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ABSTRACT

KEYWORDS: Millimeter-wave; Full-dimensional (FD) MIMO; Channel estima-

tion; Atomic norm; Uniform planar array (UPA); Alternating di-

rection method of multipliers (ADMM).

Millimeter-wave systems are being employed in the latest 5th generation (5G) mobile

networks because of its high data rates in the range of multi-gigabit. The consequence

arises here compared to microwave band is the lesser wavelength and increased path

loss. To overcome this problem 5G adds additional features of beamforming and mas-

sive MIMO. Both the user equipment and the base station in the cellular communication

system may use uniform or non uniform planar arrays. In this project we are only inter-

ested in uniform planar array case and studying the techniques for channel estimation of

millimeter-wave full dimensional MIMO. As we are interested in FD MIMO, the angle

of arrivals (AoA) and angle of departures (AoD) are to be estimated not only in azimuth

plane, but in elevation plane also.

This work is about studying the paper published by Yingming Tsai and Wang (2017).

There the original large scale 4D atomic norm minimization is reformulated as semi-

definite program (SDP) consisting of two decoupled two-level Toeplitz matrices. SDP

is then solved using alternating direction method of multipliers (ADMM) with each

iteration step having closed-form computations.
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‖(.)‖2 L2 Norm
‖(.)‖A Vectorized Atomic Norm
‖(.)‖AM

Matrix Atomic Norm
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CHAPTER 1

Introduction

In the 5th generation (5G) mobile networks, services in the range of multi-gigabit are

attained with the usage of millimeter-wave in the physical layer. The important features

of mmWave spectrum are the massive bandwidth and smaller wavelengths compared to

sub-6GHz bands. For higher data rates and spectrum efficiency, Massive MIMO and

mmWave technologies should be considered jointly. The mmWave full-dimensional

MIMO places uniform or non-uniform planar arrays at both the mobile station and user

equipment, and in the elevation angle domain we expect extra degree of freedom.

For mmWave the key challenge is to overcome the higher path loss and to reduce

shadowing losses. To resolve this issue, introduced beamformed FD MIMO, where

receiver obtains only beamformed channel state information (CSI) not the full CSI. For

mitigating this issue one approach is to estimate mmWave channel by exploiting the

sparse scattering nature of mmWave channels. The earlier techniques for solving this

problem is CS-based methods and subspace methods. In CS-based methods the angular

domain is divided into finite number of grids. Main drawback of this method is grid

resolution limit. And the subspace-based mmWave MIMO channel estimation method

that uses MUSIC algorithm is also proposed. Even though its capable of identifying

multiple paths with high resolution, it is sensitive to antenna position, gain, and phase

errors.

Recently, instead of on-the grid CS-based methods, atomic norm minimization based

off-the grid CS methods are extensively used for spectral estimation, AoA estimation

and for too many other applications. In light of this mmWave FD MIMO channel esti-

mation can be formulated as atomic norm minimization problem. Under specific con-

ditions exact frequency localization is achieved via atomic norm minimization thereby

avoids the basis mismatch problem that existed in grid-based CS techniques. Uniform

planar array is considered for our mmWave beamformed FD-MIMO channel, and both

AoA and AoD estimation is involved. Here the problem becomes four-dimensional

(4D) atomic norm minimization, i.e., both elevation and azimuth angle estimation at



both transmitter and receiver. The original 4D atomic norm minimization involves

block Toeplitz matrices and computational complexity is higher. Our objective is to

reduce the computational complexity by reducing the dimensionality of block Toeplitz

matrices. The problem is reformulated as a semi-definite program (SDP) and further an

efficient algorithm computes the results based on ADMM algorithm.

1.1 Thesis Outline

This thesis is organized as follows:

Chapter 2 explains in detail the prior arts in the area of thesis work. Major de-

velopments till date based on the atomic norm minimization approach is discussed in

detail.

Chapter 3 specifically explains application of atomic norm approach in line spectral

estimation which is actually a 1-dimensional problem of my project work.

Chapter 4 tries to introduce the system model taken for the experiments of millimeter-

wave channel estimation. All the necessary notations and explanations are given in this

chapter.

Chapter 5 explains the underlying theories behind original 4-dimensional atomic

norm minimization formulation for channel estimation.

In Chapter 6, mmWave beamformed full-dimensional MIMO channel estimation

via approximate 4-dimensional atomic norm minimization is explained in detail. In this

work we are going to compare original 4D and approximate 4D atomic norm minimiza-

tion methods for channel estimation. The ADMM algorithm for approximate method

provided at the end of this this chapter involves closed form computations and it reduces

the complexity.

Chapter 7 details the simulation setting and the obtained simulation results. We get

some great advantages using the proposed method of channel estimation.

