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ABSTRACT 
 

KEYWORDS: Channel Equalization, LLMSE, LMS, RLS 

 
Channel Equalization is a technique used at the receiver to combat intersymbol interference in 

time dispersive channels. The main causes of intersymbol interference are multipath propagation 

or non-linear frequency in channels. Intersymbol interference (ISI) is a signal distortion in 

telecommunication. One or more symbols can interfere with other symbols causing noise or a 

less reliable signal. Different kinds of Equalizer are available include Symbol spaced equalizer, 

Fractionally Spaced Equalizer, Blind Equalization, Decision-Feedback Equalization. An equalizer 

attempts to mitigate ISI and thus improve the receiver's performance but it is not possible to use 

a static equalizer because channel itself may vary with time. So a need for adaptive equalizer 

arises. Adaptive equalization determines the corrective filter in a dynamic manner based on the 

current channel Impulse Response. When using LLMSE (Linear Least Mean Squared Error 

Estimator) a need arises for inverse of covariance matrix which is expensive computationally. So 

we look for adaptation algorithms such as recursive least square (RLS), least mean square 

(LMS). RLS is still computationally expensive compared to LMS. But LMS has slower 

convergence rate than the RLS algorithm. The Proposed algorithm in this thesis has 

convergence rate similar to that of RLS and has lower complexity than LMS algorithm. 
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NOTATION 

 

𝒂 Bold face letters denote column vectors or matrices 

�̂� Estimate of the vector or a scaler 

𝒉 Channel impulse response 

𝑀 Channel Estimator length 

𝐿 Equalizer vector length 

𝑙 Equalizer delay or decoding delay 

𝑛 Time instant 

𝑥 Transmitted symbols 

𝑦 Received signal 

𝒆𝑙 Vector with all zeros except the 𝑙th element which is one 

𝐼𝐿 𝐿 x 𝐿 Identity matrix 

ℎ𝑖 𝑖 th element of vector 𝒉 

𝑮𝒊,𝒋 𝑮(𝑖, 𝑗)th element of matric G 

∆𝒉 Represents change in the vector or matrix from (𝑖 − 1)th to 𝑖th index 

𝒃𝒊:𝒋 Selecting 𝑖th to 𝑗th element of vector 𝒃 
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CHAPTER 1 

 
 

Introduction 

 
 

Time dispersive wireless channels can cause intersymbol interference (ISI), that is, in a multipath 

scattering environment, the receiver sees delayed versions of a symbol transmission, which can 

interfere with other symbol transmissions Multipath Propagation, Bandlimited channels and 

fading are the major causes of ISI. An equalizer attempts to mitigate ISI and thus improve the 

system’s performance. Because ISI channels are prevalent in communications systems, much 

effort has been devoted to developing effective equalizers for such channels. 

Since the channel itself may be time varying need for adaptive equalization arises. There are 

distinct classes of adaptive equalizers such as linear adaptive equalizers and decision-feedback 

equalizers, each having a different overall configuration. They can use any one of the adaptive 

algorithms such as Least mean square (LMS), Signed LMS, Normalized LMS, Variable-step-size 

LMS, and Recursive least squares (RLS). 

 

In this work we will consider linear Equalizers only. As discussed in the abstract when using 

Linear Least Mean Squared Error(LLMSE) Estimator need for the inversion of Autocovaraince 

matrix arises which is computationally expensive so we use Adaptive Algorithms such as 

Recursive Least Square (RLS),Least Mean Square(LMS) to find the equalization weight vector. 

LMS algorithm executes quickly but converges slowly, and its complexity grows linearly with the 

number of weights. The RLS algorithm converges quickly, but its complexity grows significantly. 

Also RLS has stability issues.  

 

In this thesis we propose low complexity channel estimate based adaptive linear equalizer with 

complexity as low as 𝑂(𝑁𝑢(𝑀 + 𝐿)), where 𝑀 is the channel length and 𝐿 is the Equalizer vector 

length and 𝑁𝑢 ≪ 𝑀 and 𝑁𝑢 ≪ 𝐿. Moreover using Dichotomous Coordinate Descent iterations for 

channel estimate and equalizer weight vector computation makes it multiplication free and 

division free which makes it attractive for hardware design. The proposed algorithm updates 

𝑁𝑢 taps of the channel estimator and 𝑁𝑢 taps of the equalizer vector per received sample. 

 

The results are obtained using MATLAB simulations. QPSK Modulated symbols are transmitted 

over the time dispersive channel. 
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For symbol spaced adaptive linear equalizer 2 types of channels considered are one is ped b 

channel with 9 taps and other is uniform Power Delay Profile(PDP) channel with 5 taps. 

The results include scatter plots and Mean Squared Error (MSE) Learning Curve for LLMSE, 

Directly Adaptive RLS, Directly Adaptive NLMS and The Proposed Algorithm. 

The key conclusion is that The Proposed Algorithm performs very close to the Directly Adaptive 

RLS and has complexity as low as that of LMS algorithm. 

 

 
Flow of thesis: 

 

The thesis is organized as follows. 

 

Chapter 2 presents system model used for matlab simulations.This include system model for 

wireless channel , channel estimation and channel equalization. 

 
Chapter 3 discusses adaptive linear equalizers.These include Linear Least Mean Square Error 
Equalizer, Directly Adaptive Least Mean Square and Directly Adaptive Recursive Least Square. 
 
Chapter 4 discusses the Proposed Algorithm and how the computations are made simpler. It also 
discusses Dichotomous Coordinate Descant Algorithm. 
 
