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ABSTRACT

In this work we study the problem of private information retrieval where a user seeks to

retrieve one of the F files from a cluster of N non-colluding servers without revealing

the identity of the requested file. In our setting the servers are storage constrained in

that they can only store a fraction µ = t/N of each file. Furthermore, we assume that

the files are stored in an uncoded fashion. The rate of a PIR protocol is defined as the

ratio of the file size to the total number of bits downloaded. The maximum achievable

rate is referred to as capacity. It was previously shown that there are capacity achieving

PIR protocols when the file size is NF and complete files were stored on all the servers.

These results were further extended for the case when servers store only a fraction of

each file. We propose a novel uncoded PIR protocol based on combinatorial designs

that are also capacity achieving when the file size is N/ gcd(N, t)× tF−1. Secondly, we

also analyse the scenario when one of the servers fails during the retrieval phase. Our

protocol achieves capacity for the one residual system after one server has failed, and

can also distribute the load uniformly on the remaining servers if BIBD’s are used for

the storage scheme. Furthermore, if symmetric BIBD’s are used for the storage scheme,

the rate of PIR protocol for two residual system is fixed and does not depend on which

two servers fail. In the proposed PIR protocol, the given system is projected to multiple

instances of reduced systems with replicated servers having full storage capacity. The

subfiles stored in these various instances are separately retrieved and lifted to solve the

PIR problem for the original system.
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CHAPTER 1

INTRODUCTION

With the commencement of Information age the amount of stored data has grown im-

mensely everyday. The increasing availability of internet-accessible data sources has

lead to a transition in the way these service providers and database owners collect and

use personal information about users. While this sensitive captured information is use-

ful in providing personalized and improved service to the users, it can potentially also

be used to harass, disrepute or financially trouble the targeted users. This captured user

information if sold to third party increases the risk of exploitation manifold. Selling

of user’s activity and query information brings large monetary benefits for the database

owners and huge privacy threats to the user.

In recent years, the field of Private Information Retrieval has gained a lot of attention

owing to the fact that more and more Internet users are now beginning to care about

privacy of their online activities. PIR systems allow a user to query a cluster of servers

and retrieve the desired file without revealing any information about the desired file

index to any of the individual servers.

PIR systems are particularly important to protect users from surveillance, monitor-

ing and profiling. A few services where PIR systems are of particular interest include

location based services, patent database search, real-time stock quotes etc. In such a

scenario it becomes important that the querying of servers by the user does not leak any

information about the user’s requirements.



1.1 Problem Background

The notion of Private Information Retrieval (PIR) was first introduced by Chor et al.

in [1], and since then, the field has immensely grown [2, 3, 4, 5, 6, 7, 8]. Besides its

direct application, PIR has interesting connections with other problems such as network

coding [9], index coding [10, 11] and secret-sharing schemes [12, 13] .

The basic setting of PIR considers the servers to be non-colluding i.e. the servers

cannot cooperate with each other to recover information about the query. Trivially, one

can achieve privacy by downloading all the files. Clearly, this is an inefficient method

to achieve privacy. A chief problem of PIR protocols is to achieve privacy efficiently.

Efficiency is typically measured in terms of the rate of the protocol. The ratio of size of

retrieved file to the amount to data downloaded is referred to as the PIR rate. A higher

PIR rate signifies higher efficiency, and the highest achievable PIR rate is referred to

as the PIR capacity. The reciprocal of PIR rate is referred to as download cost per bit

and is a measure of number of bits that need to be downloaded to retrieve one bit of the

desired file. The optimal download cost per bit is the lowest achievable download cost

per bit.

PIR protocols can store the files in a coded form or an uncoded form. In the recent

years there has been a growing interest in uncoded PIR due to the simplicity of encod-

ing and decoding the files and also because they can offer competitive performances

compared to coded protocols [4, 8, 14]. Uncoded PIR systems consist of a collection of

N servers and F files which are either stored fully or partially on each of the servers.

The placement of these F files on the servers constitutes the storage scheme. Now, any

file that the user desires is characterized by its index and to retrieve the desired file the

users generates N query sets and sends one to each of the servers. Servers on receiving

the queries respond by returning answers based on the query and server contents. The

user must be able to recover the desired file from the answers obtained from the servers

and additionally the queries must not leak any information about the index of user’s

desired file. The generation of queries and recovery of desired file form the retrieval

scheme for any PIR protocol.
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1.2 Contributions

In this work we propose a novel PIR protocol for uncoded systems storing a fraction

of each file. While the storage capacity is identical for the servers, they need not store

the same content. The proposed PIR protocol has two main components: a storage

scheme and a retrieval scheme. The storage scheme is based on combinatorial designs

while the retrieval scheme works by projecting the given system to multiple instances of

smaller systems with replicated servers having full storage capacity. It uses the retrieval

scheme of full storage PIR systems for these smaller instances. The idea of projecting

storage constrained systems to Full storage PIR systems has been common to storage

constrained PIR protocols and has previously been used by Tandon et al. [15], Zhang

et al. [14] and Woolsey et al. [16].

Following are the key contributions of our work:

1. Proposal of a capacity achieving novel PIR protocol with low subpacketization
for uncoded storage constrained PIR systems.

2. Robust proofs of privacy and correctness, which have often been missing in pre-
vious literature in the field [15, 16, 17].

3. Fault tolerant PIR protocol that achieves capacity for the new system after any of
the one server has failed (one residual system).

4. Uniform load distribution even after failure of one server.

5. Fixed rate independent of which two servers fail for the two residual system.

Our scheme is flexible and can easily accommodate a range of system parameters.

As our schemes are more generally based on tactical configuration, we also propose a

way for constructing different tactical configurations given a set of parameters.

Compared to the existing work on storage constrained PIR by Tandon et al. [15]

where authors require a subpacketization of
(
N
t

)
tF , our protocol requires a way lesser

subpacketization as low as N
gcd (N,t)

(t− 1). Although Woolsey et al. in [16] also achieve

low subpacketization, our storage constrained PIR protocols offers subpacketization

lesser than theirs by a factor of gcd(N, t) and has extra benefits of fault tolerance. It

is able to achieve a uniform load distribution for the one residual systems which the

protocol of [16] is unable to achieve. Also, for the two residual system the rate of PIR

protocol of [16] depends on which two servers fail whereas our protocol has a fixed
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rate irrespective of which two servers fail. Also, in [16] authors provide two different

protocols one for t ∈ Z and one for t /∈ Z, whereas ours is a unified protocol. The

protocol of [16] can be considered as a special case of our protocol.

1.3 Thesis organisation

The rest of the thesis is organized as follows. In Chapter 2 we briefly review the differ-

ent PIR schemes available for retrieval of data from uncoded full storage PIR systems

where each of the F files is fully stored on all N servers. Since our retrieval scheme is

based on such full storage PIR protocols we understand these schemes with examples

and note out the key points behind their working and the constraints required to be able

to apply them. Then we move on to uncoded homogeneous storage constrained PIR

systems and review the foundation work in the field. Also, we review the information

theoretic bounds on achievable rates for both the full storage and storage constrained

PIR systems. Finally, since the storage scheme of our proposed protocol is based on

combinatorial designs, we review different classes of combinatorial designs and their

properties.

In Chapter 3 we propose a capacity achieving PIR scheme for Homogeneous stor-

age constrained PIR systems and provide a robust proof of its privacy and correctness.

We then illustrate the scheme through examples and quantify the minimum file size

required for our protocol under the usage of different full storage retrieval schemes. In-

terestingly, we are able to achieve minimum file size possible for any capacity achieving

PIR protocol with equally sized subfiles. This is in accordance to a recent independent

work on homogeneous PIR systems.

In Chapter 4 we study the scenario where one of the servers fails and the user

has to retrieve the desired file from the set of available N − 1 servers. We show that

our protocol is capacity achieving for the new system. Also, our protocol is able to

uniformly distribute the excess load due to server failure on rest of the available servers.

Then we analyze the scenario where two servers fail. We observe that irrespective of

which two servers fail, we always lose the same fraction of capacity which means that

the achievable rate does not depend on which two servers fail. The achievable rate goes

to capacity as N →∞.
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Finally, in Chapter 5 we briefly discuss directions where our work can be possibly

extended. These include the setting of Heterogeneous storage constrained PIR and

Weakly PIR.

1.4 Notation

For a positive integer n, we use the notation [n] to denote all the natural numbers upto

n, i.e. [n] = {1, 2, ..., n}. For n1, n2 ∈ Z, we use the notation An1:n2 to denote the set

{An1 , An1+1, ..., An2} if n1 ≤ n2, and null set otherwise.
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CHAPTER 2

BACKGROUND

In this chapter we review two important setups for Private information retrieval and

summarise existing results. The general setup for PIR consists of a system of N non-

colluding servers storing F files in parts or completely. The user wishes to retrieve

the θ-th file without leaking any information about θ to any of the servers. The user

generates N query sets and sends one to each of the servers. The servers on receiving

these query sets respond with answers, from which the user must be able to retrieve

the desired file. Also, the query sets must not leak any information about θ to any of

the servers. We first review the setup of Full Storage PIR often known as FS-PIR or

Classical PIR.

2.1 Full Storage Private Information Retrieval (FS-PIR)

Consider a system withN non-colluding servers S1, S2, . . . , SN and F independent files

W1,W2, . . . ,WF , each L bit long and stored fully on all the servers. A user privately

generates index θ ∈ [F ] and wants to retrieve file Wθ without leaking any information

about θ to any of the individual servers. In order to do so, it generates query sets

Q
[θ]
1 , Q

[θ]
2 , . . . Q

[θ]
N , where Q[θ]

n is sent to server Sn.



FL FL FL

S1 S2 SN

Q
[θ]
1

A
[θ]
1 Q

[θ]
2 A

[θ]
2 Q

[θ]
N

A
[θ]
N

User

N= Number of servers

F= Number of files

L= Size of each file

θ= Desired file index

Figure 2.1: FS-PIR setup

2.1.1 Requirements for PIR

Since the queries are generated without any apriory information about file data,

I(W1,W2, . . . ,WF ;Q
[θ]
1 , Q

[θ]
2 , . . . , Q

[θ]
N ) = 0 for all θ ∈ [F ]. (1)

Server Sn on receiving queryQ[θ]
n responds with answerA[θ]

n which is a deterministic

function of Q[θ]
n and W1,W2, . . . ,WF i.e.

H(A[θ]
n |Q[θ]

n ,W1,W2, . . . ,WF ) = 0 for all n ∈ [N ], θ ∈ [F ] (2)

The desired file Wθ is then retrieved from all the answers i.e

H(Wθ|A[θ]
1 , A

[θ]
2 , . . . , A

[θ]
N ) = 0 for all θ ∈ N (Recoverability)

To ensure that the user request is private the following privacy constraint must be

satisfied

I(θ;Q[θ]
n , A

[θ]
n ,W1,W2, . . . ,WF )) = 0 for all θ ∈ [F ], n ∈ [N ] (Privacy)
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or equivalently

(Q[1]
n , A

[1]
n ,W1,W2, . . . ,WF ) ∼ (Q[θ]

n , A
[θ]
n ,W1,W2, . . . ,WF ) for all θ ∈ [F ], n ∈ [N ]

2.1.2 Capacity

For any PIR protocol the retrieval rate R is defined as the ratio of number of bits re-

trieved to the total number of bits downloaded i.e. R = L/D, where D is the total

number of bits downloaded. The maximum achievable retrieval rate for any PIR system

is termed as its PIR-capacity (usually called just capacity).

For the Full Storage PIR system, capacity was determined by Sun and Jafar in 2017

[4].

Theorem 1 For a system of N servers storing F files completely, the maximum achiev-

able rate i.e. capacity is given by

C =
(
1 +

1

N
+

1

N2
+ · · ·+ 1

NF−1

)−1 (2.1)

2.1.3 Capacity achieving Protocols

Now, we review the different capacity achieving FS-PIR protocols in the existing litera-

ture. Since the retrieval scheme of of our SC-PIR protocol is based on FS-PIR schemes,

we review these in detail.

Capacity achieving Protocol 1 (FS-PIR protocol 1)

We first review the capacity achieving protocol proposed by Sun and Jafar in [4].

The protocol assumes file size to be L = NF for all files and is based on 3 key

principles:

(i) Enforcing symmetry across servers

(ii) Enforcing file Symmetry within the query to each server

14



(iii) Exploiting side information of undesired files to retrieve new desired information

Let us first try to understand the protocol through an example.

Example 1 Consider 2 files a and b each of length L = 4 bits both stored on 2 servers

S1 and S2. We represent bits of file a and b by ai and bi, i ∈ [4].

Suppose the user wants to retrieve file a. So he starts by querying S1 by first bit of

file a i.e a1. Next, to make his query symmetric wrt files at S1 (done so as to confuse the

server) he also queries S1 for bit b1. Similarly, he queries S2 for bits a2 and b2 which

enforces symmetry across servers. At this point the user has 2 desired bits - a1, a2 and

2 side information bits -b1, b2. Now he can mix a unknown desired bit with known side

information and queries from the servers. So he queries a3 + b2 from server S1 and

a4 + b1 from server S2. This way he can exploit side information of undesired file while

keeping the query structure symmetric wrt files and also symmetric across servers.

S1 S2

a1 a2

b1 b2

a3 + b2 a4 + b1

From point of view of the servers, each server has received query for 1 bit of file a, 1

bit of file b and a linear combination of 1 bit of file a and 1 bit of file b. So, there’s a

discrepancy in what the user actually wants to retrieve.

Similarly file b can be retrieved as:

S1 S2

a1 a2

b1 b2

a2 + b3 a1 + b4

Note that 4 bits of desired file are retrieved by by downloading a total of 6 bits, so

rate R = 4
6

= 2
3
, which matches the capacity for this case (C = (1 + 1

2
)−1 = 2

3
by

eq. (2.1)).

Next, we understand the PIR protocol proposed by Sun and Jafar [4] in detail.

15



Suppose the user wants to retrieve file Wθ.