Chapter 8 summarizes the work done and provides some concluding remarks and

avenues for future work.
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CHAPTER 2

Literature Survey

In next generation of wireless communication (5G) the major underlying technologies

are millimeter-waves, massive MIMO and beamforming. My project work is a com-

bination of these main foundations of 5G, that is millimeter-wave beamformed full-

dimensional MIMO channel estimation based on atomic norm minimization (ANM).

For a better understanding of ANM approach, I referred Gongguo Tang and Recht

(2015), which implements this method in the area of line spectral estimation. Research

work on frequency recovery or estimation from discrete samples of superimposed si-

nusoidal signals is advanced by atomic norm techniques which exploit signal sparsity,

work directly on continuous frequencies, and completely resolve the grid mismatch

problem of previous compressed sensing off grid methods. This paper proposed an

optimal algorithm, Atomic Norm Soft Thresholding (AST) for denoising a mixture of

sinusoids from noisy equispaced samples. AST implementation needs efficient compu-

tation of atomic norm and it can be reformulated as a semi-definite program (SDP). And

the constraint for this SDP involves projecting a matrix onto positive definite cone. This

matrix itself contains one level Toeplitz matrix. Which further solved using Alternating

Direction Method of Multipliers (ADMM). In this paper the Atomic norm minimization

in applied for a 1-dimensional problem of finding component frequencies of a mixture

of sinusoids. Explicit updating rules of ADMM algorithm is given in S. Boyd and Eck-

stein (2011). And additional details are given in the paper, atomic norm denoising with

applications to line spectral estimation by B. N. Bhaskar and Recht (2013).

Later, as an extension into 4-dimensional case I referred Yingming Tsai and Wang

(2017), which is the main paper I relied upon for my thesis work. The paper pro-

poses 4D atomic norm minimization for millimeter-wave beamformed full-dimensional

MIMO channel estimation. The original 4D problem consists of 4 level block Toeplitz

matrices in the positive semi-definite matrix constraint. As this adds too much complex-

ity for channel estimation, the decoupling of 2D direction of arrival (DoA) into 1D level

proposed in the paper Z. Tian and Wang (2017), is extended to reduce the complexity

involved with 4D problem by decoupling it into 2D level.



CHAPTER 3

Prior Art Based on Atomic Norm Minimization

At first, we will try to understand the 1D atomic norm minimization (ANM) in the area

of line spectral estimation. The ANM approach is then reformulated using semi-definite

programming and for efficient implementation, ADMM algorithm is provided for this

1D problem. The details are given below for this model. Our goal is to estimate the

unknown complex amplitudes {cl}kl=1 and corresponding k frequencies {fl}kl=1 in the

torus T = [0, 1] of the signal x(t), t ∈ R, given as a mixture of k complex sinusoids.

x(t) =
k∑
l=1

clexp(i2πflt) ; t ∈ R (3.1)

The intention of line spectral estimation is to estimate the frequencies and amplitudes

of the signal x(t) from the finite, noisy samples y ∈ Cn given by

yj = xj + wj (3.2)

for −m ≤ j ≤ m, where wj ∼ CN (0, σ2) is i.i.d. circularly symmetric complex

Gaussian noise.

We take n = 2m + 1 line spectral observations, x = [x−m, ....., xm]T ∈ Cn. It can

be expressed as a sparse combination of "atoms" a(f) which correspond to observations

due to single frequencies. Defining the vector a(f) ∈ Cn for any f ∈ T = [0, 1]

a(f) =



ei2π(−m)f

:

1

:

ei2π(m)f


∈ Cn (3.3)

Then signal can be rewrite as,

x =
k∑
l=1

cla(fl) =
k∑
l=1

|cl| a(fl)e
iφl (3.4)



Where φl is the phase of l-th frequency component. Thus the signal can be thought of

as a sparse non-negative combination of elements from the atomic set A given by

A =
{
a(f)eiφ, f ∈ [0, 1], φ ∈ [0, 2π]

}
(3.5)

For a general atomic set A, the atomic norm of a vector is defined as the gauge

function associated with the convex hull conv(A) of atoms:

‖x‖A = inf {t > 0 : x ∈ t conv(A)}

= inf

{∑
a

ca : x =
∑
a

caa, a ∈ A, ca > 0

}
(3.6)

Gongguo Tang and Recht (2015) in their paper analyzed the performance of the

atomic norm soft thresholding (AST) based on this model:

x̂ = minimize
x

1

2
‖x− y‖22 + τ ‖x‖A (3.7)

Here the regularization parameter is, τ = ησ
√
n log(n) for some η ∈ (1,∞).