Chapter 5 presents simulation results. These include MSE for channel estimation and Scatter 
Plots and Learning curves  for symbol spaced linear equalizer for different adaptive algorithms. 
 
Finally chapter 6 gives the conclusions and future work. 
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Chapter 2 

System Model 

2.1 Channel Model 

 

An important characteristic of the wireless channel is the presence of many different paths 

between the transmitter and the receiver. Due to multipath propagation, more than one version of 

the transmitted signal arrive at the mobile receiver at slightly different times. The interference 

induced by these multiple copies, also known as multipath waves, has become the most 

significant cause of distortion known as fading and Inter-Symbol Interference (ISI). 

 

There are a variety of ways to statistically model the wireless channels in order to represent the 

random behaviour of multipath fading. One simple and popular model represents the fading 
channel 
with a linear and time-varying Channel Impulse Response (CIR) denoted by the function h (t,τ ). 
 

                𝑣(𝑡) 
 
 
 
 

𝑥(𝑡)                                                                   𝑦(𝑡) 
 
 
 

 
Figure 2.1: Continuous Time Channel Model 

 
The Figure 2.1 shows continuous-time channel model of a wireless channel. ℎ (𝑡, 𝜏 ) is the 
Channel Impulse Response (CIR) and 𝑣(𝑡) is the channel noise. The received signal 𝑦 (𝑡) is 
given by 
 

𝑦 (𝑡) =  ℎ(𝑡) ∗ 𝑥(𝑡) + 𝑣(𝑡)                                                                      ( 2. 1  ) 

where * represents convolution. 
 
 
 
 
 
 
 
 
 
 

𝒉(𝑡, 𝜏) Σ

Σ 

Σ 
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                𝑣(𝑛) 
 
 
 

𝑥(𝑛)                                                                   𝑦(𝑛) 
 

 
 
 

Figure 2.2 Discrete Time Channel Model 

 

In digital communication system received signal 𝑦(𝑡) is sampled at 𝑡 = 𝑛𝑇𝑠, where  𝑇𝑠 is the 

sampling period. Consequently, the Channel Impulse Response (CIR) can be written as a 

discrete-time impulse response 𝒉 = (ℎ1, ℎ2, … , ℎ𝑀)𝑇, where 𝑀 is the channel length. Furthermore, 

the transmitted and received signals are shown in discrete-time by their samples at the nth time 

step, 𝑥[𝑛] = 𝑥(𝑛𝑇𝑠) and 𝑦[𝑛] = 𝑦(𝑛𝑇𝑠). 

 

Figure 2.2 shows discrete time channel model and received signal 𝑦(𝑛) is given by 

 

𝑦(𝑛) = 𝒙𝑇(𝑛)𝒉(𝑛) + 𝑣(𝑛)                                            ( 2. 2 ) 

 

2.2 Channel Estimation 

 

 

[
 
 
 
 
 
𝑦(1)
𝑦(2)

⋮
⋮
⋮

𝑦(𝑁)]
 
 
 
 
 

=

[
 
 
 
 
 
𝑥(1) 0 ⋯ 0
𝑥(2) 𝑥(1) 0 ⋮

⋮ ⋮ ⋱ 0
⋮ ⋮ ⋱ 𝑥(1)
⋮ ⋮ ⋱ ⋮

𝑥(𝑁) 𝑥(𝑁 − 1) ⋯ 𝑥(𝑁 − 𝑀 + 1)]
 
 
 
 
 

 𝒉 + 

[
 
 
 
 
 
𝑣(1)
𝑣(2)

⋮
⋮
⋮

𝑣(𝑁)]
 
 
 
 
 

 

 

 

𝒚 = 𝑯𝒉 + 𝒗                                                ( 2. 3 ) 

 

Where 𝑦(1), 𝑦(2),…… , 𝑦(𝑁) are received signal. 𝑥(1), 𝑥(2),…… , 𝑥(𝑁) are transmitted symbols. 
𝒉 is the unknown Channel Impulse response that we are trying to estimate and 𝒗 is the additive 

white Gaussian noise with zero mean and variance 𝜎𝑣
2. 

CIR,𝒉 Σ

Σ 

Σ 
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For the above model from estimation theory least square estimate of the channel impulse 
response 𝒉 is given by  

�̂� = (𝑯𝑯𝑯)−𝟏𝑯𝑯𝒚                                            ( 2. 4 )                                                                                          

 

2.3 Channel Equalization 

The Received signal at time instant n is given by 

𝑦(𝑛) = 𝒙𝑇(𝑛)𝒉(𝑛) + 𝑣(𝑛)                                  ( 2. 5 ) 

Where  

Transmitted symbol vector           𝒙(𝑛) = [ 𝑥(𝑛) 𝑥(𝑛 − 1)…………𝑥(𝑛 − 𝑀 + 1)]𝑇 

Channel Impulse response           𝒉(𝑛) =  [ℎ1(𝑛) ℎ2(𝑛)…………ℎ𝑀(𝑛)]𝑇 

𝑣(𝑛) is the white noise with zero mean and variance 𝜎𝑣
2. 

At time instant n , a  L  Length Linear Equalizer will estimate (n-l)th transmitted symbol as  

x̂(n − l) = 𝒚𝑇(𝑛)𝒇(𝑛)                                                                               ( 2. 6 ) 

Where 𝒚(𝑛) ≜ [𝑦(𝑛) 𝑦(𝑛 − 1)………𝑦(𝑛 − 𝐿 + 1)]𝑇                                          ( 2. 7 ) 

And 𝒇(𝑛) is the equalizer vector obtained by solving normal equations given below. 

