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INTRODUCTION

1.1 Memristor

The memristor is a fundamental circuit element that was postulated by Chua[1]

in 1971. In classical circuit theory, there are four fundamental quantities: the

current (i) , the voltage(v), the charge(q) and the flux linkage(φ) . These

quantities can be combined into six pairwise relations out of which two are the

relations between a quantity and its derivative. They are : i = dq
dt , i.e. the

current as the rate of change of charge and v = dφ
dt , i.e. the voltage as the rate

of change of flux. The other three relations are the defined by the fundamen-

tal circuit elements. The resistor relates the voltage(v) and the current(i) as

dv = Rdi. The capacitor relates the charge(q) to the voltage(v) as dq = Cdv

and the inductor relates the flux(φ) to the current(i) as dφ = Ldi. Out of the

six possible pairwise combinations, only five had been identified. Chua real-

ized that the relation between the flux(φ) and the charge(q) had been missing.

Based on his famous symmetry argument, as shown in figure 1.1, he postulated

Figure 1.1: (a)The four fundamental circuit elements (b) I-V curve of the memristor displaying
hysterisis behavior[2]
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the existence of the fourth fundamental circuit element and called it as the

memristor. The memristor provides a static relationship between the charge

and the flux as dφ = Mdq. M denotes the memristance of the memristor.

It is a two-terminal passive element but unlike the other three elements, it

is non-linear. The term memristor originates from the abbreviation of ‘mem-

ory+resistor’. The memristor behaves like a non-linear resistor that exhibits

memory, i.e. the resistance of the memristor depends on the amount of charge

that has flown through it. Thus, its resistance can be changed by applying an

appropriate input voltage/current. It also has a non-volatile nature because it

can maintain its resistance indefinitely in the absence of any external inputs.

All of these properties make it a very promising candidate for implementing

cognitive artificial neural systems.

1.1.1 Physical realization of the memristor

Although the concept of a memristor was postulated way back in 1971, it was

only in 2008 that Strukov et al[2] successfully demonstrated the correlation of

memristance with the non-volatile resistance switching phenomenon observed

in two-terminal metal-insulator-metal structures. Since then, memristors have

been physically realized using various nanoscale two-terminal devices such as

resistive-switching devices, phase-change devices, spintronic memories and fer-

roelectric tunnel junctions. Observation of memristance became possible with

the ability to scale such devices in the nanometer regime. This is because

memristance often strongly depends on the applied electric field which can be

significant in devices with ultra-thin dielectric.

Our work focuses on Resistive Random-Access Memory or RRAM devices.

The RRAM is a two-terminal nanoscale device with a metal-insulator-metal

structure. While there are a variety of materials that exhibit resistive switch-

ing, we shall focus on bipolar metal-oxide RRAM devices. In such devices,
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metals such as Pt,Ti,Al etc are used as the top and bottom electrodes whereas

the insulator is an oxide such as TiOx, HfOx, NiOx, AlOx etc. The resistance

of the device is governed by the growth and rupture of a conductive filament

in the oxide layer. The working principle of a ’bipolar’ metal-oxide RRAM is

explained in figure 1.2. The metal oxide has an initial concentration of oxy-

gen vacancies, primarily at the grain-boundaries for a polycrystalline thin film.

Application of a positive voltage at the top electrode (anode) results in the fol-

lowing phenomena: (i) migration of oxygen ions towards the anode, (ii) flow of

a leakage current through the trap states and (iii) Joule heating which generates

additional oxygen vacancies. These processes result in a rapid increase of the

local concentration of oxygen vacancies, forming a continuous conductive path

or filament (CF) between the two electrodes. This process, which turns the

device ’on’ from the initial ’off’ state, is known as the ‘set’ operation. A cur-

rent compliance is typically used during the ’set’ operation to limit the current

flow through the device and protect it from a permanent dielectric breakdown.

The procedure to turn the ’off’ is known as the ‘reset’ operation. For a bipolar

RRAM as shown in figure 1.2, the ’reset’ operation involves application of an

electric field in the opposite direction (in comparison to the ’set’ operation).

This partially re-oxidizes the CF and increases the overall resistance.

Figure 1.2: (a)Metal-insulator-metal structure of RRAM devices (b)Schematic of the LRS and HRS
state depicting the growth and rupture of the conductive filament (c)Schematic of the I-V curve of
RRAM devices[3]
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1.2 Memristors and Artificial Neural Networks

Over the past decade, rapid advances in deep learning have led to a revo-

lution in the field of artificial intelligence. The success of deep learning can

be attributed to significant improvements in machine learning algorithms and

continuous growth in computing power. At the core of deep learning lies the

artificial neural network, which is a computational model loosely inspired by

the human brain. Computation in ANNs is mainly comprised of massive ma-

trix multiplications which can be broken down into multiple smaller tasks that

can be executed in parallel. This has led to the usage of dedicated hardware

such as GPUs, FPGAs and CMOS-ASICs for executing the massive compu-

tational requirements of deep learning. As the field continues to advance, the

growing complexity of ANNs has caused an exponential increase in the demand

for computing power. Since 2012, the amount of data used for training the

largest deep learning models has roughly doubled every 3.4 months[4] which is

much faster than hardware improvements due to Moore’s law (which itself has

been slowing down). Moreover, the implementation of ANNs on conventional

CMOS digital computers is constrained by the Von Neumann bottleneck (figure

1.3). Due to the physical separation between the memory and the processing

unit, vast amounts of data have to be shuffled back and forth which increases

the execution time as well as the energy consumption while executing ANN

workloads. Thus, there is a need to explore novel computational paradigms in

which the memory and processing units are co-located. In-memory computing

is one such approach, where data is not just stored in the memory but the

computations are also performed at the same physical locations. It aims to

eliminate the Von-Neumann bottleneck by implementing computation directly

within the memory. The properties of a memristor make it a natural choice for

implementing in-memory computing. The memristor crossbar array, as shown

4



Figure 1.3: The von-Neumann bottleneck in conventional computers[5]

in figure 1.4, has shown promising results for implementing ANNs in an in-

memory fashion. The essential idea is to store the synaptic weights of the ANN

as the conductance of the memristors. The crossbar array is used to perform

vector-matrix multiplications of the input data with the synaptic weights in

a single step. A vector of voltage signals is applied at the input rows. The

conductance of each memristor is multiplied with the input voltage to produce

a current. Across each column, the current is summed up in accordance with

the KCL(Kirchoff’s current law). The output currents at each column are a

result of the multiply-add operations.

Figure 1.4: Memristor crossbar array for vector-matrix multiplications in ANNs[6]
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1.3 Memristors and Spiking Neural Networks

Although ANNs have been successful in a variety of tasks such as object recog-

nition, machine translation and speech recognition, they require huge amounts

of labeled data and consume significant amount of energy. Despite using cus-

tomized hardware to implement ANNs, they are nowhere near the energy effi-

ciency of the human brain. Moreover, the backpropagation algorithm used for

training ANNs is unlikely to be the learning mechanism in the human brain[7].

Thus, there have been significant research efforts worldwide in developing a

fundamentally different approach to computing inspired by the human brain.

Spiking neural networks (SNNs) have been proposed as a biologically-plausible

computational model that resembles the learning mechanism of the human

brain. The building blocks of a SNN are the integrate-and-fire neurons and the

synapses connecting the neurons. The fundamental difference between SNNs

and ANNs is that the information is encoded in the form of spikes in SNNs. The

operation of a SNN can be stated as follows: Information about external stimuli

(such as images or speech) is encoded in patterns of spike trains. The arrival of a

spike at a synapse triggers a current flow into the downstream neuron, with the

magnitude of the current weighted by the effective conductance of the synapse.

The incoming currents are integrated by the neuron to determine its membrane

potential, and a spike is fired when the potential exceeds a threshold. Once a

spike is fired, the membrane potential is reset to a resting potential. Learn-

ing in SNNs occurs via the STDP (Spike-timing dependent plasticity) learning

rule. Researchers in neuroscience have discovered that STDP learning is used

in many parts of the human brain to modify synaptic strengths for learning

real-world representations. Similarly, the synaptic weights in a SNN are mod-

ified according to the STDP learning rule. This learning rule can be stated

as follows: if the post-synaptic neuron fires after the pre-synaptic neuron, the
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synapse connecting them is strengthened. Instead, if the pre-synaptic neuron

fires after the post-synaptic neuron, it weakens the synapse connecting them.

