
VISION BASED ROBOT NAVIGATION USING DRL

METHODS

A project Report

submitted by

NIKITHA VARMA SUNCHU

EE16B152

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY &

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

JUNE 2021

THESIS CERTIFICATE

This is to certify that the thesis titled VISION BASED ROBOT NAVIGATION US-

ING DRL METHODS, submitted by Nikitha Varma Sunchu (EE16B152), to the

Indian Institute of Technology, Madras, for the award of the degree of the degree of

Bachelors of Technology and Master of Technology, is a bonafide record of the re-

search work done by him under our supervision. The contents of this thesis, in full or in

parts, have not been submitted to any other Institute or University for the award of any

degree or diploma.

Prof. V. Srinivasa Chakravarthy
Research Guide
Professor
Department of Biotechnology
IIT-Madras, 600 036

Dr Mansi Sharma
Research Co-Guide
Inspire Faculty
Department of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 24th June 2021

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my project advisor, Prof. V. Srinivasa

Chakravarthy, for giving me this oppurtuinity to be part of CNS(Computational Neu-

roScience) lab team. I would like to thank my mentors Azra aziz and Swetha for their

immense guidance and support throughout the course of my project. I would like to

express my gratitude to Dr.Mansi Sharma for supporting me being my co-guide for the

project.

Finally, I want to thank my family and friends for their constant encouragement and

support throughout my education and research.

i

ABSTRACT

KEYWORDS: Spatial Navigation, Computer Vision, Deep learning, Unity, Robot,

CNN, LSTM

Recent advancements in the field of Artificial Intelligence (AI) in Robotics are impres-

sive. AI is advancing at a breakneck pace, presenting unprecedented possibilities to im-

prove the performance of several industries and businesses, including robotics. Highly

advanced computing methodologies that imitate the way the human brain processes in-

formation are some of the AI innovations. At present, the application of mobile robots

is more and more extensive, and the movement of mobile robots cannot be separated

from effective navigation, especially path exploration. Aiming at navigation problems,

this project proposes a method based on 3d convolution layers and LSTMs completely

based on vision. This can be further extended to greater extent by using deep reinforce-

ment learning which will also be discussed in the paper.

The data set is created by utilising the UNITY tool to create simple environments. The

source code is developed in Python using the tensor flow library.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF FIGURES v