For all i ∈ [F ], define vectors

Ui = [ui(1), ui(2), . . . , ui(N
F )]

Let the term ’f -sum’ be used to denote an expression representing sum of f distinct

variables each drawn from a different Ui vector, i.e. ui1(j1) + ui2(j2) + · · · + uif (jf ),

where i1, i2, . . . if ∈ [F ] and are all distinct. Furthermore the above f -sum is said to be

f -sum of type {i1, i2, . . . if}.

Firstly, a fixed query structure Q(n, θ) for the query to be sent to server Sn for re-

trieving file Wθ is generated. Each Q(n, θ) must be a union of F disjoint subsets called

blocks. Block f, f ∈ [F ] must contain only f -sums . There are total
(
F
f

)
possible

types of f -sums. Block f , must contain all of them. Also, it is required that each type

of f -sum has exactly (N − 1)f−1 distinct instances.

For each i ∈ [F ], let new(Ui) be a function that returns the "next" variable in Ui,

starting from ui(1). Each block is partitioned into two subsets —a subsetM that con-

tains the f -sums which include a variable from Uθ and a subset I which contains all the

remaining f -sums, which contain no symbols from Uθ.

The scheme for generating query sets Q(n, θ), n ∈ [N ] from Ui variables is pre-

sented in Algorithm 1.

Once the query sets Q(n, θ) have been generated, a ordered representation is ob-

tained by first ordering the blocks in increasing order of block index, and then within

the f th block arranging the "types" of f -sum in increasing lexicographic order. The

ordering of query sets Q(n, θ) is represented by ~Q(n, θ).

Finally, the Ui variables have to be mapped to the file bits in order to generate the

actual query vectors, Q[θ]
n .

Suppose the ith file Wi, i ∈ [F ] is represented as Wi = [wi(1), wi(2), . . . , wi(N
F )],

where wi(j) represents the jth bit of file Wi. The user privately chooses permutations

16



Algorithm 1 FS-Capacity achieving Protocol 1 [4]
Input: θ
Output: Query sets Q(n, θ), n ∈ [N ]

1: Initialize: All query sets as null sets. Also initialize Block← 1
2: for n ∈ [N ] do
3:

Q(n, θ, Block,M)← new(Uθ)

Q(n, θ, Block, I)←
⋃

i∈[F ]\θ

new(Ui)

4: end for
5: for Block ∈ {2, 3, . . . , F} do
6: for n ∈ [N ] do
7: for each n′ ∈ [N ] & n′ 6= n do
8: for each q ∈ Q(n′, θ, Block − 1, I) do
9:

Q(n, θ, Block,M)← Q(n, θ, Block,M) ∪ {new(Uθ) + q}

10: end for
11: end for
12: for distinct {i1, i2, . . . , iBlock} ∈ [F ] \ θ do
13: for i ∈ [(N − 1)Block−1] do
14:

Q(n, θ, Block, I)← Q(n, θ, Block, I)
⋃ {

new(Ui1)

+ new(Ui2) + · · ·+ new(UiBlock
)
}

15: end for
16: end for
17: end for
18: end for
19: for n ∈ [N ] do
20:

Q(n, θ)←
⋃

Block∈[F ]

(
Q(n, θ, Block, I) ∪Q(n, θ, Block,M)

)
21: end for

17



γ1, γ2, . . . , γF , uniformly randomly from all possible (NF )! permutations over the in-

dex set [NF ], so that the permutations are independent of each other and also of θ . The

Ui variables are mapped to the files Wi through the random permutation γi ,∀i ∈ [F ].

Let Γ denote an operator that replaces every instance of ui(j) with wi(γi(j)), ∀ i ∈

[F ], j ∈ [NF ]. This random mapping, applied to ~Q(n, θ) produces the actual query

vector Q[θ]
n to be sent to server Sn for retrieving Wθ as

Q[θ]
n = Γ( ~Q(n, θ)) (2.2)

Example 2 Consider 3 files a, b and c each of 27 bits stored on 3 servers S1, S2 and S3.

To make the notation simpler we use W1 = a, W2 = b W3 = c, U1 = [a1, a2, . . . , a27],

U2 = [b1, b2, . . . , b27] and U3 = [c1, c2, . . . , c27].

The output of Algorithm 1 for θ = 1 i.e retrieving file a is as follows:

S1 S2 S3

a1 a2 a3

b1 b2 b3

c1 c2 c3

a4 + b2 a8 + b1 a12 + b1

a6 + b3 a10 + b3 a14 + b2

a5 + c2 a9 + c1 a13 + c1

a7 + c3 a11 + c3 a15 + c2

b4 + c4 b6 + c6 b8 + c8

b5 + c5 b7 + c7 b9 + c9

a16 + b6 + c6 a20 + b4 + c4 a24 + b4 + c4

a17 + b7 + c7 a21 + b5 + c5 a25 + b5 + c5

a18 + b8 + c8 a22 + b8 + c8 a26 + b6 + c6

a19 + b9 + c9 a23 + b9 + c9 a27 + b7 + c7

The algorithm first starts by generating 1-sums for each server. There are only 3

possible types of 1-sums : ai, bi and ci , where i ∈ [9]. Each 1 sum has to occur

(N − 1)1−1 = 1 times in each query set which leads to the Block 1 shown in the query

table above. Next, 2-sums are generated. There are total
(
3
2

)
= 3 possible 2-sums

18



and each type of f -sum has to occur (3 − 1)2−1 = 2 times in each query set. 2-sums

of type a + b or a + c correspond to subset M and should use the side information

available from Block 1. 2-sums of type b+ c correspond to subset I and should be used

as side information in Block 3. As per this, Block 2 is generated in the above query

table. Finally, Block 3 has to be generated using 3-sums. Since
(
3
3

)
= 1, there is only

1 type of 3-sum and it has to occur (3 − 1)3−1 = 4 times in each query set. Since, this

corresponds to subsetM, it should exploit the side information available from Block 2

to retrieve bits of desired file i.e. a. In the tables shown, different blocks are separated

by horizontal lines and numbered from 1 to F .

The output of Algorithm 1 for θ = 2 i.e retrieving file b is as follows:

S1 S2 S3

a1 a2 a3

b1 b2 b3

c1 c2 c3

a2 + b4 a1 + b8 a1 + b12

a3 + b6 a3 + b10 a3 + b14

a4 + c4 a6 + c6 a8 + c8

a5 + c5 a7 + c7 a9 + c9

b5 + c2 b9 + c1 b13 + c1

b7 + c3 b11 + c3 b15 + c3

a6 + b16 + c6 a4 + b20 + c4 a4 + b24 + c4

a7 + b17 + c7 a5 + b21 + c5 a5 + b25 + c5

a8 + b18 + c8 a8 + b22 + c8 a6 + b26 + c6

a9 + b19 + c9 a9 + b23 + c9 a7 + b27 + c7

The output of Algorithm 1 for θ = 3 i.e retrieving file c is as follows:
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S1 S2 S3

a1 a2 a3

b1 b2 b3

c1 c2 c3

a4 + b4 a6 + b6 a8 + b8

a5 + b5 a7 + b7 a9 + b9

a2 + c4 a1 + c8 a1 + c12

a3 + c6 a3 + c10 a2 + c14

b2 + c5 b1 + c9 b1 + c13

b3 + c7 b3 + c11 b2 + c15

a6 + b6 + c16 a4 + b4 + c20 a4 + b4 + c24

a7 + b7 + c17 a5 + b5 + c21 a5 + b5 + c25

a8 + b8 + c18 a8 + b8 + c22 a6 + b6 + c26

a9 + b9 + c19 a9 + b9 + c23 a7 + b7 + c27

Note that this construction retrieves 27 desired file bits by downloading a total of

39 bits, so its rate is 27/39 = 9/13, which matches the capacity for this case (C =

(1 + 1/3 + 1/9)−1 = 9/13 by eq. (2.1)).

Key points about the algorithm

1. For all f ∈ [F ], Block f contains exactly (N−1)f−1 instances of f -sums of each
possible type.

2. No ui(j), j ∈ [NF ] variable appears more than once in query set to any given
server.

3. Exactly NF−1 variables for each Ui, i ∈ [F ] appear in the query set Q(n, θ), n ∈
[N ].

4. The size of each query set is NF−1 + 1
N−1(NF−1 − 1).

Correctness of the algorithm follows from the fact that each bit of the desired file

appears in the query sets either without any interference (i.e they are trivially retrieved)

or appear mixed with side information which is available from other server. Thus each

bit of the desired file can be retrieved and hence the algorithm is correct.

The key idea behind privacy is that regardless of θ , every realization of the query

vector that fits the query structure is equally likely because of the uniformly random

permutation Γ.
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Finally, since the size of each query set is NF−1 + 1
N−1(NF−1−1), it easily follows

that the algorithm achieves capacity.

Capacity achieving Protocol 2 (FS-PIR protocol 2)

The same authors Sun and Jafar soon came up with an improvement of Protocol 1

in terms of minimum file size required [18]. They proposed a new protocol which

requires file size to be a multiple ofNF−1 and still achieves capacity. Also, they showed

that this is the minimum file size any capacity achieving protocol can offer and hence

established the optimality of the protocol in terms of file size. The key observation

which allows to reduce the file size is that enforcing symmetry across servers is not a

necessary condition for PIR. The protocol exploits this fact and achieves capacity while

preserving privacy with a smaller file size.

The protocol assumes file size to be L = NF−1 for all files and is based on 2 key

principles:

(i) Enforcing file Symmetry within the query to each server

(ii) Exploiting side information of undesired files to retrieve new desired information

Apart from the notation from protocol 1, the authors introduce two more terms

to present the new protocol: Count(Q, i[1:f ]) which counts the number of f -sums of

type {i1, i2, . . . if} that are present in Q and Max(Q, f) which denotes the maximum

number of f -sums of same type in Q with the maximization being across all types of

f -sums.

As per this notation, file symmetry translates to the condition that for every type of

f -sum {i1, i2, . . . if}

Count(Q, i[1:f ]) = Count(Q, i
′

[1:f ]) for all i[1:f ], i
′

[1:f ] (2.3)

To simplify the presentation of the protocol, the authors first present two subroutines

M-Sym and Exploit-SI.

M-Sym subroutine takes as input a set Q comprising of various f -sums and out-

puts a set Q∗ comprised of additional terms needed to be included in Q to make it file
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symmetric. It does so by checking if there are Max(Q, f) number of f -sums of type

{i1, i2, . . . if}, and if not then it generates the required number of instances to bring the

count to Max(Q, f). This is done for all types of f -sums and for all f ∈ [F ].

Algorithm 2 M-Sym Algorithm
Input: Q
Output: Q∗

1: Initialize: Q∗ ← φ
2: for f ∈ [F ] do
3: for each i1:f do
4: if Count(Q, i[1:f ]) < Max(Q, f) then
5: for i ∈ [Max(Q, f)− Count(Q, i[1:f ])] do

Q∗ ← Q∗ ∪ {new(Ui1) + new(Ui2) + · · ·+ new(Uif )}

6: end for
7: end if
8: end for
9: end for

The Exploit-SI subroutine simply formalizes the side-information exploitation step

which is the same as in Protocol 1. This subroutine take N query sets Q1, Q2, . . . , QN

as input which are comprised of side information terms and have not been exploited. It

then produces N new sets Q′1, Q
′
2, . . . , Q

′
N which are constructed by combining a new

variable Uθ with side information terms of other query sets.

Algorithm 3 Exploit-SI Algorithm
Input: Q1, Q2, . . . , QN

Output: Q′1, Q
′
2, . . . , Q

′
N

1: Initialize: All output are initialized as null sets.
2: for n ∈ [N ] do
3: for n′ ∈ [N ], n

′ 6= n do
4: for each q ∈ Qn′ do

Qn′ ← Qn′ ∪ {new(Uθ) + q}

5: end for
6: end for
7: end for

Then, using these 2 subroutines the protocol is presented as:
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Algorithm 4 FS-Capacity achieving Protocol 2
Input: θ
Output: Query sets Q(n, θ), n ∈ [N ]

1: Initialize: All query sets as null sets. Also initialize Block← 1

2:

Q(1, θ, Block,M)← new(Uθ)

Q(1, θ, Block, I)← M-Sym(Q(1, θ, Block,M))

∀n ∈ [2 : N ], Q(n, θ, Block,M)← φ, Q(n, θ, Block, I)← φ

3: for Block ∈ {2, 3, . . . , f} do

4:

(Q(1, θ, Block,M), . . . , Q(N, θ,Block,M)

← Exploit-SI(Q(1, θ, Block − 1, I), . . . , Q(N, θ,Block − 1, I))

5: for n ∈ [N ] do

Q(n, θ, Block, I)← M-Sym(Q(n, θ, Block,M))

end for

6: end for

7: for n ∈ [N ] do

8:

Q(n, θ)←
⋃

Block∈[f ]

(
Q(n, θ, Block, I) ∪Q(n, θ, Block,M)

)
9: end for

Finally, as in FS-PIR Protocol 1 (2.1.3), a random permutation is applied to the file

bits to obtain the actual query sets Q[θ]
n , n ∈ [N ].

Example 3 Consider 2 files a and b each of 2 bits both stored on 2 servers S1 and S2.

To make the notation simpler lets use W1 = a, W2 = b, U1 = [a1, a2] and U2 = [b1, b2].

The output of Algorithm 4 for θ = 1 i.e retrieving file a is as follows:
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S1 S2

a1 a2 + b1

b1

The algorithm starts by querying S1 for bit a1, then to obfuscate the server, it also

queries it for b1. At this point it has 1 desired bit and 1 bit of side information. So, it

mixes this side information with another desired bit i.e b1 + a2 and sends this is query

to S2. Clearly, the required file is retrieved.

Similarly the output of the algorithm for θ = 2 is

S1 S2

a1 a1 + b2

b1

Note that in these queries, all the desired bits are either present individually or are

mixed with side information which is available from some other server. Thus the desired

file can be correctly retrieved using these queries. Secondly, independent of the whether

the user wants file a or b, the query structure at the individual servers is same. Thus a

random permutation of bits provides needed privacy.

