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ABSTRACT

KEYWORDS: Travel demand forecasting, Time series, Supervised learning

(SL), Data analysis.

Transportation planning is a collaborative process involving public and private

agencies. Public transport remains the primary mode of transport for most of

the population, and Indias public transport system is among the most heavily

used in the world. However, this sector has not been able to keep up with the

rising demand. Hence, to match transportation demand, an alternate mode of

transport such as taxi services are essential. In India, there has been a dramatic

increase in the popularity for mobile application based taxi hailing services. In

this work, we use Supervised learning algorithms to forecast taxi travel demand,

in the context of a mobile application based taxi service. In particular, we model

the passenger demand density at various locations in the city of Bengaluru, India.

Using the data, we first shortlist time series, machine learning and deep learning

algorithms that suit our application. Analyses the performance of these models

by using Root Mean Squared Error (RMSE), R Squared (R2) and Mean Absolute

Percentage Error (MAPE) as the performance metrics. We then compare the time

series models with the machine learning and deep learning models.
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CHAPTER 1

INTRODUCTION

Traffic is the pulse of a city that impacts the daily life of millions of people. One of

the most fundamental questions for future smart cities is how to build an efficient

transportation system. To address this question, a critical component is an accu-

rate demand prediction model. The better we can predict demand on travel, the

better we can pre-allocate resources to meet the demand. From the Global Posi-

tioning System (GPS) data generated by taxi services apps, the demand (number

of taxi booking requests) generated by passengers can be obtained [3].

In literature, there has been a long line of studies in traffic data prediction,

including traffic volume, taxi pick-ups, and traffic in-out flow volume. To predict

traffic, time series prediction methods have frequently been used. Representa-

tively, autoregressive integrated moving average (ARIMA) and its variants have

been widely applied for traffic prediction [8, 10, 11]. Recent advances in deep

learning have enabled researchers to model the complex nonlinear relationships

and have shown promising results in computer vision and natural language pro-

cessing fields [7]. This success has inspired to attempt deep learning techniques

on traffic prediction problems.

In this work, we tackle the problem of analysing and modeling this taxi travel

demand, using time series and supervised learning models. We then compare

time series models with supervised learning models. We build traditional time

series prediction models [6] and supervised learning models on the assumption

that the present and the future demand would have some correlation with the past

demand, and can be represented as the function of the past data. Indeed, accurate

forecasting of taxi demand and supply is crucial for mitigating demand-supply

imbalance, by routing idle drivers to passenger hotspots. We model the demand

by employing supervised learning techniques on a real-world dataset containing

the taxi demand generated for the city of Bengaluru, India. This dataset was

acquired from a leading app-based taxi service provider in India. Using these



supervised learning models, we predict future demand to reduce the demand-

supply imbalance.

Traffic analysis has been an active research area over the recent years. A fun-

damental approach for traffic analysis is to understand human mobility, i.e., draw

statistical inferences from empirical data [2]. We are particularly concerned with

taxi demand analysis [9]. Empirically, we noticed that Indian traffic undergoes

changes very rapidly from area to area. Each location in the city is identified by

a unique set of alphanumeric characters, known as a geohash. A 6-level geohash

has six alphanumeric characters and encloses an area of approximately 1.2 km *

0.6 km. In this work, the demand density for the most heavily used geohashes in

the city of Bengaluru, India is modeled and fitted using time series and supervised

learning models.

1.1 Organization of the report

The rest of the document is organized as follows. In chapter 2 we discuss on

re-framing time series forecasting as a supervised learning problem, followed by

discuss the models that worked for our dataset in chapter 3 and performance

metrics. In chapter 4 a discussion on the model fitting and results. In chapter 5

applications of our work are discussed. Finally, we summarize in chapter 6.
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CHAPTER 2

TIME SERIES AS SUPERVISED LEARNING

Time series forecasting can be framed as a supervised learning problem. This

re-framing of our time series data allows us access to the suite of standard linear

and non-linear algorithms on our problem.

2.1 Supervised Machine Learning

The majority of practical machine learning uses supervised learning. Supervised

learning is where we have input variables (X) and an output variable (y) and we

use an algorithm to learn the mapping function from the input to the output.

y = f(X) (2.1)

The goal is to approximate the real underlying mapping so well that when we

have new input data (X), we can predict the output variables (y) for that data.

It is called supervised learning because an algorithm iteratively makes predictions

on the training data and is corrected by making updates. Learning stops when

the algorithm achieves an acceptable level of performance.

2.2 Sliding Window

It is method for framing a time series dataset. Given a sequence of numbers for a

time series dataset, we can restructure the data to look like a supervised learning

problem. We can do this by using previous time steps as input variables and

use the next time step as the output variable. Let’s make this concrete with our

dataset. We have a time series data for Geohash-1 (tdr1w4) as follows:



Table 2.1: Time series data for Geohash-1 (tdr1w4)

Index (Time in hours) Demand

0 74

1 89

2 127

3 162

4 183

5 221

We can restructure this time series dataset as a supervised learning problem by

using the value at the previous time step to predict the value at the next time-step.

Table 2.2: Time series dataset as a supervised learning problem

Index (Time in hours) X y

0 Nan 74

1 74 89

2 89 127

3 127 162

4 162 183

5 183 221

Take a look at the above transformed dataset and compare it to the original

time series. Here are some observations:

• We can see that the previous time step is the input (X) and the next time
step is the output (y) in our supervised learning problem.

• We can see that the order between the observations is preserved, and must
continue to preserved when using this dataset to train a supervised model.

• We can see that we have no previous value that we can use to predict the
first value in the sequence. We will delete this row as we cannot use it.

• We can also see that we do not have a known next value to predict for the
last value in the sequence. We may want to delete this value while training
our supervised model also.

The number of previous time steps is called the window width or size of the

lag.

4



CHAPTER 3

MODEL SELECTION

There are many models to choose from. We must know whether the predictions

for a given algorithm are good or not. But how do you know? The answer is to

use a baseline prediction algorithm. A baseline prediction algorithm provides a set

of predictions that you can evaluate as we would any predictions for our problem,

such as RMSE.

3.0.1 Baseline model

It is important to establish baseline performance on a predictive modeling problem.

A baseline provides a point of comparison for the more advanced methods that

you evaluate later. The Zero Rule Algorithm is a better baseline. A good default

prediction for real values is to predict the central tendency. This could be the

mean or the median. A good default is to use the mean (also called the average)

of the output value observed in the training data. Below is a function to do that

named Zero rule algorithm and it works by calculating the mean value for the

observed output values.

Mean =

n∑
i=0

valuei

count(values)
(3.1)

Once calculated, the mean is then predicted for each row in the training data.



3.1 Time Series Algorithms

3.1.1 Autoregression (AR) Model

Autoregression is a time series model that uses observations from previous time

steps as input to a regression equation to predict the value at the next time step.

It is a very simple idea that can result in accurate forecasts on a range of time

series problems.

The notation AR(p) indicates an autoregressive model of order p. The AR(p)

model is defined as

Xt = c+

p∑
i=1

ϕiXt−i + εt (3.2)

where ϕ1, . . . , ϕp are the parameters of the model, c is a constant, and εt is white

noise process with zero mean and constant variance σ2
ε .

