
D-CACHE VERIFICATION OF RISC-V OUT OF

ORDER PROCESSORS

A Project Report

submitted by

T NIHARIKA

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

&

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

JUNE 2021

THESIS CERTIFICATE

This is to certify that the thesis titled D-CACHE VERIFICATION OF RISC-V

OUT OF ORDER PROCESSORS , submitted by T NIHARIKA, to the Indian In-

stitute of Technology, Madras, for the award of the degree of Bachelor of Technology

& Master of Technology, is a bona fide record of the research work done by her under

our supervision. The contents of this thesis, in full or in parts, have not been submitted

to any other Institute or University for the award of any degree or diploma.

Prof. V. Kamakoti
Research Guide
Professor
Department of Computer Science and
Engineering
IIT-Madras, 600 036

Prof. Harishankar Ramachandran
Research Co-Guide
Professor
Department of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 30th June 2021

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my project advisor, Prof. V. Kamakoti

for providing me this opportunity to be a part of the Shakti Labs team and Prof. Har-

ishankar Ramachandran for being my co-guide, allowing me to a do the project in the

Department of Computer Science and Engineerig. I would also like to thank my men-

tor, Ms. Lavanya Jagadeeswaran, Project Officer at Shakti, for her extensive guidance

and support throughout the course of my project and Ms. Nitya Ranganathan, Project

Officer at Shakti for providing me with resources to understand the I-class cache de-

sign and clarifying my doubts regarding the same. I would also like to thank, Divya,

Project Assosciate at Shakti, for helping me in setting up the work environement and

resolving technical issues. Finally, I want to thank my family and friends for their

constant encouragement and support throughout my education and research.

i

ABSTRACT

KEYWORDS: D-Cache; RISCV; UVM; PyMTL3 model; CoCoTb testbench.

Verification of digital designs is necessary to ensure the conformance of a design to

some predefined set of expectations. In this case, the predefined expectations are pro-

vided by RISC-V specifications. Each block must be verified and the entire SoC needs

to be verified to ensure that there are absolutely no bugs. Thus, it becomes necessary

that the verification setup is easy to modify to suit all the different blocks and can be

smoothly integrated for core level integration and that the frameworks of the model

and testbench are easily adaptable. Also, The test bench has to be developed in such a

way that it allows us to verify the functionality of the DUT in all possible scenarios.

verify the working of In this project we have attempted to show the robustness of

Python PyMTL3 and CoCoTb as hardware generation and verification frameworks

respectively. The reference model is entirely build in PyMTL3. It provides a variety

of class libraries including Components, Delays, Queues etc. which are easy to de-

rive and override, thus providing an efficient way of implementing hardware models

whether they are functional level or cycle accurate. The verification setup is developed

in CoCoTb. It provides the standards of UVM and UVM classes such as BusMoni-

tors, Drivers, Scoreboard etc. which are compact, easy to override and without any

additional baggage unlike SystemVerilog, which also makes CoCoTb much easier to

adapt to. Since, these are both Python based, the interfacing becomes seamless and

the open-source and wide popularity of Python itself makes them a good choice.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF FIGURES v