Efficient implementation of numerical procedures to solve the AST require efficient

computation of the atomic norm. The atomic norm admits an equivalent semi-definite

reformulation:

‖x‖A = inf



1
2
(u1 + t)

s.t.

Toep(u) x

x∗ t

 � 0


(3.8)

where Toep(u) denotes a Hermitian Toeplitz matrix with u as its first row and u1 is the

first component of u. The AST problem is then rewritten as,

x̂ = minimize
t,u,x



1
2
‖x− y‖22 + τ

2
(t+ u1)

s.t.

T (u) x

x∗ t

 � 0


(3.9)
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Algorithm 1 Update steps of ADMM algorithm for the implementation of AST

1: tl+1 = Z l
n+1,n+1 + (Λl

n+1,n+1 − τ
2
) /ρ

2: xl+1 = 1
2ρ+1

(y + 2ρzl1 + 2λl1)

3: ul+1 = W
(
T ∗(Z l

0 + Λl
0/ρ)− τ

2ρ
e1

)
. ρ = 1, which is the penalty parameter in augmented Lagrangian

. W is the diagonal matrix with entries, Wii =

{ 1
n

i = 1
1

2(n−i+1)
i > 1

. Introducing the partitions, Z l =

[
Z l

0 zl1
zl
∗
1 Z l

n+1,n+1

]
and Λl =

[
Λl

0 λl1
λl
∗
1 Λl

n+1,n+1

]

4: Z l+1 := argmin
Z�0

∥∥∥∥Z − [T (ul+1) xl+1

xl+1∗ tl+1

]
+ Λl/ρ

∥∥∥∥2
F

5: Λl+1 := Λl + ρ

(
Z l+1 −

[
T (ul+1) xl+1

xl+1∗ tl+1

])
6: return xl+1

6



CHAPTER 4

System Model

For the system model we are considering mmWave FD-MIMO system with M receive

antennas and N transmit antennas that supports elevation and azimuth beamforming

simultaneously. The resulting channel matrix can be expressed in terms of transmit and

receive array response as:

H = BΣAH =
L∑
l=1

σlb(fl)a(gl)
H (4.1)

The matrix Σ = diag(σ) = diag([σ1σ2...σL]T ) is a diagonal matrix with each σl ∈ C

denoting the l-th multipath gain; L denotes the number of paths; the matrices B =

[b(f1)...b(fL)] and A = [a(g1)...a(gL)] denote the receive and transmit array steering

responses. For a linear array with adjacent antenna element separation of half wave-

length, the array response takes the form of a uniformly sampled complex sinusoid

with frequency x ∈ [−1
2
, 1
2
):

cn(x) =
1√
n

[
1 ej2πx....ej2π(n−1))x

]T ∈ Cn×1 (4.2)

The transmitter (Tx) and receiver (Rx) array responses, with the assumption of both

equipped with uniformly spaced planar antenna arrays (UPA), each with half-wavelength

antenna element separations along the elevation and azimuth axis, can be expressed as:

a(gl) = cN1(gl,1)⊗ cN2(gl,2) (4.3)

b(fl) = cM1(fl,1)⊗ cM2(fl,2) (4.4)

with

gl =

{
gl,1 =

1

2
sin(ϑl) cos(ϕl), gl,2 =

1

2
cos(ϑl)

}
(4.5)

fl =

{
fl,1 =

1

2
sin(θl) cos(φl), fl,2 =

1

2
cos(θl)

}
(4.6)



where ϑl, ϕl denote elevation and azimuth angles of the angle of departure (AoD)

of the l-th path, respectively; and θl, φl denote elevation and azimuth angles of the an-

gle of arrival (AoA), respectively. Here, N1,N2 denote the numbers of azimuth and

elevation transmit antennas, respectively, and the total number of transmit antennas

is N = N1N2. Similarly, M1,M2 denote the numbers of azimuth and elevation re-

ceive antennas, respectively, and the total number of receive antennas is M = M1M2.

For the UPA configuration, it can resolve the AoA and AoD in 360◦ range, thereby

ϑl, ϕl, θl, φl ∈ [−π, π] and gl,1 = 1
2

sin(ϑl) cos(ϕl) ∈ [−1
2
, 1
2
), gl,2 = 1

2
cos(ϑl) ∈

[−1
2
, 1
2
), fl,1 = 1

2
sin(θl) cos(φl) ∈ [−1

2
, 1
2
), fl,2 = 1

2
cos(θl) ∈ [−1

2
, 1
2
).