AR(1) indicates an autoregressive model of order 1. The AR(1) model is

defined as

Xt = c+ ϕXt−1 + εt (3.3)

If AR model parameter ϕ = 1, then this process is Random walk and if ϕ = 0,

then this process is White noise. For model stable and stationary, ϕ should be

between -1 and 1.

Because the regression model uses data from the same input variable at previ-

ous time steps, it is referred to as an autoregression (regression of self).

6



3.1.2 Moving Average (MA) Model

The residual errors from forecasts on a time series provide another source of infor-

mation that we can model. Residual errors themselves form a time series that can

have temporal structure. A simple autoregression model of this structure can be

used to predict the forecast error, which in turn can be used to correct forecasts.

This type of model is called a moving average model.

The difference between what was expected and what was predicted is called

the residual error. It is calculated as:

residual error = expected− predicted

Just like the input observations themselves, the residual errors from a time series

can have temporal structure like trends, bias, and seasonality. An autoregression

of the residual error time series is called a Moving Average (MA) model. Think

of it as the sibling to the autoregressive (AR) process, except on lagged residual

error rather than lagged raw observations.

Correct Predictions with a Model of Residuals

we can add the expected forecast error to a prediction to correct it and in turn

improve the skill of the model.

improved forecast = forecast + estimated error

Lets make this concrete with an example. Lets say that the expected value for

a time step is 10. The model predicts 8 and estimates the error to be 3. The

improved forecast would be:

improved forecast = forecast + estimated error

= 8 + 3

= 11

This takes the actual forecast error from 2 units to 1 unit.

7



3.1.3 ARIMA Model

An ARIMA model [6] is a class of statistical models for analyzing and forecasting

time series data. It explicitly caters to a suite of standard structures in time series

data, and as such provides a simple yet powerful method for making skillful time

series forecasts. ARIMA is an acronym that stands for AutoRegressive Integrated

Moving Average. It is a generalization of the simpler AutoRegressive Moving

Average and adds the notion of integration. This acronym is descriptive, capturing

the key aspects of the model itself. Briefly, they are:

• AR: Autoregression. A model that uses the dependent relationship between
an observation and some number of lagged observations.

• I: Integrated. The use of differencing of raw observations (e.g. subtracting
an observation from an observation at the previous time step) in order to
make the time series stationary.

• MA: Moving Average. A model that uses the dependency between an obser-
vation and a residual error from a moving average model applied to lagged
observations.

Each of these components are explicitly specified in the model as a parameter.

A standard notation is used of ARIMA(p,d,q) where the parameters are substi-

tuted with integer values to quickly indicate the specific ARIMA model being

used. The parameters of the ARIMA model are defined as follows:

• p: The number of lag observations included in the model, also called the lag
order.

• d: The number of times that the raw observations are differenced, also called
the degree of differencing.

• q: The size of the moving average window, also called the order of moving
average.

A value of 0 can be used for a parameter, which indicates to not use that

element of the model. This way, the ARIMA model can be configured to perform

the function of an ARMA model, and even a simple AR, I, or MA model.

8



3.2 Machine Learning Algorithms

3.2.1 Simple Linear Regression (Ordinary Least Squares)

Linear regression is a prediction method that is more than 200 years old. Simple

linear regression is a great first machine learning algorithm to implement as it

requires you to estimate properties from your training dataset.

Linear regression [13] assumes a linear or straight line relationship between

the input variables (X) and the single output variable (y). More specifically, that

output (y) can be calculated from a linear combination of the input variables (X).

When there is a single input variable, the method is referred to as a simple linear

regression. In simple linear regression we can use statistics on the training data to

estimate the coefficients required by the model to make predictions on new data.

The line for a simple linear regression model can be written as:

y = b0 + b1 ∗ x (3.4)

Where, b0 and b1 are the coefficients we must estimate from the training data.

b1 =

n∑
i=0

((xi −mean(x)) ∗ (yi −mean(y)))

n∑
i=0

(xi −mean(x))2
=
covariance(x, y)

variance(x)
(3.5)

b0 = mean(y)− b1 ∗mean(x) (3.6)

Where, the i refers to the value of the ith value of the input x or output y.

Linear Regression fits a linear model with coefficients b = (b1, ..., bp) to mini-

mize the residual sum of squares between the observed responses in the dataset,

9



and the responses predicted by the linear approximation. Mathematically it solves

a problem of the form:

min
b
||Xb − y||22 (3.7)

However, coefficient estimates for Ordinary Least Squares rely on the independence

of the model terms. When terms are correlated and the columns of the design

matrix X have an approximate linear dependence, the design matrix becomes close

to singular and as a result, the least-squares estimate becomes highly sensitive to

random errors in the observed response, producing a large variance. This situation

of multicollinearity can arise.

Complexity : This method computes the least squares solution using a singular

value decomposition of X. If X is a matrix of size (n, p) this method has a cost of

O(np2), assuming that n ≥ p.

3.2.2 Ridge Regression

Ridge regression addresses some of the problems of Ordinary Least Squares by

imposing a penalty on the size of coefficients. The ridge coefficients minimize a

penalized residual sum of squares (also called the `2 − norm).

min
b
||Xb − y||22 + α||b||22 (3.8)

Here, α ≥ 0 is a complexity parameter that controls the amount of shrinkage: the

larger the value of α, the greater the amount of shrinkage and thus the coefficients

become more robust to collinearity.

Complexity: This method has the same order of complexity as linear regression.

10



3.2.3 LASSO Regression

The Least Absolute Shrinkage and Selection Operator (or LASSO for short) is a

modification of linear regression, like ridge regression, where the loss function is

modified to minimize the complexity of the model measured as the sum absolute

value of the coefficient values (also called the `1 − norm).

It is a linear model that estimates sparse coefficients. It is useful in some con-

texts due to its tendency to prefer solutions with fewer parameter values, effectively

reducing the number of variables upon which the given solution is dependent. For

this reason, the Lasso and its variants are fundamental to the field of compressed

sensing. Under certain conditions, it can recover the exact set of non-zero weights.

Mathematically, it consists of a linear model trained with `1 prior as regularizer.

The objective function to minimize is:

min
b

1

2nsamples

||Xb − y||22 + α||b||1 (3.9)

The lasso estimate thus solves the minimization of the least-squares penalty with

α||b||1 added, where α is a constant and ||b||1 is the `1 − norm of the parameter

vector.

3.2.4 ElasticNet Regression

ElasticNet is a linear regression model trained with L1 and L2 prior as regularizer

i.e., combines the properties of both Ridge Regression and LASSO regression.

This combination allows for learning a sparse model where few of the weights are

non-zero like Lasso, while still maintaining the regularization properties of Ridge.

We control the convex combination of L1 and L2 using the l1-ratio parameter (ρ).

The objective function to minimize is in this case

11



min
b

1

2nsamples

||Xb − y||22 + αρ||b||1 +
α(1− ρ)

2
||b||22 (3.10)

3.2.5 K-Nearest Neighbors (KNN)

A simple but powerful approach for making predictions is to use the most similar

historical examples to the new data. This is the principle behind the k-Nearest

Neighbors algorithm.