𝑮(𝑛)𝒇(𝑛) = 𝝃(𝑛)                                                   ( 2. 8 ) 

Where 

                                                            𝑮(𝑛) = �̅�𝑇(𝑛)�̅�(𝑛) + 𝜎𝑣
2𝑰𝑳                           ( 2. 9 ) 

𝝃(𝑛) = �̅�𝑇(𝑛)𝒆𝑙                                                           ( 2. 10 ) 

𝒆𝑙 is (𝐿 + 𝑀 − 1) x 1 vector of all zeros expect one at 𝑙th position. 

�̅�(𝑛) is the channel convolution matrix at time instant n. Since channel impulse response is 

unknown channel estimates �̂�(𝑛) are used to form �̅�(𝑛) as follows. 

 

�̅�(𝑛) =  

[
 
 
 
 
 
 
 
 
 
 
ℎ1(𝑛) 0 ⋯ 0

ℎ2(𝑛) ℎ1(𝑛 − 1) ⋯ ⋮

⋮ ℎ2(𝑛 − 1) ⋱ ⋮

ℎ𝑀(𝑛) ⋮ ⋱ ⋮

0 ℎ𝑀(𝑛 − 1) ⋱ ⋮
⋮ 0 ⋱ 0
⋮ ⋮ ⋱ ℎ1(𝑛 − 𝐿 + 1)

⋮ ⋮ ⋱ ℎ2(𝑛 − 𝐿 + 1)
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ℎ𝑀(𝑛 − 𝐿 + 1)]

 
 
 
 
 
 
 
 
 
 

                                                          ( 2. 11 ) 
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Chapter 3 

Adaptive Linear Equalizers 

 

3.1 Introduction 

 

Channel equalization is the process of reducing amplitude, frequency and phase distortion in a 

channel with the intent of improving transmission performance. This helps to remove errors 

produced due to inter symbol interference. Time-dispersive channels can cause inter-symbol 

interference (ISI). An equalizer attempts to mitigate ISI and thus improve the receiver's 

performance but here it is not possible to use a static equalizer. Because channels' impulse 

response vary with time. So a need for adaptive equalizer arises. Adaptive equalization 

determines the corrective filter in a dynamic manner based on the current channel transfer 

function. The same basic adaptive equalization principles (identification and correction) apply to 

both analog and digital communication systems. A model of the channel impulse response is 

determined based on information obtained from the transmitted signal, then a receiver filter that 

mitigates the channel distortion is synthesized. Many methods exist for both the identification and 

correction processes of adaptive equalization. The inter-symbol interference imposes the main 

obstacles to achieving increased digital transmission rates with the required accuracy. ISI 

problem is resolved by channel equalization. Frequently the channel parameters are not known 

in advance and moreover they may vary with time, in some applications significantly. Hence, it is 

necessary to use the adaptive equalizers, which provide the means of tracking the channel 

characteristics. 

 

3.2 Symbol Spaced Linear Equalizer 

 

A Symbol-Spaced linear equalizer consists of a tapped delay line that stores samples from the 

input signal. Once per symbol period, the equalizer outputs a weighted sum of the values in the 



 

7 
 

delay line and updates the weights to prepare for the next symbol period. This class of equalizer 

is called Symbol-Spaced because the sample rates of the input and output are equal. In typical 

applications, the equalizer begins in training mode to gather information about the channel, and 

later switches to decision-directed mode.  

Here, the new set of weights depends on these quantities: 

a) The current set of weights 

b) The input signal 

c) The output signal 

The advantage of symbol spaced equalizer is that it may offer lower complexity in some cases 

(not always). In most of the communication application we do not use symbol spaced equalizer 

because it is sensitive to timing phase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Adaptive Linear Equalizer Structure 

CIR , h  𝜮 

Linear 
Equalizer 

f 

𝜮 

Adaptive 
Algorithm 

Delay,𝒍 

+ 

− 

+ 

+ 

𝑥(𝑛) 

𝑣(𝑛) 

𝑦(𝑛) 
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3.3 Direct Adaptive Least Mean Square (DA LMS) 

 

Least mean squares (LMS) algorithms are a class of adaptive filter used to mimic a desired filter 

by finding the filter coefficients that relate to producing the least mean squares of the error signal 

(difference between the desired and the actual signal). It is a stochastic gradient descent method 

in that the filter is only adapted based on the error at the current time. LMS filter is built around a 

transversal (i.e. tapped delay line) structure. Two practical features, simple to design, yet highly 

effective in performance have made it highly popular in various application. LMS filter employ, 

small step size statistical theory, which provides a fairly accurate description of the transient 

behaviour.  

 

 

Figure 3.2: Adaptive Filter Structure 

 

Figure 3.2 shows block diagram of an adaptive filter. Where 

𝑥(𝑛) =Input signal to linear filter at time instant n 

𝑦(𝑛) =Output signal to linear filter at time instant n 

𝑑(𝑛) =Desired signal at time instant n 

𝑓(𝑛) =Weight vector at time instant n 

𝑒(𝑛) = 𝑑(𝑛) − 𝑓(𝑛 − 1) ∗ 𝑥(𝑛) which is the a priory estimation error at time instant n  

𝑒(𝑛) is feedback to the adaptive algorithm which updates the weight vector according to the 

error. 