ABBREVIATIONS vi

1 INTRODUCTION 1

2 BACKGROUND 4

2.1 Neural Network(NN) . 5

2.2 Convolutional Neural Network(CNN) 5

2.2.1 2D convolution Networks 6

2.2.2 3D convolution Networks 7

2.3 Recurrent Neural Networks(RNN) 7

2.4 Long Short Term Memory(LSTM) 8

2.5 Convolutional LSTM . 9

2.5.1 ConvLSTM layer input . 9

2.5.2 ConvLSTM layer output 9

2.5.3 Other parameters . 10

3 DATASET CREATION 11

3.1 Environment and Agent . 11

3.2 Dataset Format . 13

3.2.1 Camera Images . 13

3.2.2 Heat Maps . 14

3.2.3 TSV . 14

3.2.4 Ground Truth/ output . 14

3.3 Data Preprocessing . 15

iii

3.3.1 Image Resizing . 15

3.3.2 Batching the data . 16

3.3.3 Window sizing for Convolutional LSTM 16

3.3.4 One hot encoding for TSV 16

3.4 Dataset collection . 17

3.4.1 Same start point . 17

3.4.2 Multiple start points . 17

4 ARCHITECTURE AND TRAINING 18

4.1 Architecture . 18

4.2 Training . 18

5 RESULTS 20

6 FUTURE SCOPE 21

LIST OF FIGURES

2.1 Simple Neural Network . 5

2.2 Convolutional Network . 6

2.3 2D convolutional Network . 7

2.4 3D convolutional Network . 7

2.5 Recurrent Neural Network . 8

2.6 Long Short Term Memory . 8

2.7 Convolutional LSTM . 9

3.1 Environment . 12

3.2 Agent . 12

3.3 Camera view image . 13

3.4 Top View . 14

3.5 Heat Map . 14

3.6 Actual Image . 15

3.7 Resized Camera Image . 15

3.8 Original Heat Map . 16

3.9 Resized Heat Map . 16

4.1 Final Model . 19

5.1 Accuracy . 20

5.2 Loss . 20

v

ABBREVIATIONS

AI Artificial Intelligence

DRL Deep Reinforcement Learning

LSTM Long Term Short Memory

CNN Convolutional Neural Network

SLAM Simultaneous Localization and Mapping

ROS Simultaneous Localization and Mapping

RNN Recurrent Neural Network

MSE Mean Squared Error

SGD Stochastic Gradient Descent

vi

CHAPTER 1

INTRODUCTION

The process of identifying an appropriate and safe path between a beginning and a

destination point for a robot traveling between the two points is known as navigation.

Different sensors have been employed for this purpose, resulting in a wide range of

solutions. Since navigation techniques based on vision have become a source of numer-

ous study contributions in the last three decades, visual navigation for mobile robots

has become a source of endless research contributions.

Mobile robot navigation has typically been thought of as solving the challenge posed

by these three questions:

1. Where am I?

2. Where are other places related to me?

3. How do I get to other places from here?

The answers to these questions are localization, which determines where the robot

is, path-planning, which determines how to get to other locations from where the robot

is, and navigation, which executes the path-planning system’s commands. This method

has dominated the robot navigation paradigm, with a slew of successful solutions. How-

ever, technological advancements have allowed for a more expansive view of mobile

robot navigation, resulting in a solution to a "larger" problem.

This solution would answer two additional questions, which are:

1. How is this place like?

2. How is the structure of the environment I am in?

It’s always inspiring to learn how the human brain works and then apply that knowl-

edge to a problem-solving strategy. We can link Navigation to this in this situation.

When we want to visit a new place, we try to understand the surroundings from the start

to the finish line, and then design the most effective route in our brains automatically.

This concept is the bedrock of mobile machine navigation. In general, the two parts

of the core are the perceptual environment and the planned path based on the known

environment.

The emergence of simultaneous localization and mapping (SLAM) technology had

a huge impact on mobile robot navigation in the early days. SLAM is a technique

in which robots use sensors like vision, lasers, and odometers to build a map while

learning about their surroundings.

The current SLAM problem study technique is mostly based on the placement of

multi-type transmission on the robot body. The gadget employs information fusion to

accomplish accurate estimation of the robot’s posture and spatial modeling of the scene

by estimating the motion information of the robot ontology and the feature informa-

tion of the unknown environment. Visual SLAM, for example, is a system that relies

on pictures as the primary source of contextual information. It has outstanding scene

recognition capabilities and can gather huge and redundant texture information from

the surroundings.

The main objective of a typical visual SLAM system is to estimate the camera pos-

ture and reconstruct the map using multi-view geometry theory. Some visible SLAM

systems extract sparse image features first, then accomplish inter-frame estimates and

closed-loop detection by matching feature points to increase data processing time. The

intentionally generated sparse picture characteristics, on the other hand, now have sev-

eral drawbacks. On the one hand, how to create sparse image features that best represent

picture information is still a major unresolved challenge in computer vision. Sparse pic-

ture features, on the other hand, respond to variations in light.

One of the major goals of robotics and artificial intelligence is for intelligent agents

to be able to navigate around an environment and carry out human-provided instruc-

tions. Visual navigation has developed as a means for such agents to learn (e.g., through

deep learning) how to navigate towards a certain target object. Because the agent must

learn a navigation strategy and stopping criteria conditioned on locating a specified tar-

get, the task is classified as a deep reinforcement learning problem. It’s a particularly

difficult challenge since the agent must learn to avoid barriers and execute actions in a

complicated environment by identifying similar but visually distinct objects. Further-

more, for any beginning state, there are generally several action sequences (i.e. trajec-

2

tories) that might lead to successful navigation, leave alone the trajectories that might

fail. The main difficulty is figuring out how to choose the correct action at each time

step to construct a path that leads to the target.