ABBREVIATIONS vi

1 INTRODUCTION 1

2 VERIFICATION METHODOLOGY 2

2.1 The Universal Verification Methodology (UVM) 2

2.2 Model Development with PyMTL3 4

2.3 Testbench Development with Cocotb 4

3 THE D-CACHE REFERENCE MODEL 5

3.1 General Design . 5

3.2 Model Implementation . 6

3.2.1 Bit-PLRU Replacement Policy 6

3.2.2 ALU . 7

3.2.3 Memory . 7

3.2.4 RegisterFile . 8

3.2.5 DCache . 10

4 VERIFICATION 15

4.1 Steps in Verification . 15

4.2 Verification Plan . 15

4.3 Testbench Implementation . 17

4.4 Components . 17

4.4.1 Input Monitor . 17

4.4.2 Output Monitor . 18

iii

4.4.3 Scoreboard . 18

4.4.4 Testbench . 18

4.5 Block Level Verification and Core Level Integration 19

5 RESULTS 20

5.1 Coverage Plan . 20

5.2 Test Suite . 21

5.2.1 RISCV Tests . 21

5.2.2 AAPG . 21

5.3 COVERAGE . 22

5.3.1 Functional Coverage . 22

6 FUTURE WORK 23

LIST OF FIGURES

2.1 Block diagram showing different components of a typical UVM test-
bench . 3

3.1 Block Diagram of D-Cache Reference Model 6

3.2 Flow chart showing control flow to select one of the operations. . . 11

3.3 Control flow for store operations 12

3.4 Control flow for load operations 13

3.5 Control flow for atomic operations 14

4.1 Block Diagram of the verification setup 17

4.2 Block Diagram of the verification setup 19

5.1 Functional coverage statistics for different fields of the instruction
from pyucis-viewer . 22

v

ABBREVIATIONS

AAPG Automated Assembly Program Generator

CoCoTb COroutine based COsimulation TestBench environment

LRU Least Recently Used

PTW Page Table Walker

RISC Reduced Instruction Set Computer

ROB Reorder Buffer

SoC System on Chip

UVM Universal Verification Methodology

vi

CHAPTER 1

INTRODUCTION

The Shakti I-Class is a 64 bit-processor with performance features like out-of-order

execution, branch prediction, non-blocking caches, multi-threading and deep pipeline

stages. It has separate Instruction and Data Caches.

The aim of this project is to verify the working of the L1 Data Cache (D-Cache)

and find potential bugs in the RTL design. As part of this project, a functional level

parametric reference model (predictor) that emulates the behaviour of the D-Cache is

developed. A test bench is developed following the Universal Verification Methodol-

ogy (UVM), accommodating out-of-order execution and non-blocking nature of the

cache design.

This report briefly touches upon the Verification Methodology and the frameworks

used to develop the model and the test-bench in chapter 2. Then a detailed explanation

of the reference model is provided along with its features and parameters in chapter

3. The verification setup and test bench are explained in chapter 4 along with block

level verification and the core level integration of the test-bench. The test suite used

and coverage analysis is provided in chapter 5. Future scope of the project is given in

chapter 6.

CHAPTER 2

VERIFICATION METHODOLOGY

2.1 The Universal Verification Methodology (UVM)

The Universal Verification Methodology (UVM) is a standardized methodology for

verifying integrated circuit designs. It enables faster development and reuse of veri-

fication environments. UVM has a set of class libraries defined using SystemVerilog.

UVM is derived mainly from the OVM (Open Verification Methodology) and is an

Accellera standard with support from various vendors like Synopsys, Cadence, Xilinx

Simulator, Aldec etc.

The UVM class library provides and generic utilities like configuration databases,

component hierarchy and data automation features (like packing, copy, compare etc.).

Every component is assigned a specific role and the component object can be derived

from the corresponding class and configured to suit the needs of the particular applica-

tion. Fig. 2.1 shows a block diagram of a typical UVM testbench (VerificationGuide).

The different components of a typical UVM framework (Accellera (2015)):

• Testbench - Instantiates the Design under Test (DUT) module and the UVM
Test class, and configures the connections between them.

• Test - It is the top-level UVM Component in the UVM Testbench. Typically per-
forms three main functions: Instantiates the top-level environment, configures
the environment and applies stimulus by invoking UVM Sequences through the
environment to the DUT .

• Environment - It is a hierarchical component that groups together other verifi-
cation component. Typical components that are usually instantiated inside the
UVM Environment are UVM Agents, UVM Scoreboards, or even other UVM
Environments. The top-level UVM Environment encapsulates all the verifica-
tion components targeting the DUT.

• Scoreboard - Checks the behavior of a certain DUT. It usually receives trans-
actions carrying inputs and outputs of the DUT through UVM Agents, runs the
input transactions through some kind of a reference model (the predictor) to
produce expected transactions, and then compares the expected output versus
the actual output.

Figure 2.1: Block diagram showing different components of a typical UVM testbench

• Sequencer - It serves as an arbiter for controlling transaction flow from multiple
stimulus sequences.

• Driver - It receives individual UVM Sequence Item transactions from the UVM
Sequencer and applies (drives) it on the DUT Interface. Thus, it converts transaction-
level stimulus into pin-level stimulus.

• Monitor - It samples the DUT interface and captures tthe input and output trans-
actions and sends them to the rest of the testbench for analysis.

• Agent - It is a hierarchical component that groups together other verification
components that deal with the DUT interface Typically it includes a Sequencer,
a Driver and a Monitor.