 LMS ITERATION 

𝑓(𝑛) =  𝑓(𝑛 − 1) + 𝜇 𝑥(𝑛)∗(𝑑(𝑛) − 𝑓(𝑛 − 1)) 

 =  𝑓(𝑛 − 1) + 𝜇 𝑥(𝑛)∗(𝑒(𝑛))                                                           ( 3. 1 ) 

Where 𝜇 is the positive step size. 

LMS algorithms executes quickly but converge slowly, and its complexity grows linearly with the 
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no of weights. LMS is also known for its Computational simplicity. 

 

NORMALISED LMS ITERATION 

 

𝑓(𝑛) =  𝑓(𝑛 − 1) +
𝜇

(𝜀+||𝑥(𝑛||2)
 𝑥(𝑛)∗(𝑒(𝑛))                                                      ( 3. 2 ) 

                                         𝑓(0) = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝐿𝑥1 𝑧𝑒𝑟𝑜𝑠 

Where 𝜇 is the positive step size and 𝜀 is small positive number. 

In DA NLMS we will start with Equalization weight vector 𝑓(0) = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝐿𝑥1 𝑧𝑒𝑟𝑜𝑠 and keep 

updating the weight vector 𝑓 according to the above update equation. 

 

3.4 Direct Adaptive Recursive Least Square (DA RLS) 

The Recursive least squares (RLS) adaptive filter is an algorithm which recursively finds the filter 

coefficients that minimize a weighted linear least squares cost function relating to the input 

signals. This in contrast to other algorithms such as the least mean squares (LMS) that aim to 

reduce the mean square error. In the derivation of the RLS, the input signals are considered 

deterministic, while for the LMS and similar algorithm they are considered stochastic. Compared 

to most of its competitors, the RLS exhibits extremely fast convergence. However, this benefit 

comes at the cost of high computational complexity, and potentially poor tracking performance 

when the filter to be estimated changes.  

As illustrated in Figure 3.2, the RLS algorithm has the same to procedures as LMS algorithm, 

except that it provides a tracking rate sufficient for fast fading channel, moreover RLS algorithm 

is known to have the stability issues. 

 

RLS ITERATION 

               𝑃𝑖 = 𝜆−1[𝑃𝑖−1 −
𝜆−1𝑃𝑖−1𝑥(𝑛)∗𝑥(𝑛)𝑃𝑖−1

1+𝜆−1𝑥(𝑛)𝑃𝑖−1𝑥(𝑛)∗
                                                            ( 3. 3 ) 

 

𝑓(𝑛) =  𝑓(𝑛 − 1) + 𝑃𝑖𝑥(𝑛)∗(𝑒(𝑛))                                                            ( 3. 4 ) 

Initial Conditions 

𝑃0 =  𝜀𝐼   and 0 ≪ 𝜆 ≤ 1 

In simulation we will start with weight vector 𝑓(0)and keep updating the weight vector 𝑓 

according to the update equation 3.4. 
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Chapter 4 

The Proposed Algorithm 

 
This chapter describes in detail the proposed low complexity channel estimation based adaptive 

linear equalizer. The equalizer exploits the dichotomous coordinate descent (DCD) iterations for 

the estimate of the equalizer weight as well as channel estimate. The proposed technique has as 

low complexity as 𝑂(𝑁𝑢(𝐿 +  𝑀)) operations per sample, where 𝐿 and 𝑀 are the equalizer and 

channel estimator length, respectively, and 𝑁𝑢 is the number of iterations such that   𝑁𝑢 ≪ 𝐿 and 

𝑁𝑢 ≪ 𝑀.The main idea used in this algorithm is that for every time instant n, channel Estimator is 

updated 𝑁𝑢times and also the equalizer vector is update 𝑁𝑢 times. Because of this important 

assumption we get simplified recursions and we successfully avoid inverse of a matrix as well as 

matrix multiplications. 

 

We start with the normal Equations  

𝐆(n)𝐟(n) = 𝛏(n)                                                                         ( 4. 1 ) 

  

Where 𝑮(𝑛) = �̅�𝑇(𝑛)�̅�(𝑛) + 𝜎𝑣
2𝑰𝑳 

             𝝃(𝑛) = �̅�𝑇(𝑛)𝒆𝑙       

At every time instant 𝑛, 𝑮(𝑛) and 𝝃(𝑛) are known. But calculation of 𝑮(𝑛) are expensive and so 

we come up with the below low complexity algorithm. 

 

4.1 The Assumptions 

 

Following are the assumptions  

a) For every time sample  𝑛 , the channel estimate �̂�(𝑛) can be up-dated 𝑁𝑢 times. We will 

be using index 𝑖 = (𝑛 − 1)𝑁𝑢 + 𝑘, where 𝑘= 1,…..,𝑁𝑢,to indicate such an update. 

