
Assembly level analysis of

certain cryptography algorithms for Instruction Set

Extension

A Project Report

submitted by

APTE PRIYA NARAYANRAO, EE16M044

in partial fulfilment of requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

MAY 2018



THESIS CERTIFICATE

This is to certify that the thesis titled Assembly level analysis of certain Cryptography

algorithms for Instruction Set Extension , submitted by Apte Priya Narayanrao

bearing Roll number EE16M044, to the Indian Institute of Technology, Madras, for

the award of the degree of Master of Technology, is a bona fide record of the research

work done by him under our supervision. The contents of this thesis, in full or in parts,

have not been submitted to any other Institute or University for the award of any degree

or diploma.

Dr. V. Kamakoti
Project Guide
Professor
Dept. of Computer Science
and Engineering
IIT Madras, 600036

Place: Chennai

Date: 10th May 2018



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude towards several people who enabled me to

reach this far with their timely guidance, support and motivation.

Firstly, I would like to thank my guide, Prof. V. Kamakoti who despite his very busy

schedule, always gave me a patient hearing and showed me the way through thick and

thin on all matters concerned. His knowledge and an extraordinary ability to lighten the

students with his positive approach towards things always infused me with great energy

and positivity. The invaluable inputs and suggestions from him enabled me to achieve

the desired goals during the project work.

I would like to extend a special thanks to Dr.Chester for his invaluable suggestions

on Cryptography.I would also like to thank my faculty advisor Dr.Saurabh Saxena who

continuously supported me throughout my course with his advise.

My special thanks to Dr.Neel Gala, Arjun and Rahul who have been very supportive

during the course of this project.They have enriched the project experience with their

knowledge of the subject matter, active participation and invaluable suggestions.

I thank to all my RISE lab-mates whose acquaintance and support helped me in one

way or other, throughout this learning process.

I would like to thank my parents and my best friend Anamika Sinha for always

standing by me.

i



ABSTRACT

Data Encryption/Decryption has become an essential part of computing systems.

However, executing these cryptographic algorithms often introduces a high overhead.

It can bog down a processor and slow down the overall transaction. To speed up the

computations on its advanced processors,new instructions can be added to accelerate

encryption and decryption.In this project I first analyzed assembly code of various cryp-

tography algorithms on executing them on RISCV cross compiler. With the help of

python script profiling is carried out to identify potential set of consecutive instructions

for ISE.

ii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES iv

LIST OF FIGURES 1

1 INTRODUCTION 2

2 CRYPTOGRAPHY OVERVIEW 4

2.1 TYPES OF CRYPTOGRAPHIC ALGORITHMS . . . . . . . . . . 5

2.1.1 Secret Key Cryptography . . . . . . . . . . . . . . . . . . . 6

2.1.2 Public Key Cryptography . . . . . . . . . . . . . . . . . . . 8

2.1.3 Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . 9

3 About RISCV 10

3.1 RISC-V software tools . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Results 11

4.1 Analysis of all algorithms . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 For Set of two insturctions . . . . . . . . . . . . . . . . . . 13

4.1.2 For Set of three insturctions . . . . . . . . . . . . . . . . . 20

4.1.3 For Set of four insturctions . . . . . . . . . . . . . . . . . . 25

4.1.4 For Set of five insturctions . . . . . . . . . . . . . . . . . . 32

4.2 Overall results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Further analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Amdahl’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Future Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



LIST OF TABLES

iv



LIST OF FIGURES

2.1 Three types of cryptography: secret key, public key, and hash function 6

4.1 snippet of disassembled file of blowfish algorithm . . . . . . . . . . 11

4.2 Command line arguments to Spike simulator . . . . . . . . . . . . . 11

4.3 snippet of pc log of execution of blowfish algorithm . . . . . . . . . 12

4.4 AES:percentage of set of two instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 13

4.5 DES:percentage of set of two instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 13

4.6 BLOWFISH:percentage of set of two instructions in terms of mem-
ory(static) and execution time(runtime) . . . . . . . . . . . . . . . 14

4.7 CAMELLIA:percentage of set of two instructions in terms of mem-
ory(static) and execution time(runtime) . . . . . . . . . . . . . . . 14

4.8 ARCFOUR:percentage of set of two instructions in terms of mem-
ory(static) and execution time(runtime) . . . . . . . . . . . . . . . 15