In this project, the predictor (/model) is implemented in Python’s PyMTL3 and the

verification is carried out using the UVM framework implemented in Python Cocotb.

3

2.2 Model Development with PyMTL3

PyMTL3 is an open-source Python-based hardware generation, simulation, and veri-

fication framework with multi-level hardware modeling support (Jiang et al., 2020 -).

It provides a good number of libraries that facilitates model development at different

levels: functional, RTL, Cycle Accurate. The reference model for this D-Cache veri-

fication project has been developed in PyMTL3. A detailed description of the model

is provided in the next section.

2.3 Testbench Development with Cocotb

Cocotb is a COroutine based COsimulation TestBench environment for verifying VHDL

and SystemVerilog RTL using Python (Higgs et al., 2013 -). It uses a simulator to sim-

ulate the HDL design and can be used with a variety of simulators. For this project,

Verilator has been used for simulating the RTL design. Though the UVM class library

is developed in SystemVerilog, with cocotb, HDL is used for the design only, the

test-bench is implemented in python. Thus it provides all the necessary UVM classes

along with easier adaptability and smooth interfacing with the reference model as that

is also python based.

4

CHAPTER 3

THE D-CACHE REFERENCE MODEL

3.1 General Design

The L1 data cache is a 8-way associative cache with a default size of 32KB and line

size of 64B. It is non-blocking and other than normal data loads and stores, it also

supports all fences and atomic instructions. It uses write-allocate policy where data is

loaded to lines in the cache on store misses too. It writes-back to the main memory

when dirty lines are replaced. The default replacement policy employed is pseudo-

LRU (Least Recently Used).

The Load-Store Unit(LSU) is the only unit in the core that interfaces with the L1 Data

Cache and consists of the Load Queue (LQ), the Store Queue (SQ) and the Fence and

Atomic Buffer (FAB). The D-Cache is designed to receive requests of one of these

three types :

• Store request at store commit time

• Load request from Load Buffer

• Load request from Store Buffer

The Load request from the Store Buffer is for prefetching the line in case of a miss

so that the rest of the instructions are not blocked because the commit is stalled due to

a store miss.(Shakti (2018-))

3.2 Model Implementation

The model is completely implemented in PyMTL3 and uses component classes in an

hierarchical fashion. Emulating the RTL design, the model is associative and uses

write-allocate with write-back policy. The model uses a Bit-PLRU (pseudo-LRU) re-

placement policy which is discussed in the next section. The model currently handles

store commit requests, load requests from load buffer and all atomic operations. It is

a parametric model with parameters : naddr (number of bits in the address), nway (

assosciativity of the cache), lineSize (size of each cache line considering only data),

cacheSize (size of cache considering only data) and wordSize; that are given as argu-

ments during construction of the top-level module. The different component classes

and the control flow of the design is given in the subsequent sections. Fig. 3.1 shows

the block diagram of the D-Cache reference model. Note that since the model is func-

tional the next level memory is also instantiated inside the model.

Figure 3.1: Block Diagram of D-Cache Reference Model

3.2.1 Bit-PLRU Replacement Policy

In the Bit-PLRU (pseudo Least Recently Used) replacement policy, one status bit is

allotted to each cache line. These bits are called MRU (Most Recently Used) bits.

A value of 1 on the MRU-bit indicates that the line has been accessed recently. Each

6

time a line is accessed its MRU-bit is set to 1. Whenever a set’s last line with 0 on

its MRU-bit is accesssed, its MRU-bit is set to 1 and those of all the other lines in the

set are reset to 0. So at any point of time, there is atleast on line in every set whose

MRU-bit is 0. During a cache miss, the first line in the set whose MRU-bit is 0 is

replaced and its MRU-bit is set to 1. If the rest of the lines in the set have MRU-bit as

1, they are all reset to 0.

Since we use only one bit, the order in which the lines were accessed is not actually

stored and hence we might end up replacing a line which was "more" recently accessed

than another line in the set. Thus the algorithm’s performance can take a hit but it

requires less space, is fast and is easy to implement.

3.2.2 ALU

The class ALU defines the ALU component in the L1 cache used for Atomic oper-

ations. It takes wordSize as an argument at construction which is by default 4 (four

bytes).