Correspondingly, the sequence of the normal equations to be solved in the MMSE LE is 

now given by 

 𝐆(i)𝐟(i) = 𝛏(i)                                                                            ( 4. 2 ) 

b) For every 𝑖, the channel estimator updates only one, 𝑝(𝑖)th ,element in �̂�(𝑖) 

 

ĥp(i)(i) =  ĥp(i)(i − 1) + Δĥ(i)                                                    ( 4. 3 ) 

Where 𝛥ℎ̂(𝑖) is the change in 𝑝(𝑖)𝑡ℎ element of channel estimate. 
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c) For every 𝑖, only one q(𝑖)th, equalizer coefficient in �̂�(𝑖) is updated as 

f̂q(i)(i) =  f̂q(i)(i − 1) + ∆f̂(i)                                                    ( 4. 4 ) 

 

Where ∆𝑓(𝑖)is the change in 𝑞(𝑖)𝑡ℎ element of channel equalization vector. 

d) Channel convolution matrix can be approximated for each 𝑖 as  

 

𝑯(𝑖) =

[
 
 
 
�̂�(𝑖) 0 ⋯ 0

0 �̂�(𝑖) ⋯ ⋮
⋮ ⋮ ⋱ 0
0 0 ⋯ �̂�(𝑖)]

 
 
 

 

 

 

 

4.2 Axilary Normal Equations 

 

 Normal equation for channel equalisation are given by  

 

𝐆(i)𝐟(i) = 𝛏(i)                                                                                 ( 4. 5 ) 

We will convert above equation to auxiliary normal equation as follows. 

At time instant (𝑖 − 1),     𝑮(𝑖 − 1)𝒇(𝑖 − 1) = 𝝃(𝑖 − 1) be approximately solved, and the let the 

approximate solution be �̂�(𝑖 − 1) . 

Let residual vector be 𝐫(i − 1) = 𝛏(i − 1) − 𝐆(i − 1)𝐟(i − 1)                                                         ( 4. 6 ) 

At time instant (𝑖), the above system is to be solved. 

Denote  ∆𝑮(𝑖) = 𝑮(𝑖) − 𝑮(𝑖 − 1) 

               ∆𝝃(𝑖) = 𝝃(𝑖) − 𝝃(𝑖 − 1) 

               ∆𝒇(𝑖) = 𝒇(𝑖) − �̂�(𝑖 − 1) 

Our goal is to find �̂�(𝑖) of system ( 4.5 ) by exploiting the previously obtained solution �̂�(𝑖 − 1) 

and residual vector  𝒓(𝑖 − 1). 

Now 𝒇(𝑖) = �̂�(𝑖 − 1) + ∆𝒇(𝑖) 
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Expanding (4.5) as follows 

𝑮(𝑖) [�̂�(𝑖 − 1) + ∆𝒇(𝑖)] = 𝝃(𝑖) 

𝑮(𝑖) ∆𝒇(𝑖) = 𝝃(𝑖) − 𝑮(𝑖)�̂�(𝑖 − 1) 

       = 𝝃(𝑖) − 𝑮(𝑖 − 1)�̂�(𝑖 − 1) − ∆𝑮(𝑖) �̂�(𝑖 − 1) 

       = 𝒓(𝑖 − 1) + ∆𝝃(𝑖) −  ∆𝑮(𝑖) �̂�(𝑖 − 1) 

Auxiliary system of equations are,   

𝐆(i) ∆𝐟(i) = 𝛏𝟎(i)                                                                    ( 4. 7 ) 

Where 𝝃𝟎(𝑖) =  𝒓(𝑖 − 1) +  ∆𝝃(𝑖) −  ∆𝑮(𝑖) �̂�(𝑖 − 1) 

And obtain an approximate solution of the original system as �̂�(𝑖) = �̂�(𝑖 − 1) + ∆�̂�(𝑖) using DCD. 

So at every index I we have equation ( 4.5).Next we will see how to solve a system of equations 

recursively. 

 

4.2.1 Recursively Solving a system of equations 

Table 4.1 shows steps in solving a system of equations recursively.  

Residual Vector: 𝒓(𝑖) = 𝝃(𝑖) − 𝑮(𝑖)�̂�(𝑖)  

∆𝑮(𝑖) = 𝑮(𝑖) − 𝑮(𝑖 − 1), ∆𝝃(𝑖) = 𝝃(𝑖) − 𝝃(𝑖 − 1) 

 

Step Equation 

 Initialize:  𝒓(0) = 0, 𝝃(0) = 0, �̂�(0) = 0 
 

1 Find ∆𝑮(𝑖) and ∆𝝃(𝑖) 

2 𝝃𝟎(𝑖) = 𝒓(𝑖 − 1) + Δ𝝃(𝑖) − Δ𝑮(𝑖)�̂�(𝑖 − 1) 

3 Solve 𝑮(𝑖)∆𝒇 = 𝝃𝟎(𝑖) ⇒  Δ�̂�(𝑖), 𝒓(𝑖) using one iteration of DCD 

4 �̂�(𝑖) = �̂�(𝑖 − 1) + ∆�̂�(𝑖) 

 

Table 4.1: Recursively Solving a System of Equations 
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4.3 Computation Of 𝚫𝑮(𝒊)�̂�(𝒊 − 𝟏)𝐀𝐍𝐃 ∆𝑮(𝒊) 

 

In the table 4.1, step1 requires finding ∆𝑮(𝑖) which involves computation of the matrix 

 𝑮(𝑖) = �̅�𝑇(𝑖) �̅�(𝑖) with a complexity of 𝒪(𝑀2). Step2 requires 𝒪(𝑀𝐿) operations to compute  

Δ𝑮(𝑖)�̂�(𝑖 − 1). These are the most computationally demanding operations. In this section we 

show how  

these two calculations are simplified using assumptions used from section 4.1. 