To estimate the channel matrix, the transmitter transmits P distinct beams during P

successive time slots. i.e., in the p-th time slot, the beamforming vector pp ∈ CN×1 is

selected from a set of unitary vectors in the form of Kronecker-product-based codebook,

e.g., pp = pp,1 ⊗ pp,1 where pp,1 ∈ CN1 and pp,2 ∈ CN2 are selected from two DFT

codebooks of dimensions N1 and N2, respectively as in D. Yang and Hanzo (2010). The

p-th received signal vector can be expressed as

yp = Hppsp + wp (4.7)

where wp ∼ CN (0, σ2
wIM) is the additive white Gaussian noise (AWGN) with IM

denoting the M × M identity matrix, and sp denotes the pilot symbol in the p-th time

slot. The receiver collects yp ∈ CM×1 for p = 1...P and concatenates them to obtain the

signal matrix

Y = [y1 y2...yP ] = HPS + W = BΣAHPS + W (4.8)

where P = [p1 p2..pP ] ∈ CN×P ,W = [w1 w2..wP ] ∈ CM×P and S = diag([s1 s2..sP ]) ∈

CP×P . For simplicity, we assume that S =
√
PtIP , where Pt is the power of the pilot

symbol. Then we have

Y =
√

PtHP + W =
√
PtBΣAHP + W (4.9)

Our goal is to estimate the channel matrix H ∈ CM×N from the measurements Y ∈

CM×P . Note that the number of pilots is usually smaller than the number of transmit

antennas, i.e., P < N . Hence, we need to exploit the sparsity of H for its estimation,

which will be discussed in the next section.

8



CHAPTER 5

Channel Estimation via Atomic Norm Minimization

The performance of the mmWave channel estimators based on on-grid methods such

as Compressed Sensing (CS) can be degraded due to grid mismatch. In this section, a

new mmWave channel estimator based on an off-grid CS method is proposed, i.e., the

atomic norm minimization method.

5.1 Background on Multi-dimensional Atomic Norm

First we briefly introduce the concept of multi-dimensional atomic norm in Z. Yang and

Stoica (2016). A d-dimensional (d-dim) atom is defined as

qd(x1, ..., xd) = cn1(x1)⊗ ....⊗ cnd
(xd) (5.1)

where ni is the length of the normalized vector cni
(xi) defined in (4.2) and xi ∈ [−1

2
, 1
2
)

for i = 1,2,..., d. The d-dim atomic set is then given by

A =

{
qd(x1, ..., xd) : xi ∈ [−1

2
,
1

2
), i = 1, ..., d

}
(5.2)

For any vector td of the form td =
∑

l αl qd(xl,1, xl,2, ..., xl,d), its d-dim atomic norm

with respect to A is defined as

‖td‖A = inf {t : td ∈ t conv(A)}

= inf
xl,1,xl,2,...,xl,d∈[− 1

2
, 1
2
),

αl∈C

{∑
l

|αl| : td =
∑
l

αl qd(xl,1, xl,2, ..., xl,d)

}
(5.3)



where conv(A) is the convex hull of A. The d-dim atomic norm of td has following

equivalent form:

‖td‖A = inf
Ud∈C(2nd−1)×(2nd−1−1)×...×(2n1−1)

t∈R



1
2n1n2...nd

Tr(Td(Ud)) + 1
2
t

s.t.

Td(Ud) td

tHd t

 � 0


(5.4)

where Tr(.) is the trace of the input matrix, Ud ∈ C(2nd−1)×(2nd−1−1)×...×(2n1−1) is d-way

tensor and Td(Ud) is a d-level block Toeplitz, which is defined recursively as follows.

Denote nd = (nd, nd−1, ..., n1) and Ud−1(i) = Ud(i, :, :, .., :) for i = −nd + 1,−nd +

2, ..., nd − 1. For d = 1,n1 = (n1) and T1(u1) = Toep(u1) with u1 ∈ C(2n1−1) i.e.,

T1(u1) = Toep(u1) =


u1(0) u1(1) · · · u1(n1 − 1)

u1(−1)) u1(0) · · · u1(n1 − 2)
...

... . . . ...

u1(1− n1) u1(2− n1) · · · u1(0)

 (5.5)

For d ≥ 2, we have

Td(Ud) =


Td−1(Ud−1(0)) Td−1(Ud−1(1)) · · · Td−1(Ud−1(nd − 1))

Td−1(Ud−1(−1)) Td−1(Ud−1(0)) · · · Td−1(Ud−1(nd − 2))
...

... . . . ...