Also, note that this construction retrieves 2 desired file bits by downloading a total of

3 bits, so its rate is 2/3, which matches the capacity for this case (C = (1+1/2)−1 = 2/3

by eq. (2.1)).

Example 4 Consider 3 files a, b and c each of 9 bits stored on 3 servers S1, S2 and S3.

To make the notation simpler lets use W1 = a, W2 = b W3 = c, U1 = [a1, a2, . . . , a9],

U2 = [b1, b2, . . . , b9] and U3 = [c1, c2, . . . , c9].

The output of Algorithm 4 for θ = 1 i.e retrieving file a is as follows:

S1 S2 S3

a1 a2 + b1 a4 + b1

b1 a3 + c1 a5 + c1

c1 b2 + c2 b3 + c3

a6 + b2 + c2 a8 + b3 + c3 a9 + b2 + c2

a7 + b3 + c3
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The output of Algorithm 4 for θ = 2 i.e retrieving file b is as follows:

S1 S2 S3

a1 a1 + b2 a1 + b4

b1 b3 + c1 b5 + c1

c1 a2 + c2 a3 + c3

a2 + b6 + c2 a3 + b8 + c3 a2 + b9 + c2

a3 + b7 + c3

The output of Algorithm 4 for θ = 3 i.e retrieving file c is as follows:

S1 S2 S3

a1 a1 + c2 a1 + c4

b1 b1 + c3 b1 + c5

c1 a2 + b2 a3 + b3

a2 + b2 + c6 a3 + b3 + c8 a2 + b2 + c9

a3 + b3 + c7

Note that this construction retrieves 9 desired file bits by downloading a total of

13 bits, so its rate is 9/13, which matches the capacity for this case (C = (1 + 1/3 +

1/9)−1 = 9/13 by eq. (2.1)).

Some key points about the protocol:

1. Q(n, θ), n ∈ [N ], θ ∈ [F ] is a union of F disjoint blocks. Block f contains
only f -sums. For any type i[1:f ] block f of Q(n, θ) contains v(n, f) instances
of type i[1:f ], where v(1, 1) = 1, v(n, 1) = 0, ∀n ∈ [2 : N ] and v(n, f) =∑

n′ 6=n v(n
′
, f − 1), ∀f ∈ [2 : F ].

2. No ui(j), j ∈ [NF−1] variable appears more than once in query set to any given
server.

3. The protocol is not symmetric wrt the servers. Also, the load distribution across
servers is not uniform as different servers may receive different number of queries.

4. It provably offers the minimum file size amongst all capacity achieving PIR pro-
tocols.

Capacity achieving Protocol 3 (FS-PIR protocol 3)

With a slight modification in the definition of retrieval rate, the minimum file size re-

quired for achieving capacity can be greatly reduced. In the scenario when there is
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more than one way (chosen randomly by the user) to retrieve a file each having a dif-

ferent download cost (in bits), a intuitive way of quantifying retrieval rate will be to

take the ratio of file length to the expected download cost i.e. R = L/E(D). With this

as the definition for retrieval rate Tian, Sun and Chen in 2019 [19] proposed a capacity

achieving protocol with file size L = N−1. Furthermore they showed that amongst the

class of all capacity achieving linear codes the above file size is optimal (or the lowest

possible). For ease in presentation of the protocol, the authors consider the indexing

of the file from 0 to F − 1, instead of the usual 1 to F . Same is done for indexing of

servers as well. The idea behind their scheme is quite simple and as follows:

1. The user first generates a F − 1 lengthed random key (uniformly random) F ∈
{0, 1, . . . , N − 1}F−1. Say the key is F = (F0,F1, . . . ,FF−2).

2. Say the user wants to retrieve the θ-th file, then he generates queries Qn by keeping
f − 1 (all other except the θ-th) entries fixed and varying the θ-th entry over all
elements of {0, 1, 2, . . . , N − 1}, i.e Qn = (F0, . . . ,Fθ−1, en,Fθ, . . . ,FF−2), where
en ∈ {0, 1, . . . , N − 1} ∀ n ∈ {0, 1, . . . , N − 1}, and ei = ej if and only if i = j.

3. The idea behind this construction is that each server would return a xor of F bits,
each coming from a different file. Now since F − 1 entries of each query are the
same, the responses of servers would be of the form ∆⊕some bit of Wθ. By varying
the θ-th entry over all elements of {0, 1, 2, . . . , N − 1}, we get responses as ∆,∆⊕
Wθ,1,∆⊕Wθ,2, . . . ,∆⊕Wθ,N−1 and hence we would be able to retrieve all bits of
desired file.

4. The authors do this one-one mapping from set of en’s to {0, 1, 2, . . . , N − 1} by
choosing en such that for the n-th server sum of all entries of the query modulo N
equals n i.e

(∑F−2
i=0 Fi + en

)
N

= n, ∀ n ∈ {0, 1, . . . , N − 1}.

Finally, as in FS-PIR Protocol 1 and 2, a random permutation is applied to the bits

of each file individually. (γi : {0, 1, 2, . . . N − 1} → {0, 1, 2, . . . N − 1} , i ∈ [F ])

Example 5 Consider 2 files a and b of 1 bit each stored on 2 servers S0 and S1. Suppose

the user wants to retrieve file a. First he generates random key F ∈ {0, 1}. If user

chooses F = 0, he constructs the queries as Q1 = (0, 0) and Q2 = (1, 0) which means

no bit is downloaded from S0 and a is downloaded from S1, and hence the desired file

is retrieved by downloading just 1 bit. If user chooses F = 1, the user constructs the

queries as Q1 = (1, 1) and Q2 = (1, 0), thus downloading a + b from S0 and b from

S1 and hence retrieving a by downloading total 2 bits. Since F is chosen uniformly

randomly, Prob(F = 0) = Prob(F = 1) = 0.5. Thus, E(D) = 1.5. The table below

summarizes the queries for retrieving a and b using different keys (en bits to the servers
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are highlighted in red and each key F corresponds to one specific way of retrieving the

desired file):

Key Retrieving a (θ = 0) Retrieving b (θ = 1)

S0 S1 S0 S1

Query Resp. Query Resp. Query Resp. Query Resp.

F = 0 (0,0) – (1,0) a (0,0) – (0,1) b

F = 1 (1,1) a+ b (0,1) b (1,1) a+ b (1,0) a

Note that to download either of the files, on an average 3/2 bits are downloaded

and both files are of size 1 bit. Thus R = 2/3 which matches capacity for the system.

Another interesting thing to note is that for some key no bits are downloaded from 1 of

the servers.

Example 6 Consider 3 files a, b, c each of 2 bits stored on the three servers S1, S2 and

S3. Representation: a = {a1, a2}, b = {b1, b2} and c = {c1, c2}.The tables below

summarize the queries for retrieving a, b and c using different randomly generated keys

(en bits to the servers are highlighted in red):

Key Retrieving a (θ = 0)

S0 S1 S2

Query Resp. Query Resp. Query Resp.

F = (0, 0) (0,0,0) – (1,0,0) a1 (2,0,0) a2

F = (0, 1) (2,0,1) a2 + c1 (0,0,1) c1 (1,0,1) a1 + c1

F = (0, 2) (1,0,2) a1 + c2 (0,0,2) c2 (2,0,2) a2 + c2

F = (1, 0) (2,1,0) a2 + b1 (0,1,0) b1 (1,1,0) a1 + b1

F = (1, 1) (1,1,1) a1 + b1 + c1 (2,1,1) a2 + b1 + c1 (0,1,1) b1 + c1

F = (1, 2) (0,1,2) b1 + c2 (1,1,2) a1 + b1 + c2 (2,1,2) a2 + b1 + c2

F = (2, 0) (1,2,0) a1 + b2 (2,2,0) a2 + b2 (0,2,0) b2

F = (2, 1) (0,2,1) b2 + c1 (1,2,1) a1 + b2 + c1 (2,2,1) a2 + b2 + c1

F = (2, 2) (2,2,2) a2 + b2 + c2 (0,2,2) b2 + c2 (1,2,2) a1 + b2 + c2
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Key Retrieving b (θ = 1)

S0 S1 S2

Query Resp. Query Resp. Query Resp.

F = (0, 0) (0,0,0) – (0,1,0) b1 (0,2,0) b2

F = (0, 1) (0,2,1) b2 + c1 (0,0,1) c1 (0,1,1) b1 + c1

F = (0, 2) (0,1,2) b1 + c2 (0,2,2) b2 + c2 (0,0,2) c2

F = (1, 0) (1,2,0) a1 + b2 (2,2,0) a2 + b2 (0,2,0) b2

F = (1, 1) (1,1,1) a1 + b1 + c1 (1,2,1) a1 + b2 + c1 (1,0,1) a1 + c1

F = (1, 2) (1,0,2) a1 + c2 (1,1,2) a1 + b1 + c2 (1,2,2) a1 + b2 + c2

F = (2, 0) (2,1,0) a2 + b1 (2,2,0) a2 + b2 (2,0,0) a2

F = (2, 1) (2,0,1) a2 + c1 (2,1,1) a2 + b1 + c1 (2,2,1) a2 + b2 + c1

F = (2, 2) (2,2,2) a2 + b2 + c2 (2,0,2) a2 + c2 (2,1,2) a2 + b1 + c2

Key Retrieving c (θ = 2)

S0 S1 S2

Query Resp. Query Resp. Query Resp.

F = (0, 0) (0,0,0) – (0,0,1) c1 (0,0,2) c2

F = (0, 1) (0,1,2) b1 + c2 (0,1,0) b1 + c2 (0,1,1) b1 + c2

F = (0, 2) (0,2,1) b2 + c1 (0,2,2) b2 + c2 (0,2,0) b2

F = (1, 0) (1,0,2) a1 + c2 (1,0,0) a1 (1,0,1) a1 + c1

F = (1, 1) (1,1,1) a1 + b1 + c1 (1,1,2) a1 + b1 + c2 (1,1,0) a1 + b1

F = (1, 2) (1,2,0) a1 + b2 (1,2,1) a1 + b2 + c1 (1,2,2) a1 + b2 + c2

F = (2, 0) (2,0,1) a2 + c1 (2,0,0) a2 (2,0,2) a2 + c2

F = (2, 1) (2,1,0) a2 + b1 (2,1,1) a2 + b1 + c1 (2,1,2) a2 + b1 + c2

F = (2, 2) (2,2,2) a2 + b2 + c2 (2,2,0) a2 + b2 (2,2,1) a2 + b2 + c1

In the above tables, each key F corresponds to one specific way of retrieving the

desired file. Note that for retrieving any file, on average 1
9
× 2 + 8

9
× 3 = 26

9
are

downloaded. Hence R = 2
26/9

= 18
26

= 9
13

, which matches the capacity for the system.
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2.2 Storage constrained Private Information Retrieval

(SC-PIR)

Consider a system of N non-colluding servers storing f independent files. The servers

are denoted as Sn where n ∈ [N ]. Each file is assumed to be of size L bits. The files

are denoted as Wi, where i ∈ [F ].

Assume that the servers have identical storage capacity and every server stores a

fixed fraction µ ∈ [ 1
N
, 1] of each file. This fraction µ is called the normalized storage

capacity of the server. Therefore each server stores µL bits of each file and a total

of µLF bits. For simplicity often the case where µ is an integral multiple of 1/N

is considered, and results can then be extended to the case where t is not an integral

multiple of 1/N . The content of server Sn is denoted by Zn, for any n ∈ [N ].

The user privately generates index θ ∈ [F ] and wants to retrieve file Wθ without

leaking any information about θ to any of the individual servers. In order to do so, it

generates queries Q[θ]
1 , Q

[θ]
2 , . . . Q

[θ]
N , where Q[θ]

n is sent to server Sn.

µFL µFL µFL

µL

S1 S2 SN

Q
[θ]
1

A
[θ]
1 Q

[θ]
2 A

[θ]
2 Q

[θ]
N

A
[θ]
N

User

N= Number of servers

F= Number of files

L= Size of each file
µ= Normalized storage

θ= Desired file index

Figure 2.2: SC-PIR setup

Again, as queries are generated without any information about the file contents

I(W1,W2, . . . ,WF ;Q
[θ]
1 , Q

[θ]
2 , . . . , Q

[θ]
N ) = 0 for all θ ∈ [F ]. (2.4)
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and server Sn on receiving queryQ[θ]
n responds with answerA[θ]

n which is a deterministic

function of Q[θ]
n and the contents stored on the server, i.e.,

H(A[θ]
n |Q[θ]

n , Zn) = 0, for all n ∈ [N ] and θ ∈ [F ]. (2.5)

The desired file Wθ is then retrieved from all the answers i.e

H(Wθ|A[θ]
1 , A

[θ]
2 , . . . , A

[θ]
N ) = 0 for all θ ∈ N (2.6)

To ensure that the user request is private the following privacy constraint must be

satisfied

I(θ;Q[θ]
n , A

[θ]
n , Zn)) = 0 for all θ ∈ [F ], n ∈ [N ] (2.7)

2.2.1 Capacity

For SC-PIR system the maximum achievable rate or capacity was characterized by Tan-

don et al. in 2018 [15].

Theorem 2 For a system of F files and N servers, each with normalized storage µ, the

optimal download cost per bit D∗(µ) (or the inverse of PIR capacity) is given by the

lower convex hull of the following (µ,D∗(µ)) pairs, for t = 1, 2, . . . , N :

(
µ =

t

N
, D∗(µ) =

F−1∑
f=0

1

tF

)
. (2.8)

2.2.2 Capacity achieving Protocol 1

Now, we review the SC-PIR capacity achieving protocol proposed by Tandon et al. in

[15]. Assume that t ∈ Z. Taking inspiration from coded caching, the authors in [15]

divide each file into
(
N
t

)
equally sized sub-files and label them with a unique subset

S ⊆ [1 : N ] of size t. Then for each file, each server stores all the sub-files which

contain its index. By doing so, two things are achieved

(i) Each server stores
(
N−1
t−1

)
sub-files for each file, thus µ =

(
N−1
t−1

)
/
(
N
t

)
= t/N .
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(ii) Each subfile for every file is stored on exactly t servers.