4.9 BLAKE224:percentage of set of two instructions in terms of mem-
ory(static) and execution time(runtime) . . . . . . . . . . . . . . . 15

4.10 GOST:percentage of set of two instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 16

4.11 RC2:percentage of set of two instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 16

4.12 MD2:percentage of set of two instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 17

4.13 MD5:percentage of set of two instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 17

4.14 RSA:percentage of set of two instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 18

4.15 ECC:percentage of set of two instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 18

4.16 SIPHASH:percentage of set of two instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 19

4.17 SNEFRU:percentage of set of two instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 19

v



4.18 AES:percentage of set of three instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 20

4.19 DES:percentage of set of three instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 20

4.20 BLOWFISH:percentage of set of three instructions in terms of mem-
ory(static) and execution time(runtime) . . . . . . . . . . . . . . . 21

4.21 CAMELLIA:percentage of set of three instructions in terms of mem-
ory(static) and execution time(runtime) . . . . . . . . . . . . . . . 21

4.29 ECC:percentage of set of three instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 21

4.22 ARCFOUR:percentage of set of three instructions in terms of mem-
ory(static) and execution time(runtime) . . . . . . . . . . . . . . . 22

4.23 BLAKE224:percentage of set of three instructions in terms of mem-
ory(static) and execution time(runtime) . . . . . . . . . . . . . . . 22

4.30 SIPHASH:percentage of set of three instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 22

4.24 GOST:percentage of set of three instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 23

4.25 RC2:percentage of set of three instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 23

4.31 SNEFRU:percentage of set of three instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 23

4.26 MD2:percentage of set of three instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 24

4.27 MD5:percentage of set of three instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 24

4.28 RSA:percentage of set of three instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 25

4.32 AES:percentage of set of four instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 25

4.33 DES:percentage of set of four instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 26

4.34 BLOWFISH:percentage of set of four instructions in terms of mem-
ory(static) and execution time(runtime) . . . . . . . . . . . . . . . 26

4.35 CAMELLIA:percentage of set of four instructions in terms of mem-
ory(static) and execution time(runtime) . . . . . . . . . . . . . . . 27

4.36 ARCFOUR:percentage of set of four instructions in terms of mem-
ory(static) and execution time(runtime) . . . . . . . . . . . . . . . 27

vi



4.37 BLAKE224:percentage of set of four instructions in terms of mem-
ory(static) and execution time(runtime) . . . . . . . . . . . . . . . 28

4.38 GOST:percentage of set of four instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 28

4.39 RC2:percentage of set of four instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 29

4.40 MD2:percentage of set of four instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 29

4.41 MD5:percentage of set of four instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 30

4.42 RSA:percentage of set of four instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 30

4.43 ECC:percentage of set of four instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 31

4.44 SIPHASH:percentage of set of four instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 31

4.45 SNEFRU:percentage of set of four instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 32

4.46 AES:percentage of set of five instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 32

4.47 DES:percentage of set of five instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 33

4.48 BLOWFISH:percentage of set of five instructions in terms of mem-
ory(static) and execution time(runtime) . . . . . . . . . . . . . . . 33

4.49 CAMELLIA:percentage of set of five instructions in terms of mem-
ory(static) and execution time(runtime) . . . . . . . . . . . . . . . 34

4.50 ARCFOUR:percentage of set of five instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 34

4.51 BLAKE224:percentage of set of five instructions in terms of mem-
ory(static) and execution time(runtime) . . . . . . . . . . . . . . . 35

4.52 GOST:percentage of set of five instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 35

4.53 RC2:percentage of set of five instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 36

4.54 MD2:percentage of set of five instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 36

4.55 MD5:percentage of set of five instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 37

vii



4.56 RSA:percentage of set of five instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 37

4.57 ECC:percentage of set of five instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 38

4.58 SIPHASH:percentage of set of five instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 38

4.59 SNEFRU:percentage of set of five instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 39

4.60 overall percentage of set of two instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 40

4.61 overall percentage of set of three instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 40

4.62 overall percentage of set of four instructions in terms of memory(static)
and execution time(runtime) . . . . . . . . . . . . . . . . . . . . . 40

4.63 overall percentage of set of interdependent two instructions in terms of
memory(static) and execution time(runtime) . . . . . . . . . . . . . 41

1



CHAPTER 1

INTRODUCTION

Data security is important in pervasive computing systems because the secrecy and in-

tegrity of the data should be retained when they are transferred among mobile devices

and servers in this system. The cryptography algorithm is an essential part of the com-

puting security mechanism.However, performance is one concern regarding cryptogra-

phy algorithms: these algorithms are extremely expensive in terms of execution time.