When a prediction is required, the k-most similar records to a new record

from the training dataset are then located. From these neighbors, a summarized

prediction is made. Similarity between records can be measured many different

ways. A problem or data-specific method can be used. Generally, with tabular

data, a good starting point is the Euclidean distance.

Once the neighbors are discovered, the summary prediction can be made by

returning the most common outcome or taking the average. As such, KNN can

be used for classification or regression problems. There is no model to speak of

other than holding the entire training dataset. Because no work is done until a

prediction is required, KNN is often referred to as a lazy learning method.

Following steps will give you the foundation that you need to implement the

k-Nearest Neighbors algorithm:

• Euclidean Distance : The first step needed is to calculate the distance
between two rows in a dataset. Rows of data are mostly made up of numbers
and an easy way to calculate the distance between two rows or vectors of
numbers is to draw a straight line. This makes sense in 2D or 3D and scales
nicely to higher dimensions. We can calculate the straight line distance
between two vectors using the Euclidean distance measure. It is calculated
as the square root of the sum of the squared differences between the two
vectors.

distance =

√√√√ n∑
i=0

(x1i − x2i)2 (3.11)

Where x1 is the first row of data, x2 is the second row of data and i is the
index to a specific column as we sum across all columns. With Euclidean

12



distance, the smaller the value, the more similar two records will be. A value
of 0 means that there is no difference between two records.

Now it is time to use the distance calculation to locate neighbors within a
dataset.

• Get Neighbors : Neighbors for a new piece of data in the dataset are
the k closest instances, as defined by our distance measure. To locate the
neighbors for a new piece of data within a dataset we must first calculate
the distance between each record in the dataset to the new piece of data.
We can do this using Euclidean distance. Once distances are calculated,
we must sort all of the records in the training dataset by their distance to
the new data. We can then select the top k to return as the most similar
neighbors.

Now that we know how to get neighbors from the dataset, we can use them
to make predictions.

3.2.6 Classification and Regression Trees (CART or deci-

sion trees)

CART construct a binary tree from the training data. This is the same binary

tree from algorithms and data structures, nothing too fancy (each node can have

zero, one or two child nodes). A node represents a single input variable (X) and

a split point on that variable, assuming the variable is numeric. The leaf nodes

(also called terminal nodes) of the tree contain an output variable (y) which is

used to make a prediction. CART use the training data to select the best points

to split the data in order to minimize a cost metric. The default cost metric for

regression decision trees is the mean squared error.

3.2.7 Support Vector Regression (SVR)

Support vector machines (SVMs) are a set of supervised learning methods

used for classification, regression and outliers detection.

The advantages of support vector machines are:

• Effective in high dimensional spaces.

• Still effective in cases where number of dimensions is greater than the number
of samples.
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• Uses a subset of training points in the decision function (called support
vectors), so it is also memory efficient.

• Versatile: different Kernel functions can be specified for the decision func-
tion. Common kernels are provided, but it is also possible to specify custom
kernels.

The disadvantages of support vector machines include:

• If the number of features is much greater than the number of samples, avoid
over-fitting in choosing Kernel functions and regularization term is crucial.

• SVMs do not directly provide probability estimates, these are calculated
using an expensive five-fold cross-validation.

The method of Support Vector Classification can be extended to solve regres-

sion problems. This method is called Support Vector Regression (SVR). The model

produced by support vector classification (as described above) depends only on a

subset of the training data, because the cost function for building the model does

not care about training points that lie beyond the margin. Analogously, the model

produced by Support Vector Regression depends only on a subset of the training

data, because the cost function for building the model ignores any training data

close to the model prediction.

3.3 Deep Learning Algorithms

3.3.1 Multilayer Perceptron (MLP)

A Perceptron is a single neuron model that was a precursor to larger neural net-

works. It is a field of study that investigates how simple models of biological

brains can be used to solve difficult computational tasks like the predictive mod-

eling tasks we see in machine learning. Mathematically, MLPs are capable of

learning any mapping function and have been proven to be a universal approxi-

mation algorithm. The predictive capability of neural networks comes from the

hierarchical or multilayered structure of the networks.
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Neurons

The building block for neural networks are artificial neurons. These are simple

computational units that have weighted input signals and produce an output signal

using an activation function.

Neuron Weights

weights on the inputs are very much like the coefficients used in a regression

equation. Like linear regression, each neuron also has a bias which can be thought

of as an input that always has the value 1.0 and it too must be weighted. For

example, a neuron may have two inputs in which case it requires three weights.

One for each input and one for the bias.

Activation

The weighted inputs are summed and passed through an activation function, some-

times called a transfer function. An activation function is a simple mapping of

summed weighted input to the output of the neuron. It is called an activation

function because it governs the threshold at which the neuron is activated and the

strength of the output signal. Historically simple step activation functions were

used where if the summed input was above a threshold, for example 0.5, then the

neuron would output a value of 1.0, otherwise it would output a 0.0. Traditionally

nonlinear activation functions are used. This allows the network to combine the

inputs in more complex ways and in turn provide a richer capability in the func-

tions they can model. Nonlinear functions like the logistic function also called the

sigmoid function were used that output a value between 0 and 1 with an s-shaped

distribution, and the hyperbolic tangent function also called Tanh that outputs

the same distribution over the range -1 to +1.
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Figure 3.1: Model of simple neuron

Networks of Neurons

Neurons are arranged into networks of neurons. A row of neurons is called a layer

and one network can have multiple layers. The architecture of the neurons in the

network is often called the network topology.

Figure 3.2: Model of a Simple Network
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Input or Visible Layers

The bottom layer that takes input from your dataset is called the visible layer,

because it is the exposed part of the network. Often a neural network is drawn

with a visible layer with one neuron per input value or column in your dataset.

These are not neurons as described above, but simply pass the input value through

to the next layer.

Hidden Layers

Layers after the input layer are called hidden layers because they are not directly

exposed to the input. The simplest network structure is to have a single neuron

in the hidden layer that directly outputs the value. Given increases in computing

power and efficient libraries, very deep neural networks can be constructed. Deep

learning can refer to having many hidden layers in your neural network. They are

deep because they would have been unimaginably slow to train historically, but

may take seconds or minutes to train using modern techniques and hardware.

Output Layer

The final hidden layer is called the output layer and it is responsible for outputting

a value or vector of values that correspond to the format required for the problem.

The choice of activation function in the output layer is strongly constrained by

the type of problem that you are modelling.

MLPs approximate a mapping function from input variables to output vari-

ables. This general capability is valuable for sequence prediction problems (no-

tably time series forecasting) for a number of reasons [1].

• Robust to Noise: Neural networks are robust to noise in input data and in
the mapping function and can even support learning and prediction in the
presence of missing values.

• Non-linear: Neural networks do not make strong assumptions about the
mapping function and readily learn linear and non-linear relationships.