Then to retrieve file Wθ, the user has to retrieve all the subfiles of Wθ. To do so,

the capacity achieving FS-PIR protocol 1 (section 2.1.3) is used to retrieve individual

subfiles from the set of t servers storing each subfile. By restricting focus to only a

particular subfile of all files, this set of t servers can be considered as a FS-PIR system

with F files of size L/
(
N
t

)
each.

Since each subfile retrieval happens with a download cost per bit of
(
1 + 1/N +

· · ·+ 1/NF−1), the overall download cost per bit is

D(µ) =

(
N
t

)
× Number of bits downloaded to retrieve 1 subfile(

N
t

)
× Size of each subfile

= Download cost per bit for retrieving 1 subfile

= 1 +
1

t
+

1

t2
+ · · ·+ 1

tF−1

(2.9)

which equals the optimal download cost per bit for the SC-PIR system (eq 2.8).

For the case when t 6= Z, capacity achieving PIR protocol can be constructed by

using a technique called memory sharing using two SC-PIR systems with t ∈ Z.

2.3 Review of Combinatorial Designs

Combinatorial designs appear to be a useful object in designing storage schemes. In

this section we review some fundamental combinatorial block designs. We refer the

reader to [20] for more details.

Definition 1 (Design (X,A)). A design is a pair (X,A) such that the following are

satisfied:

D1) X is a set of elements called points.

D2) A is a collection of non-empty subsets of X called blocks.

A design can also be described by a matrix called the incidence matrix. We define

this next.
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Definition 2 (Incidence Matrix). Let (X,A) be a design where X = {x1, x2, . . . , xv}

and A = {A1, A2, . . . , Ab}. The incidence matrix of (X,A) is the v × b binary matrix

Mv×b = (Mi,j) defined by the rule

Mij =

 1 if xi ∈ Aj
0 if xi /∈ Aj

(2.10)

Next, we define t-designs.

Definition 3 (t-designs). Let v, k, λ and t be positive integers such that v > k ≥ t. A

t-(v, k, λ)-design is a design (X,A) such that the following are satisfied:

1. |X| = v

2. every block contains exactly k points, and

3. every set of t distinct points is contained in exactly λ blocks.

Now, we state some important properties of t-designs (refer [20]).

(i) The number of blocks that contain any i-element set of points is given by

λi = λ

(
v − i
t− i

)/(
k − i
t− i

)
, i ∈ [t] (2.11)

The total number of blocks b in a t-design are given by

b = λ

(
v

t

)/(
k

t

)
(2.12)

(ii) Any t-(v, k, λ)-design is also a s-(v, k, λs)-design for any s with 1 ≤ s ≤ t. (Note

that the value of λs depends on s.)

The simplest types of t-designs are known as tactical configurations or sometimes

referred to as just configurations.

Definition 4 ((v, k, b, r)-configuration). A (v, k, b, r)-configuration, also known as tac-

tical configuration is a 1-design with v points and b blocks, each containing k points.

Also, each point is contained in the same number of blocks r, called the repetition num-

ber.
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The necessary and sufficient condition for existence of a (v, k, b, r)-configuration is

bk = vr (2.13)

Note that a (v, k, b, r)-configuration is a 1-(v, k, r)-design with b = vr
k

.

The incidence matrix Mv×b of a (v, k, b, r)-configuration has some useful structure:

(i) Since each point is contained in r blocks, each row of M has exactly r ones.

(ii) Since each block contains k points, each column of M has exactly k ones.

Now, we propose a simple way of generating incidence matrices for tactical config-

urations.

Lemma 3 For a (v, k, b, r)-configuration, one incidence matrixMv×b can be generated

as:

1. Fill the first row with 1’s in the first r places, and 0 in the remaining positions.

2. For all rows ∈ [2 : v], construct the next row by circularly shifting the previous

row by r places.

Proof: Clearly, each row of Mv×b has r ones. Now to prove that the above generated

incidence matrix corresponds to a tactical configuration, we need to show that each

column of the generated matrix has k ones. We prove the same through a construction.

Note that, originally, each row of Mv×b is a length b vector.

Construct a v × vr matrix M ′ by filling ones so that row i has ones in columns

[(i− 1)r + 1 : ir] and zeros elsewhere. So the first row has ones only in column [1 : r].

Second row has ones in columns [r + 1 : 2r] and so on.

Next, construct matricesM ′
1,M

′
2, . . . ,M

′
k by considering the groups of b columns

orderwise from M ′. Now, given any i ∈ [v] and j ∈ [b], there is at maximum only one

of these matrices can have a 1 in the (i, j)-th entry, i.e for any i ∈ [v], j ∈ [b] if

M ′
l(i, j) = 1, then M ′

l′(i, j) = 0 for all l′ ∈ [k]/l, where M ′
l(i, j) represents the j-th

entry in the i-th row of Ml
′. This happens because each row of M ′ has exactly r ones

and r <= b.
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Finally, note that original matrixMv×b can be obtained by taking a entry-wise union

of the k constructed matrices M ′
i, i ∈ [k] i.e.

Mv×b =
⋃
i∈[k]

M ′
i

Since each column of M ′
i’s has exactly one 1 and no two M ′

i’s have 1 in the same

location, each column of Mv×b has k ones in each column. Thus the incidence matrix

Mv×b generated as per Lemma 3 corresponds to a tactical configuration. �

A simple example is provided below to understand the proposed construction and

construction involved in the proof easily.

Example 7 Lets say we need to construct a (3, 2, 3, 2) configuration. Incidence matrix

for a configuration with these parameters can be obtained by filling 1’s in the first two

entries in the first row and circularly shifting the first row by 2 places to obtain the

second row and eventually circularly shifting second by 2 entries row to obtain the

third row.

M3×3 =


1 1 0

1 0 1

0 1 1


Another way of obtaining the same matrix is by generating the matrix M ′ as pro-

posed in the proof of Lemma 3. So we generate a 3 × 6 matrix M ′ by filling first two

entries as 1 in the first row, third and fourth entry in second row as 1’s and fifth and

sixth entry in third row as 1’s and all other entries as zero.

M ′ =


1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1


Now this matrix has to be divided into k = 2 smaller matrices with b = 3 columns

each. So matrix M ′
1 consists of the first 3 columns and matrix M ′

2 consists of the next 3

columns.
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M ′
1 =


1 1 0

0 0 1

0 0 0

 M ′
2 =


0 0 0

1 0 0

0 1 1


Finally, the matrix M3×3 can be obtained by taking entry-wise union of the matrices

M ′
1s and M ′

2s.

Next, we look at another useful class of block designs known as Balanced Incom-

plete Block Designs or BIBDs.

Definition 5 ((v, k, λ, b, r)-BIBD.) A 2-design with v points, b blocks, each containing

k points, such that each point is in exactly r blocks and any given pair of points is in

exactly λ blocks is called a (v, k, λ, b, r)-Balanced Incomplete Block Design (BIBD).

Note: For a (v, k, λ, b, r)-BIBD,

bk = vr & r(k − 1) = λ(v − 1) (2.14)

Next, we look at some special classes of BIBD’s.

Definition 6 (Symmetric BIBD.) A BIBD with b = v is called a symmetric BIBD.

A useful property of symmetric BIBD’s is that any 2 blocks contain exactly λ common

points.

Definition 7 (Projective Plane.) An (N2 +N + 1, N + 1, 1, N2 +N + 1, N + 1)-BIBD

with N ≥ 2 is called a projective plane of order N .

Definition 8 (Affine Plane.) An (N2, N, 1, N2 +N,N + 1)-BIBD with N ≥ 2 is called

a affine plane of order N .
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2.3.1 Examples

(a) (3,2,3,2)-configuration.

1 2

3
31

2

Considering the sides of a triangle as blocks and vertices as points, we get a (3,2,3,2)-
configuration with incidence matrix

M3×3 =

1 0 1
0 1 0
0 1 1


(b) (4,2,1,6,3)-BIBD.

1

2

3

4

5 6

1 2

34

Considering vertices as points and lines as blocks in the figure above, we get a
(4,2,1,6,3)-BIBD with incidence matrix

M4×6 =


1 1 0 0 0 1
0 1 1 0 1 0
0 0 1 1 0 1
1 0 0 1 1 0


(c) (Fano Plane)
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The fano plane is a (7,3,1,7,3)-symmetric BIBD with incidence matrix

M7×7 =



1 1 1 0 0 0 0
0 0 1 1 1 0 0
1 0 0 0 1 1 0
1 0 0 1 0 0 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 1 0 1 0 1 0


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CHAPTER 3

HOMOGENEOUS STORAGE CONSTRAINED PIR

PROTOCOL

In this Chapter we propose a novel PIR protocol for uncoded systems storing a fraction

of each file. While the storage capacity is identical for the servers, they need not store

the same content. The proposed PIR protocol has two main components: a storage

scheme and a retrieval scheme. The storage scheme is based on combinatorial designs,

while the retrieval scheme works by projecting the given system to multiple instances of

smaller systems with replicated servers having full storage capacity. It uses the retrieval

scheme of FS-PIR systems for these smaller instances. Our scheme is flexible and can

easily accommodate a range of system parameters.

3.1 Setup for PIR

We consider a system of N non-colluding servers storing F independent files. The

servers are denoted as Sn where n ∈ [N ]. Each file is assumed to be of size L bits. The

files are denoted as Wi, where i ∈ [F ].

As the files are independent we have H(W1,W2, . . . ,WF ) =
∑n

i=1H(Wi) = FL,

where H(·) denotes the entropy function.

We assume that the servers have identical storage capacity and every server stores a

fixed fraction µ ∈ [ 1
N
, 1] of every file. This fraction µ is called the normalized storage

capacity of the server. Therefore each server stores µL bits of each file and a total of

µLF bits. For simplicity we consider the case where µ is an integral multiple of 1/N .

PIR protocols can be extended to other values of µ by memory sharing.

We denote the content of server Sn by Zn, for any n ∈ [N ]. A system of N non-

colluding servers, storing F files and having a normalized storage of µ is referred to as

a µ-(F,N) system, see Fig. 3.1 for an illustration.
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Figure 3.1: A µ-(F,N) system with N servers storing F independent files. The user
generates an index θ ∈ [F ] and a query Q[θ]

n to each of the servers. The
server responds with an answer denoted as A[θ]

n . The user recovers the re-
quested file from all the answers.

The PIR problem is described as follows. A user privately generates an index θ ∈

[F ] and wishes to retrieve file Wθ, without revealing any information about θ to any

of the individual servers. This index θ is generated independent of the file content or

the server contents. To retrieve Wθ, the user generates N queries Q[θ]
1 , Q

[θ]
2 , . . . , Q

[θ]
N ,

where Q[θ]
n is sent to server Sn, n ∈ [N ]. Upon receiving these queries, each server

Sn responds with an answer A[θ]
n , which is a deterministic function of the query and the

contents stored on the server, i.e.,

H(A[θ]
n |Q[θ]

n , Zn) = 0, for all n ∈ [N ] and θ ∈ [F ]. (3.1)

In this work, we assume that the user requests a linear combination of bits stored on the

server as the query. The server responds by returning the value of the requested linear

combination.

A PIR protocol must satisfy the following constraints:

H(Wθ|A[θ]
1 , . . . , A

[θ]
N , Q

[θ]
1 , . . . , Q

[θ]
N ) = 0, for all θ ∈ [F ]. (3.2a)

I(θ;Q[θ]
n , A

[θ]
n , Zn) = 0, ∀n ∈ [N ], for all θ ∈ [F ] (3.2b)

The first condition eq (3.2a) requires that from the answers obtained form all the servers,

the user must be able to correctly retrieve the desired file Wθ.

39



The second condition eq (3.2b) ensures privacy of request i.e. the user does not

reveal any information about the desired file index to any of the individual servers.

For any PIR protocol, the total size of all queries sent to the servers constitutes the

upload cost and the amount of downloaded data constitutes the download cost. The total

cost of PIR is the sum of upload cost and download cost, with the later usually being

the dominant contributor.

3.2 Storage Scheme

Our storage scheme is based on combinatorial designs. Given a system with N servers

and µ = t/N , where t ∈ Z, we first find a (v, k, b, r) configuration with b = N and

r = t. Next, we divide each file into v subfiles of equal size ` = L/v and store them

in accordance to the incidence matrix of the chosen configuration. More formally, the

storage scheme is given in the algorithm below.

Algorithm 5 Storage scheme for proposed PIR protocol
Input: N, t
Output: Zn, for all n ∈ [N ]

1: Construct a (v, k, b, r)-configuration with b = N and r = t. Denote the v × b

incidence matrix of this configuration by M whose (i, j)th entry is given by Mij .

2: Divide each file Wi, for i ∈ [F ], into v subfiles. Denote them as Wij where j ∈ [v].

Each subfile Wij is of size L/v bits.

3: For all i ∈ [F ] and j ∈ [v] store the subfile Wij on server Sn if Mjn = 1.

Note that each server stores k out of the v subfiles for each file (since each column

of M has exactly k ones). Thus, the normalized storage of each server is µ = k/v =

r/b = t/N .

3.3 Retrieval Scheme

Let S(Wij) be the subset of servers that store the subfile Wij for a fixed i, j where

i ∈ [F ], j ∈ [v]. Each subfile Wij is present on exactly t servers (since each row of M

has exactly r = t ones). In other words, |S(Wij)| = t.
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For any fixed j ∈ [v], we denote the part of the Zn containing the jth subfiles Wij

as Z [j]
n .

Algorithm 6 Retrieval scheme for proposed PIR protocol
Input: θ
Output: Wθ

1: For all j ∈ [v], consider the system S(Wθj), which is a 1-(F, t) system storing Wij ,

i ∈ [F ].

2: Using the FS-PIR Protocol 1 (or 2,3), generate queries Q[θj]
n , for all Sn ∈ S(Wθj).