In this project, we used Deep Learning techniques using CNNs and LSTMs to learn

and navigate the agent through the environment posing the navigation problem as a

supervised learning problem where the inputs are camera(placed on the agent) view

plus the position of the agent at that instant and output being the step size of the agent

in 2d space.

The problem statement is framed as if we have an environment with obstacles and a

fixed target to reach and train an agent to reach the target from different starting points

in different trajectories. Can the agent learn to navigate in the environment and reach

the target if left at any new starting point?

This raises few more questions like:

1. How many trajectories are enough trajectories?

2. When trained with multiple trajectories from the same start point, will the agent
learn the smallest path?

3. If we train for multiple environments, can the agent perform the same when left
in a new similar environment?

4. What can be done to make the agent adapt to new environments?

If the environment is initially unknown, i.e. there is no explicit map. A reinforce-

ment learning (RL) problem may be used to formalize a visual navigation problem like

this. The complexity of the agent’s observation space and the fact that the real state is

only partially visible from the RL formulation are two major problems. About which

we are going to discuss in the future scope section.

3

CHAPTER 2

BACKGROUND

In recent years, Deep Reinforcement Learning (DRL) has become one of the most

hotly debated areas in artificial intelligence. It combines the perception of deep learn-

ing (DL) with the decision-making abilities of reinforcement learning (RL) and uses

high-dimensional perceptual input learning to control the behavior of agents directly. It

proposes a novel approach to resolving robot navigation issues.

Among them, DL has gained great success in the domains of image analysis, speech

recognition, natural language processing, and video classification as a key research

hotspot in the field of machine learning. The main idea behind DL is to find distributed

feature representations of data by combining low-level characteristics and forming ab-

stract, readily identifiable high-level representations using multilayered network archi-

tectures and nonlinear transformations. As a result, the DL approach focuses on how

people perceive and express things.

Industrial production, simulation, robot control, optimization and scheduling, and

video play have all benefited from RL as a research hotspot in the field of machine

learning. The primary principle behind RL is to find the best strategy for achieving a

goal by maximizing the agent’s cumulative reward value from the environment. As a

result, the RL method emphasizes problem-solving techniques.

With the fast growth of human civilization, it is important to utilize DL to auto-

matically learn the abstract representation of large-scale input data and use this charac-

terization as a self-incentive RL to optimize problem-solving policy in more and more

difficult real-world task tasks. As a consequence, Google’s artificial intelligence re-

search team DeepMind has created a new research hotspot in the field of artificial in-

telligence, called deep reinforcement learning, by combining the sensible DL with the

decision-making RL.

Since then, the DeepMind team has built and implemented human expert-level

agents in a variety of hard fields. These agents directly construct and learn their in-

formation.

2.1 Neural Network(NN)

The design of the neural network is based on the structure of the human brain. Just as

we use our brains to identify patterns and classify different types of information, neural

networks can be taught to perform the same tasks on data.

The individual layers of neural networks can also be thought of as a sort of filter that

works from gross to subtle, increasing the likelihood of detecting and outputting a cor-

rect result. The human brain works similarly. Whenever we receive new information,

the brain tries to compare it with known objects. The same concept is also used by a

deep neural network.

The shown figure is a basic neural network. The connections of the biological neu-

ron are modeled as weights. A positive weight reflects an excitatory connection, while

negative values mean inhibitory connections. All inputs are modified by weight and

summed. This activity is referred to as a linear combination. Finally, an activation

function controls the amplitude of the output. For example, an acceptable range of out-

put is usually between 0 and 1, or it could be -1 and 1.

Figure 2.1: Simple Neural Network

2.2 Convolutional Neural Network(CNN)

A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm that

can take in an input image, assign importance (learnable weights and biases) to vari-

ous aspects/objects in the image, and be able to differentiate one from the other. The

5

pre-processing required in a ConvNet is much lower as compared to other classifica-

tion algorithms. While in primitive methods filters are hand-engineered, with enough

training, ConvNets can learn these filters/characteristics.