To make cracking the code more difficult, many arithmetic and logical operations are

bound to be executed during the encryption/decryption process. Furthermore, a huge

amount of data needs to be transferred between the CPU and the memory. Using a

general-purpose processor for this purpose would not be a cost-effective solution, and

the performance is not that satisfying either.

There are roughly three dominant paradigms for hardware crypto. The first is a

wholly-separate device connected via a system bus, which implements various func-

tions. One of the key advantages of this is that the sensitive data can remain on the

device, never accessible to the rest of the system . However, this can’t rightly be con-

sidered an ISA extension, as it’s wholly-separate.The other end of the spectrum is oc-

cupied by cipher-specific instructions such as Intel’s AESNI instruction set. These are

often very efficient, as many cryptographic ciphers can be implemented very efficiently

in hardware. However, they don’t do much for protection of sensitive data. Moreover,

writing specific ciphers into the ISA is generally a bad idea. Ciphers are sometimes bro-

ken, and more often phased out and replaced by newer, better algorithms. Moreover,

such a practice can enshrine weak crypto, as is seen in the continuing use of weak and

broken crypto.In my project I began by attempting to generalize the instruction-based

approach, initially planning for a generalized framework for crypto instructionsGrabher

et al. (2008).

In this project various cryptography algorithms impplemented in high level lan-

guage of C and analyzed their assembly code on executing them on RISCV cross com-

piler. With the help of python script static as well as runtime assembly level profiling is



carried out to identify potential set of consecutive instructions for ISE. Overall top 10

set of consecutive instructions are found with and without operand dependency.

3



CHAPTER 2

CRYPTOGRAPHY OVERVIEW

Cryptography is the science of secret writing is an ancient art; the first documented use

of cryptography in writing dates back to circa 1900 B.C. when an Egyptian scribe used

non-standard hieroglyphs in an inscription. Some experts argue that cryptography ap-

peared spontaneously sometime after writing was invented, with applications ranging

from diplomatic missives to war-time battle plans. It is no surprise, then, that new forms

of cryptography came soon after the widespread development of computer communica-

tions. In data and telecommunications, cryptography is necessary when communicating

over any untrusted medium, which includes just about any network, particularly the In-

ternetKatz et al. (1996).

There are five primary functions of cryptography today:

1. Privacy/confidentiality: Ensuring that no one can read the message except the
intended receiver.

2. Authentication: The process of proving one’s identity.

3. Integrity: Assuring the receiver that the received message has not been altered in
any way from the original.

4. Non-repudiation: A mechanism to prove that the sender really sent this message.

5. Key exchange: The method by which crypto keys are shared between sender and
receiver.

In cryptography, we start with the unencrypted data, referred to as plaintext. Plain-

text is encrypted into ciphertext, which will in turn (usually) be decrypted back into

usable plaintext. The encryption and decryption is based upon the type of cryptogra-

phy scheme being employed and some form of key. For those who like formulas, this

process is sometimes written as:

C = Ek(P )

P = Dk(C)



where P = plaintext, C = ciphertext, E = the encryption method, D = the decryption

method, and k = the key.

In many of the descriptions below, two communicating parties will be referred to

as Alice and Bob; this is the common nomenclature in the crypto field and literature

to make it easier to identify the communicating parties. If there is a third and fourth

party to the communication, they will be referred to as Carol and Dave, respectively. A

malicious party is referred to as Mallory, an eavesdropper as Eve, and a trusted third

party as TrentKatz et al. (1996).

Finally, cryptography is most closely associated with the development and creation

of the mathematical algorithms used to encrypt and decrypt messages, whereas crypt-

analysis is the science of analyzing and breaking encryption schemes. Cryptology is the

term referring to the broad study of secret writing, and encompasses both cryptography

and cryptanalysis.

2.1 TYPES OF CRYPTOGRAPHIC ALGORITHMS

There are several ways of classifying cryptographic algorithms.They will be categorized

based on the number of keys that are employed for encryption and decryption, and

further defined by their application and use. The three types of algorithms2.1:

• Secret Key Cryptography (SKC): Uses a single key for both encryption and de-
cryption; also called symmetric encryption. Primarily used for privacy and confi-
dentiality.