As evident, the information required to update the synaptic weight is both local

to the synapse and is local in time. Thus, STDP is a local learning rule unlike

the backprop algorithm used in ANNs which requires global information.

Figure 1.5: Diagram of biological neural subsystem depicting the neurons and synapses. The RRAM
is the electronic equivalent of the biological synapse[8]

It turns out that the properties of a memristor closely resemble the STDP

behavior of biological synapses. Memristors are the natural choice for imple-

menting synapses in SNNs. The conductance of a memristor is analogous to

the synaptic strength of a biological synapse. Its conductance can be changed

by applying appropriate voltage pulses at its top and bottom electrodes similar

to the pre-synaptic and post-synaptic spikes. Moreover, the extent of change

depends on the relative timing of the pre and post-synaptic pulses. STDP has

been intensively investigated in the memristors realized using bipolar RRAM

devices. Many researchers[9][10] have experimentally demonstrated the STDP

characteristics of such devices. Figure 1.6 shows the relative change of the

conductance(synaptic weight) as a function of the relative spike timing for a 4-

nm-thick HfO2 device. This is consistent with the STDP behavior of biological

synapses.
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Figure 1.6: Experimental STDP function of an HfO2 RRAM device[11]

Our work begins with exploring the RRAM device as a memristor and inves-

tigating some of its properties which enable its usage as an artificial synapse.

Our work also incorporates variability in the RRAM compact model. We then

use the RRAM model as a synapse to design spiking neural networks for the

task of spoken digit recognition. We explore both the supervised as well as

the unsupervised approaches for training the spiking neural network. We also

take a detour to demonstrate the usage of the memristor crossbar array for

implementing artificial neural networks.
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The STDP Learning Rule for RRAM

Devices and Variability in RRAM

Devices

The human brain is perhaps the most sophisticated creation of nature. The

brain’s ability to perform complex tasks depends on specialized cells that make

up the nervous system. These specialized cells are the neuronal cells, more

commonly knows as the neurons. Neurons are connected to each other by

synapses and they are essential to the transmission of information between

neurons. Synapses play a major role in the learning process and in the formation

of memory as they control the strength of the signals transmitted between

neurons. The synapses have the ability to weaken or strengthen the signals

over time according to the number of stimuli received during a learning process.

This phenomenon is called synaptic plasticity[12] and it enables the brain to

respond appropriately to changes in the external environment. While there

are many mechanisms that can cause synaptic plasticity, a mechanism known

as Spike-timing dependent plasticity (STDP)[13] has been observed in a wide

variety of neural circuits. As the name suggests, the plasticity of the synapse

depends on the relative timing of the pre-synaptic and post-synaptic spikes.

If the post-synaptic neuron spikes after the pre-synaptic neuron, it implies a

causal relation and the synaptic strength increases. This is called as long-

term potentiation (LTP). Instead, if the post-synaptic neuron spikes before

the pre-synaptic neuron, it implies an anti-causal relation and the synapse is

weakened. This is known as long-term depression (LTD). The change in the

synaptic strength as a function of the relative timings of the pre- and post-

synaptic spikes is called the STDP window and is depicted in figure 2.1. The
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exponential nature of the STDP window with respect to the relative timing of

spikes is quite evident. The exponential function has been the popular choice

to fit experimental STDP data. It is mathematically expressed as

∆w =

Apree
− ∆t
τpre ∆t > 0

Aposte
− ∆t
τpost ∆t < 0

where ∆w denotes the change in the synaptic strength, ∆t is the time delay

between the pre and post-synaptic spikes, τpre and τpost are the time constants.

They are in the order of milliseconds. Apre and Apost are fitting parameters.

Figure 2.1: STDP window[14]

2.1 Memristors and STDP

The memristor can quite closely mimic the STDP behaviour of biological synapses.

The conductance of the memristor can be changed by applying appropriate volt-

age pulses across its terminals. Basically, the conductance of the memristor is

analogous to the synaptic strength of the biological synapse. The strength of a

biological synapse is determined by its pre- and post-synaptic spiking history.

10



Similarly, the conductance of a memristor is a function of the amount of charge

that has flown through it due to the voltage pulses applied to it earlier. There

are certain conditions that need to satisfied to ensure that a RRAM device can

properly function as a synapse:

1. If only one of the pre-synaptic or the post-synaptic neuron fires a spike

within a given time interval, the conductance of the device should not

change. To ensure this, the voltage pulses applied by the pre and post-

synaptic neurons should be below the threshold voltage of the device.

2. If both the pre and post-synaptic neurons fire in close proximity, the con-

ductance should undergo a change. This places further restrictions on the

shape and the amplitude of the voltage pulses. The voltage pulses cannot

be unipolar. For example, if the device threshold is 2 V, the pulses must

have an amplitude less than 2 V.

We apply unipolar voltage pulses of amplitude 1.5 V at both the terminals of

the RRAM as shown in figure 2.2a (denoted by Vpre and Vpost). The net voltage

across the terminals of the device will be Vpre − V post as shown in the figure

2.2b. The effective voltage does not cross the threshold voltage and thus the

state of the device remains unchanged despite both the pre and post synaptic

spikes firing in close proximity. Hence, unipolar pulses aren’t suitable for STDP.

Instead, if bipolar pulses are applied at both the terminals of the device, the

effective voltage across the device goes above the threshold voltage for a certain

duration of overlap. This results in a change in the state of the device as

expected according to the STDP learning rule.
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(a) Unipolar pre and post synaptic pulses (b) Effective voltage across the RRAM

Figure 2.2: Unipolar pulses

(a) Bipolar pre and post synaptic pulses (b) Effective voltage across the RRAM

Figure 2.3: Bipolar pulses
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2.1.1 RRAM Compact models

Compact models of the RRAM device are essential for fast and accurate circuit

simulation. Many compact models of RRAMs[15, 16, 17, 18] have been pro-

posed by researchers. From an application viewpoint, we require a model that

is able to demonstrate the STDP behaviour of synapses. As discussed in the

previous section, the model must be able to handle bipolar voltage pulses. We

briefly discuss a few compact models that are currently available.

Stanford RRAM model

The Stanford RRAM model[15] has become a popular open source model. It is

a physics-based model that takes into account the effect of Joule heating on the

switching characteristics of the device. The conductive filament is modeled as a

cylindrical shaped filament. The gap between the tip of the conductive filament

and the bottom electrode is the internal state variable of the compact model.

This model assumes that the radius of the conductive filament is constant and

thus the switching dynamics are governed only by the evolution of the gap.

The conductance of the device increases as the gap is decreased (conductive

filament grows) by applying a positive voltage across the top and the bottom

electrodes. The rate of change of filament gap(g) is given as:

dg

dt
= V0exp

(
−Ea

kbT

)
sinh

(
γa0qV

toxkbT

)
where V is the applied voltage across the cell, I is the current through the cell,

g is the average tunneling gap distance, Ea is the activation energy, a0 is the

atomic spacing, tox is the oxide thickness, q is the elementary charge, kb is the

Boltzmann constant, γ = γ0−βg3 and T = T0+V.I.Rth, where T0 is the room

temperature, Rth is the equivalent thermal resistance, and I0, g0, V0, 0, β, 0 are

fitting parameters.
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Figure 2.4: Stanford RRAM model[15]

Gonzalez RRAM model

Their model[16] assumes a truncated cone shaped filament whose radius is

highest near the top electrode and decreases towards the bottom electrode.

It uses the redox and diffusion processes to describe the physics behind the

switching mechanism. Two different temperatures are used in the model: the

first one approximates the main conductive filament body that is not destroyed

in the reset process and the other temperature describes the narrowing of the

conductive filament. This model assumes that there is no gap between the

conductive filament and the electrode. Thus, the length of the conductive

filament is constant.