 

4.3.1 Computation of 𝚫𝑮(𝒊)�̂�(𝒊 − 𝟏) 

Let 𝑯(𝑖) = 𝑯(𝑖 − 1) + 𝜟(𝑖)  

Now  ∆𝑮(𝑖) = �̅�𝑇(𝑖) �̅�(𝑖) − �̅�𝑇(𝑖 − 1) �̅�(𝑖 − 1)                                                                                 ( 4. 8 ) 

 

∆𝑮(𝑖)�̂�(𝑖 − 1) =  𝜟𝑇(𝑖)𝑯(𝑖 − 1)�̂�(𝑖 − 1) + 𝑯𝑇(𝑖 − 1)𝜟(𝑖)�̂�(𝑖 − 1) + 𝜟𝑇(𝑖)𝜟(𝑖)�̂�(𝑖 − 1)      ( 4. 9 ) 

Now our Goal is to calculate     ∆𝑮(𝑖)�̂�(𝑖 − 1) in recursive fashion which involves three parts to 

simplify 

i. 𝜟𝑇(i)𝐇(i − 1)�̂�(𝑖 − 1) 

ii. 𝑯𝑇(𝑖 − 1)𝜟(𝑖)�̂�(𝑖 − 1) 

iii. 𝜟𝑇(𝑖)𝜟(𝑖)�̂�(𝑖 − 1) 

 

i. 𝜟𝑇(i)𝐇(i − 1)�̂�(𝑖 − 1) 

Denoting  𝒃(𝑖 − 1) = 𝑯(𝑖 − 1)�̂�(𝑖 − 1) 

                   𝒃(𝑖 − 1) = [𝑯(𝑖 − 2) + 𝜟(𝑖 − 1)][�̂�(𝑖 − 2) + ∆�̂�(𝑖 − 1)] 

                                                  = 𝒃(𝑖 − 2) + 𝑯(𝑖 − 2)𝛥�̂�(𝑖 − 1) + 𝜟(𝑖 − 1)�̂�(𝑖 − 1)                     ( 4. 10 ) 

 

Consider term 𝑯(𝑖 − 2)𝛥�̂�(𝑖 − 1) from the equation (4.9) 

𝑯(𝑖 − 2) 𝛥�̂�(𝑖 − 1) =

[
 
 
 
�̂�(𝑖 − 2) 0 ⋯ 0

0 �̂�(𝑖 − 2) ⋯ ⋮
⋮ ⋮ ⋱ 0
0 0 ⋯ �̂�(𝑖 − 2)]

 
 
 

 

[
 
 
 
 

0
⋮

∆𝑓(𝑖 − 1)
0
⋮ ]
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   =  ∆𝑓(𝑖 − 1)�̂�[𝑞(𝑖−1)](𝑖 − 2)                                                                                ( 4. 11 ) 

 

Now consider last term from the equation (4.9) 

𝜟(𝑖 − 1)�̂�(𝑖 − 1) =

[
 
 
 
 
 
 
𝟎𝒑(𝒊−𝟏)−𝟏 𝟎 ⋯ 𝟎

∆ℎ̂(𝑖 − 1) 𝟎𝒑(𝒊−𝟏)−𝟏 ⋯ ⋮

𝟎 ∆ℎ̂(𝑖 − 1) ⋱ 𝟎𝒑(𝒊−𝟏)−𝟏

⋮ 𝟎 ⋱ ∆ℎ̂(𝒊 − 𝟏)
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝟎 ]

 
 
 
 
 
 

 

[
 
 
 
 
�̂�𝟏(𝑖 − 1)

�̂�𝟐(𝑖 − 1)
⋮
⋮

�̂�𝑳(𝑖 − 1)]
 
 
 
 

=

[
 
 
 
 
 
 
 
 

𝟎
⋮
𝟎

�̂�𝟏(𝑖 − 1)
⋮

�̂�𝑳(𝑖 − 1)
𝟎
⋮
𝟎 ]

 
 
 
 
 
 
 
 

 

                                 = 𝜟�̂�(𝑖 − 1)�̂�[𝒑(𝒊−1)](𝑖 − 1)                                                                                  ( 4. 12 ) 

 

So recursion for b now becomes 

𝒃(𝑖 − 1) = 𝒃(𝑖 − 2) + ∆�̂�(𝑖 − 1)�̂�[𝒒(𝑖−1)](𝑖 − 2) + 𝜟�̂�(𝑖 − 1)�̂�[𝒑(𝑖−1)](𝑖 − 1)                         ( 4. 13 ) 

Now coming back to first term in ∆𝑮(𝑖)�̂�(𝑖 − 1) 

𝜟𝑻(𝑖)𝑯(𝑖 − 1)�̂�(𝑖 − 1) =  𝜟𝑻(𝑖)𝒃(𝑖 − 1) 

=

[
 
 
 
 
 
 
𝟎𝒑(𝒊)−𝟏 𝟎 ⋯ 𝟎

∆�̂�(𝑖) 𝟎𝒑(𝒊)−𝟏 ⋯ ⋮

𝟎 ∆�̂�(𝑖) ⋱ 𝟎𝒑(𝒊)−𝟏

⋮ 𝟎 ⋱ ∆�̂�(𝑖)
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝟎 ]

 
 
 
 
 
 
𝑻

𝒃(𝑖 − 1) =

[
 
 
 
 
𝟎𝒑(𝒊)−𝟏 ∆�̂�(𝑖) 𝟎 ⋯ … 𝟎

𝟎 𝟎𝒑(𝒊)−𝟏 ∆�̂�(𝑖) ⋱ ⋱ ⋮

⋮ ⋮ ⋮ ⋱ ⋱ 𝟎
𝟎 𝟎 𝟎 ⋱ 𝟎𝒑(𝒊)−𝟏 ∆�̂�(𝒊)]

 
 
 
 

 𝒃(𝑖 − 1) 

 

Finally the first part becomes 

𝜟𝑻(𝑖)𝑯(𝑖 − 1)�̂�(𝑖 − 1) = ∆�̂�(𝒊) 𝒃𝒑(𝒊):𝒑(𝒊)+𝑳−𝟏(𝑖 − 1)                                                                     ( 4. 14 ) 

 

ii. 𝑯𝑇(𝑖 − 1)𝜟(𝑖)�̂�(𝑖 − 1) 

This part of recursion is figured out by Madan and I am writing the final result here for the sake of  

completeness. 