More specifically, MLPs can be configured to support an arbitrary defined but

fixed number of inputs and outputs in the mapping function. This means that:
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• Multivariate Inputs. An arbitrary number of input features can be specified,
providing direct support for multivariate prediction.

• Multi-Step Outputs. An arbitrary number of output values can be specified,
providing direct support for multi-step and even multivariate prediction.

This capability overcomes the limitations of using classical linear methods

(think tools like ARIMA for time series forecasting). For these capabilities alone,

feedforward neural networks are used for time series forecasting [12].

Complexity: Suppose there are n training samples, m features, k hidden lay-

ers, each containing h neurons - for simplicity, and o output neurons. The time

complexity of backpropagation is O(n · m · hk · o · i), where i is the number of

iterations. Since backpropagation has a high time complexity, it is advisable to

start with smaller number of hidden neurons and few hidden layers for training.

Promise of Recurrent Neural Networks

The Long Short-Term Memory, or LSTM, network is a type of Recurrent Neural

Network. Recurrent Neural Networks, or RNNs for short, are a special type of

neural network designed for sequence problems. Given a standard feedforward

MLP network, an RNN can be thought of as the addition of loops to the archi-

tecture. For example, in a given layer, each neuron may pass its signal latterly

(sideways) in addition to forward to the next layer. The output of the network

may feedback as an input to the network with the next input vector. And so on.

The recurrent connections add state or memory to the network and allow it to

learn and harness the ordered nature of observations within input sequences.

Recurrent neural networks contain cycles that feed the network activations

from a previous time step as inputs to the network to influence predictions at

the current time step [4]. These activations are stored in the internal states of

the network which can in principle hold long-term temporal contextual informa-

tion. This mechanism allows RNNs to exploit a dynamically changing contextual

window over the input sequence history.

The promise of recurrent neural networks is that the temporal dependence and

contextual information in the input data can be learned [5].
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3.3.2 Long Short-Term Memory (LSTM)

The key technical historical challenge faced with RNNs is how to train them

effectively. Experiments show how difficult this was where the weight update

procedure resulted in weight changes that quickly became so small as to have no

effect (vanishing gradients) or so large as to result in very large changes or even

overflow (exploding gradients). LSTMs overcome this challenge by design. An

LSTM layer consists of a set of recurrently connected blocks, known as memory

blocks. These blocks can be thought of as a differentiable version of the memory

chips in a digital computer. Each one contains one or more recurrently connected

memory cells and three multiplicative units - the input, output and forget gates -

that provide continuous analogues of write, read and reset operations for the cells.

LSTM Weights

A memory cell has weight parameters for the input, output, as well as an internal

state that is built up through exposure to input time steps.

• Input Weights: Used to weight input for the current time step.

• Output Weights: Used to weight the output from the last time step.

• Internal State: Internal state used in the calculation of the output for this
time step.

LSTM Gates

The key to the memory cell are the gates. These too are weighted functions that

further govern the information flow in the cell. There are three gates:

• Forget Gate: Decides what information to discard from the cell.

• Input Gate: Decides which values from the input to update the memory
state.

• Output Gate: Decides what to output based on input and the memory of
the cell.

The forget gate and input gate are used in the updating of the internal state.

The output gate is a final limiter on what the cell actually outputs. It is these
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gates and the consistent data flow called the constant error carrousel or CEC that

keep each cell stable (neither exploding or vanishing). Unlike a traditional MLP

neuron, it is hard to draw an LSTM memory unit cleanly.

3.4 Metrics for Performance Evaluation

3.4.1 Root Mean Squared Error (RMSE)

A popular way to calculate the error in a set of regression predictions is to use the

Root Mean Squared Error. the metric is sometimes called Mean Squared Error

or MSE, dropping the Root part from the calculation and the name. RMSE is

calculated as the square root of the mean of the squared differences between actual

outcomes and predictions. Squaring each error forces, the values to be positive,

and the square root of the mean squared error returns the error metric back to

the original units for comparison. RMSE provides a gross idea of the magnitude

of error.

RMSE =

√√√√√ n∑
i=0

(predictedi − actuali)2

TotalPredictions
(3.12)

3.4.2 R Squared (R2)

The R2 metric provides an indication of the goodness of fit of a set of predictions

to the actual values. In statistical literature this measure is called the coeffi-

cient of determination. This is a value between 0 and 1 for no-fit and perfect fit

respectively.

3.4.3 Mean Absolute Percentage Error (MAPE)

It gives an idea of how wrong the predictions were. The measure gives an idea

of the magnitude of the error, but no idea of the direction (e.g. over or under
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predicting). A value of 0 indicates no error or perfect predictions.

M =
100

N

n∑
i=0

| Ai − Fi

Ai

| (3.13)

Where N is number of samples, Ai is the actual value and Fi is the forecast or

predicted value at time i.
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CHAPTER 4

DEMAND MODELING

We worked with a rich dataset spanning over two months, with nearly 7 million

taxi trips each month. The data was acquired from a leading Indian transportation

company dealing with app-based taxi rental services. It contains the taxi booking

demand generated by the public, along with user identification numbers, location

in the form of geohash and time.

Let’s look at the few rows of the dataset.
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The goal of our work is to model and predict hourly demand generated at a

6-level geohash, so that taxi allocation can be performed every hour. Every city

can be divided into geohashes for the ease of allocating taxis and locating demand.

A 6-level geohash has six alphanumeric characters and encloses an area of approx-

imately 1.2 km * 0.6 km. For a lower level geohash, namely a 5-level geohash, the

area covered is more than a 6-level geohash and therefore, the precision reduces.

4.1 Data Pre-processing and model fitting

To see where the demand is mostly concentrated, all the 1947 unique geohashes

in the city are sorted in the decreasing order of passenger demand count and we

concentrate on the top 20% of the geohashes in this category.

After running above script.

Table 4.2: Total unique geohashes (1947, 2)

Geohash Demand count

tdr1w4 229853

tdr1v4 113250
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tdr1w7 101031

tdr1y1 94900

tdr1w0 92139

Table 4.3: Top 20% of geohashes (433)

Geohash

tdr1w4

tdr1v4

tdr1w7

tdr1y1

tdr1w0

A macroscopic view of the demand patterns in the city can be obtained by

analysing the top geohashes. The same techniques can be extended to other

geohashes. Hourly demand is defined as the count of passengers opting for a taxi

in an hour at each geohash. Hourly demand for geohasg-1 i.e. tdr1w4.

Table 4.4: Hourly demand for Geohash-1 (tdr1w4)

Index (Time in hours) Geohash Demand

0 tdr1w4 74

1 tdr1w4 89

2 tdr1w4 127

3 tdr1w4 162

4 tdr1w4 183

5 tdr1w4 221
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Line plot of Actual data for geohash-1 (tdr1w4)

In this plot, time is shown on the x-axis with observation values along the y-axis.

Figure 4.1: Line plot of Actual data for geohash-1 (tdr1w4)

Density (distribution) plot

Provides a useful first check of the distribution of observations both on raw obser-

vations and after any type of data transform has been performed.

Figure 4.2: Density plot of geohash-1 (tdr1w4)
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Histogram (distribution) plot

Provides a useful first check of the distribution of observations both on raw obser-

vations and after any type of data transform has been performed.