• Public Key Cryptography (PKC): Uses one key for encryption and another for
decryption; also called asymmetric encryption. Primarily used for authentication,
non-repudiation, and key exchange.

• Hash Functions: Uses a mathematical transformation to irreversibly "encrypt"
information, providing a digital fingerprint. Primarily used for message integrity.

5



Figure 2.1: Three types of cryptography: secret key, public key, and hash function

2.1.1 Secret Key Cryptography

Secret key cryptography methods employ a single key for both encryption and decryp-

tion.The sender uses the key to encrypt the plaintext and sends the ciphertext to the

receiver. The receiver applies the same key to decrypt the message and recover the

plaintext. Because a single key is used for both functions, secret key cryptography is

also called symmetric encryption.

We choose seven popular secret key cryptography algorithms as benchmarks for our

study:

• Advanced Encryption Standard (AES): In 1997, NIST initiated a very public,
4-1/2 year process to develop a new secure cryptosystem for U.S. government
applications (as opposed to the very closed process in the adoption of DES 25
years earlier). The result, the Advanced Encryption Standard, became the of-
ficial successor to DES in December 2001. AES uses an SKC scheme called
Rijndael, a block cipher designed by Belgian cryptographers Joan Daemen and
Vincent Rijmen. The algorithm can use a variable block length and key length;
the latest specification allowed any combination of keys lengths of 128, 192, or
256 bits and blocks of length 128, 192, or 256 bits. AES is an iterative rather
than Feistel cipher. It is based on âĂŸsubstitutionâĂŞpermutation networkâĂŹ.
It comprises of a series of linked operations, some of which involve replacing
inputs by specific outputs (substitutions) and others involve shuffling bits around
(permutations).

• Data Encryption Standard (DES): One of the most well-known and well-
studied SKC schemes, DES was designed by IBM in the 1970s and adopted by
the National Bureau of Standards (NBS) [now the National Institute for Standards

6



and Technology (NIST)] in 1977 for commercial and unclassified government ap-
plications. DES is a Feistel block-cipher employing a 56-bit key that operates on
64-bit blocks. DES has a complex set of rules and transformations that were de-
signed specifically to yield fast hardware implementations and slow software im-
plementations, although this latter point is not significant today since the speed of
computer processors is several orders of magnitude faster today than even twenty
years ago.

• Rivest Ciphers (aka Ron’s Code): Named for Ron Rivest, a series of SKC
algorithms.

– RC4: A stream cipher using variable-sized keys; it is widely used in com-
mercial cryptography products.

– RC2: A 64-bit block cipher using variable-sized keys designed to replace
DES.

• Blowfish: A symmetric 64-bit block cipher invented by Bruce Schneier; opti-
mized for 32-bit processors with large data caches, it is significantly faster than
DES on a Pentium/PowerPC-class machine. Key lengths can vary from 32 to 448
bits in length. Blowfish, available freely and intended as a substitute for DES or
IDEA, is in use in a large number of products.

• Camellia: A secret-key, block-cipher crypto algorithm developed jointly by Nip-
pon Telegraph and Telephone (NTT) Corp. and Mitsubishi Electric Corporation
(MEC) in 2000. Camellia has some characteristics in common with AES: a 128-
bit block size, support for 128-, 192-, and 256-bit key lengths, and suitability for
both software and hardware implementations on common 32-bit processors as
well as 8-bit processors (e.g., smart cards, cryptographic hardware, and embed-
ded systems).

• GOST(Block Cipher): GOST is a Feistel network of 32 rounds.Its S-boxes can
be secret, and they contain about 354 (log2(16!8)) bits of secret information, so
the effective key size can be increased to 610 bits.

7



2.1.2 Public Key Cryptography

Public key cryptography has been said to be the most significant new development in

cryptography in the last 300-400 years. Modern PKC was first described publicly by

Stanford University professor Martin Hellman and graduate student Whitfield Diffie in

1976. Their paper described a two-key crypto system in which two parties could engage

in a secure communication over a non-secure communications channel without having

to share a secret key.

PKC depends upon the existence of so-called one-way functions, or mathematical

functions that are easy to compute whereas their inverse function is relatively difficult

to compute. Generic PKC employs two keys that are mathematically related although

knowledge of one key does not allow someone to easily determine the other key. One

key is used to encrypt the plaintext and the other key is used to decrypt the ciphertext.

