flash memory. If

data is same then both write and read are successful, Same for ERASE.

7.1 Future Work

Full flow from host to NAND flash chips has to be done. So NVMe and NFC

interface must be done for full design of memory system. In this implementation

only asynchronous interface has been completed. Still Synchronous interface must

be added. Present SDR will improve to DDR which achieves greater data rate than

the preceding single data rate. ECC must be added in spare data(224Bytes) which

is present at end of every page.

REFERENCES

[1] Bluespec-Inc, Bluespec System Verilog Refeerence Guide. Bluespec Inc, 2014.

[2] Bluespec-Inc, Bluespec System Verilog BSV by Examples. Bluespec Inc, 2010.

[3] AMBA AXI and ACE Protocol Specification by ARM, 2003-2011.

[4] Solid State Drives 101 EBook. www.cactus-tech.com/landing/ssd-101-ebook

[5] ONFI Workgroup. Open Nand Flash Interface Specification. Revision 4.0,
February 2014. www.onfi.org.

[6] Micron’s x8 High Speed NAND FLash Memory of MT29H series.

[7] Micron technology Inc. TN2919 NAND Flash 101: An Introduction to NAND
Flash and How to Design It In to Your Next Product

[8] Micron technology Inc. x8 NAND Flash Memory MT29F series.

75

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	Overview
	My contribution
	Organization of the Thesis

	BACKGROUND
	Nand Flash Memory
	Flash Memory
	Basic NAND Flash Cell
	Reading a NAND flash cell
	Write in a NAND flash cell
	Erase a NAND flash cell
	NAND cell life

	Bluespec System Verilog
	Key Features of BSV
	Bluespec SystemVerilog Constructs
	LFSR

	AXI4 INTERFACE
	Write Transaction
	Write Channel

	Read Transaction
	Read Channel

	AXI Interconnect
	Summary

	Nand Flash Description
	Functional Overview
	NAND Flash Architecture

	Addressing and Memory map
	Memory Organization
	16GB NAND flash array organization
	Device Organization
	Addressing

	ONFI Commands
	RESET operation
	Status definitions
	SELECT CACHE REGISTER
	READ Operations
	Program Operations
	Erase Operations

	Interleaving Commands
	Multi plane interleaving
	Mega Block
	Logical address to Physical address

	Design, Implementation and Simulation results
	Introduction
	Design of NAND Flash Controller
	Overview of Full flow of commands

	Implementation of Nand Flash Controller
	RESET
	Bad Block Management
	READ STATUS operation
	PROGRAM operation
	READ operation
	ERASE Operation

	Simulation results
	RESET Waveform
	SET FEATURE Waveform
	STATUS Waveform
	PROGRAM PAGE(80-10h)
	PROGRAM PAGE MULTI-PLANE(80-11h)
	PROGRAM PAGE CACHE(80-15h)
	READ PAGE(00-30h)
	READ PAGE MULTI-PLANE(00-32h)
	READ MODE(00h)
	ERASE BLOCK(06-D0h)
	ERASE BLOCK MULTI- PLANE(06-D2h)

	Conclusion

	CONCLUSION AND FUTURE WORK
	Future Work