Functions:

1. atomic_fn(opcode, loaded, rs2, data_width)
It carries out the atomic operation specified by the opcode on operands loaded
(operand1) and rs2 (operand2) and returns the result. The different operations
include addition, bitwise-or, and, xor, signed and unsigned max, signed and
unsigned min and returns operand2 by default.
The data_width argument specifies whether the operation is on word or double.
In case the operation is on word-sized operands, they may or may not be sign-
extended depending on the opcode. The atomic operations follow a load-op-
store sequence. The operand loaded is the data read from the memory address
specified in the instruction and rs2 is the data provided in the instruction, in
accordance with the RISC-V spec.

3.2.3 Memory

The class Memory defines a memory component which could be used to instantiate

the L2 cache or the main memory. It takes mem_width, the width of the memory

block in bytes (which by default has been made equal to the lineSize of the L1 cache)

and naddr, the number of bits in the address as arguments at construction. It has

a register of type ’pymtl3.Bits’ which is populated with data from the relevant files

7

during simulation.

Functions:

1. mem_read(r_en, addr_in)
If r_en (read enable) is asserted, the function returns ’mem_width’ bytes of data
from the memory register starting from the address specified by addr_in.

2. mem_write(w_en, wb_data, wb_addr)
If w_en (write enable) is asserted, the function overwrites the data in the mem-
ory register with wb_data (write-back data) starting from the address specified
by wb_addr (write-back address). Note that this function is called only when a
dirty line is being replaced.

3.2.4 RegisterFile

The class RegisterFile defines a memory register which is instantiated in the L1 cache

and functions as the cache memory. It takes the arguments naddr , nway , lineSize),

cacheSize and wordSize at construction. It has a memory register which is an array of

type ’pymtl3.Bits’. Apart from data, each element of the array contains bit fields for

the valid bit, dirty bit, tag and the MRU bit. The class also has functions that carry

out data movement operations along with book keeping and accepting responses from

the next lower level memory block.

Functions:

1. __getitem__(addr_in, data_width)
The __getitem__ function takes the argument addr_in and computes the tag,
index, and the byte offset and checks for the availability and validity of the
requested data in the register. The argument data_width specifies the size of the
data to be returned.

We have the following possible scenarios:

(a) CACHE HIT: If its a hit, it returns is_hit (asserted if and only if its a hit)
and the requested data starting from the byte offset.

(b) CACHE MISS:

• Vacant Line Available: In this case it return is_hit (which will be de-
asserted), is_vacant (asserted if and only if a vacant line is available),
vacantLine (line address of the chosen vacant line).

• Vacant Line Not Available:

8

– Replaced Line is Dirty: In this case it returns is_hit, is_vacant,
is_dirty (asserted if and only if the chosen line is dirty), repLine
(line address of the line to be replaced), wb_addr (write-back ad-
dress), wb_data (write-back data).

– Replace Line is Not Dirty: The same set of variables as in the
dirty line case are returned except that is_dirty is de-asserted and
the wb_addr and the wb_data are set to zero and are irrelevant.

2. __setitem__(addr_in, data_in, data_width)
The __setitem__ function takes the argument addr_in and computes the tag,
index, and the byte offset and checks for the availability and validity of the data
in the requested location in the register. The argument data_in provides the data
to be stored and data_width specifies the size of the data to be stored in the
register.

We have the following possible scenarios:

(a) CACHE HIT: If its a hit, it overwrites the data in the register with data_in
starting from the byte offset and returns is_hit (asserted if and only if its a
hit).

(b) CACHE MISS:

• Vacant Line Available: In this case it return is_hit (which will be de-
asserted), is_vacant (asserted if and only if a vacant line is available),
vacantLine (line address of the chosen vacant line).

• Vacant Line Not Available:

– Replaced Line is Dirty: In this case it returns is_hit, is_vacant,
is_dirty (asserted if and only if the chosen line is dirty), repLine
(line address of the line to be replaced), wb_addr (write-back ad-
dress), wb_data (write-back data).

– Replace Line is Not Dirty: The same set of variables as in the
dirty line case are returned except that is_dirty is de-asserted and
the wb_addr and the wb_data are set to zero and are irrelevant.

3. __ldFromMem__ (addr_in, data_in, data_width, op, targetLine,
rd_resp_from_mem)
The __ldFromMem__ function loads the data from memory rd_resp_from_mem
to the line address in the register specified by the argument targetLine and sets
the valid bit and the MRU bit, resets the dirty bit and updates the tag (computed
from addr_in). Then, based on the value of the argument op (operation: load
or store) it does one of the following:

• Load - returns the requested data of size ’data_width’ from the freshly
loaded line starting from the byte offset (computed from addr_in).