The important point here is that it does not matter which key is applied first, but that

both keys are required for the process to work (Figure 1B). Because a pair of keys are

required, this approach is also called asymmetric cryptography.

We choose following popular public key cryptography algorithms as benchmarks

for our study:

• RSA: The first, and still most common, PKC implementation, named for the
three MIT mathematicians who developed it âĂŤ Ronald Rivest, Adi Shamir, and
Leonard Adleman. RSA today is used in hundreds of software products and can
be used for key exchange, digital signatures, or encryption of small blocks of data.
RSA uses a variable size encryption block and a variable size key. The key-pair
is derived from a very large number, n, that is the product of two prime numbers
chosen according to special rules; these primes may be 100 or more digits in
length each, yielding an n with roughly twice as many digits as the prime factors.
The public key information includes n and a derivative of one of the factors of
n; an attacker cannot determine the prime factors of n (and, therefore, the private
key) from this information alone and that is what makes the RSA algorithm so
secure. (Some descriptions of PKC erroneously state that RSA’s safety is due to
the difficulty in factoring large prime numbers.

• Elliptic Curve Cryptography (ECC): In 1985, Elliptic Curve Cryptography
(ECC) was proposed independently by cryptographers Victor Miller (IBM) and
Neal Koblitz (University of Washington). ECC is based on the difficulty of solv-
ing the Elliptic Curve Discrete Logarithm Problem (ECDLP). Like the prime fac-
torization problem, ECDLP is another "hard" problem that is deceptively simple
to state: Given two points, P and Q, on an elliptic curve, find the integer n, if it
exists, such that P = nQ.

8



2.1.3 Hash Functions

Hash functions, also called message digests and one-way encryption, are algorithms

that, in essence, use no key. Instead, a fixed-length hash value is computed based upon

the plaintext that makes it impossible for either the contents or length of the plaintext

to be recovered. Hash algorithms are typically used to provide a digital fingerprint of

a file’s contents, often used to ensure that the file has not been altered by an intruder

or virus. Hash functions are also commonly employed by many operating systems to

encrypt passwords. Hash functions, then, provide a mechansim to ensure the integrity

of a file.

We choose folowing hash functions as benchmark:

• MD2: Designed for systems with limited memory, such as smart cards.MD2 is an
earlier, 8-bit version of MD5, an algorithm used to verify data integrity through
the creation of a 128-bit message digest from data input (which may be a message
of any length) that is claimed to be as unique to that specific data as a fingerprint
is to the specific individual.

• MD5: Ronald Rivest, founder of RSA Data Security and institute professor at
MIT, designed MD5 as an improvement to a prior message digest algorithm,
MD4.The MD5 algorithm is intended for digital signature applications, where
a large file must be ’compressed’ in a secure manner before being encrypted with
a private (secret) key under a public-key cryptosystem such as RSA.

• Blake224:It is cryptographic hash function based on Dan Bernstein’s ChaCha
stream cipher, but a permuted copy of the input block, XORed with some round
constants, is added before each ChaCha round.

• Snefru:Snefru is a cryptographic hash function invented by Ralph Merkle in 1990
while working at Xerox PARC.[1] The function supports 128-bit and 256-bit out-
put.

• SipHash: SipHash is an addâĂŞrotateâĂŞxor (ARX) based family of pseudo-
random functions created by Jean-Philippe Aumasson and Daniel J. Bernstein in
2012 in response to a spate of "hash flooding" denial-of-service attacks in late
2011.

Although designed for use as a hash function in the computer science sense,
SipHash is fundamentally different from cryptographic hash functions like SHA
in that it is only suitable as a message authentication code: a keyed hash function
like HMAC.

9



CHAPTER 3

About RISCV

RISC-V is an open instruction set architecture (ISA) based on established reduced in-

struction set computing (RISC) principles.

In contrast to most ISAs, the RISC-V ISA can be freely used for any purpose, per-

mitting anyone to design, manufacture and sell RISC-V chips and software. While not

the first open ISA, it is significant because it is designed to be useful in modern comput-

erized devices such as warehouse-scale cloud computers, high-end mobile phones and

the smallest embedded systems. Such uses demand that the designers consider both

performance and power efficiency. The instruction set also has a substantial body of

supporting software, which avoids a usual weakness of new instruction setsWaterman

et al. (2011).