Figure 4.3: Histogram plot of geohash-1 (tdr1w4)

Box and Whisker Plots

This plot draws a box around the 25th and 75th percentiles of the data that cap-

tures the middle 50 percent of observations. A line is drawn at the 50th percentile

(the median) and whiskers are drawn above and below the box to summarize

the general extents of the observations. Dots are drawn for outliers outside the

whiskers or extents of the data.

Figure 4.4: Box and Whisker Plots
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Lag Scatter Plot

A useful type of plot to explore the relationship between each observation and

a lag of that observation is called the scatter plot. If the points cluster along

a diagonal line from the bottom-left to the top-right of the plot, it suggests a

positive correlation relationship. If the points cluster along a diagonal line from

the top-left to the bottom-right, it suggests a negative correlation relationship.

Either relationship is good as they can be modeled.

Figure 4.5: Lag Scatter Plot

Auto correlation plot

We can quantify the strength and type of relationship between observations and

their lags. In statistics, this is called correlation. A value close to zero suggests a

weak correlation, whereas a value closer to -1 or 1 indicates a strong correlation.
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Figure 4.6: Auto correlation plot

Descriptive Statistics

Table 4.5: Descriptive Statistics of Geohash-1 (tdr1w4)

Characteristic Value

Count 1441

Mean 159.509368

Std (Standard deviation) 98.460309

Min 4

25% 65

55% 164

75% 228

Max 717

4.2 Forecasting with Time series models

4.2.1 Forecasting with Autoregression (AR) Model

We can use this AR model by first creating the model AR() and then calling fit()

to train it on our dataset. This returns an AR Result object. Once fit, we can

use the model to make a prediction by calling the predict() function for a number

of observations in the future. We can see that a 23-lag model was chosen and
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trained.

The AR model with lag 23 gives root mean squared error (RMSE) for test data

of 24.675 and R2 of 0.877. The expected values for the next 24 hours are plotted

compared to the predictions from the model.

Figure 4.7: Line plot of the forecast with AR on actual test dataset.

4.2.2 Forecasting with Moving Average (MA) Model

We can develop a test harness for the problem by splitting the observations into

training and test sets, with only the last 24 observations in the dataset assigned

to the test set as unseen data that we wish to predict.

The residual errors are calculated as the difference between the expected out-

come (TestY) and the prediction (Predictions). Once we have a residual error time

series, we can model the residual error time series using an autoregression (AR)

model. Next, we can predict the residual error using the autoregression model.

The actual residual error for the time series is plotted compared to the predicted

residual error.
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Figure 4.8: Line plot of expected residual error and forecast residual error on ac-
tual test dataset

Now correct predictions with a model of residuals, the RMSE of the corrected

forecasts of Test data is calculated to be 22.804 and R2 of 0.895, which are much

better than persistence model and AR model. Finally, the expected values for the

test dataset are plotted compared to the corrected forecast.

Figure 4.9: Line plot of expected values and corrected forecasts on actual test
dataset

4.2.3 Forecasting with ARIMA Model

An ARIMA model can be created using the Statsmodels library as follows:

• Define the model by calling ARIMA() and passing in the p, d, and q param-
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eters.

• The model is prepared on the training data by calling the fit() function.

• Predictions can be made by calling the predict() function and specifying the
index of the time or times to be predicted.

First, we fit an ARIMA(2,1,2) model. This sets the lag value to 2 for autore-

gression, uses a difference order of 1 to make the time series stationary, and uses

a moving average model of 2. Which gives root mean squared error (RMSE) for

test data of 24.871 and R2 of 0.875. A line plot is created showing the expected

values compared to the predictions.

Figure 4.10: Line plot of expected values and forecast with an ARIMA model on
actual test data

4.2.4 Comparison of Time series models

Table 4.6: Comparison of Time series models for the top 80 geohashes

Algorithm RMSE R2 MAPE

Autoregression (AR) 15.443 0.744 34.12

Moving Average (MA) 15.884 0.729 35.57

ARIMA 17.173 0.754 33.61

A line plot is created showing the expected values compared to the predictions

with different time series models.
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Figure 4.11: Comparison of the actual test data with the forecasts of different
models over one day.

4.3 Forecasting with Machine learning

Below is a sample of the first few lines of geohasg-1 (tdr1w4).

Table 4.7: First few observations of the geohasg-1 (tdr1w4)

Index (Time in hours) Demand

0 74

1 89

2 127

3 162

4 183

5 221

Now convert Time series forecasting problem to Supervised learning problem

using lag features.
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Table 4.8: Time series forecasting as Supervised learning using lag features

Index (Time in hours) X y

1 74 89

2 89 127

3 127 162

4 162 183

5 183 221

We can develop a test harness for the problem by splitting the observations into

training and test sets, with only the last 24 observations in the dataset assigned

to the test set as unseen data that we wish to predict.

Evaluate Algorithms

We have no idea which algorithms will do well on this problem. We will evaluate

algorithms using the Mean Squared Error (MSE) metric. MSE will give a gross

idea of how wrong all predictions are (0 is perfect).

Let’s create a baseline of performance on this problem and spot-check a number

of different algorithms. We will select a suite of different algorithms capable of

working on this regression problem.

The six algorithms selected include:

• Linear Algorithms: Linear Regression (LR), Lasso Regression (LASSO) and
ElasticNet (EN).
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• Non-linear Algorithms: Classification and Regression Trees (CART), Sup-
port Vector Regression (SVR) and k-Nearest Neighbors (KNN).

Let’s compare the algorithms.

It looks like LR has the lowest RMSE, followed closely by LASSO.

Table 4.9: Comparison of Machine learning models for the top 80 geohashes

Algorithm RMSE R2 MAPE

Linear Regression (LR) 27.508 0.631 43.44

Least Absolute Shrinkage and

Selection Operator Regression

(LASSO)

31.612 0.623 45.35

ElasticNet (EN) 31.784 0.628 46.71

K-Nearest Neighbors (KNN) 35.416 0.603 48.24

35



Classification and Regression

Trees (CART)

39.513 0.571 49.89

Support Vector Regression

(SVR)

40.106 0.657 50.37

Let’s take a look at the distribution of scores across all cross-validation folds

by algorithm.

Figure 4.12: Comparison of machine learning algorithms using box plot

We can see similar distributions for the regression algorithms and perhaps a

tighter distribution of scores for LR. The expected values for the next 24 hours

are plotted compared to the predictions from the model.

Figure 4.13: Line plot of the ML forecast on actual test dataset.
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4.4 Forecasting with Multilayer Perceptron (MLP)

We will phrase the time series prediction problem as a regression problem. That is,

given the number of passengers request this hour, what is the number of passengers

request next hour. We can write a simple function to convert our single column

of data into a two-column dataset. The first column containing this hours (t)

passenger count and the second column containing next hours (t+1) passenger

count, to be predicted. After we model our data and estimate the skill of our

model on the training dataset, we need to get an idea of the skill of the model

on new unseen data. For a normal regression problem, we would do this using

k-fold cross-validation. With time series data, the sequence of values is important.