9

• Store - overwrites the freshly loaded line in the register with data_in of
size ’data_width’ starting from the byte offset and sets the dirty bit to 1.

3.2.5 DCache

The class DCache derives from the Component class of PyMTL3 and is the top-level

module that instantiates objects of the above described three classes namely, Register-

File, Memory and ALU. It takes the arguments naddr , nway , lineSize , cacheSize and

wordSize at construction and passes them onto the instantiated objects as applicable. It

provides an interface to receive requests from and send out responses to the test bench.

It methodically calls the different functions of the instantiated RegisterFile, Memory

and ALU objects to carry out the received requests. Note that this is a functional level

model and the Memory is instantiated here so that the model completes any request in

one simulation clock cycle.

Interface:

Inports:

• req_from_core - (160 bit) request from core (added for verification/display pur-
poses)

• addr_in - (64 bit) address for load, store and atomic operations

• op - (2 bit) specifies operation; 00 - Load, 11 - Store, 01 - Prefetch, 10 - PTW
(01,10 are not suppported currently)

• atomic_op - (5 bit) opcode for atomic operations

• is_atomic - (1 bit) set if the request is an atomic operation

• data_in - (64 bit) data to be stored in the provided address in ’addr_in’

• data_width - (2 bit) specifies the size of data to be loaded or stored; 00-Byte,
01-Half, 10-Word, 11-Double

• data_sign - (1 bit) specifies extension of the data to be read; 0-sign extended,
1-zero extended

• dest_type - (1 bit) specifies the type of the destination register; 0-Int, 1-Floating
Point(FP)

Outports:

• ack - (1 bit) acknowledges the request; 1-accepted, 0-rejected

10

• done - (1 bit) shows task status; 1-completed, 0-in progress

• data_out - (64 bit) data sent as response to core for a load request

It also contains an internal ’rdy’ bit which indicates that the cache is ready to accept a

new request when it is High. If the cache is occupied, the ’rdy’ bit is Low.

The DCache class contains the function ’operation’ which uses the @update_ff dec-

orator and is called at every raising clock edge. It receives stimulus from the inports,

carries out the request and updates the outports at the next rising clock edge. The se-

quence of steps carried out in this function for different types of requests are presented

in the form of flow charts.

Once a request is received, the acknowledge bit is set high and the ready bit is set low

and depending on whether its a load or store or atomic operation, it follows a sequence

of steps. Fig. 3.2 shows the control flow for calling one of the operations: Load, Store

or Atomic operation.

Figure 3.2: Flow chart showing control flow to select one of the operations.

For store operations, first the __setitem__() function is called and depending on

whether its a hit or a miss; availability of vacant line in case of a miss and if the re-

11

placed line is dirty or not, in case no vacant lines are available, the functions mem_rd()

and mem_wr() are called and once the operation is completed, the done signal is as-

serted. Fig. 3.3 shows the control flow for Store operations.

Figure 3.3: Control flow for store operations

Similar to store operations, for load operations, first the __getitem__() function is

called and depending on whether its a hit or a miss, availability of vacant line in case

of a miss and if the replaced line is dirty or not in case no vacant lines are available,

the functions mem_rd() and mem_wr() are called. If the data is of type Int, depending

on the extension specified in the request, it is either zero extended or sign extended

to 64 bits. If its a float operation and data is not a double, we insert a string of 1s in

the upper bits to make it 64bits wide (NaN Boxing). The resulting 64 bit data is made

available at the data_out outport and the done signal is asserted. Fig. 3.4 shows the

control flow for Load operations.

12

Figure 3.4: Control flow for load operations

Atomic operations follow the flow for loads till before extension. The loaded data,

the data and the opcode specified in the request are given as arguments to atomic_fn.

The result is then stored to the specified address following the control flow for stores.

Fig. 3.5 shows the control flow for Atomic operations.

13

Figure 3.5: Control flow for atomic operations

14

CHAPTER 4

VERIFICATION

4.1 Steps in Verification

Steps followed in D-Cache Verification:

• Developing a verification plan

• Developing a test bench

• Simulation based verification

• Coverage analysis

This chapter provides the verification plan and explains the test bench developed

for D-Cache verification and core level integration.