Td−1(Ud−1(1− nd)) Td−1(Ud−1(2− nd)) · · · Td−1(Ud−1(0))


(5.6)

5.2 Atomic Norm Minimization Formulation

In this subsection, we formulate the atomic norm minimization problem for channel

estimation. First, we vectorize the mmWave FD-MIMO channel matrix H in (4.1) as,

h = vec(H)

=
L∑
l=1

σlc
∗
N1

(gl,1)⊗ c∗N2
(gl,2)⊗ cM1(fl,1)⊗ cM2(fl,2)

(5.7)

10



Comparing (5.3) and (5.7), for the mmWave FD-MIMO channel with uniform planar

array (UPA) configuration, the atom has the form of,

q4(g, f) = c∗N1
(g1)⊗ c∗N2

(g2)⊗ cM1(f1)⊗ cM2(f2) (5.8)

and the set of atoms is defined as the collection of all normalized 4D complex sinusoids:

A =

{
q4(g, f) : f ∈ [−1

2
,
1

2
)× [−1

2
,
1

2
), g ∈ [−1

2
,
1

2
)× [−1

2
,
1

2
)

}
(5.9)

The 4D atomic norm for any h defined in (5.7) can be written as:

‖h‖A = inf
fl∈[− 1

2
, 1
2
)×[− 1

2
, 1
2
),

gl∈[− 1
2
, 1
2
)×[− 1

2
, 1
2
),

σl∈C

{∑
l |σl| : h =

∑
l σlq4(gl, fl)

}
(5.10)

The atomic norm can enforce sparsity in the atom set A. On this basis, an optimization

problem will be formulated for the estimation of the path frequencies {fl, gl}. For the

convenience of calculation, we will use the equivalent form of the atomic norm given

by (5.4), i.e.,

‖h‖A = inf
U4∈C(2N1−1)×(2N2−1)×(2M1−1)×(2M2−1)

t∈R



1
2MN

Tr(T4(U4)) + 1
2
t

s.t.

T4(U4) h

hH t

 � 0


(5.11)

where T4(U4) is a 4-level Toeplitz matrix defined in (5.6). Define the minimum fre-

quency separations as

∆min,fi = min
l 6=l′

min {|fl,i − fl′,i| , 1− |fl,i − fl′,i|} (5.12)

∆min,gi = min
l 6=l′

min {|gl,i − gl′,i| , 1− |gl,i − gl′,i|} (5.13)

for i = 1, 2. To show the connection between the atomic norm and the channel matrix,

we states the Theorem 1 in Yingming Tsai and Wang (2017) via extending Theorem 1.2

in Candes and Fernandez-Granda (2014) for 1D atomic norm to 4D atomic norm.

11



If the path component frequencies are sufficiently separated, i.e.,

∆min,fi ≥
1

b(Mi − 1)/4c
(5.14)

∆min,gi ≥
1

b(Ni − 1)/4c
(5.15)

for i = 1, 2, then we have ‖h‖A =
∑

l |σl|, so the component atoms of h can be

uniquely located via computing its atomic norm.

To estimate the mmWave FD-MIMO channel H in (4.1) based on the signal Y in

(4.9) , we then formulate the following optimization problem:

ĥ = min
h∈CMN

µ ‖h‖A +
1

2

∥∥∥y −
√
Pt(P

T ⊗ IM)h
∥∥∥2
2

(5.16)

where y = vec(Y) and µ ∝ σw
√
MNlog(MN) is a weight factor. Using (5.11), (5.16)

can be equivalently formulated as a semi-definite program (SDP):

ĥ = min
U4∈C(2N1−1)×(2N2−1)×(2M1−1)×(2M2−1),

h∈CMN ,t∈R



µ
2MN

Tr(T4(U4)) + µ
2
t

+1
2

∥∥y −
√
Pt(P

T ⊗ IM)h
∥∥2
2

s.t.

T4(U4) h

hH t

 � 0


(5.17)

The above problem is convex, and can be solved by using a standard convex solver.

Suppose the solution to (5.17) is ĥ . Then the estimated channel matrix is given by

Ĥ = vec−1(ĥ), where vec−1(.) is the inverse operation of vec(.). In addition the positive

semi-definite matrix in the constraint is of size (MN +1)× (MN +1) which is of high

computational complexity and needs larger memory requirements. In the next section

we will see an approximation to this method, which resolves this issue.

12



CHAPTER 6

Efficient Algorithm for Channel Estimation Under UPA

6.1 An Approximation to 4D Atomic Norm Minimiza-

tion

Next proposed an approximation to the 4D atomic norm to reduce the computational

complexity. In the paper by Z. Tian and Wang (2017), the authors explore the ap-

proximation of 2D atomic norm to improve the efficiency. Here, tries to extend the

results from 2D atomic norm to 4D atomic norm case. The proposed approximation is

calculated with input H. The channel matrix, H is the sum of σlb(fl)a(gl)
H , in which

both a(gl) and b(fl) are Fourier bases. Different from the vectorized atomic norm, we

introduce the matrix atom

Q(f, g) = b(f)a(g)H (6.1)

and the matrix atom set,

AM =

{
Q(f, g) : f ∈ [−1

2
,
1

2
)× [−1

2
,
1

2
), g ∈ [−1

2
,
1

2
)× [−1

2
,
1

2
)