3: Using the answers A[θj]
n retrieve all bits of desired file Wθj

3.4 Correctness and Privacy

Suppose the user wants to retrieve the file Wθ. To retrieve file Wθ, the user needs to

retrieve all the subfiles Wθj for j ∈ [v]. We can break it down into v instances of

retrieval of the subfiles of Wθ. The retrieval of each subfile Wθj can be treated as a

separate instance of a PIR retrieval problem.

Theorem 4 (Designs to PIR protocols) Consider a µ-(F, b) system generated from a

(v, k, b, r)-tactical configuration. Then with respect to the subfiles Wij , where i ∈ [F ],

the servers S(Wθj) form a 1-(F, r) system. For file size L = v × rF , the proposed

protocol consisting of Algorithms 5 and using FS-PIR protocol 1 in Algorithm 6 is

correct, private and achieves capacity.

Proof: In the µ-(F, b) system the subfileWθj is present on r servers in the set S(Wθj).

Furthermore, each of the servers in S(Wθj) contains all the subfiles Wij for all i ∈ [F ].

Therefore, with respect to the subfiles Wij , i ∈ [F ], the servers S(Wθj) form a 1-(F, r)

system.

For recovering Wθj , we only restrict our attention to the 1-(F, r) system obtained

by restricting to the servers S(Wθj). Subfile Wθj can be retrieved privately from the

above system by using the FS-PIR protocol 1. Since Wθj can be recovered for all

j ∈ [v] from the 1-(F, r) systems formed by S(Wθj), we are able to recover the file Wθ.

Therefore, eq (3.2a) is satisfied.
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We note two properties of the proposed protocol that we need to prove the privacy

constraint.

P1) If we interchange all bits of file W1 with Wi where i ∈ [F ] in the queries to all

the servers, we would retrieve file Wi instead of W1. This is because the storage is

symmetric with respect to all the files.

P2) Any permutation of bits of Wij, i ∈ [F ], j ∈ [v] applied on all the queries to all

the servers does not affect the retrieval process, since permutation is an invertible

operation. This is equivalent to choosing a different permutation in the FS-PIR

protocol 1.

Next to show privacy of recovery process, we introduce the following notation. Sup-

pose to recover the subfile Wθj , the protocol for 1-(F, r) system storing Wθj generates

queries Q[θj]
n , to send to server Sn, wherein Sn ∈ S(Wθj). Then denote the responses of

Sn as A[θj]
n , Sn ∈ S(Wθj). For Sn such that Sn /∈ S(Wθj), we define Q[θj]

n = ∅. We can

combine all the queries sent by the user to recover Wθ as

Q[θ]
n =

⋃
j∈[v]

Q[θj]
n (3.3)

Likewise, we can combine all the responses from server Sn as

A[θ]
n =

⋃
j∈[v]

A[θj]
n (3.4)

To show that the protocol is private, we need to show eq (3.2b). Since the subfile

Wθj can be recovered privately, none of the servers can infer anything about θ given the

queries, answers and stored content. Therefore we have

I(θ;Q[θj]
n , A[θj]

n , Z [j]
n ) = 0 for all Sn ∈ S(Wθj) (3.5)

From this it follows that I(θ;Q
[θj]
n ) = 0 for all Sn ∈ S(Wθj). If the subfile Wθj is not

present on Sn, then Q[θj]
n is a null query and once again we have I(θ;Q

[θj]
n ) = 0.

I(θ;Q[θj]
n ) = 0 for all n ∈ [b] (3.6)
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Now, for any server Sn, n ∈ [b]

I(θ;Q[θ]
n , A

[θ]
n , Zn) = I(θ;Q[θ]

n , Zn) (3.7)

since A[θ]
n is a deterministic function of Q[θ]

n and Zn. Therefore, using eq (3.3) we can

write

I(θ;Q[θ]
n , A

[θ]
n , Zn) = I(θ; ∪

j∈[v]
Q[θj]
n ) + I(θ;Zn|Q[θ]

n )

(a)
= I(θ; ∪

j∈[v]
Q[θj]
n ) +H(Zn|Q[θ]

n )−H(Zn|θ,Q[θ]
n )

(b)
= I(θ; ∪

j∈[v]
Q[θj]
n ) +H(Zn)−H(Zn) = I(θ; ∪

j∈[v]
Q[θj]
n )

The last equality (b) follows from the fact that θ and Q[θ]
n are user generated quanti-

ties (generated without any communication to the server) and hence cannot contain any

information about the server contents Zn.

It remains to show that I(θ; ∪
j∈[v]

Q
[θj]
n ) = 0.

Without loss of generality, assume that θ = 1 and n = 1 and set q := Q
[1]
1 .

We will show that, fixing q to server S1 the user can retrieve not only file W1, but it

can actually retrieve any file Wi, i ∈ [F ] by appropriately altering the queries to other

servers. Also, we show that the probability of recovering any file Wi, i ∈ [F ], given S1

receives query q, is the same. Showing these will establish that I(θ;Q
[θ]
n ) = 0, n ∈ [N ].

We need the following properties of the FS-PIR protocol 1, see section 2.1.3

FSP1) There are exactly rF−1 bits for each subfile Wij , involved in each query block.

In other words, rF−1 bits of Wij , ∀ i ∈ [F ] are involved in the jth query block

to Sn ∈ S(Wij).

FSP2) Any bit appears atmost once in the queries sent to a particular server, i.e. a bit

involved in any query to Sn doesnot appear in any other query to Sn.

FSP3) The query structure is symmetric with respect to any file. In other words, the

linear combinations are similar and only differ in the actual bits forming the

queries.

To alter the queries to other servers so that we can recover a different file we proceed

as follows.
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i) Interchange all bits of file W1 with Wi in the queries to all the servers. This gives

a (new) set of queries to be sent to the servers using which we can retrieve Wi.

ii) Let qnew be the query to S1 in the new set of queries. Next, we try to make all

queries in the query sets q and qnew same. Recall that by FSP1) the same number

of bits of Wij occur in any query block to a server and by FSP3) all query blocks

have the same structure. Therefore, by permuting the bits of Wij we can map qnew

to q uniquely with respect to the variables of q and qnew. This does not affect the

recovery of the file Wi.

This establishes that with respect to the queries of S1, the user can modify the queries

to other servers so that any file i ∈ [F ] can be recovered. Furthermore, the variables

which are not part of q and qnew can also be permuted without affecting the recovery.

Since the number of variables not involved in these queries are same for all files, from

the point of view of the server there is equal uncertainty as to which file was requested

by the user. These permutations exhaust all the possibilities of queries consistent with

FS-PIR Protocol 1. Therefore, eq (3.2b) is also satisfied and the proposed protocol is

private.

Now the size of the subfile is L/v = rF , and the rate of the PIR protocol for the

1-(F, r) system is R = (
∑F−1

f=0 r
−f )−1. Then to recover each of the subfiles Wθj for

a given index θ we require to download L/vR bits. For recovery of the entire file we

need to download L/R bits. Thus the rate of the proposed PIR protocol for the µ-(F, b)

system is L/(L/R) = R = (
∑F−1

f=0 r
−f )−1 which coincides with the capacity of the

µ-(F, b) system when L = v × rf (as per eq (2.8)).

Remark 1 If for a 1-(F, r) system any FS-PIR protocol achieves a rate R, then the

rate achieved for the SC-PIR protocol consisting of Algorithm 5 and using that given

FS-PIR protocol in Algorithm 6 is also R. This can be seen as follows: Suppose, we

represent rate and download cost of subfile from 1-(F, r) by Rfs and Dfs respectively.

Then Rfs = L/v
Dfs

. For the SC system Dtotal = vDfs, so Rfs = L
D

= L
vDfs

= Rfs.

Also note that since the capacity of a 1-(F, r) system coincided with the capacity of

a µ = r
N

-(F,N) system, if the FS-PIR protocol is capacity achieving for the 1-(F, r)

system, the SC-PIR protocol will be capacity achieving for the µ = r
N

-(F,N) system.

�
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Corollary 5 (Designs to PIR protocols) Consider a µ-(F, b) system generated from a

(v, k, b, r)-tactical configuration. Then with respect to the subfiles Wij , where i ∈ [F ],

the servers S(Wθj) form a 1-(F, r) system. For file size L = v × rF−1, the proposed

protocol consisting of Algorithms 5 and using FS-PIR protocol 2 in Algorithm 6 is

correct, private and achieves capacity.

Proof: Using FS-PIR protocol 2 in Algorithm 6 allows us to achieve capacity for

file sizes in multiples of L = v × rF−1. The proof for correctness and privacy follow

from the same arguments as in the proof of Theorem 4. This is because, the properties

of underlying full storage protocol FSP1,FSP2 and FSP3 used, also hold for FS-PIR

protocol 2, with a minute difference that instead of rF−1, there are now rF−2 bits in

FSP1. As long as the number of bits are same for all subfile, the exact number doesn’t

matter, it just has to be the same for all Wij, i ∈ [F ].

Regarding, the capacity, it can be noted in the proof of Remark 1 that if the FS-PIR

protocol for retrieving individual subfiles achieves FS-PIR capacity, then the proposed

protocol in Algorithms 5 and 6 achieves SC-PIR capacity. �

Corollary 6 (Designs to PIR protocols) Consider a µ-(F, b) system generated from a

(v, k, b, r)-tactical configuration. Then with respect to the subfiles Wij , where i ∈ [F ],

the servers S(Wθj) form a 1-(F, r) system. For file size L = v × (r − 1), the proposed

protocol consisting of Algorithms 5 and using FS-PIR protocol 3 in Algorithm 6 is

correct, private and achieves capacity.

Proof: This result is established by using FS-PIR Protocol 3 for retrieval of individ-

ual subfiles in 6.

Again, proof for correctness and privacy follow from the same arguments as in the

proof of Theorem 4. This is because, the properties of underlying full storage protocol

FSP1,FSP2 and FSP3 used, also hold for FS-PIR protocol 3, with a modification that

instead of rF−1, there is now 1 bit (out of the r bits of a subfile, where the 0-th bit is a

dummy bit and actual subfile size is r − 1 bits) of each subfile Wij in FSP1. But again,

since the number of bits are same for any subfile, the exact number doesn’t matter, it

just has to be the same for all Wij, i ∈ [F ].
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Regarding, the capacity, it can be again noted in the proof of Remark 1 that if the

FS-PIR protocol for retrieving individual subfiles achieves FS-PIR capacity, then the

proposed protocol in Algorithms 5 and 6 achieves SC-PIR capacity.

�

3.5 Examples

Example 8 Consider a 2
3
-(2, 3) system i.e., a system with 3 servers, µ = 2/3 and 2

files a and b, each 12 bits long. We shall use the (3, 2, 3, 2)-configuration with the

incidence matrix M given below for the storage scheme. So, we divide each file into 3

subfiles (a→ a1, a2, a3, b→ b1, b2, b3), each 4 bits long. Let aij and bij , i ∈ [3], j ∈ [4]

represent the jth bit of subfile ai and bi respectively. Store the subfiles on the servers as

follows:

M =


1 1 0

0 1 1

1 0 1


S1 S2 S3

a1 a1 a2

b1 b1 b2

a3 a2 a3

b3 b2 b3

(3.8)

This system can be projected onto the following reduced 1-(2, 2) systems.

S1 S2

a1 a1
b1 b1

S(Wθ1)

S2 S3

a2 a2
b2 b2

S(Wθ2)

S1 S3

a3 a3
b3 b3

S(Wθ3)

Suppose the user wishes to retrieve file a. Subfile a1 is retrieved from system S(Wθ1)

using the FS-PIR protocol 1 as follows: We start by querying server S1 for bit a11. Now

to obfuscate S1, we also demand bit b11 from it. Similarly, we query server S2 for bits

a12 and b12. At this point we have 2 desired bits and 2 undesired bits. Now, we query the

servers for linear combination of a unknown desired bit and known undesired bit. So,

we query S1 for a13 + b12 and S2 for a14 + b11. Clearly, we can retrieve all the desired

bits of subfile a1 using these queries. Privacy can be maintained by using a random
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permutation of bits of a1 and b1 instead of using them in the original order. Subfiles a2

and a3 can be retrieved in a similar manner. The queries to be sent to servers S1, S2

and S3 for retrieval of file a are summarised as follows:

S1 S2 S3

a11 a12 a21

b11 b12 b21

a13 + b12 a14 + b11 a23 + b22

a31 a22 a32

b31 b22 b32

a33 + b32 a24 + b21 a34 + b31

Suppose the queries for S2 and S3 were {a13, b13, a11 + b14, a23, b23, a21 + b24 }, {

a21, b21, a23 + b22, a33, b33, a31 + b34 } then file b would be retrieved for the same set

of queries for S1. We can design similar queries for recovering file c. Therefore the

queries to the servers do not leak information about the file requested.

Similarly, file b can be retrieved by using the following queries:

S1 S2 S3

a11 a12 a21

b11 b12 b21

a12 + b13 a11 + b14 a22 + b23

a31 a22 a32

b31 b22 b32

a32 + b33 a21 + b24 a31 + b34

Finally, note that the capacity for the given 2
3
-(2,3) system isR∗(µ) =

(
1+1/t

)−1
=(

1 + 1/2
)−1

= 2/3. The rate of the above PIR scheme is R(µ) = 12/18 = 2/3, which

matches the capacity of the given system.

Example 9 Consider a 1
2
-(2, 6) system i.e., a system with 6 servers, µ = 1/2 and 2 files

a and b, each 36 bits long.

We shall use the (4,2,1,6,3) BIBD with the incidence matrix M given below. Denote

the files as ‘a’ and ‘b’. Divide both files into v = 4 subfiles, each 9 bit long.
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a→ a1, a2, a3, a4 b→ b1, b2, b3, b4

Let aij and bij , i ∈ [3], j ∈ [4] represent the jth bit of subfile ai and bi respectively.