Figure 2.5: Gonzalez et al RRAM model[16]

These models have certain shortcomings, for example, in the Stanford model,

the radius of the conductive filament is fixed and the gap mainly determines

the conductance of the device. In Gonzalez’s model, the gap is assumed to be

negligible and only the radii govern the conductance. A more realistic approach
14



(a) HRS(high resistance state) (b) Intermediate state (c) LRS(low resistance state)

Figure 2.6: Unified RRAM model

would be to have both the gap and the radius as the state variables that govern

the switching dynamics of the device. Moreover, it turns out the these models

cannot directly handle bipolar voltage pulses in the same simulation run. As

we’ve explained above, bipolar pulses are crucial to demonstrate the STDP

learning rule in RRAM devices. In order to improve upon the existing models,

a unified RRAM model has been developed by our research group.

The unified RRAM model is more realistic as it assumes a truncated-cone

shape for the conductive filament along with a variable gap between the filament

and the bottom electrode. This model uses the gap as well as the radius as

internal state variables and it also handles bipolar pulses in a robust manner.

Figure 2.6 depicts the growth of the conductive filament as the device transitions

from HRS(high resistance state) to LRS(low resistance state). We expect the

both the top and bottom radius to increase and the gap to decrease as the

device goes to the LRS state.

This verilog-A model was simulated in both Cadence Virtuoso and QUCS

studio circuit simulator. In our simulations, we performed a quasi-DC sweep

of the RRAM model to observe the SET-RESET behavior of the device (fig-

ure 2.9). The device is in the HRS at t=0. The gap is at its maximum value

and the radii are at their minimum values. As the voltage across the top and
15



(a) Voltage (b) Device Current

(c) Gap (d) Radius

Figure 2.7: Unified RRAM model SET-RESET operation

the bottom electrode is increased gradually, there is a very small increase in

the current of the device. Once the applied voltage crosses a certain thresh-

old, there is an abrupt increase in the device current. The gap of the device

also abruptly decreases to its minimum value and the radii increase to their

maximum values. Thus, the model is able to incorporate the abrupt nature of

the transition from HRS to LRS. Now, the applied voltage starts is decreased

towards negative values and the device goes from the LRS to the HRS. Since

the device is symmetric, the transition from the LRS to the HRS also occurs in

an abrupt fashion. The gap and the radii return to their original state (same

as t=0).

The I-V curve for the SET-RESET operation is shown in figure 2.8
16



Figure 2.8: Current-Voltage curve of the unified RRAM model

2.1.2 STDP demonstration using the unified RRAM model

The STDP behavior of the RRAMmodel is demonstrated by performing certain

simulations to cover all possible scenarios. In the first set of simulations, we

consider four possible scenarios:

1. The pre-synaptic spike occurs before the post-synaptic spike

2. The pre-synaptic spike occurs after the post-synaptic spike

3. Only the post-synaptic synaptic spike occurs

4. Only the pre-synaptic spike occurs

The 1st case corresponds to LTP, i.e the synaptic strength increases which in

turn implies that the conductance of the device should increase. The 2nd case

corresponds to LTD, i.e the synaptic strength decreases which in turn implies

that the conductance of the device should decrease. In the 3rd and the 4th case,

the synaptic strength remains unchanged and thus the conductance should

remain unchanged.

The spikes occur over few 10s of milliseconds and the duration of overlap

is a few milliseconds. Bipolar voltage pulses with peak voltage of 1.5 V are

used as the pre and post-synaptic spikes. The peak voltage of each individual

pulse is less than the threshold voltage of the device. In order to measure the

conductance of the device before and after the event, a test voltage of 100 mV
17



(a) Pre-synaptic before post-synaptic spike (b) Pre-synaptic after post-synaptic spike

Figure 2.9: STDP demonstration using the compact model

is applied and the current is measured. In the below figure, the scenarios (a)

to (d) are depicted. For each scenario, three graphs have been plotted. The

topmost graph shows the pre-synaptic and the post-synaptic spikes. The graph

in the middle shows the effective voltage across the terminals of the device. The

graph at the bottom shows the measured conductance of the device before and

after the spikes have occurred. Clearly, the change in the conductance for each

scenario exhibits the expected STDP nature.

In the second set of simulations, the dependence of the change in the device
18



(c) Only pre-synaptic spike (d) Only post-synaptic spike

Figure 2.9: STDP demonstration using the compact model
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(a) Delay = 4 ms (b) Delay = 5 ms (c) Delay = 6 ms

Figure 2.10: STDP:Effect of time delay between pre and post-synaptic spikes on the conductance
of the device

conductance as a function of the time delay between the pre-synaptic and post-

synaptic spikes is demonstrated. In all the graphs shown below, the pre-synaptic

spike occurs before the post-synaptic spike but the time delay between the spikes

is different in each case. For the graph in fig 2.10a, the delay is 4ms. For the

middle graph in fig 2.10b, it is 5 ms and for the graph in fig 2.10c, the delay is 6

ms. The pre and post-synaptic voltage pulses and the conductance of the device

are plotted in each case. The initial state of the device is the same in all the

cases. From the conductance graphs, it can be observed that as the time delay

between the pre and post-synaptic spike increases, the change in conductance

decreases in an exponential manner. This closely resembles the exponential

dependence of STDP on the relative timing of the pre and post synaptic spikes.

Thus, we have demonstrated that the unified RRAMmodel shows all the desired

properties of the STDP learning rule and it closely resembles the behavior of

biological synapses. The model can now be used to implement the synapses in

spiking neural networks.
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2.2 Variability in RRAM devices

The formation and rupture of the conductive filament in an RRAM is due to

the generation and diffusion of oxygen vacancies. This process is inherently

stochastic and it causes variations in the size (and shape) of the conductive

filament. This leads to variability in the device current. In order to make

the RRAM model more realistic, the model must be able to account for these

variations. Variability in RRAM devices can be of two types : (i) cycle-to-cycle

variations for a given device and (ii) device-to-device variations. Our work

incorporates variability in the unified RRAM model.

As mentioned earlier, the model has two internal state variables, i.e the gap

and the radius of the conductive filament. Both of these play an important

role in determining the device current (and conductance). Variability in the

device current can be modeled as a consequence of fluctuations in the gap and

the radius of the conductive filament. We’ve considered multiple approaches

for adding variations in the gap and the radius.

2.2.1 Direct addition of temperature-dependent gaussian noise

This is the simplest approach to add variations in the gap and the radius. The

standard gaussian distribution is sampled at every time step of the simulation.

The sampled value is scaled by δ(T ) and then added to the original value of

the gap. In mathematical terms,

g = gdet + δg(T )N(0, 1)
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where gdet is the gap obtained from the deterministic equations of the model

and the temperature dependence of the variations is expressed as

δg(T ) =
δ0g(T )

1 + exp

(
Tcrit − T
Tsmth

)
where Tcrit is a threshold temperature above which variations become significant

and δ0g and Tsmth are fitting parameters. Figure 2.11 shows the resultant current-

voltage curve for three set-reset cycles. This approach introduces variations that

appear as noise. The fluctuations occur much more rapidly than observed in

experiments. Moreover, it doesn’t quite capture the cycle to cycle variations as

seen in experimental data.

Figure 2.11: Current-Voltage curve for the direct addition variability model

The corresponding variations in the gap with respect to time are shown in figure

2.12. Variations appear only when the gap is close to its maximum value, i.e the

device is in the HRS. Also, the variations are too rapid and appear unrealistic.

22



Figure 2.12: Variations of the gap for the direct addition variability model

2.2.2 Temperature-dependent Gaussian noise added to the deriva-

tive of the state variable

This method has been implemented in the Stanford model[15]. Their equations

for the gap are :
dg

dt
= V0exp

(
−Ea

kbT

)
sinh

(
γa0qV

toxkbT

)
g|t+∆t =

∫ (
dg

dt
+ δg(T )N(0, 1)

)
dt

where δg(T ) plays the same role as discussed above. We use their approach to

add variability in the unified RRAM model. The graphs below show the effect

of adding variability in the gap. The simulation is performed for three set-reset

cycles.