4.2 Verification Plan

The first step in verification is to develop a verification plan. It consists of identifying

all the features, functionality or scenarios of interest and developing test strategies to

exercise them to find potential bugs. Then based on this we can generate suitable tests

to verify all the scenarios.

The verification plan for the D-Cache is given in the next page in the form of a table.

The Features column contains the features and scenarios we want to test and the Sub

Features column gives relevant finer details regarding the feature. The Testplan col-

umn contains the proposed test strategy to verify the feature and Design Parameters

provides the relevant DUT signals to be monitored.

Table showing the verification plan for D-Cache.

TestPlan Id Features Sub Feature Testplan Design Parameters

dcache_0 Cache memory register
map with datafiles

addr range:
0x1000-0x2000 : bootfile
> 0x8000000 : code.mem

1. Feed load instructions
accessing data from
addresses from both the
ranges.

subifc_req_from_core_put,
subifc_resp_to_core_get

dcache_1 Loads from Load Buffer subifc_req_from_core_put,
subifc_resp_to_core_get

dcache_1_1 Dest_type

Specifies whether destination
register type is float or int.
Determines whether output should
be NaN boxed or not.
If data_width is less than 64 bits, all
higher bits are made 1 (NaN Boxing)

1. Feed instructions
covering both types of
destination registers in
combination with different
data_widths.

subifc_req_from_core_put,
subifc_resp_to_core_get

dcache_1_2 Access Size

Specifies the width of the data and
its extension (zero or sign) to be
returned.
MSB: 0 - Sign ext; 1 - Zero ext
LSBbits: 00 - Byte; 01 - Half;
10 - Word; 11 - Double

1. Feed instructions for all
possible values of Access
Size field

subifc_req_from_core_put,
subifc_resp_to_core_get

dcache_2 Stores from Store
Commit

subifc_req_from_core_put,
subifc_resp_to_core_get

dcache_2_1 Access size

Specifies the width of the data and
its extension (zero or sign) to be
returned.
MSB: 0 - Sign ext; 1 - Zero ext
LSBbits: 00 - Byte; 01 - Half;
10 - Word; 11 - Double

1. Feed instructions for all
possible values of Access
Size field

subifc_req_from_core_put,
subifc_resp_to_core_get

dcache_3 Atomic Operations

Follows load-compute-store
Blocking operation
Applicable only to 32 bit and 64 bit
operands.

subifc_req_from_core_put,
subifc_resp_to_core_get

dcache_3_2 Opcode
5 bit code specifying operation type
and extension if any. Returns
operand 2 in default case.

1. Feed instructions with all
possible combinations of
operations and extension.

subifc_req_from_core_put,
subifc_resp_to_core_get

dcache_3_1 is_atomic
Specifies if the operation is atomic
or not.
0 - Not atomic; 1 - atomic

1. Monitor the signal and
see if atomic operations are
carried out whenever the bit
goes high.

subifc_req_from_core_put,
subifc_resp_to_core_get

dcache_3_3 loaded (operand 1) Data loaded from the specified
address used as operand 1.

subifc_req_from_core_put,
subifc_resp_to_core_get

dcache_3_4 rs2 (operand 2) Data specified in the instruction
used as operand 2.

subifc_req_from_core_put,
subifc_resp_to_core_get

dcache_3.5 Access size

Specifies the width of the data and
its extension (zero or sign) to be
returned.
MSB: 0 - Sign ext; 1 - Zero ext
LSBbits: 00 - Byte; 01 - Half;
10 - Word; 11 - Double

1. Feed instructions for all
possible values of Access
Size field

subifc_req_from_core_put,
subifc_resp_to_core_get

dcache_4 Write back
When dirty line is replaced, data is
written back to the lower level
memory.

1. Carry out a store
operation.
2.Consecutive accesses to
address locations mapping
to same cache line.
3. Carry out Load operation
from the earlier address and
compare data.

subifc_req_from_core_put,
subifc_resp_to_core_get

dcache_5 Load after Store

1. Carry out a store
operation.
2. Carry out Load operation
from the earlier address and
compare data.

subifc_req_from_core_put,
subifc_resp_to_core_get

dcache_6 Load afterAtomic op

1. Carry out an atomic
operation.
2. Carry out Load operation
from the earlier address and
compare data.
Repeat for all combinations
of opcodes and data widths.

subifc_req_from_core_put,
subifc_resp_to_core_get

4.3 Testbench Implementation

The verification setup is implemented entirely in Python cocotb. The functionality of

different components essentially remains the same as discussed in chapter 2. A brief

description of the components along with the conditions they check is given in the

subsequent sections. Fig. 4.1 shows the block diagram of the verification setup.