Similar to the first part we get following simplified form for second part 

𝑯𝑇(𝑖 − 1)𝜟(𝑖)�̂�(𝑖 − 1) = ∆ℎ̂(𝑖)𝒄𝑀−𝑝(𝑖)+1:𝑀−𝑝(𝑖)+𝐿(𝑖 − 1)                                                              ( 4. 15 ) 
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4.3.2 Computation of ∆𝑮(𝒊) 

Now since 𝑮(𝑖),  ∆𝑮(𝑖) are Symmetric Toeplitz matrices for each update of the channel estimate,  

only the first column of ∆G(i) needs to be updated. 

 

∆G(i) = �̅�𝑇(𝑖) �̅�(𝑖) − �̅�𝑇(𝑖 − 1) �̅�(𝑖 − 1) 

 �̅�𝑇(𝑖) �̅�(𝑖) = [
ℎ̂1(𝑖) ⋯ ℎ̂𝑀(𝑖) 0 ⋯ 0

0 ℎ̂1(𝑖) ⋯ ℎ̂𝑀(𝑖) ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋱

]

[
 
 
 
 
 
 
ℎ̂1(𝑖) 0 ⋯

⋮ ℎ̂1(𝑖) ⋱

ℎ̂𝑀(𝑖) ⋮ ⋱

0 ℎ̂𝑀(𝑖) ⋱
⋮ ⋮ ⋱
0 0 ⋱]

 
 
 
 
 
 

 

 

∆𝑮1,1(𝑖) = ∑ ℎ̂𝑙
2(𝑖) −𝑀

𝑙=1  ℎ̂𝑙
2(𝑖 − 1) = ℎ̂𝑝(𝑖)

2 (𝑖) − ℎ̂𝑝(𝑖)
2 (𝑖 − 1) = ∆ℎ̂(𝑖)[ℎ̂𝑝(𝑖)(𝑖) + ℎ̂𝑝(𝑖)(𝑖 − 1)](4. 16) 

 

∆𝑮1,𝑚(𝑖) =  ∑ ℎ̂𝑙(𝑖) ℎ̂𝑙−𝑚+1(𝑖)
𝑀
𝑙=𝑚 − ℎ̂𝑙(𝑖 − 1) ℎ̂𝑙−𝑚+1(𝑖 − 1)                                         ( 4. 17) 

 

= ℎ̂𝑝(𝑖)−𝑚+1(𝑖 − 1)[ℎ̂𝑝(𝑖)(𝑖) − ℎ̂𝑝(𝑖)(𝑖 − 1)] + ℎ̂𝑝(𝑖)+𝑚−1(𝑖 − 1) [ℎ̂𝑝(𝑖)(𝑖) − ℎ̂𝑝(𝑖)(𝑖 − 1)] 

= ∆ℎ̂(𝑖)[ℎ̂𝑝(𝑖)−𝑚+1(𝑖 − 1) + ℎ̂𝑝(𝑖)+𝑚−1(𝑖 − 1)] for 𝑚 = 2,3… .𝑀 and    𝑚 < 𝑝(𝑖) < 𝑀 −

𝑚 + 1 

 

 

4.4 The Proposed Algorithm 

 

The Above proposed channel estimate based low complexity adaptive equalization algorithm is  

summarized in table 4.2. 
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Step Equation 

 Initialization: 𝑖 = 0,𝑮(0) = 𝜎𝑣
2𝑰𝑳, �̂�(𝟎) = 𝟎, 𝒓(𝟎) = 𝟎, 𝒃(𝟎) = 𝟎, 𝒄(𝟎) = 𝟎 

 

 For 𝑛 = 1,2, ……… 

     For 𝑘 = 1,… , 𝑁𝑢 

1         𝑖 = 𝑖 + 1 

2            Obtain  �̂�(𝑖) , ∆ℎ̂(𝑖 − 1) and postion 𝑝(𝑖) from channel estimator. 

3         𝒛(𝑖) =  𝜟ℎ̂(𝑖)[𝒃𝒑(𝒊):𝒑(𝒊)+𝑳−𝟏(𝑖 − 1) + 𝒄𝑴−𝒑(𝒊)+𝟏:𝑴−𝒑(𝒊)+𝑳(𝒊 − 𝟏) + ∆ℎ̂(𝒊)�̂�(𝑖 − 1) 

 

4         𝝃𝟎(𝑖) = 𝒓(𝑖 − 1) +  𝜟�̂�(𝑖)𝒆𝒍+𝒑(𝑖) − 𝒛(𝑖) 

5         Compute ∆𝐺(1)(𝑖) and update 𝑮(1)(𝑖) = 𝑮(1)(𝑖 − 1) + ∆𝑮(𝟏)(𝑖)  

6         Use one iteration to solve 𝑮(𝑖) ∆𝒇(𝑖) = 𝝃𝟎(𝑖) and obtain ∆𝑓(𝑖), 𝑞(𝑖) and  𝒓(𝑖) 

7          

         𝑓𝑞(𝑖)(𝑖) =  𝑓𝑞(𝑖)(𝑖 − 1) + ∆𝑓(𝑖) 