The RISC-V ISA has been designed with small, fast, and low-power real-world im-

plementations in mind,but without over-architecting for a particular microarchitecture

style.

3.1 RISC-V software tools

The RISC-V GNU toolchain consists of GCC, Binutils, newlib and glibc ports.Available

RISC-V software tools include a GNU Compiler Collection (GCC) toolchain (with

GDB, the debugger), an LLVM toolchain, the Renode multi-node simulation frame-

work, the OVPsim simulator (and library of RISC-V Fast Processor Models), the Spike

simulator, and a simulator in QEMU. The RISC-V website has a specification for user-

mode instructions, and a preliminary specification for a general-purpose privileged in-

struction set, to support operating systems. For this project we have exploited RISCV

cross compiler and spike simulator.Spike is a RISC-V functional ISA simulator. It mod-

els a RISC-V core and cache system.



CHAPTER 4

Results

Certain popular cryptography algorithms are selected for this project.Their benchmark

c codes are compiled RISC-V ELF binary using RISCV cross compiler.Used objdump

to disassemble the .o file and annotate it with the C source file.This gives static assembly

of program.4.1

Figure 4.1: snippet of disassembled file of blowfish algorithm

The command-line arguments to Spike are listed below4.2

Figure 4.2: Command line arguments to Spike simulator

Using -l argument of Spike, pc log of execution is obtained 4.3



Figure 4.3: snippet of pc log of execution of blowfish algorithm

Python script is written to take simulation output and find frequency of set of in-

structions. Using python script to traverse through log files of cryptography algorithms,

common set of consecutive instructions are found.This gives us total percentage of exe-

cution time taken by set of instructions. Analysis of disassembled code gives percentage

of memory taken by set of instructions and analysis of log of execution files gives per-

centage of execution time taken by set of instructions.

Two cases are considered, first we have considered only opcodes of instructions.Secondly

operands are also taken into account to find dependent consecutive instructions.Focus

was on instruction set starting with load operation and ending with store operation.

Histogram of top 10 such cases are categorized accordiing to type of cryptography

and also overall are shown below:

12



4.1 Analysis of all algorithms

4.1.1 For Set of two insturctions

(a) Static (b) Runtime

Figure 4.4: AES:percentage of set of two instructions in terms of memory(static) and
execution time(runtime)

(a) Static (b) Runtime

Figure 4.5: DES:percentage of set of two instructions in terms of memory(static) and
execution time(runtime)

13



(a) Static (b) Runtime

Figure 4.6: BLOWFISH:percentage of set of two instructions in terms of mem-
ory(static) and execution time(runtime)

(a) Static (b) Runtime

Figure 4.7: CAMELLIA:percentage of set of two instructions in terms of mem-
ory(static) and execution time(runtime)

14



(a) Static (b) Runtime

Figure 4.8: ARCFOUR:percentage of set of two instructions in terms of memory(static)
and execution time(runtime)

(a) Static (b) Runtime

Figure 4.9: BLAKE224:percentage of set of two instructions in terms of memory(static)
and execution time(runtime)

15



(a) Static (b) Runtime

Figure 4.10: GOST:percentage of set of two instructions in terms of memory(static) and
execution time(runtime)

(a) Static (b) Runtime

Figure 4.11: RC2:percentage of set of two instructions in terms of memory(static) and
execution time(runtime)

16



(a) Static (b) Runtime

Figure 4.12: MD2:percentage of set of two instructions in terms of memory(static) and
execution time(runtime)

(a) Static (b) Runtime

Figure 4.13: MD5:percentage of set of two instructions in terms of memory(static) and
execution time(runtime)

17



(a) Static (b) Runtime

Figure 4.14: RSA:percentage of set of two instructions in terms of memory(static) and
execution time(runtime)

(a) Static (b) Runtime

Figure 4.15: ECC:percentage of set of two instructions in terms of memory(static) and
execution time(runtime)

18



(a) Static (b) Runtime

Figure 4.16: SIPHASH:percentage of set of two instructions in terms of memory(static)
and execution time(runtime)

(a) Static (b) Runtime

Figure 4.17: SNEFRU:percentage of set of two instructions in terms of memory(static)
and execution time(runtime)

19



4.1.2 For Set of three insturctions

(a) Static (b) Runtime

Figure 4.18: AES:percentage of set of three instructions in terms of memory(static) and
execution time(runtime)

(a) Static (b) Runtime

Figure 4.19: DES:percentage of set of three instructions in terms of memory(static) and
execution time(runtime)