}
(6.2)

The matrix atomic norm is then given by,

‖H‖AM
= inf

fl∈[− 1
2
, 1
2
)×[− 1

2
, 1
2
),

gl∈[− 1
2
, 1
2
)×[− 1

2
, 1
2
),

σl∈C

{∑
l

|σl| : H =
∑
l

σlQ(fl, gl)

}
(6.3)

The matrix atom set is composed of rank-one matrices, and hence it amounts to atomic

norm of low rank matrices. Since the operator vec(.) is a one-to-one mapping and the

mapping AM → A is also one-to-one, it is straightforward to conclude that ‖H‖AM
=

‖h‖A. Hence, if the component frequencies satisfy the sufficient separation condition

given by (5.14) and (5.15), we have ‖H‖AM
=
∑

l |σl| by Theorem 1.

Finding the harmonic components via atomic norm is an infinite programming prob-

lem over all feasible f and g, which is difficult. For better efficiency, we use SDP(H)



in the Lemma 1 of Yingming Tsai and Wang (2017) to approximate ‖H‖AM
, which is

stated as

For H given by (4.1), we have ‖H‖AM
≥ SDP(H) , where

SDP(H) = inf
U2∈C(2M1−1)×(2M2−1),
V2∈C(2N1−1)×(2N2−1)



1
2M

Tr(T2(U2)) + 1
2N

Tr(T2(V2))

s.t.

T2(U2) H

HH T2(V2)

 � 0


(6.4)

with T2(U2) and T2(V2) being 2-level Toeplitz matrices defined in (5.6).

The above lemma shows that SDP(H) is a lower bound of the matrix atomic norm.

Moreover, the following Lemma 2 of Yingming Tsai and Wang (2017) states that if the

component frequencies are sufficiently separated, then SDP(H) is equivalent to ‖H‖AM
.

If (5.14)-(5.15) hold, then ‖H‖AM
= SDP(H).

Therefore, instead of solving the original 4D atomic norm minimization in (5.17),

we can solve the following SDP

Ĥ = min
H∈CM×N ,

U2∈C(2M1−1)×(2M2−1),
V2∈C(2N1−1)×(2N2−1)



µ
2M

Tr(T2(U2)) + µ
2N

Tr(T2(V2))

+1
2

∥∥√PtHP− Y
∥∥2
F

s.t.

T2(U2) H

HH T2(V2)

 � 0


(6.5)

The size of the positive semi-definite matrix in the constraint is (M + N) × (M +

N), resulting in considerably lower computational complexity and memory requirement

than (5.17).
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Algorithm 2 Update steps of ADMM for Approximate 4D Atomic Norm Minimization

1: Hl+1 = (YPH + 2ρMl
2 + 2Υl

2)(PPH + 2ρIN)−1

2: Ul+1
2 = T∗2(M

l
0 + Υl

0/ρ)− γ
2Mρ

e1

3: Vl+1
2 = T∗2(M

l
1 + Υl

1/ρ)− γ
2Nρ

e1

. Introduced partitions are, Ml =

[
Ml

0 Ml
2

(Ml
2)
H Ml

1

]
and Υl =

[
Υl

0 Υl
2

(Υl
2)
H Υl

1

]
4: Ml+1 = argmin

M∈C(M+N)×(M+N)�0

∥∥∥M− M̃l+1
∥∥∥2
F
,

. where M̃l+1 =

[
T2(U

l+1
2 ) Hl+1

(Hl+1)H T2(V
l+1
2 )

]
−Υl+1/ρ

5: Υl+1 = Υl + ρ

(
Ml+1 −

[
T2(U

l+1
2 ) Hl+1

(Hl+1)H T2(V
l+1
2 )

])
6: return Hl+1
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CHAPTER 7

Simulation Results

7.1 Simulation Setup

1D Atomic Norm Minimization for Line Spectral Estimation

Simulation results in Gongguo Tang and Recht (2015) is tried to plot and the simulation

setup for AST and MUSIC algorithms are included below.

For each experiment, we generated k normalized frequencies f1, ..., fk uniformly

randomly chosen from [0, 1] such that every pair of frequencies are separated by at

least 1/2n. The signal x ∈ Cn is generated according to (I.1) in reference paper with k

random amplitudes independently chosen from χ2(1) distribution (squared Gaussian).

All of the sinusoids were then assigned a random phase (equivalent to multiplying the

magnitude by random unit length complex number). The observation y is produced by

adding complex white Gaussian noise w such that the input signal to noise ratio (SNR)

is −10, 5, 0, 5, 10, 15 or 20 dB. We compared the average values of different metrics of

the various algorithms in 300 random trials for the number of observations (n = 256),

and number of frequencies (k = n/4, n/8, n/16).