We can develop a test harness for the problem by splitting the observations into

training and test sets, with only the last 24 observations in the dataset assigned

to the test set as unseen data that we wish to predict.

Now we can define a function to create a new dataset as described above. The

function takes two arguments, the dataset which is a NumPy array that we want

to convert into a dataset and the look back which is the number of previous time

steps to use as input variables to predict the next time period, in this case, we

use 3. For example, given the current time (t) we want to predict the value at the

next time in the sequence (t+1), we can use the current time (t) as well as the

two prior times (t-1 and t-2). When phrased as a regression problem the input X

variables are t-2, t-1, t and the output Y variable is t+1.

Let’s take a look at the effect of this function on the first few rows of the
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dataset.

Table 4.10: Reshaped training dataset

X1 X2 X3 y

74 89 127 162

89 127 162 183

127 162 183 221

162 183 221 277

183 221 277 290

We can now fit a Multilayer Perceptron model to the training data. We use a

simple network with 1 input layer, 2 hidden layers with 24 neurons each and an

output layer. The model is fit using mean squared error, if we take the square

root gives us an error score in the units of the dataset.

Once the model is fit, we can estimate the performance of the model on test

dataset. MLP gives root mean squared error (RMSE) for test data of 22.72 and

R2 of 0.86 for geohash-1 (tdr1w4). We can see that the model has an average error

of 23 passengers count on the test dataset.

A line plot is created showing the expected values compared to the predictions.
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Figure 4.14: Line plot of expected values and forecast with MLP model on actual
test data

4.5 Forecasting with LSTM Recurrent Neural

Networks

Time series prediction problems are a difficult type of predictive modeling prob-

lem. Unlike regression predictive modeling, time series also adds the complexity

of a sequence dependence among the input variables. A powerful type of neural

network designed to handle sequence dependence are called recurrent neural net-

works. The Long Short-Term Memory Networks or LSTM network is a type of

recurrent neural network used in deep learning because very large architectures

can be successfully trained.

LSTMs are sensitive to the scale of the input data, specifically when the sigmoid

(default) or tanh activation functions are used. It can be a good practice to rescale

the data, also called standardization. Standardizing a dataset involves rescaling

the distribution of values so that the mean of observed values is 0 and the standard

deviation is 1. This can be thought of as subtracting the mean value or centering

the data. It assumes that your observations fit a Gaussian distribution (bell curve)

with a well behaved mean and standard deviation. We can easily standardize the

dataset using the StandardScaler preprocessing class from the scikit-learn library.
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Table 4.11: standardized dataset

Demand

-0.869864

-0.71747

-0.331407

0.0241784

0.237529

0.623593

The LSTM network expects the input data (X) to be provided with a specific

array structure in the form of: [samples, time steps, features]. Our prepared data

is in the form: [samples, features] and we are framing the problem as one-time

step for each sample. We can transform the prepared train and test input data

into the expected structure using numpy.reshape() as follows:

We are now ready to design and fit our LSTM network for this problem. The

network has a visible layer with 1 input, 2 hidden layers with 24 LSTM blocks or

neurons each and an output layer that makes a single value prediction. The de-

fault sigmoid activation function is used for the LSTM memory blocks. The LSTM

network has memory which is capable of remembering across long sequences. Nor-

mally, the state within the network is reset after each training batch when fitting

the model, as well as each call to model.predict() or model.evaluate(). We can

gain finer control over when the internal state of the LSTM network is cleared
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in Keras by making the LSTM layer stateful. This means that it can build state

over the entire training sequence and even maintain that state if needed to make

predictions.

Once the model is fit, we can estimate the performance of the model on test

data. LSTM gives root mean squared error (RMSE) for test data of 19.95 and R2

of 0.91. We can see that the model has an average error of 20 demand count on

the test data.

A line plot is created showing the expected values compared to the predictions.

Figure 4.15: Line plot of expected and forecast values with LSTM model on actual
test data
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4.6 Comparison of all the selected models

Table 4.12 shows the performance of Long Short Term Memory (LSTM) model as

compared to all other competing models. LSTM achieves the lowest MAPE (31.47

%) and the lowest RMSE (15.303) among all the methods. More specifically,

we can see that Machine learning Models (LR, LASSO, EN, KNN, CART and

SVR) perform poorly (i.e., have a MAPE of 43.44, 45.35, 46.71, 48.24, 49.89 and

50.37 respectively). Time series models further consider historical demand values

for prediction and therefore achieve better performance than machine learning

models.

Table 4.12: Comparison of different models for the top 80 geohashes

Algorithm RMSE R2 MAPE

Autoregression (AR) 15.443 0.744 34.12

Moving Average (MA) 15.884 0.729 35.57

ARIMA 17.173 0.754 33.61

Linear Regression (LR) 27.508 0.631 43.44

Least Absolute Shrinkage and

Selection Operator Regression

(LASSO)

31.612 0.623 45.35

ElasticNet (EN) 31.784 0.628 46.71

K-Nearest Neighbors (KNN) 35.416 0.603 48.24

Classification and Regression

Trees (CART)

39.513 0.571 49.89

Support Vector Regression

(SVR)

40.106 0.657 50.37

Multilayer Perceptron (MLP) 17.712 0.748 38.76

Long Short Term Memory

(LSTM)

15.303 0.770 31.47

A line plot is created showing the expected values compared to the predictions

with different models.
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Figure 4.16: Comparison of the actual test data with the forecasts of selected
models over one day.
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CHAPTER 5

DEMAND PREDICTION APPLICATIONS

The taxi driver sends out information regarding his location every few seconds

using Global Positioning System (GPS). This data can be filtered to find the

supply, i.e., availability of taxis ready to take in customers, at different locations.

If we project supply as a supervised per hour per geohash, supervised learning

modeling can be applied there. Once we have both demand and supply data, we

can aim to address the demand-supply imbalance problem. Another application of

demand analysis is to detect passenger hotspots in the city. Demand prediction is

an integral part of idle taxi reallocation problem. If we know that the demand will

be high in a region and the supply will be low in that region, then we can readily

route more drivers to this high demand region. For example, for a 6 level geohash,

we can accurately predict the demand and supply for the next time interval in that

area. If the demand for taxi is predicted to increase and the supply is predicted to

be low there, we find idle taxis (this information is obtained from the taxi pings

given out during its course) within a few kilometer radius of this location, that

can reach the location in a fixed time and route those taxis there.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Travel demand modeling is an intrinsic part of transportation planning. Analysing

demand can help us in finding passenger hotspots, balancing demand-supply prob-

lem and re-allocating taxis to aid drivers find customers. Deep learning models

such as the Multilayer Perceptron (MLP) and Long Short Term Memory (LSTM)

are evidently effective learners on training data with the LSTM more capable for

recognising longer-term dependencies. The LSTM out-performed the Time series

and machine learning models marginally, but there was not significant difference

in the results of both. However, the LSTM takes considerably longer to train.