We store these on servers S1, S2, . . . S6 according to the storage scheme as:

M =


1 0 0 1 0 1

1 1 0 0 1 0

0 0 1 1 1 0

0 1 1 0 0 1



S1 S2 S3 S4 S5 S6

a1 a2 a3 a1 a1 a2

a2 a4 a4 a3 a4 a3

b1 b2 b3 b1 b1 b2

b2 b4 b4 b3 b4 b3

(3.9)

File a can be retrieved using FS-PIR protocol 1 by using the following query sets

sent to different servers:

S1 S2 S3 S4 S5 S6

a11 a22 a31 a12 a13 a23

b11 b22 b31 b12 b13 b23

a14 + b12 a26 + b21 a34 + b32 a16 + b11 a18 + b11 a28 + b21

a15 + b13 a27 + b23 a35 + b33 a17 + b13 a19 + b12 a29 + b22

a21 a41 a42 a32 a43 a33

b21 b41 b42 b32 b43 b33

a24 + b22 a44 + b42 a46 + b41 a36 + b31 a48 + b41 a38 + b31

a25 + b23 a45 + b43 a47 + b43 a37 + b33 a49 + b42 a39 + b32

Similarly, b can be retrieved using the following queries:
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S1 S2 S3 S4 S5 S6

a11 a22 a31 a12 a13 a23

b11 b22 b31 b12 b13 b23

a12 + b14 a21 + b26 a32 + b34 a11 + b16 a11 + b18 a21 + b28

a13 + b15 a23 + b27 a33 + b35 a13 + b17 a12 + b19 a22 + b29

a21 a41 a42 a32 a43 a33

b21 b41 b42 b32 b43 b33

a22 + b24 a42 + b44 a41 + b46 a31 + b36 a41 + b48 a31 + b38

a23 + b25 a43 + b45 a43 + b47 a33 + b37 a42 + b49 a32 + b39

Note that the retrieval rate here isR = Size of file retrieved/total number of bits downloaded =

36/48 = 3/4 which matches the capacity C = (1 + 1/3)−1 = 3/4 for the system.

Example 10 Consider a 3
7
-(2, 7) system i.e., a system with 7 servers, µ = 3/7 and 2

files a and b, each 21 bits long.

We shall use the well known Fano plane as the required tactical configuration. De-

note the files as ‘a’ and ‘b’. Divide both files into v = 7 subfiles, each 3 bit long.

a→ a1, a2, . . . , a7 b→ b1, b2, . . . , b7

Let aij and bij , i ∈ [7], j ∈ [3] represent the jth bit of subfile ai and bi respectively.

We store these on servers S1, S2, . . . S7 according to the storage scheme as:

M =



1 0 1 1 0 0 0

1 0 0 0 0 1 1

1 1 0 0 1 0 0

0 1 0 1 0 0 1

0 1 1 0 0 1 0

0 0 1 0 1 0 1

0 0 0 1 1 1 0



S1 S2 S3 S4 S5 S6 S7

a1 a3 a1 a1 a3 a2 a2

a2 a4 a5 a4 a6 a5 a4

a3 a5 a6 a7 a7 a7 a6

b1 b3 b1 b1 b3 b2 b2

b2 b4 b5 b4 b6 b5 b4

b3 b5 b6 b7 b7 b7 b6

(3.10)

Now, suppose that the user wants to retrieve file a. It can do so, by generating the

following set of queries in accordance to the FS-PIR protocol 2:
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S1 S2 S3 S4 S5 S6 S7

a11 a31 a12 + b11 a13 + b11 a32 + b31 a21 a22 + b21

b11 b31 a51 a41 a63 + b61 b21 a42 + b41

a23 + b21 a43 + b41 b51 b41 a71 a52 + b51 a61

a33 + b31 a53 + b51 a62 + b61 a73 + b71 b71 a72 + b71 b61

Again, note that here retrieval rate R = 21/28 = 3/4 which matches the capacity

C = (1 + 1/3)−1 = 3/4 for the given system.

Example 11 Consider a 2
5
-(2, 10) system with files a and b, and t = µN = 4. Assume

that we want to retrieve file a.

We will use a (5, 2, 1, 10, 4)-BIBD for the storage scheme. So we divide each file

into 5 subfiles and store them on the servers as follows:

M =



1 0 0 0 1 0 0 1 1 0

0 0 0 0 0 1 1 0 1 1

0 1 1 0 0 0 0 1 0 1

0 0 1 1 1 0 1 0 0 0

1 1 0 1 0 1 0 0 0 0



S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

a1 a3 a3 a4 a1 a2 a2 a1 a1 a2

a5 a5 a4 a5 a4 a5 a4 a3 a2 a3

b1 b3 b3 b4 b1 b2 b2 b1 b1 b2

b5 b5 b4 b5 b4 b5 b4 b3 b2 b3

We use either FS-PIR protocol 1 or 2 to retrieve the individual subfiles. With FS-PIR

protocol 1, the retrieval process looks like:

Assume each subfile is of 16 bits, which means the file is of size 80 bits.
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S1 S2 S3 S4 S5

a11 a31 a32 a42 a12

b11 b31 b32 b42 b12

a51 a52 a41 a53 a43

b51 b52 b41 b53 b43

a15 + b12 a35 + b32 a38 + b31 a48 + b41 a18 + b11

a16 + b13 a36 + b33 a39 + b33 a49 + b43 a19 + b13

a17 + b14 a37 + b34 a3 10 + b34 a4 10 + b44 a1 10 + b14

a55 + b52 a58 + b51 a45 + b42 a5 11 + b51 a4 11 + b41

a56 + b53 a59 + b53 a46 + b43 a5 12 + b52 a4 12 + b42

a57 + b54 a5 10 + b54 a47 + b44 a5 13 + b54 a4 13 + b44

S6 S7 S8 S9 S10

a21 a22 a13 a14 a24

b21 b22 b13 b14 b24

a54 a44 a33 a22 a34

b54 b44 b33 b22 b34

a25 + b22 a28 + b21 a1 11 + b11 a1 14 + b11 a2 14 + b21

a26 + b23 a29 + b23 a1 12 + b12 a1 15 + b12 a2 15 + b22

a27 + b24 a2 10 + b24 a1 13 + b14 a1 16 + b13 a2 16 + b23

a5 14 + b51 a4 14 + b41 a3 11 + b31 a2 11 + b21 a3 14 + b31

a5 15 + b52 a4 15 + b42 a3 12 + b32 a2 12 + b22 a3 15 + b32

a5 16 + b53 a4 16 + b43 a3 13 + b34 a2 13 + b24 a3 16 + b33

With FS-PIR protocol 2, the retrieval process would look like: Assume each subfile

is of 4 bits, which means the file is of size 20 bits.

S1 S2 S3 S4 S5

a11 a31 a41 a51 a12 + b11

b11 b31 b41 b51 a43 + b41

a52 + b51 a53 + b51 a32 + b31 a42 + b41
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S6 S7 S8 S9 S10

a21 a22 + b21 a13 + b11 a14 + b11 a24 + b21

b21 a44 + b41 a33 + b31 a23 + b21 a34 + b31

a54 + b51

Note that with either of the protocols retrieval rate R = 4/5. Also, for this system

C = (1 + 1/t)−1 = 4/5.

3.6 Subpacketization

Subpacketization required by a PIR scheme is often defined as the number of small

packets/symbols into which each file needs to be divided in order to apply the PIR

protocol. For the problem of homogeneous PIR, first capacity achieving PIR protocol

was proposed by Tandon et al. [15] which required a subpacketization of
(
N
t

)
tF . The

subpacketization was then improved by Zhang et al. [14] where the authors achieved

capacity by using a t times lesser subpacketization. Woolsey et al. further reduced the

subpacketization to NtF−1 [16]. In [16], the authors propose two protocols- one for the

case when t divides N , and other when t doesnot divide N . Also, unlike our protocol,

their scheme is a rigid one and doesn’t exploit combinatorial designs.

For our scheme, we first require a sub-division of each file into v subfiles and then

the subfiles have to follow a subpacketization as per the FS-PIR protocol used. Thus,

for the retrieval of individual subfiles if we use FS-PIR protocol 1 we would require a

subpacketization of vtF, using FS-PIR protocol 2 would require a subpacketization of

vtF−1 and using FS-PIR protocol 3 would require a subpacketization of v(t− 1).

A lower subpacketization for any PIR scheme is desirable as it makes the scheme

applicable to a wider variety of files. Also, a lower subpacketization usually implies

lower upload cost. In order to minimize subpacketization for our scheme, we need to

minimize the number of subfiles v.

Theorem 7 (Capacity achieving PIR protocols) For any given µ-(F,N) system with

µ = r/N , r ∈ [N ] and file size L = v × rF , we can design a capacity achieving PIR

scheme by using a
(

N
gcd(N,r)

, r
gcd(N,r)

, N, r

)
-configuration in Theorem 4.

52



Proof: Since the parameters v = N
gcd(N,r)

, k = r
gcd(N,r)

, b = N and r satisfy eq (2.13),

a configuration with the above parameters exists. One way of constructing such config-

uration is presented in Lemma 3. The PIR scheme designed by using this configuration

for the storage scheme in Theorem 4, and FS-PIR protocol 1 for the retrieval of indi-

vidual subfiles achieves capacity for the µ-(F,N) system with L = v× rF . This is true

since the FS-PIR protocol 1 achieves capacity for the 1-(F, r) systems with files size

rF . �

Corollary 8 (Capacity achieving PIR protocols) For any given µ-(F,N) system with

µ = r/N , r ∈ [N ] and file size L = v × rF−1, we can design a capacity achieving PIR

scheme by using a
(

N
gcd(N,r)

, r
gcd(N,r)

, N, r

)
-configuration in Corollary 5.

Corollary 9 (Capacity achieving PIR protocols) For any given µ-(F,N) system with

µ = r/N , r ∈ [N ] and file size L = v × (r − 1), we can design a capacity achieving

PIR scheme by using a
(

N
gcd(N,r)

, r
gcd(N,r)

, N, r

)
-configuration in Corollary 6.

Thus, from the above results we can infer that using the FS-PIR protocol 1 we

can achieve a minimum subpacketization of N
gcd(N,r)

rF , by using FS-PIR protocol 2

we can achieve a minimum subpacketization of N
gcd(N,r)

rF−1 and by FS-PIR protocol

3 we can achieve a minimum subpacketization of N
gcd(N,r)

(r − 1). Also, interestingly

in a recent independent work in [17], it was shown that N
gcd(N,r)

(r − 1) is the minimum

subpacketization possible for any capacity achieving homogeneous storage constrained

PIR scheme with equally sized subfiles. Thus it is established that our storage scheme

is optimal in terms of subpacketization.

3.7 Memory Sharing

For the µ-(F,N) system generated from a (v, k, b, r)-configuration, memory sharing

can be used to achieve PIR capacity at any arbitrary storage point µ ∈ [1
b
, 1]. The

concept of memory sharing to achieve capacity at non integral values of t has commonly

been employed by SC-PIR protocols [15, 21] and we provide it here for the sake of

completeness. Memory sharing can be done as follows:

(i) Find r such that r
b
≤ µ ≤ r+1

b
. Set µ1 = r

b
and µ2 = r+1

b
.
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(ii) Find α such that µ = αµ1 + (1− α)µ2.

(iii) Divide each file Wi, i ∈ [F ], into two partitions W (1)
i and W (2)

i , of sizes αL and

(1− α)L respectively.

(iv) Now, store partition W (1)
i using a (v1, k1, b, r)-configuration and partition W (2)

i

using a (v2, k2, b, r + 1)-configuration.

(v) The above gives two partitions of storage of each server Zj, j ∈ [b] which are

denoted as Z(1)
j and Z(2)

j , where Z(k)
j has subfiles from W

(k)
i , i ∈ [F ] only. The

sizes of Z(1)
j and Z(2)

j are αµ1FL and (1− α)µ2FL respectively.

(vi) Let D1 be the total number of bits downloaded by use of the proposed proto-

col when µ = µ1, and D2 be the total number of bits downloaded by use of the

proposed protocol when µ = µ2. Since the protocol is optimal at µ1 and µ2,

D∗(µ1) = D1

L
and D∗(µ2) = D2

L
. Now, for file partitions W (1)

j and servers par-

titions Z(1)
j , we can use the proposed protocol to retrieve file partition W (1)

θ , by

downloading a total of αD1 bits. SimilarlyW (2)
θ , can be retrieved by downloading

(1− α)D2 bits. Thus, for file Wθ, the download cost per bit,

D(µ) =
Total number of bits downloaded

Size of file retrieved

=
αD1 + (1− α)D2

L

= αD∗(µ1) + (1− α)D∗(µ2)

(3.11)

Thus, we can achieve the lower convex hull of
(
µ = r

b
, D∗(µ) =

∑F−1
f=0

1
rf

)
pairs,

for r = 1, 2, . . . , b and hence our protocol achieves capacity for arbitrary µ (refer

eq (2.8)).
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CHAPTER 4

FAULT TOLERANCE

So far, we were given a system of N servers and F files and we stored these files on

the servers so as to optimize the retrieval rate and have minimum subpacketization. But

what would happen if after the storage phase, some server goes down. We cannot go

and change the storage at other servers, we have to go on with what we have and try to

get the best out of it.

There can be a variety of events that could lead to a server failure, such as loss of

power, hardware malfunction, operating system crashes, cyberattack, natural disaster

etc. The event of 1 server going down amongst a set of N servers is a very realistic

scenario. Until the server is repaired and up again, the user has to access files using the

remainingN−1 servers only. Failure of 2 servers is a comparatively rarer scenario, and

failure of more servers is even rarer. If a system of 10 physically independent 99.9%

reliable servers is considered, at any given time instance Pr(1 server down) = 0.991% ,

Pr(2 servers down) = 0.004% and Pr(3 servers down) = 0.00001% (refer [22]). In this

chapter we analyze our proposed protocol under the scenarios of 1 and 2 servers going

down. We observe that in the case of 1 server failure, our protocol achieves capacity

for the new system and also is able to uniformly distribute the excess load due to 1

server failure on the remaining servers. We also compare the load distribution with

the load distribution under homogeneous storage constrained PIR protocol of [16]. In

the event of 2 server failure, we see that the rate our protocol achieves is slightly less

than capacity, and is the same irrespective of which 2 servers go down. Also, as the

number of servers increase, the gap to capacity goes down and we achieve capacity

asymptotically as N →∞.