20



(a) Static (b) Runtime

Figure 4.20: BLOWFISH:percentage of set of three instructions in terms of mem-
ory(static) and execution time(runtime)

(a) Static (b) Runtime

Figure 4.21: CAMELLIA:percentage of set of three instructions in terms of mem-
ory(static) and execution time(runtime)

(a) Static (b) Runtime

Figure 4.29: ECC:percentage of set of three instructions in terms of memory(static) and
execution time(runtime) 21



(a) Static (b) Runtime

Figure 4.22: ARCFOUR:percentage of set of three instructions in terms of mem-
ory(static) and execution time(runtime)

(a) Static (b) Runtime

Figure 4.23: BLAKE224:percentage of set of three instructions in terms of mem-
ory(static) and execution time(runtime)

(a) Static (b) Runtime

Figure 4.30: SIPHASH:percentage of set of three instructions in terms of mem-
ory(static) and execution time(runtime)

22



(a) Static (b) Runtime

Figure 4.24: GOST:percentage of set of three instructions in terms of memory(static)
and execution time(runtime)

(a) Static (b) Runtime

Figure 4.25: RC2:percentage of set of three instructions in terms of memory(static) and
execution time(runtime)

(a) Static (b) Runtime

Figure 4.31: SNEFRU:percentage of set of three instructions in terms of memory(static)
and execution time(runtime)

23



(a) Static (b) Runtime

Figure 4.26: MD2:percentage of set of three instructions in terms of memory(static) and
execution time(runtime)

(a) Static (b) Runtime

Figure 4.27: MD5:percentage of set of three instructions in terms of memory(static) and
execution time(runtime)

24



(a) Static (b) Runtime

Figure 4.28: RSA:percentage of set of three instructions in terms of memory(static) and
execution time(runtime)

4.1.3 For Set of four insturctions

(a) Static (b) Runtime

Figure 4.32: AES:percentage of set of four instructions in terms of memory(static) and
execution time(runtime)

25



(a) Static (b) Runtime

Figure 4.33: DES:percentage of set of four instructions in terms of memory(static) and
execution time(runtime)

(a) Static (b) Runtime

Figure 4.34: BLOWFISH:percentage of set of four instructions in terms of mem-
ory(static) and execution time(runtime)

26



(a) Static (b) Runtime

Figure 4.35: CAMELLIA:percentage of set of four instructions in terms of mem-
ory(static) and execution time(runtime)

(a) Static (b) Runtime

Figure 4.36: ARCFOUR:percentage of set of four instructions in terms of mem-
ory(static) and execution time(runtime)

27



(a) Static (b) Runtime

Figure 4.37: BLAKE224:percentage of set of four instructions in terms of mem-
ory(static) and execution time(runtime)

(a) Static (b) Runtime

Figure 4.38: GOST:percentage of set of four instructions in terms of memory(static)
and execution time(runtime)

28



(a) Static (b) Runtime

Figure 4.39: RC2:percentage of set of four instructions in terms of memory(static) and
execution time(runtime)

(a) Static (b) Runtime

Figure 4.40: MD2:percentage of set of four instructions in terms of memory(static) and
execution time(runtime)

29



(a) Static
(b) Runtime

Figure 4.41: MD5:percentage of set of four instructions in terms of memory(static) and
execution time(runtime)

(a) Static (b) Runtime

Figure 4.42: RSA:percentage of set of four instructions in terms of memory(static) and
execution time(runtime)

30



(a) Static (b) Runtime

Figure 4.43: ECC:percentage of set of four instructions in terms of memory(static) and
execution time(runtime)

(a) Static (b) Runtime

Figure 4.44: SIPHASH:percentage of set of four instructions in terms of mem-
ory(static) and execution time(runtime)

31



(a) Static (b) Runtime

Figure 4.45: SNEFRU:percentage of set of four instructions in terms of memory(static)
and execution time(runtime)

4.1.4 For Set of five insturctions

(a) Static (b) Runtime

Figure 4.46: AES:percentage of set of five instructions in terms of memory(static) and
execution time(runtime)

32



(a) Static
(b) Runtime

Figure 4.47: DES:percentage of set of five instructions in terms of memory(static) and
execution time(runtime)

(a) Static (b) Runtime

Figure 4.48: BLOWFISH:percentage of set of five instructions in terms of mem-
ory(static) and execution time(runtime)