Figure 4.1: Block Diagram of the verification setup

4.4 Components

4.4.1 Input Monitor

It is derived from the cocotb class ’BusMonitor’ and samples input signals received

by the DUT based on the conditions that the signals ’EN_subifc_req_from_core_put’

(enable) and ’RDY_subifc_req_from_core_put’ (ready) are High. Every time it cap-

tures an input transaction, it calls back to the reference model and passes on the input

transaction.

17

4.4.2 Output Monitor

It is derived from the cocotb class ’BusMonitor’ and samples output signals sent out

by the DUT based on the conditions that the signals ’EN_subifc_resp_to_core_get’ (

enable) and ’RDY_subifc_resp_to_core_get’ (ready) are High. Every time it cap-

tures an output transaction, the Scoreboard is called.

4.4.3 Scoreboard

It is derived from the cocotb class ’Scoreboard’. It is interfaced with the Output Moni-

tor and the expected result array of the reference model. Once the Scoreboard receives

a new transaction from the Output Monitor, it searches the expected result array for

a response corresponding to the request with ROB (reorder buffer) ID matching the

ROB ID of the received output transaction. This is necessary because the core sup-

ports out-of-order-execution. Then it checks for any exceptions (like load access fault,

page faults etc.). If there are no exceptions, the output from DUT is compared with

the expected output. To check for mismatches in the case of loads, the returned data

is compared and for atomics, the stored result is compared. For store instructions, it

only checks if a response with a certain ROB ID has been received or not.

4.4.4 Testbench

It is the top-level model that instantiates the components (input and output monitors,

scoreboard and the reference model) and connects them with each other. It interfaces

with the reference model through a wrapper function to feed the model with the input

transaction captured by the input monitor.

18

4.5 Block Level Verification and Core Level Integra-

tion

Block level verification does give us a greater control over the signals driven into the

DUT and the model. But the cache module needs to interact with the memory, so it

no longer remains a single block for simulation. We moved on to core level integrated

testbench as it is much easier to implement and facilitates verification of the entire

I-class core in future. To retain the control over signals, we can generate tailored tests

to suit the proposed test plan with a larger number of memory instructions and special

patterns to further check any corner cases.

The core level test bench is modified to especially suit for D-Cache Verification. It

instantiates the D-Cache test bench shown in Fig. 4.1 and passes to it the handle to D-

Cache of the I-class core DUT. The block diagram of the complete verification setup

is shown in Fig. 4.2.

Figure 4.2: Block Diagram of the verification setup

19

CHAPTER 5

RESULTS

Coverage is defined as a measure of how much of the DUT functionality has actually

been exercised by the application of tests. It is necessary that we cover all kinds of

different scenarios through our tests to ensure that there are absolutely no bugs in the

system. Coverage is a handy tool that allows us to identify which scenarios have been

left out and generate tailored tests to activate them. Thus it is important to define a

proper coverage plan which considers all the relevant signals and instruction patterns

and ensures that each one of them takes all the possible values.

5.1 Coverage Plan

The coverage plan for D-Cache verification is shown in table 5.1.

Table 5.1: Table showing the coverage plan for D-Cache Verificaiton

S.no. Coverpoint/patterns Values
1 ext sign, zero
2 access_size byte, half, word, double
3 origin load buff, store commit
4 dest_type FP, int
5 is_atomic Set, Unset
6 atomic_fn op1,op1_s,op2,add,add_s,

or,or_s,xor,xor_s,and,and_s,
minu_s,maxu_s,maxu,minu,
max_s,min_s,max,min

7 RAW Set, Unset
8 RAA Set, Unset
9 en_req_frm_core Set, Unset
10 en_flush Set, Unset
11 en_rd_req_to_mem Set, Unset
12 en_wr_req_to_mem Set, Unset

RAW-load after store to same address; RAA-load after atomic op to same address

5.2 Test Suite

Various tests covering different types of scenarios have been used to carry out the

proposed verificaion plan. The tests used are of two types based on how they are

generated: RISCV and AAPG.