Observing the I-V plot (log-linear) in figure 2.13, we see that the variations

in the HRS are depicted in a realistic manner by this approach but if we observe

the I-V plot (linear-linear) in figure 2.14, it becomes evident that this approach

is unable to display variability in the LRS. This is because the gap (figure 2.15)

shows significant variation when it is close to its maximum value (device in
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Figure 2.13: Current-Voltage (log-linear) curve for the 2nd variability model depicting HRS varia-
tions

Figure 2.14: I-V (linear-linear) curve for the 2nd variability model depicting absence of LRS varia-
tions

HRS) but no variations at its minimum value (device in LRS).

In order to obtain variability in the LRS, we introduced variations in the radius

of the conductive filament using the same method as done for the gap. The
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Figure 2.15: Evolution of the gap for multiple set-reset cycles

graphs below suggest that the model is still unable to display LRS variability.

The graph of the radius (figure 2.17 indicates that the variations in the radius

are prominent when the radius is close to its minimum value, i.e. when the

device is in the HRS. There is hardly any variation in the radius when it is at

its maximum value, i.e. when the device is in the LRS due to which there aren’t

any LRS variations in the device current. These observations suggest that a

new model that accounts for both the HRS and LRS variations is required.
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Figure 2.16: Current-voltage curve for the 2nd variability model upon adding fluctuations in the
radius

Figure 2.17: Evolution of the radius for multiple set-reset cycles

2.2.3 Variations as a function of the gap and the radius

We take a re-look at the physical process of the filament formation. When the

device is in HRS, it is the gap that mainly determines the device current. So,

fluctuations in the gap will show up as fluctuations in the current whereas the

radius doesn’t have much of a contribution in the HRS current. On the other
26



hand, in the LRS, since the conductive filament has completely grown, the gap

has decreased to its minimum value and minor variations in the gap would not

have any influence on the device current. Instead, it is the radius that mainly

determines the device current in the LRS. So, fluctuations in the radius account

for the variability in the LRS. Also, note that the radius is close to its maximum

value in the LRS and the gap is close to its maximum value in the HRS. This

suggests that the amount of variation in the gap and the radius should itself be

a function of the gap and the radius values. This can be done either in a direct

or an indirect manner. In the unified RRAM model, the gap and radius values

are being clipped to their maximum and minimum values if they are greater

than the their maximum values or lesser than their minimum values. We can

utilize this to check whether the gap is at its maximum value and if so, add

variations in the gap. Similarly, if the radius is greater than its maximum value,

variations are added to the radius. Another approach would be to express the

variations as explicit functions of the gap and the radius values. We do that

using the equations :

gap = gapdeterministic + V (noisegap).
(G1− gap)
gapmax

V (noisegap) =

∫
δgap.N(0, 1)dt

A similar equation is used for the determining the radius variations. The results

are shown in the graphs below. It can be seen that this approach is able to

account for both the HRS variations (log-linear graph in figure 2.18) and the

LRS variations (linear-linear graph in figure 2.19).
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Figure 2.18: Current-voltage (log-linear) curve for the 3rd variability model

Figure 2.19: Current-voltage (linear-linear) curve for the 3rd variability model
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Spiking Neural Networks for

Spoken Digit Recognition

Speech is the most natural form of communication for humans. Rapid advances

in technology have opened up the possibility to communicate with computers

via speech. This has given rise to the field of Automatic Speech Recognition

(ASR). The aim of ASR systems is to convert speech or audio signals into

meaningful text that can be understood by the computer. Researchers have

proposed a wide variety of approaches for speech recognition. Some of the

popular methods are namely, the HMM ( hidden Markov model)[19], SVM

(support vector machines)[20], ANN ( artificial neural network)[21] etc.

Until recent years, speech recognition systems were mainly restricted to re-

search labs as they were sensitive to the surrounding conditions. For example, if

the speech used for training the system is recorded under certain conditions, the

system’s accuracy would sharply decline under alternate testing conditions like

noisy environments. The success of deep learning in recent years has enabled

highly accurate speech recognition outside of carefully-controlled environments.

It has thus become a mainstream technology in the current era and has been

integrated into various real-life applications and devices.

We shall focus on a particular application of speech recognition, namely

Spoken Digit Identification. The automated recognition of isolated spoken dig-

its is crucial to many applications such as telephone based services, bank trans-

actions, voice dialing etc. It is especially useful for the elderly and differently-

abled people. Spoken digit recognition is generally a challenging task due to

two reasons: I) the signals have a very short duration and ii) some digits are

acoustically similar to each other. We focus on digits spoken in English but our

techniques are applicable to any language.
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3.1 Basic principles of automatic speech recog-

nition

The building blocks of any speech recognition system consist of voice signal

preprocessing, feature extraction and finally a pattern recognition system.

Figure 3.1: Speech recognition system

The speech spoken into the microphone is converted to an electric signal. This

signal is a time-domain waveform as illustrated in figure 3.2. The time-domain

waveform needs to be pre-processed appropriately before it can be used for

speech recognition.

Figure 3.2: Time-domain waveform of the spoken digit "7"
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3.2 Feature Extraction

A spectrogram is a powerful way of representing the signal strength, or “loud-

ness”, of a signal over time at various frequencies present in a particular wave-

form. It allows us to explicitly depict the frequency content of the signal as it

varies with time. Spectrograms are commonly used to display frequencies of

sound waves produced by humans, birds, machines etc., as recorded by micro-

phones.

3.2.1 Interpreting a spectrogram

Spectrograms are actually 3D plots but they are visualized in 2D using a

heatmap. Time runs from left to right along the horizontal axis . The ver-

tical axis represents the frequency with the lowest frequencies at the bottom

and the highest frequencies at the top. The energy of a particular frequency at a

particular time is represented by the third dimension, color, with dark blue cor-

responding to low amplitudes and brighter colors up through red corresponding

to progressively higher energies.

3.2.2 Computing the spectrogram of a signal

In order to obtain the spectrogram, we divide the speech signal into many

small overlapping time sections of equal duration. These sections are called

speech frames. The total number of frames are fixed and that is determined

by the number of neurons in the input layer of the spiking neural network. In

order to determine the duration of each frame, we need to note that longer

the duration, the better is the frequency resolution, but the time localization

is poor. Similarly, the shorter the duration, the better localization in time, but

the frequency resolution would be poorer. The percentage of overlap between

adjacent frames is usually chosen to be 50% .
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Fast fourier transform is applied to each of the speech frames in order

to obtain their respective frequency spectrums. The Hamming window[22] is

applied to each frame in order to smoothen it and it also has some useful

frequency features. The figures below illustrates the procedure.

The frequency spectrum of a signal is typically visualized with the fre-

quency on the x axis and the corresponding energies on the y axis. For obtain-

ing the spectrogram, we’ve to rotate the frequency spectrum of each frame so

that the frequency lies on the y axis (see figure 3.4). The frequency spectrum

of each speech frame is arranged side by side in a chronological order to obtain

the spectrogram of the signal.

Figure 3.3: Illustration of the procedure to obtain the spectrogram of a speech signal[23]

Figure 3.4: Rotating the spectrum of each frame by 90◦ [23]
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The duration of spoken digits varies between 400 ms to 900 ms. As stated

above, we’ve to divide it into a certain number of speech frames. We’ve chosen

to use the following parameters for obtaining the spectrograms of spoken digits:

No. of speech frames = 40

Overlap between adjacent frames = 50

We take the logarithm of the spectrogram since the energy values in the spectro-

grams vary from as low as 1e-6 to as high as 1e4. The next step is to use a band

of filters on the spectrogram due to two reasons, the first being that the lower

frequencies contain more information and the second being that the human ear

responds to frequencies in a non-linear fashion. (The difference between 9.9kHz

and 10kHz is hardly perceived whereas the difference between 900 Hz and 1000

Hz is quite evident). The range of frequencies of our spectrograms is from 0 Hz

to 4000 Hz. We divide it into five bands of frequencies ,i.e 333.3 Hz, 333.3 Hz,

666.6 Hz, 1000 Hz, 1666.6 Hz. The energy of each band is the average energy

of all the frequencies contained in that band. We can increase the number of

frequency bands for finer resolutions but it would lead to an increase in the

dimension of the input vector thereby increasing the size of the input layer of

the spiking neural network. The final spectrogram has five frequency bands

and 40 speech frames as shown in figure 3.5. It can be flattened into a 200

dimensional vector (50x4=200). This is the input vector to the SNN.