The architecture of a ConvNet is analogous to that of the connectivity pattern of

Neurons in the Human Brain and was inspired by the organization of the Visual Cor-

tex. Individual neurons respond to stimuli only in a restricted region of the visual field

known as the Receptive Field. A collection of such fields overlap to cover the entire

visual area.

Figure 2.2: Convolutional Network

2.2.1 2D convolution Networks

This is the standard Convolution Neural Network which was first introduced in Lenet-5

architecture. Conv2D is generally used on Image data. It is called 2 dimensional CNN

because the kernel slides along 2 dimensions on the data as shown in the following

image.

The whole advantage of using CNN is that it can extract the spatial features from

the data using its kernel, which other networks are unable to do. For example, CNN can

detect edges, distribution of colors, etc in the image which makes these networks very

robust in image classification and other similar data which contain spatial properties.

6

2.2.2 3D convolution Networks

3D CNN’s are used when you want to extract features in 3 Dimensions or establish a

relationship between 3 dimensions. Essentially it’s the same as 2D convolutions but

the kernel movement is now 3-Dimensional causing a better capture of dependencies

within the 3 dimensions and a difference in output dimensions post convolution. The

kernel on convolution will move in 3-Dimensions if the kernel depth is lesser than the

feature map depth.

Figure 2.3: 2D convolutional Net-
work

Figure 2.4: 3D convolutional Net-
work

2.3 Recurrent Neural Networks(RNN)

A feedforward neural network with internal memory is known as a recurrent neural

network. RNN is recurrent since it executes the same function for each data input,

and the current input’s outcome is dependent on the previous calculation. The output is

duplicated and transmitted back into the recurrent network once it is created. It analyses

the current input as well as the output it has learned from the prior input when making

a decision.

RNNs, unlike feedforward neural networks, may process sequences of inputs using

their internal state (memory). As a result, activities like unsegmented, linked handwrit-

ing recognition or speech recognition are possible. In other neural networks, all the

inputs are independent of each other. But in RNN, all the inputs are related to each

other.

7

Figure 2.5: Recurrent Neural Network

2.4 Long Short Term Memory(LSTM)

Long Short-Term Memory (LSTM) networks are a modified version of recurrent neural

networks, which makes it easier to remember past data in memory. The vanishing

gradient problem of RNN is resolved here. LSTM is well-suited to classify, process,

and predict time series given time lags of unknown duration. It trains the model by

using back-propagation. In an LSTM network, three gates are present. Input, forget

and output gates.

Figure 2.6: Long Short Term Memory

Ct = σ(ftC
i + itC

′
t)

it = σ(xtU
i + ht−1W

i)

ft = σ(xtU
f + ht−1W

f)

ot = σ(xtU
o + ht−1W

o)

8

2.5 Convolutional LSTM

In this case, sequential images, one approach is using ConvLSTM layers. It is a Re-

current layer, just like the LSTM, but internal matrix multiplications are exchanged

with convolution operations. As a result, the data that flows through the ConvLSTM

cells keeps the input dimension (3D in our case) instead of being just a 1D vector with

features.

2.5.1 ConvLSTM layer input

The LSTM cell input is a set of data over time, that is, a 3D tensor with shape (samples,

time steps, features). The Convolution layer input is a set of images as a 4D tensor with

shape (samples, channels, rows, cols). The input of a ConvLSTM is a set of images

over time as a 5D tensor with shape (samples, time steps, channels, rows, cols).

Figure 2.7: Convolutional LSTM

2.5.2 ConvLSTM layer output

The LSTM cell output depends on the return sequences attribute. When set True, the

output is a sequence over time (one output for each input). In this case, the output is a

9

3D tensor with shape (samples, time steps, features). When return sequences is set False

(the default), the output is the last value of the sequence, that is, a 2D tensor with shape

(samples, features). The Convolution layer output is a set of images as a 4D tensor with

shape (samples, filters, rows, cols). The ConvLSTM layer output is a combination of a

Convolution and an LSTM output. Just like the LSTM, if return sequences = True, then

it returns a sequence as a 5D tensor with shape (samples, time steps, filters, rows, cols).