AST needs an estimate of the noise variance σ2 to set the regularization parameter

according to (III.12) in paper. In the experiments, we do not provide AST with the true

noise variance. Instead, we construct an estimate for σ with the following heuristic.

We formed the empirical autocorrelation matrix using the MATLAB routine corrmtx

using a prediction order n/3 and averaging the lower 25% of the eigenvalues. We then

use this estimate in equation (III.12) to determine the regularization parameter. We

solved the SDP formulation of AST (III.15) using the Alternating Direction Method of

Multipliers (ADMM). The stopping criteria described in S. Boyd and Eckstein (2011)

was adopted and ρ = 2 for all experiments. We used the dual solution ẑ = y − x̂ to

determine the support of the optimal solution x̂. Once the frequencies f̂l are extracted,



we ran the least squares problem minimize
α

‖Uα− y‖2 where Ujl = exp(i2πjf̂l) to

obtain debiased estimates of the amplitudes.

Implemented the MUSIC method using the MATLAB routine rootmusic. MUSIC

algorithm needs an estimate of the number of sinusoids. Rather than implementing a

heuristic to estimate k, we fed the true k to our solvers. This provides a significant

advantage to this algorithm. AST is not provided with the true value of k, and the noise

variance σ2 in regularization parameter is estimated from y.

Let x̂, {ĉl} ,
{
f̂l

}
denote the signal, the amplitudes and the frequencies estimated

by any of the algorithms - AST or MUSIC. As given in the paper the following error

metrics are used to measure the denoising and frequency localization performance of

various algorithms:

1. The mean squared-error,

MSE = ‖x̂− x‖22 (7.1)

2. Sum of absolute value of amplitudes in the far region F ,

m1 =
∑
l:f̂l∈F

|ĉl| (7.2)

3. The weighted frequency localization error,

m2 =
∑
j

∑
l:f̂l∈Nj

|ĉl|
{

min
fi∈T

d
(
fi, f̂l

)}2

(7.3)

4. Error in approximation of amplitudes in the near region,

m3 = max
j

∣∣∣∣∣∣cj −
∑
l:f̂l∈Nj

ĉl

∣∣∣∣∣∣ (7.4)

5. Let P be the set of experiments and let es(p) be the value of an error metric e of
experiment p ∈ P using the algorithm s. Performance profile Ps(β) specifies the
fraction of experiments where the ratio of the performance of the algorithm s to
the minimum error e across all algorithms for the given experiment is less than β,

Ps(β) =
#
{
p ∈ P : es(p) ≤ β min

s
es(p)

}
#(P)

(7.5)
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4D Atomic Norm Minimization for Millimeter- Wave Beamformed

FD-MIMO Channel Estimation

In this simulation setting, we evaluate the performance of the proposed method in the

paper, i.e., approximate 4D channel estimator for mmWave FD MIMO links with UPA.

We compare the channel estimation performance of the proposed algorithm with origi-

nal 4D problem. The simulation parameters are set as follows. The numbers of transmit

and receive antenna are N = 16 and M = 16, respectively. For UPA, we set N1 = 4, N2

= 4, M1 = 4 and M2 = 4. For the UPA case, the DFT codebooks at the transmitter for

elevation and azimuth are given by,

P1 = [cN1(ψ1,0) cN1(ψ1,1)...cN1(ψ1,P1−1)] ∈ CN1×P1 (7.6)

P2 = [cN2(ψ2,0) cN2(ψ2,1)...cN2(ψ2,P2−1)] ∈ CN2×P2 (7.7)

where P1 and P2 are the sizes of azimuth and elevation codebooks, respectively. The

DFT angles are ψ1,i = i
P1

for i = 0, ..., P1 − 1 and ψ2,i = i
P2

for i = 0, ..., P2 − 1. We

take the Kronecker product of P1 and P2 to form the product codebook P = P1 ⊗ P2

with size P = P1P2. Each beamforming vector has a unit norm, i.e., ‖Pp‖ = 1 for

p = 1, ..., P and rank (P) = P .

The weight factor in (5.15) and (6.2) is set as µ ∝ σw
√
MNlog(MN). The weight

for the augmented Lagrangian is set as ρ = 0.05 as in the paper. gl and fl for each path

are assumed to uniformly take values in [−1
2
, 1
2
)× [−1

2
, 1
2
). The number of paths L = 3.

The signal power is controlled by the signal-to-noise ratio (SNR) which is defined as

SNR = Pt

σ2
w

with σ2
w= 1. In the simulation, we use the CVX package explained in Grant

and Boyd (2014) to compute the original 4D atomic norm-based estimator.