Figure 3.5: (a) Sample spectrogram of the digit 0 (b)Input feature matrix after applying the band
of filters on the spectrogram
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3.3 Spiking Neural Networks

Researchers have proposed many interesting approaches for performing speech

recognition using SNNs. (Hu et al,2020)[24] have used a SNN cascaded by

a CNN. While this achieves good accuracy, it doesn’t operate entirely in the

spiking domain. (Wu et al,2018)[25] make use of the self-organizing map fol-

lowed by a simple SNN. This approach requires the usage of self-organizing

maps which is a computation overhead. Since speech is temporal as opposed

to say, images (spatial data), recurrent architectures are generally favored for

this task. The main challenge in using spiking RNNs lies in training them

effectively. The usage of local plasticity rules for training spiking RNNs still

remains unclear. (Bellec et al,2020)[26] have recently proposed an alternative

called the e-prop learning rule as an approximation to STDP. Others (Skowron-

ski et al, 2007)[27], (Zhang et al, 2015)[28] have proposed reservoir computing

based SNNs that overcome the convergence issues in RNNs. This approach

requires a very large number of synapses and neurons and it is also computa-

tionally expensive.

Since our aim is to eventually implement the SNN at the circuit level, we

have used used a circuit-friendly approach that tries to minimize the number

of synapses and neurons without significantly affecting classification accuracy.

We propose a small-footprint fully-connected feedforward SNN that is trained

solely using the local STDP learning rule.

3.3.1 SNN Architecture

We have used a SNN with having an input layer consisting of two hundred LIF

neurons and an output layer consisting of M LIF neurons. The neurons in the

input layer are referred to as the pre-synaptic neurons and the neurons in the

output layer are called the post-synaptic neurons. The number of neurons in
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the output layer depends on the approach that we take towards training the

network. For the case of supervised learning, since we have ten distinct classes

( the digits 0 to 9 ), we can set M = 10 and assign each output neuron to

a particular class. In case of unsupervised learning, experiments indicate that

the number of neurons in the output layer usually has to be greater than the

total number of distinct classes. If we use just as many output neurons as the

number of classes, it turns out that not every class would be represented by

an output neuron. We need to ensure a sufficient number of output neurons so

that each class gets is represented by least one output neuron. Each neuron in

the input layer is connected to all neurons in the output layer using synapses

thereby making it a fully-connected SNN. The properties of these synapses

closely resemble that of the memristor.

3.3.2 Input to SNN

Figure 3.6: Input to the SNN

The input to the SNN is the spectrogram of the spoken digit. The spectro-

gram is flattened into a vector of size 200x1. The entries of this vector are real

valued numbers that denote the energy of the signal. Since SNNs use spikes to

transmit information, we need to convert the each entry of the input vector into

appropriate spike trains. This role is played by the LIF neurons in the input

layer. We inject a constant current into each input neuron for a fixed duration
35



(100 ms usually). The input neuron converts the input current into a train of

voltage spikes. The spike-rate is determined the magnitude of the input cur-

rent. As the magnitude increases, the spike-rate also increases. The magnitude

of the injected current is directly proportional to corresponding entry in the

input vector. If the energy denoted by a particular entry in the input vector

is close to zero, it’s corresponding input neuron will generate very few spikes.

Whereas for a higher energy, the input neuron will generate a large number of

spikes.

3.3.3 Parameters of the SNN

Note: We shall use the terms input neuron and pre-synaptic neuron inter-

changeably. Similarly for the terms output neuron and post-synaptic neuron.

Firing rate and spiking rate are also used interchangeably.

There are many parameters of the SNN that need to be determined in order

to ensure proper operation and efficient training of the SNN. There are two

important factors that guide us towards the right parameters. Firstly, the very

purpose of using an SNN is to accomplish learning in a biologically-plausible

way. Thus, the parameters should be set such that they resemble their biological

counterparts. Secondly, from the perspective of a circuit level implementation,

the values should be realizable. This implies that the voltages, currents and

RC time constants should not take on extreme values. We briefly discuss some

of the important parameters below:

Time constant of pre-synaptic (input) neurons τin : τin determines the

number of spikes fired by the pre-synaptic neuron for a given input current.

Similar to an RC circuit, as τin increases, it takes longer for the membrane

potential to reach the threshold voltage which in turn reduces the firing rate of

the neuron(see figure 3.7. τin has to be set in tandem with the input current
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values. It is chosen to ensure that the neuron fires close to zero spikes when

the input current corresponds to minimum energy and a reasonable number

of spikes for the input current corresponding to maximum energy (refer 3.1).

The number of spikes should not be too high either as that would unnecessarily

burn more power. We set τin to be 200 ms.

Figure 3.7: Effect of τin on the firing rate

Input Current Number of Spikes
20 9
18 8
16 7
14 6
12 5
10 4
8 3
6 2
4 1
2 0
0 0

Table 3.1: Number of spikes fired by an input LIF neuron for various values of input currents
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Threshold voltage of pre-synaptic and post-synaptic neurons Vthresh:

The threshold voltage also plays a key role in determining the firing rate of a

neuron. Decreasing Vthresh leads to an increase in the firing rate (figure 3.8).

Vthresh is set to 1V for both the pre and post-synaptic neurons.

Figure 3.8: Effect of threshold voltage (both pre and post-synaptic neurons

Time constant of post-synaptic (output) neurons τout: Time constant

of an output neuron serves a slightly different purpose than that of the input

neuron. The membrane potential of the output neuron increases in a stepwise

fashion as it receives current in the form of spikes via the synapses connected

to it. Approximating the incoming current as a delta function i(t) = Isynδ(t),

the membrane potential just after the incoming spike would be :

vpost(t+ dt) = vpost(t) +
1

C

∫
Isynδ(t)dt

Between two incoming spikes, the membrane potential tends to discharge to-

wards the reset voltage. τout mainly controls this discharge rate. Increasing

τout reduces the discharge rate. If the membrane potential discharges quickly,

it would take a larger number of incoming spikes for the post-synaptic neuron

to reach the threshold voltage, thereby reducing the spiking rate of the output
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neuron (refer fig 3.9).

Figure 3.9: Effect of post-synaptic neuron time constant τout

In our SNN, each output neuron receives spikes from 200 input neurons. Thus,

for one training sample, the number of incoming spikes received by an output

neuron is much higher than the spiking rate of the input neurons. This causes

the membrane potential of the output neuron to rise in an almost continuous

fashion as there is a very small time gap between two incoming spikes, due to

which the membrane potential doesn’t get sufficient time to discharge. Figure

3.10 depicts the evolution of an output neuron’s membrane potential for our

SNN upon presenting a train/test sample. It can be observed that the mem-

brane potential hardly discharges because there the incoming spikes from 200

input neurons.

Conductance scaling factor (g) : This is a critical parameters that al-

lows us to control the spiking rate of the post-synaptic neurons. As mentioned

previously, the number of incoming spikes received by a post-synaptic neu-

ron is much higher than the spiking rate of the input neurons. Since each

incoming spike increases the membrane potential of the post-synaptic neuron

as vpost(t + dt) = vpost(t) + w (where w is the synaptic weight), it causes the
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Figure 3.10: Evolution of the membrane potential of an output neuron upon presenting one training
sample.

post-synaptic neuron to reach the threshold voltage very quickly in comparison

to the pre-synaptic neurons. An undesired outcome of this being that the firing

rate of post-synaptic neurons is much higher than pre-synaptic neurons. In bi-

ological systems, the complex neuronal dynamics ensures that the pre-synaptic

and post-synaptic neurons fire at similar rates. So, we would also like to en-

force similar spiking rates for pre and post-synaptic neurons. This is done by

introducing the conductance scaling factor (g). The modified membrane po-

tential equation would be vpost(t+ dt) = vpost(t) + g.w. Setting g in the range

of 1e-2 to 1e-3 allows us to ensure similar spiking rates. A more biologically-

plausible approach would be to use adaptive threshold neurons but their circuit

implementation is much complex in comparison to LIF neurons.