On the other hand, if return sequences = False, then it returns only the last value of the

sequence as a 4D tensor with shape (samples, filters, rows, cols).

2.5.3 Other parameters

The other ConvLSTM attributes derivates from the Convolution and the LSTM layer.

From the Convolution layer, the most important ones are:

• filters: The number of output filters in the convolution.

• kernel size: Specifying the height and width of the convolution window.

• padding: One of "valid" or "same".

• data format: Images format, if channel comes first ("channels first") or last ("chan-
nels last").

• activation: Activation function. Default is the linear function a(x) = x.

From the LSTM layer, the most important ones are:

• recurrent activation: Activation function to use for the recurrent step. Default is
hard sigmoid (hard sigmoid).

• return sequences: Whether to return the last output in the output sequence (False)
or the full sequence (True). Default is False.

10

CHAPTER 3

DATASET CREATION

The Dataset for our model requires a large number of camera images captured at regular

intervals by the agent while navigating around the environment. The model is trained

using these images. Such datasets are either scarce or very expensive to buy from

internet sources. On the other hand, we wanted to have control over the environment so

that we could guide the agent in the newly constructed environment not just during the

training phase, but also during the testing phase. Our early trials were performed with

ROS and Gazebo software, which is commonly utilized in most research publications

to create their environments. Issues with ROS were tough to overcome because the

versions are constantly updated and changing, and the gazebo environment was too

dark to extract appropriate pictures.

The code for agent movement and image capture was also done relatively easily

since Unity is linked with Visual Studio by default, and the language used was C# (C

sharp), which was close to CPP and hence a little easier than ROS CPP. The Unity 2109

version was used on the Windows 7 desktop.

3.1 Environment and Agent

The environment is designed to follow the rules of physics as they exist in the actual

world. It’s designed to look like a closed room, with four walls and a non-slip floor. On

top of that, there is a light source. It even has a shadow effect to make it look like the

actual world. The scene is painted in a variety of hues, much as in the real world. A red

cube serves as the target, with rectangular obstacles strewn about at random. Space is

10x10, with each wall painted a different color. As a first step, we created the simplest

environment we could think of to test our hypothesis regarding the problem statement.

For navigating in the environment, a simple cylindrical agent is developed. The

cylindrical agent has a camera attached to its head that functions as our eye view camera,

Figure 3.1: Environment

extracting images of the environment as viewed by the agent. The agent is given all of

the physical attributes to closely resemble a real-world agent. Elastic collisions occur

between the agent and immovable walls and objects. A mesh collider on the agent

helps it bounce back a little from kinematic collisions due to recoil. The agent’s Gravity

Properties are also used. User controls(Keyboard and mouse) cause the agent to move

in translation and rotation. The camera head that is connected to the body does not have

any independent action.

Figure 3.2: Agent

12

3.2 Dataset Format

Both the keyboard and the mouse may be used to control the agent’s navigation through

the environment. The agent goes along several paths that are drawn with the mouse(We

chose mouse as it is easy to draw curved paths). The trajectories are designed in such

a manner that they can begin at any place in the surroundings and go to the target. To

train the agent, we create a dataset that will be used for both training and testing. The

various dataset components are explained below.

3.2.1 Camera Images

This collection of camera images can be likened to a real-world scenario seen via hu-

man eyes. Because the camera is connected to the agent’s head, the camera images

depict the scene as it appears to the agent. This information is essential for the agent to

comprehend the environment and recognize the many objects that it contains. The im-

ages are captured at regular intervals along with the agent’s movement along any given

trajectory.

Figure 3.3: Camera view image

13

3.2.2 Heat Maps

We are attempting map-based navigation utilising DL approaches without using RL

methods at first. So, instead of using a map, we’re using a heat map to enter the agent’s

position. A heat map is a black-and-white grid representation that depicts the agent’s

position in the environment by making the block where it is situated white. We provide

the position of the agent in the form of an image to the neural network.