5.2.1 RISCV Tests

RISCV tests are based on hard coded assembly programs with a fixed number and

types of instructions. The aim is to verify the basic functionality of the DUT by

feeding instructions that request different operations. We have a large number of these

RISCV tests each of which specializes in a specific functionality. For instance we

have:

• amoor_d - targets atomic OR function on double sized operands.

• amoor_w - targets atomic OR function on word sized operands.

• amominu_d - targets atomic function returning minimum of the two unsigned
double sized operands.

• ammin_w - targets atomic function returning minimum of the two signed word
sized operands.

• lw - targets load word functionality.

Tools used: riscv-gnu-toolchain and riscv-isa-sim.

The ’spike.dump’, ’rtl.dump’ and ’disassembly’ files are automatically generated and

added to the test directory during test generation.

5.2.2 AAPG

AAPG stands for Automated Assembly Program Generator. It is a Python based as-

sembly program generation tool developed by Shakti. It allows the programmer to

configure the number of instructions, the ratio of different types of instructions and

any customized patterns of instructions, like the repeated store-load or atomic-load

combinations to the same address used for this project. It uses these configurations as

constraints and generates random assembly tests. This is an immensely useful tool as

21

it allows a certain level of control and yet randomizes the instructions thus enabling us

to target a particular functionality with tailored instruction patterns and exhaustively

check for any potential bugs.

Tools used: AAPG, riscv-gnu-toolchain and riscv-isa-sim.

Configurations are added in ’config.yaml’ file. Similar to RISCV tests, log and dump

files are also generated.

5.3 COVERAGE

5.3.1 Functional Coverage

The functional coverage data obtained from running all the tests have been merged to

obtain the overall functional coverage figures. Fig. 5.1 shows the merged functional

coverge.

Figure 5.1: Functional coverage statistics for different fields of the instruction from
pyucis-viewer

22

CHAPTER 6

FUTURE WORK

• The model can be further developed to support prefetching and PTW requests.

• More complex coverage points can be added after adding more functionality to
the model.

• The current model is a functional level model and verifies functional correct-
ness only. The model can be made cycle accurate to evaluate performance and
timing.

REFERENCES

1. Accellera (2015). Universal verification methodology (uvm) 1.2 user’s guide.
URL https://www.accellera.org/images/downloads/standards/
uvm/uvm_users_guide_1.2.pdf.

2. Higgs, C. et al. (2013 -). Cocotb documentation. URL https://docs.cocotb.
org/en/stable/.

3. Jiang, S. et al. (2020 -). Pymtl3 framework. URL https://pymtl3.
readthedocs.io/en/latest/.

4. Shakti (2018-). Caches_mmu gitlab repository. URL https://gitlab.com/
shaktiproject/uncore/caches_mmu.

5. Shakti (2019 -). Aapg. URL https://gitlab.com/shaktiproject/
tools/aapg/.

6. VerificationGuide (). Uvm testbench. URL https://verificationguide.
com/uvm/uvm-testbench/.

24

https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://docs.cocotb.org/en/stable/
https://docs.cocotb.org/en/stable/
https://pymtl3.readthedocs.io/en/latest/
https://pymtl3.readthedocs.io/en/latest/
https://gitlab.com/shaktiproject/uncore/caches_mmu
https://gitlab.com/shaktiproject/uncore/caches_mmu
https://gitlab.com/shaktiproject/tools/aapg/
https://gitlab.com/shaktiproject/tools/aapg/
https://verificationguide.com/uvm/uvm-testbench/
https://verificationguide.com/uvm/uvm-testbench/

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	VERIFICATION METHODOLOGY
	The Universal Verification Methodology (UVM)
	Model Development with PyMTL3
	Testbench Development with Cocotb

	THE D-CACHE REFERENCE MODEL
	General Design
	Model Implementation
	Bit-PLRU Replacement Policy
	ALU
	Memory
	RegisterFile
	DCache

	VERIFICATION
	Steps in Verification
	Verification Plan
	Testbench Implementation
	Components
	Input Monitor
	Output Monitor
	 Scoreboard
	Testbench

	Block Level Verification and Core Level Integration

	RESULTS
	Coverage Plan
	Test Suite
	RISCV Tests
	AAPG

	COVERAGE
	Functional Coverage

	FUTURE WORK