Synaptic pre-exponential constants (Apre and Apost): These parameters

determine the maximum amount by which a synaptic weight can increase on

decrease. Apre determines to the increase in the synaptic weight when the pre-

synaptic neuron fires just before the post-synaptic neuron. Apost determines to

the decrease in the synaptic weight when the post-synaptic neuron fires just

before the pre-synaptic neuron The values of Apre and Apost are analogous to

the learning rate in ANNs. They should neither be too high nor too low. If

it is too low, the training takes too many epochs whereas if it’s too high, it
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may cause convergence issues. We set Apre in the range of 1e-2 and Apost in the

range of −1e−2.

Synaptic time constants (τpre and τpost): As the time delay between the pre

and post synaptic spike increases, the change in the synaptic weight decreases

exponentially. This is the defining characteristic of STDP. τpre and τpost control

this exponential nature of synaptic weight change.

The following equation and its graph in figure 3.11 depict the usage of the

synapse parameters:

∆w=

wApree
− ∆t
τpre ∆t > 0

wAposte
− ∆t
τpost ∆t < 0

Figure 3.11: STDP window of the synapse model. The change in synaptic weight as a function of
time is depicted in this graph

3.3.4 SNN training approaches

There are two distinct approaches to train a SNN using STDP. They are un-

supervised learning and supervised learning. In supervised learning, the input

to the network consists of both the input sample (i.e the spectrogram in our
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case) and its corresponding label ( indicates the spoken digit). In unsupervised

learning, just the input samples are used to train the network.

From a biological viewpoint, the learning process is very complex and is still

not clearly understood by researchers. However, experts in neuroscience have

suggested that unsupervised learning is much more likely to be employed by the

brain as humans generally do not use explicit labels to know their surroundings.

But even the most sophisticated unsupervised algorithms known to us cannot

fully explain learning in nature. The reader can refer to (Zador et al, 2019)[29]

for a detailed discussion of learning in nature vs learning in neural networks.

We have explored both supervised and unsupervised approaches to train the

SNN for spoken digit recognition. We shall now discuss their implementation

and results.

Unsupervised Learning

Figure 3.12: SNN architecture for unsupervised learning

There are three stages in unsupervised learning: the first being the train

stage followed by the assign stage and finally the test stage. Before training,

the synaptic weights of the SNN are initialized to values between 0 and 1

sampled from the uniform distribution.

Train stage: During the training stage, for each training sample, the input to
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the SNN are constant current sources with the value of each current source being

proportional to the energies in the sample’s spectrogram. These current sources

are injected into the pre-synaptic neurons (input layer) for a fixed duration of

100 ms. Depending on the magnitude of the injected currents, the pre-synaptic

neurons convert the injected currents into spike trains. These spike trains are

transmitted to the post-synaptic neurons via the synapses. The membrane

potential of the post-synaptic neurons builds up due to the incoming spikes

and once the threshold voltage is reached, it emits a voltage spike. Depending

on the relative timing of the pre and post-synaptic spikes, the synaptic weights

undergo changes according to the STDP learning rule as discussed earlier. All

the training samples are used to train the SNN in this manner. Multiple rounds

of training (called as epochs) are performed. As the training progresses, we

would expect the synaptic weights to undergo learning so that they eventually

learn the desired patterns. Note that the class labels are not used during the

training stage. The synaptic weights are allowed to evolve without any external

signal in an unsupervised manner.

Assign stage: Once the training stage is completed, the SNN has presumably

learnt some meaningful patterns. We now have to assign each output neuron

to a class. This is the only stage where the labels of training samples are used.

No learning takes place in this stage. The synaptic weights that have been

learnt in the train stage are used here. We present the training samples one by

one to the SNN and keep track of the spiking activity of the output neurons.

For an output neuron, we count the total number of spikes that it fires for each

class. The output neuron is assigned to that class for which it spikes the highest

number of times. For eg., let’s assume that there are only 3 distinct classes.

If a particular output neuron fires a total of 15 spikes for all input samples

belonging to class 1, 34 spikes for class 2 and 8 spikes for class 3, this output
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neuron is assigned to class 2. Similarly, all output neurons are assigned to some

class. This obviously means that we need at least as many output neurons as

the total number of classes. So, we have at least 10 neurons in the output layer.

It might happen that multiple output neurons are assigned to the same class

whereas some classes are not represented by any output neuron. As we shall

see later, the number of output neurons have to be increased in such cases so

that each class gets represented by at least one output neuron.

Test Stage: Having assigned output neurons to classes, the SNN can now

be used for classification. The unknown sample is presented to the SNN for

a duration of 100 ms and the number of spikes at each output neuron are

recorded. The unknown sample is assigned to that class for which it generates

the highest number of spikes. For eg., as shown in the figure below...(complete

it)

Results and discussion of unsupervised learning

During the assign stage, we discover that certain classes (the digit 3 and 5)

produce a higher number of spikes at the output neurons. Due to this, most of

the output neurons get assigned to these classes which and other classes (the

remaining digits) aren’t assigned to any output neuron. So, during the test

stage, when an unknown sample is presented to the network, it would classify

it either as 3 or 5 most of the times. Moreover, during the assign stage, it is

also observed that each output neuron has more or less similar number of spikes

for each class. This implies that the SNN is unable to confidently assign an

output neuron to a class. Figure 3.13 shows the number of spikes per class at

each output neuron in the assign stage. The format to read it is :

Output_neuron_number {Class_0:# spikes, Class_1:# spikes, ... }

A possible solution would be to increase the number of output neurons so that
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Figure 3.13: Number of spikes per class at each output neuron.

all classes can be represented by the output neurons. We used as many as 50

output neurons in our experiments but faced similar issues during the assign

stage. The results indicate that the SNN responds to not only the input pattern

but also the total energy contained in the input spectrogram. Certain digits are

spoken for a longer duration than other digits due to which the total energy in

the signal is higher. These digits tends to produce a higher number of spikes at

each output neuron. To fix this issue, we calculate the average energy for each

class and normalize the spectrograms. Still, the SNN is unable to confidently

assign output neurons to classes. Due to the lack of a supervision signal, it

might be challenging to learn the desired patterns in a fully unsupervised man-

ner.

We also take a look at the evolution of the distribution of synaptic weights

as training progresses. A lot of the synaptic weights tend to either decay to-

wards the minimum value 0 or reach the maximum value 1. This behaviour

can be explained as a consequence of the hebbian (STDP) learning rule (fully

unsupervised learning). Researchers in neuroscience[30] suggest that hebbian

learning on its own is not sufficient to learn complex patterns. There needs to

be some form of assistance for the synaptic weights to learn properly.

We use a simple example to explain the possible reason behind the dismal

performance of fully unsupervised learning. Consider a SNN (as shown in figure

3.14 with 3 input neurons and 2 output neurons. Without loss of generality,
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assume that all the synaptic weights are initialized to the same value. We need

to consider groups of weights in order to clearly understand what’s going on

over here. All the weights connecting all the input neurons to the first output

neuron belong to the red group (the weights r1, r2 and r3). Similarly, all the

weights connecting all the input neurons to the second output neuron belong

to the blue group (the weights b1, b2 and b3).

Figure 3.14: An SNN depicting two groups of weights

As the network is trained using input samples, each group of weights sees the

same input and they would evolve in the exact same manner. No matter how

many epochs we train the network for, the weight r1 and b1, r2 and b2, r3

and b3 change in the same manner. Due to this, during the assign stage, both

the output neurons would show the same behaviour in terms of the number of

spikes for each class. Both the neurons will be assigned to the same class and

thus the SNN is unable to classify input samples properly. Clearly, the network

needs some form of assistance, either direct or indirect, to ensure that the

output neurons and the corresponding synaptic weight learn distinct patterns

to ensure proper classification.