33



(a) Static (b) Runtime

Figure 4.49: CAMELLIA:percentage of set of five instructions in terms of mem-
ory(static) and execution time(runtime)

(a) Static (b) Runtime

Figure 4.50: ARCFOUR:percentage of set of five instructions in terms of mem-
ory(static) and execution time(runtime)

34



(a) Static (b) Runtime

Figure 4.51: BLAKE224:percentage of set of five instructions in terms of mem-
ory(static) and execution time(runtime)

(a) Static (b) Runtime

Figure 4.52: GOST:percentage of set of five instructions in terms of memory(static) and
execution time(runtime)

35



(a) Static (b) Runtime

Figure 4.53: RC2:percentage of set of five instructions in terms of memory(static) and
execution time(runtime)

(a) Static (b) Runtime

Figure 4.54: MD2:percentage of set of five instructions in terms of memory(static) and
execution time(runtime)

36



(a) Static
(b) Runtime

Figure 4.55: MD5:percentage of set of five instructions in terms of memory(static) and
execution time(runtime)

(a) Static (b) Runtime

Figure 4.56: RSA:percentage of set of five instructions in terms of memory(static) and
execution time(runtime)

37



(a) Static (b) Runtime

Figure 4.57: ECC:percentage of set of five instructions in terms of memory(static) and
execution time(runtime)

(a) Static (b) Runtime

Figure 4.58: SIPHASH:percentage of set of five instructions in terms of memory(static)
and execution time(runtime)

38



(a) Static (b) Runtime

Figure 4.59: SNEFRU:percentage of set of five instructions in terms of memory(static)
and execution time(runtime)

39



4.2 Overall results

Histogram of top ten instruction sets overall in terms of memory and execution time are

plotted below:

(a) Static (b) Runtime

Figure 4.60: overall percentage of set of two instructions in terms of memory(static)
and execution time(runtime)

(a) Static (b) Runtime

Figure 4.61: overall percentage of set of three instructions in terms of memory(static)
and execution time(runtime)

(a) Static (b) Runtime

Figure 4.62: overall percentage of set of four instructions in terms of memory(static)
and execution time(runtime)

40



4.3 Further analysis

Further we have looked at potential instruction set with interdependency.Source register

operands are kept as don’t care. Instruction starting with load operation and arithmetic

operation on values loaded will have more significance.

(a) Static (b) Runtime

Figure 4.63: overall percentage of set of interdependent two instructions in terms of
memory(static) and execution time(runtime)

4.4 Amdahl’s Law

Amdahl’s law is fundamental theorem of computer architecture.It is a formula used to

find the maximum improvement possible by improving a particular part of a system.

If we can speed up x percentage of the program by S times Amdahl’s law gives us

total speed up by below formulaHennessy and Patterson (2011).

Speeduptotal =
1

(1−x)+ x
S

From the analysis in 4.62 we can see that set of four consecutive loads are taking

around 14 % of total execution time overall.So if we can propose a new instruction

names MLD to load four values in one instruction, 2.25 times speed up. Using Amdahl’s

law overall speed will be 1.08.

41



4.5 Future Scope

1. New instruction can be proposed for Multiple load/store operation for block data
transfer

2. Application specific potential instruction set extension can be tried on harware
based on analysis results

3. Dependent instruction set block for further speed up in cryptography applications

42



REFERENCES

1. Grabher, P., J. Großschädl, and D. Page, Light-weight instruction set extensions for
bit-sliced cryptography. In International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2008.

2. Hennessy, J. L. and D. A. Patterson, Computer architecture: a quantitative approach.
Elsevier, 2011.

3. Katz, J., A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of ap-
plied cryptography. CRC press, 1996.

4. Waterman, A., Y. Lee, D. A. Patterson, and K. Asanovic (2011). The risc-v instruc-
tion set manual, volume i: Base user-level isa. EECS Department, UC Berkeley, Tech.
Rep. UCB/EECS-2011-62.

43


	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	CRYPTOGRAPHY OVERVIEW
	TYPES OF CRYPTOGRAPHIC ALGORITHMS
	Secret Key Cryptography
	Public Key Cryptography
	Hash Functions


	About RISCV
	RISC-V software tools

	Results
	Analysis of all algorithms
	For Set of two insturctions
	For Set of three insturctions
	For Set of four insturctions
	For Set of five insturctions

	Overall results
	Further analysis
	Amdahl's Law
	Future Scope