In this work, the passenger demand for taxis was modeled and we were able to

achieve Root Mean Squared Error (RMSE) of 15.303 and MAPE of 31% i.e., an

accuracy of 69% at 1 km2 area level, for the most common demand range using

LSTM Recurrent Neural Network (Deep Learning).

A natural extension of our work would be to improve the forecast model by ex-

ploring the correlation between adjacent geohashes. Convolutional neural network

(CNN) and Clustering should be explored in future studies to model the complex

spatial correlation i.e., captures local characteristics of regions in relation to their

neighbors.



APPENDIX A

SUPERVISED LEARNING MODELS

A.1 Machine Learning Algorithms

Linear algorithms:

A.1.1 Linear Regression (Ordinary Least Squares)

Linear regression is a prediction method that is more than 200 years old. Simple

linear regression is a great first machine learning algorithm to implement as it

requires you to estimate properties from your training dataset.

Linear regression assumes a linear or straight line relationship between the

input variables (X) and the single output variable (y). More specifically, that

output (y) can be calculated from a linear combination of the input variables (X).

When there is a single input variable, the method is referred to as a simple linear

regression. In simple linear regression we can use statistics on the training data to

estimate the coefficients required by the model to make predictions on new data.

The line for a simple linear regression model can be written as:

y = b0 + b1 ∗ x (A.1)

Where, b0 and b1 are the coefficients we must estimate from the training data.

b1 =

n∑
i=0

((xi −mean(x)) ∗ (yi −mean(y)))

n∑
i=0

(xi −mean(x))2
=
covariance(x, y)

variance(x)
(A.2)



b0 = mean(y)− b1 ∗mean(x) (A.3)

Where, the i refers to the value of the ith value of the input x or output y.

Linear Regression fits a linear model with coefficients b = (b1, ..., bp) to mini-

mize the residual sum of squares between the observed responses in the dataset,

and the responses predicted by the linear approximation. Mathematically it solves

a problem of the form:

min
b
||Xb− y||22 (A.4)

However, coefficient estimates for Ordinary Least Squares rely on the independence

of the model terms. When terms are correlated and the columns of the design

matrix X have an approximate linear dependence, the design matrix becomes close

to singular and as a result, the least-squares estimate becomes highly sensitive to

random errors in the observed response, producing a large variance. This situation

of multicollinearity can arise.

Complexity : This method computes the least squares solution using a singular

value decomposition of X. If X is a matrix of size (n, p) this method has a cost of

O(np2), assuming that n ≥ p.

A.1.2 Ridge Regression

Ridge regression addresses some of the problems of Ordinary Least Squares by

imposing a penalty on the size of coefficients. The ridge coefficients minimize a

penalized residual sum of squares (also called the `2 − norm).

min
b
||Xb− y||22 + α||b||22 (A.5)
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Here, α ≥ 0 is a complexity parameter that controls the amount of shrinkage: the

larger the value of α, the greater the amount of shrinkage and thus the coefficients

become more robust to collinearity.

Complexity: This method has the same order of complexity as linear regression

A.1.3 LASSO Regression

The Least Absolute Shrinkage and Selection Operator (or LASSO for short) is a

modification of linear regression, like ridge regression, where the loss function is

modified to minimize the complexity of the model measured as the sum absolute

value of the coefficient values (also called the `1 − norm).

It is a linear model that estimates sparse coefficients. It is useful in some con-

texts due to its tendency to prefer solutions with fewer parameter values, effectively

reducing the number of variables upon which the given solution is dependent. For

this reason, the Lasso and its variants are fundamental to the field of compressed

sensing. Under certain conditions, it can recover the exact set of non-zero weights.

Mathematically, it consists of a linear model trained with `1 prior as regularizer.

The objective function to minimize is:

min
w

1

2nsamples

||Xw − y||22 + α||w||1 (A.6)

The lasso estimate thus solves the minimization of the least-squares penalty with

α||w||1 added, where α is a constant and ||w||1 is the `1 − norm of the parameter

vector.

A.1.4 ElasticNet Regression

ElasticNet is a linear regression model trained with L1 and L2 prior as regularizer

i.e., combines the properties of both Ridge Regression and LASSO regression.

This combination allows for learning a sparse model where few of the weights are
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non-zero like Lasso, while still maintaining the regularization properties of Ridge.

We control the convex combination of L1 and L2 using the l1-ratio parameter (ρ).

The objective function to minimize is in this case

min
w

1

2nsamples

||Xw − y||22 + αρ||w||1 +
α(1− ρ)

2
||w||22 (A.7)

Nonlinear algorithms :

A.1.5 K-Nearest Neighbors (KNN)

A simple but powerful approach for making predictions is to use the most similar

historical examples to the new data. This is the principle behind the k-Nearest

Neighbors algorithm.

When a prediction is required, the k-most similar records to a new record

from the training dataset are then located. From these neighbors, a summarized

prediction is made. Similarity between records can be measured many different

ways. A problem or data-specific method can be used. Generally, with tabular

data, a good starting point is the Euclidean distance.

Once the neighbors are discovered, the summary prediction can be made by

returning the most common outcome or taking the average. As such, KNN can

be used for classification or regression problems. There is no model to speak of

other than holding the entire training dataset. Because no work is done until a

prediction is required, KNN is often referred to as a lazy learning method.

Following steps will give you the foundation that you need to implement the

k-Nearest Neighbors algorithm:

• Euclidean Distance : The first step needed is to calculate the distance
between two rows in a dataset. Rows of data are mostly made up of numbers
and an easy way to calculate the distance between two rows or vectors of
numbers is to draw a straight line. This makes sense in 2D or 3D and scales
nicely to higher dimensions. We can calculate the straight line distance
between two vectors using the Euclidean distance measure. It is calculated
as the square root of the sum of the squared differences between the two
vectors.
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distance =

√√√√ n∑
i=0

(x1i − x2i)2 (A.8)

Where x1 is the first row of data, x2 is the second row of data and i is the
index to a specific column as we sum across all columns. With Euclidean
distance, the smaller the value, the more similar two records will be. A value
of 0 means that there is no difference between two records.

Now it is time to use the distance calculation to locate neighbors within a
dataset.

• Get Neighbors : Neighbors for a new piece of data in the dataset are
the k closest instances, as defined by our distance measure. To locate the
neighbors for a new piece of data within a dataset we must first calculate
the distance between each record in the dataset to the new piece of data.
We can do this using Euclidean distance. Once distances are calculated,
we must sort all of the records in the training dataset by their distance to
the new data. We can then select the top k to return as the most similar
neighbors.

Now that we know how to get neighbors from the dataset, we can use them
to make predictions.

A.1.6 Classification and Regression Trees (CART or deci-

sion trees)

Decision trees are a powerful prediction method and extremely popular. They

are popular because the final model is so easy to understand by practitioners and

domain experts alike. Classification and Regression Trees or CART for short is

an acronym introduced by Leo Breiman to refer to Decision Tree algorithms that

can be used for classification or regression predictive modeling problems.

Some advantages of decision trees are:

• Simple to understand and to interpret. Trees can be visualised.

• Requires little data preparation. Other techniques often require data nor-
malisation, dummy variables need to be created and blank values to be
removed. Note however that this module does not support missing values.