Supervised Learning

Till now, we have been using the hebbian STDP learning rule. For supervised

learning, we have to use the anti-hebbian learning rule along with the hebbian

learning rule. Anti-hebbian learning is the opposite of the hebbian learning

rule. From a biological perspective, (Choe, 2013)[31] defines it as “...a form
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of synaptic plasticity where correlated activation in the pre- and postsynaptic

neurons leads to the reduction in the efficiency of the presynaptic neuron’s

ability to elicit activation of the postsynaptic neuron”. As far as training an

SNN is concerned, the anti-hebbian learning rule is as follows : if the post-

synaptic neuron fires just after the pre-synaptic neuron, the synaptic weight

decreases whereas if the post-synaptic neuron fires just before the pre-synaptic

neuron, the synaptic weight increases.

The architecture of the SNN is modified by introducing a “teacher” that is used

for training the network in a supervised manner. The role of the teacher is

to use the class labels and determine which output neurons should undergo

hebbian STDP and which other output neurons should undergo anti-hebbian

STDP. Since we are performing supervised learning, we require only one output

neuron for each class (so total 10 output neurons). The output neurons are

denoted as zi, where 0 ≤ i ≤ 9 . Output neuron zi is assigned to the ith class.

Supervised learning consists of two stages, i.e the train and the test stage.

Figure 3.15: Supervised SNN architecture
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Train Stage: The main difference between the unsupervised and supervised

train stage is the usage of the class labels by the teacher to decide the type

of STDP that each output neuron undergoes. If the input sample presented

to the network belongs to the kth class, the teacher signal ensures that the

output neuron zk and its synapses connecting zk to all the input neurons un-

dergo hebbian-STDP whereas all the remaining output neurons (other than

zk) undergo anti-hebbian STDP. The teacher plays a key role in the training

procedure by assisting the synaptic weights to learn the desired patterns.

Test Stage: We experiment with two different methods in order to classify an

unknown input sample during the test stage. The input sample is presented to

the SNN for a duration of 100 ms. The first method is the time-based method.

Whichever output neuron fires earliest, the input sample is assigned to that

class. The second method is the rate-based method. We count the number

of spikes at each output neuron. Whichever output neuron fires the highest

number of spikes, the input sample is assigned to that class.

It turns out that the time-based method is able to classify the unknown test

samples more confidently than the rate-based method. The rate-based method

is a bit ambiguous because some of the other output neurons also fire an equal

number of spikes as the correct output neuron (the class to which the test

sample actually belongs). This is a consequence of the SNN responding to the

energy of the sample’s spectrogram.

The synaptic weights connecting the input neurons to each of the output

neurons learn some meaningful patterns as the training progresses. The synap-

tic weights are grouped into ten groups. Each group consists of those weights

connecting all the input neurons to an output neuron. As seen in figure 3.16,

the weights in red connect all the input neurons to the output neuron z0. This

is group 0. Similarly the weights colored in blue are group 1 and so on. Since
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Figure 3.16: Depicting groups of synaptic weights of the SNN

there are two hundred input neurons, there are two hundred weights in each

group. We take a vector of these weights and reshape it into a 50x4 matrix. Re-

call that the input spectrograms were also of the same dimensions. We can now

visualize these weights as a 2D matrix and compare the emerging pattern with

the input spectrograms of each digit. Before training, the weights do not depict

any particular pattern. As the network is trained, we see that the a pattern

begins to emerge. Upon completion of training, the visualized weights resemble

the spectrograms of their corresponding digits. Figure 3.17 shows the evolution

of the weights of group 0. It is clearly visible that the weights learn the desired

pattern as the training progresses. The final values of the weights quite closely

resemble the average spectrogram of the training samples of the spoken digit

0 as seen in figure 3.18. All other groups of weights are also visualized and

compared with the corresponding digit’s average spectrogram.
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Figure 3.17: Evolution of weights of group 0 as training progresses

Figure 3.18: Average spectrogram of the digit 0

The learnt weights corresponding to the groups for each digit have been visual-

ized as shown in the figures below. We compare the visualized weights with the

average spectrogram of the the corresponding digit. There are two figures for

each digit. The figure at the top is a visualization of the learnt weights and the

figure at the bottom is the average spectrogram. It can be seen that the learnt

patterns are similar to the spectrograms. Thus, the SNN has learnt meaningful

and interpretable patterns.
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Figure 3.19: Visualizing the learnt weights for the digits one, two and three. The respective spec-
trograms are shown for comparison

Figure 3.20: Visualizing the learnt weights for the digits four, five and six
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Figure 3.21: Visualizing the learnt weights for the digits seven, eight and nine
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Memristor crossbar array for ANN

In this chapter, we use the unified RRAM compact model developed by our

group to implement an Artificial Neural Network in SPICE for performing im-

age classification. In an ANN, the vector-matrix multiplications are the most

computationally expensive operation. The idea behind using a memristor cross-

bar array is to perform the vector-matrix multiplications directly in-memory.

This would be much fast and efficient compared to the CMOS-based digital

computers being used today. There are various aspects that need to be consid-

ered in order to implement a crossbar array of RRAM devices.

Figure 4.1: An ANN and its implementation using a memristor crossbar array[32]

The one-to-one correspondence between an abstract ANN and its corresponding

implementation using a memristor crossbar array is show figure 4.1. The input

to the ANN is a real-valued vector of dimension D. The equivalent input to the

crossbar array would be D distinct voltage sources proportional to the input

vector. The weight wk,j connects the kth input neuron to the jth output neuron.

These are called the synapses of the ANN. These weights are implemented

using memristors in the crossbar array. The conductance of the memristors is
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proportional to the corresponding weights of the ANN.

The output at the jth output neuron is a result of multiplying the weights with

the input followed by a non-linear activation function.The following equations

explain the operation of the ANN :

zj =
D−1∑
k=0

wkj.v
I
k

vOj = tanh(zj)

where vIk is the kth entry of the input vector and vOj is the output at the jth

output neuron.

The same operation can be expressed in terms of the voltages, currents and

conductances of the memristor crossbar array.

I
O

j =
D−1∑
k=0

gkj.V
I
k

V O
j = tanh(IOj )

where V I
k is the kth input voltage, gkj is the conductance of the memristor

connecting the kth input neuron to the jth output neuron, Ij is the resultant

output current at the jth index and V O
j is the corresponding output voltage.

4.1 Dataset

We’ve created a dataset consisting of three alphabets (n, v and z) represented

as an image of 3 pixels by 3 pixels. These are greyscale images with each pixel

either taking the value 0 or 1. In order to expand the dataset, noisy versions

of the images are obtained by flipping one pixel at a time of the original image.

In this manner, we get a total of 30 images in our dataset. These are shown

54



in figure 4.2. The size of the image is restricted to 3x3 pixels because as the

number of pixels increase, the size of the crossbar array increases rapidly.

Figure 4.2: Dataset consisting of 30 images

4.2 ANN Architecture

We use an ANN with having an input layer of nine neurons and an output

layer of three neurons since there are 3 distinct classes. There are no hidden

layers in our ANN. It is a fully-connected feedforward network with 27 synapses

connecting the input layer to the output layer. The non-linear activation at the

output neurons can either be the sigmoid, the tanh or the ReLu activation. The

output neuron y1 is assigned to the alphabet ‘n’, y2 is assigned to the alphabet

‘v’ and y3 is assigned to the alphabet ‘z’.

Figure 4.3: ANN architecture
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4.2.1 Training the ANN

The ANN can be trained in a supervised manner using the classic backpropa-

gation algorithm but a modified version of it known as the Manhattan update

rule[33] is more realistic from a hardware perspective. We implement this learn-

ing algorithm in python. The training procedure is as follows: The weights are

initialized to values sampled from a gaussian distribution N(0,1). Each image

from the training set is flattened into a vector and is given as the input to the

network. After the feedforward operation, the output values are obtained at

each output neuron. The error δj(n) incurred at the jth output neuron for the

nth training sample is calculated as :

δj(n) = [vtarget − vOj ].
df

dz
|z=zj(n)

where vtarget is the target value of the training sample. For eg., if the input

sample is an image of the alphabet ‘v’, the target values at the output neuron

y1 and y3 would be -1, whereas the target value at the output neuron y2 would

be +1. vOj is the output of the network. df
dz is the derivative of the activation

function with respect to zj.