4.1 One server failure

When a server goes down, the rate of PIR protocol for the new system is bound to

decrease to the fact that we now have lesser resources. The best we can do is achieve

capacity for the new system. Another aspect to focus on is how the excess load due to

a server failure gets distributed on the remaining servers. To quantify the load on the

servers, we define a metric to quantify load on servers.

Definition 9 (Server Load:) Server load (ζn) is equal to the number of requests the nth

server has to serve for retrieval of the desired file.

Ideally, we would want ζn to be the same for all n, else the server which needs to

serve more number of requests than others would act as a bottleneck in the retrieval

process and we would not be optimizing resource usage. Also, if number of requests on

a particular server are unevenly high, its request latency (which corresponds to the time

taken to serve a request) may go up further delaying the whole retrieval process. Note

that for the setting of FS-PIR without any server failure, PIR protocol of [4] achieves

uniform load distribution whereas protocols of [18] and [23] do not uniformly distribute

load on all the servers.

In case of storage constrained PIR with one server failure, our proposed protocol

is capacity achieving for the one-reduced system and can uniformly distribute the load

amongst all the remaining servers. We demonstrate the same through an example first.

Example 12 In the 3
7
-(2, 7) system of Example 10 with t = µN = 3 and F = 2 files a

and b, assume that each file is now of length L = 252 bits and each subfile is ` = 36

bits long. Each file is divided into v = 7 subfiles and these subfiles are stored on the

servers using the Fano plane as shown in Example 10. Now suppose that due to some

issue server S1 fails. Due to this failure the 6 subfiles stored on S1 are inaccessible.

Assume that the user wants to retrieve file a.
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S1 S2 S3 S4 S5 S6 S7

a1 a3 a1 a1 a3 a2 a2

a2 a4 a5 a4 a6 a5 a4

a3 a5 a6 a7 a7 a7 a6

b1 b3 b1 b1 b3 b2 b2

b2 b4 b5 b4 b6 b5 b4

b3 b5 b6 b7 b7 b7 b6

(4.1)

As server S1 fails, the recovery of subfiles a1, a2, a3 is affected as they are now avail-

able from 2 servers only, while subfiles a4, a5, a6 and a7 are available from 3 servers

each. From the storage scheme, it can observed that all the remaining active servers

S2−S7 each contain 1 subfile whose recovery is affected and 2 subfiles whose recovery

is unaffected. The subfiles whose recovery is affected will now have to be retrieved from

2 servers whereas other subfiles will be recovered from 3 servers.

In the example under consideration, subfiles a1, a2 and a3 are retrieved from 2

servers each using the capacity achieving protocol of [4] . Subfile a1 is retrieved

from the 1-(2, 2) system with servers S3, S4 and files a1, b1. For this system, C =

(1 + 1/2)−1 = `/D (from eq (2.1)) and ` = 36. So total D = 54 requests have to be

served in order to retrieve subfile a1. Since the protocol of [4] is symmetric wrt servers,

each of the participating servers would receive equal number of queries. Thus, both

servers S3 and S4 would serve 27 requests for retrieval subfile a1. Similarly for sub-

files a2 and a3 each participating server would serve 27 requests for retrieval of these

subfiles.

The retrieval of subfiles a4, a5, a6 and a7 is not affected and they are retrieved from

3 servers each. Subfile a4 is retrieved from the 1-(2, 3) system with servers S2, S4, S7

and files a4, b4. For this system, C = (1+1/3)−1 = `/D (from eq (2.1)) and ` = 36. So

total D = 48 requests have to be served in order to retrieve subfile a4. Since the subfile

is retrieved from 3 servers , each of the servers S2, S4 and S7 would serve 16 requests

each. Similarly for subfiles a5, a6 and a7 each of the three participating server would

serve 16 requests for retrieval of these subfiles.

Table 4.1 captures the number of requests each server serves for the retrieval of
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different subfiles. Also, it can be seen from the table that each server receives a total

of 59 requests and hence server load ζn = 59 for all n ∈ [2, 7]. Also ζmax = 59 and

ζtotal = 354.

Firstly, we note that to retrieve 252 bits of the desired file we download 354 bits,

hence R = 252
354

= 42
59

. For the new system, µ′ = µ = 3
7
, N ′ = 6 and t′ = µ ∗ N ′ =

18
7

= 3× (2
7
) + 4× (3

7
). So for this system optimal download cost D∗(µ) = (3

7
)× (1 +

1
2
) + (4

7
) ∗ (1 + 1

3
) = 59

42
(using eq (2.8)) and C = 42

59
. Thus, rate of the retrieval process

matches capacity for the new system.

Next, we compare load distribution under our protocol with load distribution of the

protocol proposed by Woolsey et al. in [16]. As per their protocol, the storage after

failure of S1 would look like:

S1 S2 S3 S4 S5 S6 S7

a1 a2 a3 a4 a5 a6 a7

a2 a3 a4 a5 a6 a7 a1

a3 a4 a5 a6 a7 a1 a2

b1 b2 b3 b4 b5 b6 b7

b2 b3 b4 b5 b6 b7 b1

b3 b4 b5 b6 b7 b1 b2

Again, subfiles a1, a2, a3 are available from 2 servers each and subfiles a4, a5, a6, a7

are available from 3 servers each. As subfiles a1, a2 and a3 are retrieved from 2 servers,

each participating server would serve 27 requests each. For subfiles a4, a5, a6 and a7

each of the three participating server would serve 18 requests each. Table 4.2 captures

the number of requests each server serves for the retrieval of different subfiles. Also, it

can be seen from the table that ζmax = 70 and ζtotal = 354.
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Subfile
Number of requests served

S2 S3 S4 S5 S6 S7

a1 27 27

a2 27 27

a3 27 27

a4 16 16 16

a5 16 16 16

a6 16 16 16

a7 16 16 16

Server load (ζn) 59 59 59 59 59 59

Table 4.1: Server load for Proposed PIR protocol

Subfile
Number of requests served

S2 S3 S4 S5 S6 S7

a1 27 27

a2 27 27

a3 27 27

a4 16 16 16

a5 16 16 16

a6 16 16 16

a7 16 16 16

Server load (ζn) 70 59 48 48 59 70

Table 4.2: Server load for protocol of Woolsey et al. [16]

Clearly, for both our protocol and protocol of Woolsey et al. the total load is same,

but our protocol is able to distribute the load uniformly on all the servers. Figure 4.1

shows the distribution of load due on the servers in the one-reduced system for the two

protocols.
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Figure 4.1: Server load on i-th server for a one-reduced 3
7
-(2, 7) system

Example 13 Consider a 4
7
-(2, 7) system with files a and b each L = 1008 bit long. As

per our storage scheme we divide each file into v = 7 subfiles each of ` = 144 bits.

The i-th subfiles of a and b are denoted by ai and bi, i ∈ [7] respectively. We use the

(7, 4, 2, 7, 4)-BIBD for the storage scheme and store the subfiles as shown below.

M =



1 0 1 1 1 0 0

0 0 0 1 1 1 1

1 0 1 0 0 1 1

1 1 0 0 1 0 1

1 1 0 1 0 1 0

0 1 1 1 0 0 1

0 1 1 0 1 1 0


(4.2)

Assume that we want to retrieve file a, but server S1 fails due to some issue. Due to

this failure the 8 subfiles stored on S1 are inaccessible. Assume that the user wants to

retrieve file a.
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S1 S2 S3 S4 S5 S6 S7

a1 a4 a1 a1 a1 a2 a2

a3 a5 a3 a2 a2 a3 a3

a4 a6 a6 a5 a4 a5 a4

a5 a7 a7 a6 a7 a7 a6

b1 b4 b1 b1 b1 b2 b2

b3 b5 b3 b2 b2 b3 b3

b4 b6 b6 b5 b4 b5 b4

b5 b7 b7 b6 b7 b7 b6

(4.3)

As server S1 fails, the recovery of subfiles a1, a3, a4, a5 is affected as they are now

available from 3 servers only, while subfiles a2, a6 and a7 are available from 4 servers

each. From the storage scheme, it can observed that all the remaining active servers

S2−S7 each contain 2 subfiles whose recovery is affected and 2 subfiles whose recovery

is unaffected. The subfiles whose recovery is affected will now have to be retrieved from

3 servers whereas other subfiles will be recovered from 4 servers.

Subfiles a1, a3, a4 and a5 are retrieved from 3 servers each using the capacity achiev-

ing protocol of [4] . Subfile a1 is retrieved from the 1-(2, 3) system with servers S3, S4, S5

and files a1, b1. For this system, C = (1 + 1/3)−1 = `/D (from eq (2.1)) and ` = 144.

So total D = 192 requests have to be served in order to retrieve subfile a1. Since the

protocol of [4] is symmetric wrt servers, each of the participating servers would receive

equal number of queries. Thus, all 3 servers S3, S4 and S5 would serve 64 requests for

retrieval subfile a1. Similarly for subfiles a3, a4 and a5 each participating server would

serve 64 requests for retrieval of these subfiles.

The retrieval of subfiles a2, a6 and a7 is not affected and they are retrieved from 4

servers each. Subfile a2 is retrieved from the 1-(2, 4) system with servers S4, S5, S6, S7

and files a2, b2. For this system, C = (1 + 1/4)−1 = `/D (from eq (2.1)) and ` = 144.

So total D = 180 requests have to be served in order to retrieve subfile a2. Since the

subfile is retrieved from 4 servers , each of the servers S4, S5, S6, S7 would serve 45

requests each. Similarly for subfiles a6 and a7 each of the four participating server

would serve 16 requests for retrieval of these subfiles.
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Table 4.3 captures the number of requests each server serves for the retrieval of

different subfiles. Also, it can be seen from the table that each server receives a total of

59 requests and hence server load ζn = 218 for all n ∈ [2, 7]. Also ζmax = 218 and

ζtotal = 1308.

Note that to retrieve 1008 bits of the desired file we download 1308 bits, hence

R = 1008
1308

= 84
109

. For the new system, µ′ = µ = 4
7
, N ′ = 6 and t′ = µ ∗ N ′ = 24

7
=

4× (3
7
) + 3× (4

7
). So for this system optimal download cost D∗(µ) = (4

7
)× (1 + 1

3
) +

(3
7
) ∗ (1 + 1

4
) = 109

84
(using eq (2.8)) and C = 84

109
. Thus, rate of the retrieval process

matches capacity for the new system.

Next, we compare load distribution under our protocol with load distribution of the

protocol proposed by Woolsey et al. in [16]. As per their protocol, the storage after

failure of S1 would look like:

S1 S2 S3 S4 S5 S6 S7

a1 a2 a3 a4 a5 a6 a7

a2 a3 a4 a5 a6 a7 a1

a3 a4 a5 a6 a7 a1 a2

a4 a5 a6 a7 a1 a2 a3

b1 b2 b3 b4 b5 b6 b7

b2 b3 b4 b5 b6 b7 b1

b3 b4 b5 b6 b7 b1 b2

b4 b5 b6 b7 b1 b2 b3

Again, subfiles a1, a2, a3 and a4 are available from 3 servers each whereas subfiles

a5, a6, a7 are available from 4 servers each. As subfiles a1, a2, a3 and a4 are retrieved

from 3 servers, each participating server would serve 64 requests each. For subfiles

a5, a6 and a7 each of the four participating servers would serve 45 requests each. Ta-

ble 4.4 captures the number of requests each server serves for the retrieval of different

subfiles. Also, it can be seen from the table that ζmax = 237 and ζtotal = 1308.
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Subfile
Number of requests served

S2 S3 S4 S5 S6 S7

a1 64 64 64

a2 45 45 45 45

a3 64 64 64

a4 64 64 64

a5 64 64 64

a6 45 45 45 45

a7 45 45 45 45

Server load (ζn) 218 218 218 218 218 218

Table 4.3: Server load for Proposed PIR protocol

Subfile
Number of requests served

S2 S3 S4 S5 S6 S7

a1 64 64 64

a2 64 64 64

a3 64 64 64

a4 64 64 64

a5 45 45 45 45

a6 45 45 45 45

a7 45 45 45 45

Server load (ζn) 237 218 199 199 218 237

Table 4.4: Server load for protocol of Woolsey et al. [16]

Again, for both our protocol and protocol of Woolsey et al. the total load is same,

but our protocol is able to distribute the load uniformly on all the servers.

4.1.1 Results on Fault Tolerance

Now, we formally state the 2 results discussed through the examples.

Theorem 10 Consider a µ-(F,N) system generated from a (v, k, b = N, r = t) con-

figuration. Assume r ∈ Z+ \ {1}. In this system if a server fails, the proposed protocol
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is capacity achieving for the one-reduced system, assuming that the subfile size is large

enough to support capacity achieving PIR protocol for both 1-(F, r) and 1-(F, r − 1)

systems.

Proof: If any server fails, then the k subfiles of each file stored on it are unavailable.

For the desired file, these k subfiles now have to be retrieved from remaining r − 1

servers on which they are stored. The other v − k subfiles are unaffected and hence

would be retrieved from r servers. The k subfiles available on r−1 servers, are retrieved

by using the capacity achieving PIR protocol of [4] for 1-(F, r−1) system. Thus for re-

trieving these subfilesR = `
Dr−1

= (1+ 1
r−1 +· · ·+ 1

(r−1)F−1 )−1, where ` = L
v

is the sub-

file size. So, for retrieving each of these k subfilesDr−1 = L
v
(1 + 1

r−1 + · · ·+ 1

(r−1)F−1 )

bits are downloaded.

Similarly, the other v−k subfiles are available on r servers each, and are retrieved by

using the capacity achieving PIR protocol of [4] for 1-(F, r) system. Thus for retrieving

these subfiles R = `
Dr

= (1 + 1
r

+ · · ·+ 1
rF−1 )−1. So, for retrieving each of these v − k

subfiles Dr = L
v
(1 + 1

r
+ · · ·+ 1

rF−1 ) bits are downloaded.