• The cost of using the tree (i.e., predicting data) is logarithmic in the number
of data points used to train the tree.

• Able to handle both numerical and categorical data. Other techniques are
usually specialised in analysing datasets that have only one type of variable.
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• Uses a white box model. If a given situation is observable in a model,
the explanation for the condition is easily explained by boolean logic. By
contrast, in a black box model (e.g., in an artificial neural network), results
may be more difficult to interpret.

• Possible to validate a model using statistical tests. That makes it possible
to account for the reliability of the model.

The disadvantages of decision trees include:

• Decision-tree learners can create over-complex trees that do not generalise
the data well. This is called overfitting. Mechanisms such as pruning, set-
ting the minimum number of samples required at a leaf node or setting the
maximum depth of the tree are necessary to avoid this problem.

• Decision trees can be unstable because small variations in the data might re-
sult in a completely different tree being generated. This problem is mitigated
by using decision trees within an ensemble.

• Decision tree learners create biased trees if some classes dominate. It is there-
fore recommended to balance the dataset prior to fitting with the decision
tree.

CART construct a binary tree from the training data. This is the same binary

tree from algorithms and data structures, nothing too fancy (each node can have

zero, one or two child nodes). A node represents a single input variable (X) and

a split point on that variable, assuming the variable is numeric. The leaf nodes

(also called terminal nodes) of the tree contain an output variable (y) which is

used to make a prediction. Once created, a tree can be navigated with a new row

of data following each branch with the splits until a final prediction is made.

Creating a binary decision tree is actually a process of dividing up the input

space. A greedy approach is used called recursive binary splitting. This is a

numerical procedure where all the values are lined up and different split points

are tried and tested using a cost function. The split with the best cost (lowest cost

because we minimize cost) is selected. All input variables and all possible split

points are evaluated and chosen in a greedy manner based on the cost function.

The cost function that is minimized to choose split points is the sum squared error

across all training samples that fall within the rectangle. Splitting continues until

nodes contain a minimum number of training examples or a maximum tree depth

is reached.
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A.1.7 Support Vector Regression (SVR)

Support vector machines (SVMs) are a set of supervised learning methods

used for classification, regression and outliers detection.

The advantages of support vector machines are:

• Effective in high dimensional spaces.

• Still effective in cases where number of dimensions is greater than the number
of samples.

• Uses a subset of training points in the decision function (called support
vectors), so it is also memory efficient.

• Versatile: different Kernel functions can be specified for the decision func-
tion. Common kernels are provided, but it is also possible to specify custom
kernels.

The disadvantages of support vector machines include:

• If the number of features is much greater than the number of samples, avoid
over-fitting in choosing Kernel functions and regularization term is crucial.

• SVMs do not directly provide probability estimates, these are calculated
using an expensive five-fold cross-validation.

The method of Support Vector Classification can be extended to solve regres-

sion problems. This method is called Support Vector Regression (SVR). The model

produced by support vector classification (as described above) depends only on a

subset of the training data, because the cost function for building the model does

not care about training points that lie beyond the margin. Analogously, the model

produced by Support Vector Regression depends only on a subset of the training

data, because the cost function for building the model ignores any training data

close to the model prediction.

A.2 Deep Learning Algorithms

A.2.1 Multilayer Perceptron (MLP)

Multi-layer Perceptron (MLP) is a supervised learning algorithm that learns a

function f(·) : Rm → Ro by training on a dataset, where m is the number of
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dimensions for input and o is the number of dimensions for output. Given a set

of features X = x1, x2, ..., xm and a target y, it can learn a non-linear function

approximator for either classification or regression. It is different from logistic

regression, in that between the input and the output layer, there can be one or

more non-linear layers, called hidden layers.

The advantages of Multi-layer Perceptron are:

• Capability to learn non-linear models.

• Capability to learn models in real-time (on-line learning) using partial-fit.

The disadvantages of Multi-layer Perceptron (MLP) include:

• MLP with hidden layers have a non-convex loss function where there exists
more than one local minimum. Therefore different random weight initializa-
tions can lead to different validation accuracy.

• MLP requires tuning a number of hyperparameters such as the number of
hidden neurons, layers, and iterations.

• MLP is sensitive to feature scaling.

MLPs approximate a mapping function from input variables to output vari-

ables. This general capability is valuable for sequence prediction problems (no-

tably time series forecasting) for a number of reasons.

• Robust to Noise: Neural networks are robust to noise in input data and in
the mapping function and can even support learning and prediction in the
presence of missing values.

• Non-linear: Neural networks do not make strong assumptions about the
mapping function and readily learn linear and non-linear relationships.

More specifically, MLPs can be configured to support an arbitrary defined but

fixed number of inputs and outputs in the mapping function. This means that:

• Multivariate Inputs. An arbitrary number of input features can be specified,
providing direct support for multivariate prediction.

• Multi-Step Outputs. An arbitrary number of output values can be specified,
providing direct support for multi-step and even multivariate prediction.
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This capability overcomes the limitations of using classical linear methods

(think tools like ARIMA for time series forecasting). For these capabilities alone,

feedforward neural networks are used for time series forecasting.

Complexity: Suppose there are n training samples, m features, k hidden lay-

ers, each containing h neurons - for simplicity, and o output neurons. The time

complexity of backpropagation is O(n · m · hk · o · i), where i is the number of

iterations. Since backpropagation has a high time complexity, it is advisable to

start with smaller number of hidden neurons and few hidden layers for training.

A.2.2 Long Short-Term Memory (LSTM)

Promise of Recurrent Neural Networks

The Long Short-Term Memory, or LSTM, network is a type of Recurrent Neural

Network. Recurrent Neural Networks, or RNNs for short, are a special type of

neural network designed for sequence problems. Given a standard feedforward

MLP network, an RNN can be thought of as the addition of loops to the archi-

tecture. For example, in a given layer, each neuron may pass its signal latterly

(sideways) in addition to forward to the next layer. The output of the network

may feedback as an input to the network with the next input vector. And so on.

The recurrent connections add state or memory to the network and allow it to

learn and harness the ordered nature of observations within input sequences.

Recurrent neural networks contain cycles that feed the network activations

from a previous time step as inputs to the network to influence predictions at the

current time step. These activations are stored in the internal states of the network

which can in principle hold long-term temporal contextual information. This

mechanism allows RNNs to exploit a dynamically changing contextual window

over the input sequence history.

The promise of recurrent neural networks is that the temporal dependence and

contextual information in the input data can be learned.

The key technical historical challenge faced with RNNs is how to train them

effectively. Experiments show how difficult this was where the weight update
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procedure resulted in weight changes that quickly became so small as to have no

effect (vanishing gradients) or so large as to result in very large changes or even

overflow (exploding gradients). LSTMs overcome this challenge by design. An

LSTM layer consists of a set of recurrently connected blocks, known as memory

blocks. These blocks can be thought of as a differentiable version of the memory

chips in a digital computer. Each one contains one or more recurrently connected

memory cells and three multiplicative units - the input, output and forget gates -

that provide continuous analogues of write, read and reset operations for the cells.
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