After presenting all the training samples to the network and calculating their

δj values, the weights are updated using the Manhattan update rule as follows:

∆wkj = η.sgn(
N∑
n=1

δj(n)vj(n))

where η controls the learning rate and sgn is the sign function

sgn(x) =

+1 x > 0

−1 x ≤ 0
(4.1)

The network is trained for multiple epochs to achieve good training accuracy.
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We are able to achieve an accuracy of approximately 80%.

4.3 Weight Mapping

The desired weights have been obtained after offline-training of the ANN as

discussed above. The next step involves mapping the learnt weights onto the

RRAM crossbar array. But before doing that, one needs to decide the region of

operation of the RRAM. As can be seen from the I-V curve of the device, there

are two distinct resistance states namely the low resistance state (LRS) and the

high resistance state (HRS). Since we want to use the conductance of the RRAM

as a synaptic weight, we’d like the device have as many conductance states as

possible between the LRS and the HRS. Observing the set-reset characteristic

of typical RRAM devices, it is evident that the set process is abrupt whereas

the reset process is gradual. So, it is usually preferred to operate the device in

the reset region.

Figure 4.4: I-V curve of a RRAM device depicting the abrupt nature of the SET process and the
gradual nature of the reset process[34]
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4.3.1 Characterizing the RRAM device

The synaptic weights have to be mapped to discrete conductance states of the

RRAM device. In order to find the possible conductance states, we have to

characterize the device. Due to the lack of experimental data for our RRAM

model, we make some reasonable assumptions to arrive at the possible con-

ductance states. There are two state variables that determine the conductance

of the device. They are i) the gap between the conductive filament and the

bottom electrode and ii) the radius of the conductive filament. The maximum

and the minimum gap of the filament is gapmax = 2 nm and gapmin = 0.1 nm.

When the gap is at its maximum value, the conductance is exponentially de-

pendent on the gap. So, we decrease the gap from its maximum value in steps

of 0.05 nm and measure the conductance at each step. As the gap decreases,

the dependence of the conductance on the gap is no longer of exponential na-

ture. Beyond a certain point ( gap < 1nm), varying the gap causes very little

change in the conductance. Figure 4.5 shows that conductance as a function

of the gap. The minimum conductance of the device is around 35 pS and the

maximum is around 10 nS.

Figure 4.5: Conductance of the RRAM device as the gap is varied
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The synaptic weights are mapped to the device’s conductance values in a pro-

portional manner. The minimum weight wmin (magnitude) is scaled by a factor
gmin
wmin

to map it to the minimum conductance gmin. We shall refer to the quan-

tity gmin
wmin

as the weight mapping factor. Now, the maximum weight is scaled

by this weight mapping factor to obtain the corresponding conductance. If the

obtained conductance is close to the maximum conductance of the device, the

weight mapping factor is appropriate. If not, there are two possible scenarios :

1. If the obtained conductance is much lesser than the maximum conductance

gmax, the weight mapping factor is recalculated by mapping wmin to the

2nd smallest value of conductance. The new weight mapping factor is used

to map wmax and its corresponding conductance is calculated.

2. If the obtained conductance is much greater than gmax, we have to drop

wmax as it is exceeding the range of conductance. We then map the 2nd

highest weight to obtain its corresponding conductance value.

The above procedure is repeated a few times till a satisfactory mapping is

arrived at. Now, all the other weights are scaled by the weight mapping factor to

obtain the corresponding conductances. The conductance values thus obtained

are mapped to the nearest discrete conductance state of the device.

4.3.2 Implementing Negative Weights

The conductance of a RRAM device cannot be less than zero. Negative weights

are a necessity in ANNs. So, it is important to obtain an equivalent of negative

conductance values. In order to emulate the effect of negative conductances,

the sign of the input voltage signal is inverted so that the corresponding device

current flows in the opposite direction. This would have an unintended effect of

reversing all the other currents in the given row. A possible solution would be

using two input rows for each input neuron. The actual input voltage is applied
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at one row and it’s inverted version is applied at the other. This approach allows

the mapping of both positive and negative weights to appropriate conductance

values.

4.4 Crossbar Array Implementation

The 9x3 crossbar array is implemented in the Cadence Virtuoso circuit simu-

lator. The circuit schematic is shown in figure 4.6. Prior to the simulation,

the conductance of each RRAM device is set by fixing its gap and radius as

determined by weight mapping. There are nine voltage inputs (and the corre-

sponding inverted signals for negative weights) since the ANN has nine inputs

neurons. The input voltage should be small enough to ensure that the state of

the RRAM device doesn’t get altered. Since the pixel values of the input im-

ages are binary, i.e. 0 for black pixels and 1 for white pixels, the input voltages

are +0.1 V for white pixels and -0.1 V for black pixels. The input voltages are

multiplied by the conductance of the RRAM devices and the resultant currents

are summed in each column. The first column (from left) corresponds to the

alphabet ‘n’, the second column to ‘v’ and the third column to ‘z’. The out-

put current at each column is measured and whichever column has the highest

current, the input image is classified as the alphabet corresponding to that

column.
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Figure 4.6: Schematic of the crossbar array

The input voltages and output currents of the circuit when an image of the

alphabet ‘v’ is given as an input are shown in 4.7 and 4.8 respectively. Observe

that the output current is highest in the 2nd column which implies that the

input image has been classified correctly.
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Figure 4.7: Input voltage waveforms applied to the crossbar array for the alphabet ’v’. Inputs
applied at t = 1 ms

Figure 4.8: Output currents of the crossbar array for the alphabet ’v’ applied as the input
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The crossbar array implemented above achieves a classification accuracy of

around 68% for the 30 training images. This is lesser than the software imple-

mentation which had an accuracy of 80%. The main reason behind the drop in

accuracy is due to the discrete conductance states of the RRAM. The weights

obtained from training in software have to be mapped to the nearest conduc-

tance state. Since the device has discrete conductance states, the weights can’t

be mapped to the exact desired values. This causes a slight decrease in the

classification accuracy.
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Future Work

The spiking neural network for spoken digit recognition has shown good results

as evident by the patterns that it has learnt. However, the neuron model used

in the SNN was the leaky-integrate-and-fire neuron which is a simplified version

of biological neurons. More sophisticated models such as the Izhikevich neurons

and adaptive threshold neurons can improve the performance by automatically

adjusting the spiking rate of the neurons similar to biological neurons. While

they are more biologically-realistic, the circuit implementation of these models

is more complicated than the LIF neurons. The tradeoff between model com-

plexity and accuracy needs to be analyzed for the specific task at hand.

As discussed in the SNN chapter, fully unsupervised learning struggles to

learn the patterns whereas supervised learning is able to learn the desired pat-

terns. From a biological viewpoint, a combination of supervised and unsuper-

vised learning is more plausible. There is a need to explore partially unsu-

pervised learning by incorporating approaches such as lateral inhibition in the

output layer. Lateral inhibition is the capacity of an excited neuron to reduce

the activity of its neighboring neurons. This generates competition between the

neurons and enables the connected synapses to learn different patterns. When-

ever an output neuron fires, the membrane potential of all other output neurons

is reset. For implementing lateral inhibition, each output neuron needs to be

connected to all other output neuron which would increase the complexity and

control signals of the SNN.

An important task would be the implementation of the SNN at the circuit

level using the RRAM model. Starting with inference, the eventual goal would

be to perform the training as well as inference at the circuit level.

Another interesting line of work would be to explore the use of variability as
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a regularizer during training larger SNNs. This would also account for noisy

input signals and help train the SNN in a robust manner.

Finally, as the RRAM model is improved to reflect the gradual nature of the

reset process, it would be interesting to study its effect on STDP and on the

overall training of the spiking neural network.
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