The following metrics are considered for the performance analysis:

1. The normalized mean squared error,

NMSE = E


∥∥∥Ĥ− H

∥∥∥2
F

‖H‖2F

 (7.8)

2. Running time
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7.2 Simulation Results

1D Atomic Norm Minimization for Line Spectral Estimation

I have plotted all the frequency localization error metrics and performance profile plots

as in the simulation setting part of 1D atomic norm minimization method for line spec-

tral estimation. In Figure 7.1 we get a visual indication of superior performance of

AST over subspace method MUSIC, which is obviously due to the off-grid algorithm

of AST. From performance profile plots for all the metrics, which are MSE, m1,m2 and

m3, AST is proved to give better performance especially substantial margin for metrics

m1 and m2. For the simulation we have fixed number of observations n = 256, number

of frequencies k = 16 and signal to noise ratio (SNR) as -10 dB. The experiments are

run over 400 realizations.

For n = 256 samples Figure 7.2-7.4 shows the average values for error metrics

m1,m2 and m3 respectively with increasing SNR. The top, middle and bottom rows of

the plots corresponds to subset of experiments with number of frequencies k = 16, 32

and 64. For obtaining smoother curves the number of simulations are taken as 300.

It can be inferred from these plots that AST always gives low frequency localization

errors with large margin compared to MUSIC algorithm even for low SNRs.
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Figure 7.1: Performance profile plots for Mean squared error, m1, m2 and m3.
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Figure 7.2: Error metric m1 averaged over 300 random experiments.
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Figure 7.3: Error metric m2 averaged over 300 random experiments.
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Figure 7.4: Error metric m3 averaged over 300 random experiments.
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4D Atomic Norm Minimization for Millimeter- Wave Beamformed

FD-MIMO Channel Estimation

Figure 7.5 and 7.6 shows the comparison of channel estimation and running time against

grid size varied from 30 to 180. Here SNR is fixed with 10 dB. As both the original 4D

atomic norm and approximate 4D atomic norm are off grid methods it is very straight

forward that the curves are flat for these performance plots. Each curve is obtained by

averaging over 100 realizations.
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Figure 7.5: Comparison of channel estimation performance against grid size,
SNR=10dB.

In Figure 7.5 normalized mean squared error (NMSE) curve for approximate 4D

atomic norm proves that the error caused by the decoupling of Toeplitz matrices is not

substantially large and it catches up with the original 4D problem which is solved using

CVX package of MATLAB.

From Figure 7.6 we can conclude that the complexity and thereby the running time

for proposed 4D atomic norm method is very low than the original 4D approach. The

computational complexity of the proposed approximate 4D atomic-norm-based channel

24



40 60 80 100 120 140 160 180

 N
G

10-1

100

101

102

103

R
u

n
n

in
g

 t
im

e
(s

e
c
)

Comparison of running time against grid size, SNR=10dB.

4D Atomic Norm

Approximate 4D Atomic Norm

Figure 7.6: Comparison of running time against grid size, SNR=10dB.

estimator is O((M + N)3) per-iteration. In line with the Figure 7.5 this ensures com-

parable NMSE performance with lesser running time over original 4D method. And in

this case also as the methods are off grid, we get flat curves as expected.

Figure 7.7 plots the NMSE (dB) performance with SNR increased from 2 to 10 dB.

The simulations are averaged over 100 trials. We get approximately linearly shifted

curve for approximate 4D atomic norm based method. The 4D atomic norm based

channel estimator achieves better performance than the approximate 4D atomic norm

based channel estimator by about 0.5 - 0.8 dB. This figure also illustrates that with the

approximate method we have advantage in case of running time together the estimator

error (NMSE) is not large.
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CHAPTER 8

Conclusions and Future Scope

8.1 Conclusions

Through this thesis work, we obtained the results that atomic norm based line spectral

estimation is giving better performance than conventional subspace methods like MU-

SIC algorithm. This 1D problem is then extended to 4D case in which we are interested

in millimeter wave beamformed full dimensional MIMO channel estimation under UPA

case. The original 4D atomic norm minimization problem is solved using CVX package

in MATLAB. Further as in 1D case, we obtained semi definite programming approxi-

mation, which later solved using closed form computations of ADMM algorithm. The

approximation gives lesser NMSE difference compared to original 4D problem.

8.2 Future scope

This work can be extended to even lower complexity formulations, that decouples the

original 4-level block Toeplitz matrix in the positive semi-definite constraint of SDP

reformulation into four 1-level Toeplitz matrix constraint. This would be taking lesser

running time and performance comparable to both the 4D algorithms discussed in this

work. The decoupling should be dealt with great care since we are putting relaxations

on transmitter and receiver array responses.
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