Thus, total download cost

Dtotal =
kL

v

(
1 +

1

r − 1
+ · · ·+ 1

(r − 1)F−1

)
+

(v − k)L

v

(
1 +

1

r
+ · · ·+ 1

rF−1

)
(4.4)

and download cost per bit

D(µ) =
k

v

(
1 +

1

r − 1
+ · · ·+ 1

(r − 1)F−1

)
+

(
1− k

v

)(
1 +

1

r
+ · · ·+ 1

rF−1

)
(4.5)

Next, we calculate the optimal download cost per bit for the new system after a

server has failed. Note that the one-reduced system has N ′ = b − 1 servers with nor-

malized storage µ′ = µ = r
b

and total normalized storage for the system t′ = µ(b−1) =

r b−1
b

.

Note that t′ = r b−1
b

= r
b
(r − 1) +

(
1− r

b

)
r where r, r − 1 ∈ Z+, Using eq (2.8),

the optimal download cost per bit for the given one-reduced system,

64



D∗(µ) =
r

b

(
1 +

1

r − 1
+ · · ·+ 1

(r − 1)F−1

)
+
(

1− r

b

)(
1 +

1

r
+ · · ·+ 1

rF−1

)
(4.6)

But for any (v, k, b, r) configuration from eq. (2.13) bk = vr =⇒ r
b

= k
v
. Thus

D(µ) = D∗(µ). �

Remark 2 Theorem 10 holds true under all three full storage PIR protocols of [4],[18]

and [23]. If protocol of [4] is used for subfile retrieval, minimum file size required

L = v× lcm(tF , tF−1). With protocols of [18] and [23] minimum file sizes required are

L = v × lcm(tF−1, tF−2) and L = v × lcm(t− 1, t− 2) respectively.

Theorem 11 Consider a µ-(F,N) system generated from a (v, k, λ, b = v, r = k)

symmetric BIBD and suppose that server Sm fails after the storage phase. Assume

r ∈ Z+ \{1} and PIR protocol of [4] is used for retrieving individual subfiles. Then for

the one-reduced system, server load is distributed uniformly on all the available servers

during retrieval of the desired file i.e ζi = ζj for all i, j ∈ [N ] \m.

Proof: In a symmetric (v, k, λ, b = v, r = k) BIBD , any two blocks have exactly

λ elements in common. Therefore, if any server fails, recovery of exactly λ subfiles

on each server is affected. Thus each of the available server has λ subfiles which are

effected and are available on only r − 1 servers each and k − λ subfiles which are

unaffected and available on r servers each. Server load for each server is a sum of loads

for the k files present on the server. Since the protocol of [4] is symmetric wrt servers,

for each subfile, all the participating servers will share the load equally. Assume that

the total download cost for a subfile to be retrieved from r servers isDr and for a subfile

to be retrieved from r− 1 servers is Dr−1. Then each server would serve Dr−1

r−1 requests

each for the λ subfiles available from r − 1 servers and Dr

r
requests each for the k − λ

subfiles available from r servers. Thus ζn = λ
r−1Dr−1 + k−λ

r
Dr for all n ∈ [N ] \m. �

Remark 3 Theorem 11 does not hold true if protocols of [18] or [23] are used for

subfile retrieval. This is because these protocols are not server symmetric and may

divide the load of retrieving a subfile unevenly on the involved servers, hence skewing

the total load distribution as well.
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4.2 Two server failure

Next, we analyse the scenario of 2 out of N servers going down. We assume that the

system under consideration has t ∈ Z+ \ {1, 2}. We observe that if BIBD’s are used

for the storage scheme of the proposed protocol, the rate of PIR protocol for the new

system does not depend on which 2 servers go down. This is unlike the protocol of

Woolsey et al. wherein the rate of PIR protocol for the new system is dependent on

which 2 servers go down. We demonstrate the same through an example below:

Example 14 Consider the 3
7
− (2, 7) system of Example 12 with files a and b of sizes

L = 252 bits. The files are divided and stored on the servers as per the Fano plane as

shown in Example 12. Again, say the user wants to retrieve file a. Assume that servers

S1 and S2 are both down and unable to serve user requests.

We wish to characterize the rate of proposed PIR protocol for the new system. After

failure of servers S1 and S2, the storage as per our proposed protocol looks like:

S1 S2 S3 S4 S5 S6 S7

a1 a3 a1 a1 a3 a2 a2

a2 a4 a5 a4 a6 a5 a4

a3 a5 a6 a7 a7 a7 a6

b1 b3 b1 b1 b3 b2 b2

b2 b4 b5 b4 b6 b5 b4

b3 b5 b6 b7 b7 b7 b6

(4.7)

Due the the server failures, subfiles a3 is now available from only 1 server whereas

subfiles a1, a2, a4 and a5 are available only from 2 servers. The subfiles a6 and a7

are unaffected and are still available from 3 servers each. As per the analysis done

in Example 12, a subfile of size l = 36 bits, if retrieved from 2 servers, needs each

server to serve 27 requests. If the same subfile is retrieved from 3 servers, it need

each participating server to serve 16 requests each. Similarly, if the subfile has to be

retrieved from only 1 server, it would need the server to serve 72 requests(the whole

projected database which has 36 bits of both subfiles has to be downloaded). Table 4.9
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shows the number of requests each server has to serve for retrieval of different subfiles

under proposed protocol.

The proposed protocol has a total download cost of D = 384 bits, which corre-

sponds to rate R = L
D

= 252
384

= 0.65625.

Next, we compare this with the retrieval rate of protocol proposed by Woolsey et al.

under the same scenario. As per the protocol of Woolsey et al., after failure of servers

S1 and S2, the storage at the servers will look like:

S1 S2 S3 S4 S5 S6 S7

a1 a2 a3 a4 a5 a6 a7

a2 a3 a4 a5 a6 a7 a1

a3 a4 a5 a6 a7 a1 a2

b1 b2 b3 b4 b5 b6 b7

b2 b3 b4 b5 b6 b7 b1

b3 b4 b5 b6 b7 b1 b2

It can be noted that in the new system, subfile a2 and a3 are available only on

1 server each, subfiles a1 and a4 are available on 2 servers each, whereas the other

subfiles are unaffected and available from 3 servers each. Table 4.10 shows the number

of requests each server has to serve for retrieval of different subfiles under protocol of

Woolsey et al.

Subfile
No: of requests served

S3 S4 S5 S6 S7

a1 27 27

a2 27 27

a3 72

a4 27 27

a5 27 27

a6 16 16 16

a7 16 16 16

Total Download cost = 384

Table 4.5: Download cost for Proposed PIR protocol
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Subfile
No: of requests served

S3 S4 S5 S6 S7

a1 27 27

a2 72

a3 72

a4 27 27

a5 16 16 16

a6 16 16 16

a7 16 16 16

Total Download cost = 396

Table 4.6: Download cost for Woolsey et al.

Next, we assume that instead of S1 and S2, servers S1 and S3 go down and compare

the performance of the two protocols. The tables below show the storage and download

costs for proposed protocol and protocol of Woolsey et al. [16].

S1 S2 S3 S4 S5 S6 S7

a1 a3 a1 a1 a3 a2 a2

a2 a4 a5 a4 a6 a5 a4

a3 a5 a6 a7 a7 a7 a6

b1 b3 b1 b1 b3 b2 b2

b2 b4 b5 b4 b6 b5 b4

b3 b5 b6 b7 b7 b7 b6

Table 4.7: two-reduced system storage for proposed protocol

S1 S2 S3 S4 S5 S6 S7

a1 a2 a3 a4 a5 a6 a7

a2 a3 a4 a5 a6 a7 a1

a3 a4 a5 a6 a7 a1 a2

b1 b2 b3 b4 b5 b6 b7

b2 b3 b4 b5 b6 b7 b1

b3 b4 b5 b6 b7 b1 b2

Table 4.8: two-reduced system storage for Woolsey et al.
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Subfile
No: of requests served

S2 S4 S5 S6 S7

a1 72

a2 27 27

a3 27 27

a4 16 16 16

a5 27 27

a6 27 27

a7 16 16 16

Total Download cost = 384

Table 4.9: Download cost for Proposed PIR protocol

Subfile
No: of requests served

S2 S4 S5 S6 S7

a1 27 27

a2 27 27

a3 72

a4 27 27

a5 27 27

a6 16 16 16

a7 16 16 16

Total Download cost = 384

Table 4.10: Download cost for Woolsey et al.

It should be noted that the total download cost for proposed protocol remains the

same in both the cases, but for the protocol of Woolsey et al. the total download cost

depends on which two servers fail.

Theorem 12 Suppose that we use a (v, k, λ, b = N, r = t) BIBD for the storage scheme

of proposed protocol. Now, if any two servers fail, the retrieval rate for the two-reduced

system does not depend on which 2 particular servers fail. The gap to optimal download

cost per bit for our scheme is given by
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D(µ)−D∗(µ) =
λ

v

{ f−1∑
i=1

( 1

ri
+

1

(r − 2)i
− 2

(r − 1)i
)}

(4.8)

Proof: Given a (v, k, λ, b, r)-BIBD, if any 2 servers fail

(i) λ subfiles are left on (r − 2) servers.

(ii) 2(k − λ) subfiles are left on (r − 1) servers.

(iii) Remaining (v − (2k − λ)) subfiles are on r servers.

Let us represent the total download cost of a subfile from r, r − 1 and r − 2 servers

as Dr, Dr−1 and Dr−2 respectively.

So, the total download cost for overall retrieval

Dtotal =
L

v
(v − (2k − λ))Dr +

L

v
(2(k − λ))Dr−1 +

L

v
(λ)Dr−2 (4.9)

and download cost per bit

D(µ) =
v − (2k − λ)

v
Dr +

2(k − λ)

v
Dr−1 +

λ

v
Dr−2 (4.10)

Next, we calculate the optimal download cost per bit for the new system. Note that

for the two-reduced system t
′
= µ(N − 2) = µ(r− 2) = r b−2

b
= 2r

b
(r− 1) + (1− 2r

b
)r.

Thus using eq (2.8) the optimal download cost per bit for the two-reduced system

D∗(µ) =
2r

b
Dr−1 + (1− 2r

b
)Dr (4.11)

Finally,

D(µ)−D∗(µ) = Dr

(
1− 2k − λ

v
− 1 +

2r

b

)
+Dr−1

(
2(k − λ)

v
− 2r

b

)
+Dr−2

(
λ

v

)
= Dr

(
λ

v

)
−Dr−1

(
2λ

v

)
+Dr−2

(
λ

v

)
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Plugging in the values of Dr, Dr−1, Dr−2, we get

D(µ)−D∗(µ) =
λ

v

{(1

r
+

1

r − 2
− 2

r − 1

)
+
( 1

r2
+

1

(r − 2)2
− 2

(r − 1)2
)

+ . . .

+
( 1

rf−1
+

1

(r − 2)f−1
− 2

(r − 1)f−1
)}

�

Since the performance of our protocol is the same irrespective of which 2 servers

go down , it can be expected that our protocol is not severely affected in the worst

case. Also, it can be noted that the gap to capacity goes down a the number of servers

increases. Hence, in the asymptotic case N → ∞, D(µ) = D∗(µ) and capacity is

achieved for the two-reduced system.
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CHAPTER 5

SUMMARY AND FUTURE DIRECTIONS

Coming towards the end of this thesis, in this Chapter we summarise our work and

discuss possible directions to expand our work.

In this work we proposed a novel capacity achieving PIR scheme with low subpack-

etization for uncoded homogeneous storage constrained PIR systems. The proposed

PIR scheme is also capable of achieving optimal subpacketization and is flexible and

can accommodate a number of system parameters. The proposed PIR protocol has two

main components: a storage scheme and a retrieval scheme. The storage scheme is

based on combinatorial designs, more specifically tactical configurations. The retrieval

scheme works by projecting the given system to multiple instances of smaller systems

with replicated servers having full storage capacity. The benefits of our proposed PIR

protocol are summarised below. The proposed PIR protocol:

• Exists for any given N , F and µ.

• Achieves capacity

• Achieves optimal subpacketization for any homogeneous storage constraint PIR
protocol with equally sized subfiles

• Achieves capacity for the one residual system, without any modification in the
contents of available servers

• Uniformly distributes excess load due to 1 server failure on the set of available
servers if a symmetric BIBD is used for storage scheme.

• For the two residual system, maintains a fixed retrieval rate independent of which
2 servers fail if storage scheme is based on a BIBD.

As a extension of this work, it would be interesting to reduce subpacketization re-

quirements when t /∈ Z. Currently existing SC-PIR protocols use memory sharing to

extend PIR protocols for the case of non-integral t, which requires a high subpacke-

tization. Exploiting the fault tolerance of SC-PIR protocol may serve as one possible

way to reduce subpacketization for systems with non-integral t. Another possible direc-

tion for future work is to apply the theory of combinatorial designs to construct a PIR



protocol for Storage constrained Heterogeneous PIR systems where each server has a

different normalized storage. Currently existing PIR protocols for Heterogeneous PIR

either have high subpacketization requirements or have a iterative placement strategy

for the storage scheme. The challenge is to come up with a way of using combinatorial

designs to construct a one shot storage scheme for Heterogeneous PIR systems which

has low subpacketization requirements. Another interesting direction is the setting of

Weakly PIR which brings in a practical trade off between the privacy and performance

of PIR protocols. A practical example of weakly PIR would be say we are retrieving a

video file from a server with 100’s of audio files, 100’s of images and 100’s of videos.

We might not be much concerned if the server knows that we are retrieving some video

file but doesn’t know which one. By, doing this sacrifice on perfect privacy, we gain

in terms of the rate of the protocol, which means that now we will have to download a

lesser amount of data to recover our desired file. The amount of privacy loss is usually

quantified by metrics defined on the basis of mutual information between the desired

file index and queries received by a server. Again, as a extension of our work, designing

efficient PIR schemes based on combinatorial designs for different allowed information

leakage values is a interesting direction.
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