Figure 3.4: Top View Figure 3.5: Heat Map

3.2.3 TSV

The other input for the neural network is the class of the image. The number of classes

depend on number of targets present in the environment. In the simplest case as con-

sidered now with single target the classes are two: Class 0 : The Target is not in the

vicinity of the agent. Vicinity radius considered here is small r (can be varied).

Class 1 : The Target is in the vicinity of the agent. Vicinity radius considered here is

small r (can be varied). The target is present in the camera image.

Similarly for n targets n+1 classes are present.

3.2.4 Ground Truth/ output

The output or ground truth to train or test the model in our case is the step size taken

by the agent in every next instant given present state of agent. The step size is consid-

14

ered in both directions x and y thus this also gives the direction change in the agent.

Ground truth is calculated by taking the difference between position of the next instant

and present instant. We want the model to learn the step it has to take at every instant

to reach the target finally.

dx = x(t+1) - x(t)

dy = y(t+1) - y(t)

3.3 Data Preprocessing

3.3.1 Image Resizing

Once we’ve cleaned up the data, we’ll have image data to work with, which can be used

to train the model. However, we may speed up the model by changing the input data,

or in this example, resizing the image size. This would still have all of the necessary

functionality for us. We shrink the original image from 450*450 pixels to 40*40 pixels.

In addition, the heat maps are just black and white representations. This would result

in a three-channel picture, which isn’t required in this case. We downsize this into a

40*40 picture by converting it to a gray scale image with only one channel. Reducing

the image size also has a regularising impact, which is more realistic in real-world

settings where sensors provide noisy data.

Figure 3.6: Actual Image Figure 3.7: Resized Camera Image

15

Figure 3.8: Original Heat Map Figure 3.9: Resized Heat Map

3.3.2 Batching the data

Batch size is the number of training examples in one forward/backward pass. The higher

the batch size, the more memory space you’ll need. Batch size > 1 helps in memory

management and also effective & efficient training of the model. Here we batch size as

10. This helps while mini batch gradient descent.

3.3.3 Window sizing for Convolutional LSTM

To incorporate the memory into the neural network we use ConvLstm layers. As the

data we send is sequential data and agent also has to learn the relation between con-

sequent frames we want the network to have memory. In ConvLstm layer inputs the

second dimension out of 5 dimensions represent the time sequence that is number of

previous frames it has to relate to with the present frame in order to derive the relational

information. Here we are taking 5 as the Window size for ConvLstm.

3.3.4 One hot encoding for TSV

As the Class is categorical variable we have to one hot encode the variable before send-

ing it into the network. Here we are binary coding the TSV.

16

3.4 Dataset collection

The Datasets are collected in two ways to test hypothesis.The two types of dataset

collections are explained below:

3.4.1 Same start point

As to see if agent can learn to reach the target from a given start point, how many

trajectories does it need? and also What path will the agent finally take if left at that

point in case of testing? Will be shortest path or the one of the path from train set? To

answer these questions we have randomly chosen a start point and taken 5 trajectories

from the same point to target with minimal changes within trajectories. This is the first

kind of dataset we created.

3.4.2 Multiple start points

The second type of dataset is created using different start points and multiple trajectories

from each start point to the target avoiding the obstacles. This should answer if the

agent can learn the environment and given any random start point, will it reach the

target without hitting obstacles? Will it perform well even when the start point is not in

the train dataset?

17

CHAPTER 4

ARCHITECTURE AND TRAINING

4.1 Architecture

ConvLSTM2D layers, Conv3d layers, and Denselayers are the main components of the

model’s architecture. The batch normalisation and max pooling actions are carried out

as needed. The first branch converts the camera input into LSTM layers, while the

second branch handles the heatmaps. They are concatenated into a single layer after

batch normalisation. They are then transferred to the LSTM layer and subsequently

into a sequence of Convolution3d layers once the concatenation is completed. They are

then flattened down to form a dense layer.