 

8           𝒃(𝑖 − 1) = 𝒃(𝑖 − 2) + ∆�̂�(𝑖 − 1)ℎ̂[𝑞(𝑖−1)](𝑖 − 2) + 𝛥ℎ̂(𝑖 − 1)�̂�[𝑝(𝑖−1)](𝑖 − 1) 

 

9         𝒄(𝑖 − 1) = 𝒄(𝑖 − 2) + ∆𝑓(𝑖 − 1)�̂�[𝑞(𝑖−1)](𝑖 − 2) + ∆ℎ̂(𝑖 − 1)�̂�[𝑀−𝑝(𝑖−1)+1](𝑖 − 1) 

 

 

Table 4.2 The Proposed Algorithm 

 

4.5 Dichotomous Coordinate Descent Algorithm 

We propose to use the DCD iteration described in Table 4.3, which is simple for implementation 

and shows fast convergence to optimal performance. When using the DCD iteration, it is 

assumed that the equalizer coefficients are represented as 𝑀𝑏-bit fixed-point numbers within an 

interval [−A,A], where A is preferably a power-of-two number. The step-size parameter α is α = 

2−𝑎𝐴, i.e. also a power-of two number. With such settings, operations required in the DCD 

algorithm are only additions as all multiplications and divisions are replaced by bit-shifts. 

If, in addition, the adaptive channel estimator is implemented using the RLS-DCD adaptive filter 

of complexity (𝑁𝑢𝑀) , the increments ∆ℎ̂(𝑖) will be power of two numbers. Therefore, all 

multiplications in Table 4.2 can be replaced by bit-shift operations.  

 

DCD algorithm with one update is summarized in the table 4.3. 
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Step Equation 

 Initialization: 𝒓 = 𝝃𝟎 , α =
𝐴

2
, 𝑎 = 1 

1 𝑞 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗=1,…,𝐿{|𝑟𝑗|} , Go to Step 4 

2 𝑎 = 𝑎 + 1; α = α/2 

3 If 𝑎 > 𝑀𝑏 the algorithm stops 

4 If |𝑟𝑞| < 𝐺𝑞,𝑞  then go to step 2 

5 ∆𝑓 =  𝑠𝑖𝑔𝑛(𝑟𝑞) α 

6 𝑟 = 𝑟 − 𝑠𝑖𝑔𝑛(𝑟𝑞) α 𝐺(𝑞) 

 ∆𝑓(𝑖) = ∆𝑓  , 𝑞(𝑖) = 𝑞, 𝒓(𝑖) = 𝒓 

 

Table 4.3 DCD with one update 
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CHAPTER 5 

 
 

 

Simulation and Results 

 
 

The results are obtained using MATLAB simulations. QPSK modulation is used to simulate the 

system. Two kind of channel models are used one is uniform PDP channel with 5 taps and other 

is ped b channel  of 9 taps.  

 

5.1 Channel Estimation MSE Learning Curves 

We compare learning curves of optimal channel estimator with the DCD based channel 

estimation at SNR =15dB.Channel used is uniform Power Delay Profile(PDP) of 5 taps. 

Estimation error is averaged over 500 channel realizations. 

 

 

 

Figure 5.1: Channel Estimation MSE Optimal vs DCD  
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5.2 Scatter Plots For Channel Equalization 

Scatter plots of LLMSE,Directly Adpative RLS,Directly adaptive NLMS  and the Proposed 

algorithm at SNR=25dB are presented in this section. Channel used is Ped b channel with 9 

taps. 

 

 

 

Figure 5.2: Received Symbols 

 

Figure 5.3: LLMSE Scatter Plot 
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Figure. 5.4: DA LMS Scatter Plot 

 

Figure 5.5: DA RLS scatter plot 

 

 

Figure5.6: The Proposed Algorithm Scatter Plot 
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5.3 Channel Equalization MSE Learning Curves 

 

Learning Curves for symbol spaced channel equalization of LLMSE, Directly Adaptive RLS, 

Directly adaptive NLMS and the proposed algorithm are presented in this section.  

 

 

Figure 5.7 Learning curves for Uniform PDP channel of 5 taps 

Figure 5.7 shows learning curves of channel equalization for static uniform PDP channel of 5 

taps at SNR =15dB . Error is averaged over 500 channel realizations. We can observe that 

proposed algorithm performs very closely with the LLMSE.  

 

Figure 5.8 Learning curves for Ped b channel of 9 taps 
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Figure 5.8 shows learning curves of channel equalization for static Ped b channel of 9 taps at 

SNR =15dB . Error is averaged over 500 channel realizations. We can observe that proposed 

algorithm performs very closely with the LLMSE. 
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CHAPTER 6 

 
Conclusions 

 

In this thesis we presented the low complexity channel estimate based adaptive linear equalizer 

and compared learning curves for the symbol spaced linear equalizer of the LLMSE ,DA RLS , 

DA NLMS algorithms and the proposed algorithm. So we conclude that the proposed low 

complexity channel estimation based adaptive linear algorithm performs very close to the Linear 

Least mean Square Estimator which is the optimal estimator. Moreover, when using the 

dichotomous coordinate descent iterations, computation of the equalizer coefficients is 

multiplication-free and division free, which makes it attractive for hardware design. 

Future work includes extending the proposed algorithm to the fractionally spaced linear 

equalizer. 
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