We choose "mse" as our loss since we’re looking for a distance whose formula

is similar to mse’s. The sgd optimizer is set at a learning rate of 0.01 since it is a

convenient low and stable rate. When we are trapped at a local minimum, a higher

learning rate does not always offer us a global minimum, but a lower learning rate does

not converge the model adequately. Additionally, the SGD optimizer is favoured over

the Adam optimizer, which appears to overfit the model even with a small number of

layers and a suitable learning rate.

We adjusted the weights in the model that are learned from the first dataset after

we finished training it on one dataset. Now we load the second dataset and retrain the

model with the learnt weights using this dataset. As they gain experience, the weights

improve. This method is continued until all of the training datasets have been finished.

4.2 Training

After deciding on what all components to use, the only thing left is hyper parameter

tuning. This was done by trial and error method by looking at loss curves at the end of

each epoch and also total training. The final model looks something like this :

Figure 4.1: Final Model

19

CHAPTER 5

RESULTS

The train and test results are given here. The loss and accuracy curves are shown be-

low.Initially in order to check if the model is learning well with the paths in environment

we made a sample dataset with 5 paths. 4 for training and 1 for testing. These 5 datasets

start from the same point and end at the same point with a little variations in the paths

taken.

Figure 5.1: Accuracy Figure 5.2: Loss

After training for 20 epochs we could see that the model training accuracy was

increasing with paths and loss was becoming more and more stable. This model gave

us a test accuracy of 0.8707 which proved that model was not only stable but also

learning properly.

The model learns the path from a single start point gradually, Each new trajectory

gives new information for as long as there is no more new information is available for

the agent to learn. So each new train trajectory improves the agents performance and

then saturates after some point as the learning is at max further than that the agent might

over fit so we stop and set hyper parameters there.

CHAPTER 6

FUTURE SCOPE

More complex environments and multiple targets can be used to make the agent adapt

to new environments.

RL techniques can be used like Actor Critic models to make problem statement into

unsupervised learning from supervised learning problem. Thus the agent can learn and

adapt to new environments.

The head rotation can be a key point to implement, By this the problem statement

implicitly changes to have sub goals like the agent should not only learn how the target

is but also where is that target object most likely be. Like if the target was a paper weight

it would be mostly on table, desk or on pile of papers. So making the head to rotate in

z axis and x,y axis we can imitate the human navigation process more realistically.

REFERENCES

[1] Vision-based Navigation Using Deep Reinforcement Learning by Jonáš Kulhánek,

Erik Derner, Tim de Bruin, Robert Babuška

[2] Virtual-to-real Deep Reinforcement Learning: Continuous Control of Mobile Robots

for Mapless Navigation by Lei Tai1, Giuseppe Paolo3, Ming Liu2

[3] A novel mobile robot navigation method based on deep reinforcement learning by

Hao Quan, Yansheng Li, Yi Zhang

[4] Mobile Robot Navigation in Indoor Environments: Geometric, Topological, and

Semantic Navigation By Ramón Barber, Jonathan Crespo, Clara Gómez, Alejandra C.

Hernámdez and Marina Galli

[5] The Neuroscience of Spatial Navigation and the Relationship to Artificial Intelli-

gence by Edgar Bermudez Contreras, Benjamin J Clark, Aaron Wilber

22

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	BACKGROUND
	Neural Network(NN)
	Convolutional Neural Network(CNN)
	2D convolution Networks
	3D convolution Networks

	Recurrent Neural Networks(RNN)
	Long Short Term Memory(LSTM)
	Convolutional LSTM
	ConvLSTM layer input
	ConvLSTM layer output
	Other parameters

	DATASET CREATION
	Environment and Agent
	Dataset Format
	Camera Images
	Heat Maps
	TSV
	Ground Truth/ output

	Data Preprocessing
	Image Resizing
	Batching the data
	Window sizing for Convolutional LSTM
	One hot encoding for TSV

	Dataset collection
	Same start point
	Multiple start points

	ARCHITECTURE AND TRAINING
	Architecture
	Training

	RESULTS
	FUTURE SCOPE

