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ABSTRACT

KEYWORDS: 3D models; GANs; 3D-GAN; 3D-IWGAN

This project aims at constructing 3D models from their corresponding 2D images. We

propose a generative model for construction of the 3D models by leveraging the ad-

vances in the development and stable training of generative adversarial nets(GANs).

Since it is well known that training GANs is elusive, we propose the use of a 3D-

IWDCGAN(3D- Improved Wasserstein Deep Convolutional Generative Adversarial

Nets) with the objective to attain stable training for complex data distributions. Consid-

ering DCGANs have become the de facto standard for stable GAN training, our gener-

ator network has deep convolutional layers instead of the fully connected layers as in

traditional GANs. The 3D-DCGAN architecture maps each embedding it has seen in

the latent space to a 3D voxel grid. The remainder of this latent space can also generate

novel 3D objects. GAN training may not converge especially when they are trained to

learn complex data distributions. So, we use the Wasserstein training objective, which

has shown promising results in the past for GAN training. For a single-viewpoint im-

age, the ground-truth shape is ambiguous, i.e. there can be multiple shapes that fit the

given 2D image quite well. We make use of an additional 3D encoder along with a 2D

encoder. Both of these encoders are trained to take the image and its 3D model to one

specific latent embedding. We also make use of techniques like feature matching, vir-

tual batch normalization and minibatch discrimination to obtain stability while training

GANs.
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CHAPTER 1

INTRODUCTION

Modelling 3D objects from their corresponding 2D counterparts has been an important

problem in the field of Computer Vision as it broadens the sense of perception and un-

derstanding of a scene and has found several application in design-related industries.

With the advent of Deep Learning and the breakthroughs it has achieved on the per-

formance of various 2D Computer Vision tasks, this problem finds new light especially

with the availability of huge amounts of 3D data. However, the extension of 2D to 3D

modelling isn’t a simple and straight-forward task and is dependent on several factors

including the task at hand and the way 3D data is represented.

The earliest set of methods for solving the problem like shape from silhouette re-

quire calibrated cameras capturing multiple RGB images of the scene (Junyuan Xie,

2016). Humans however can solve this ill-posed problem easily because all the scenes

they have experienced in the past which led them to develop a prior understanding of

how the objects would like in 3D. The second generation of methods make use of this

prior knowledge by posing this problem as a 3D identification problem, thereby elimi-

nating the complex process of calibration.

For 3D objects to have variations and look realistic, the model needs to produce

novel shapes and not just reproduce or recombine parts from previously seen 3D ob-

jects or models like the traditional heuristic models, that have been used in the past,

do. Hence, we use generative adversarial models for the 3D object generation which

captures the 3D object structure implicitly. The usage of GANs for the task also allows

the generation of new 3D models from a random input in the lower dimensional proba-

bilistic space, thereby completely eliminating the use of reference images or models.

We make use of an encoder-decoder architecture to solve the problem where the

decoder is the 3D-GAN mapping from an embedding in the lower dimensional space



to the space of 3D voxel grids. The latent embedding is obtained from a VAE using a

single RGB image. We also make use of Wasserstein training objective to obtain sta-

bility while learning complex data distributions. An additional 3D encoder is added

along with the 2D encoder to ensure that the two data points which are close in the 2D

space are mapped to two points which are close in the latent space and vice versa. This

removes ambiguity to a certain degree in the output obtained for a given single RGB

image.

Training GANs has been hard because of several reasons (Weng, 2019). One of the

primary reasons for instability while training GANs is non-convergence. Generator and

discriminator are in a minimax game trained to find the Nash equilibrium. Convergence

implies finding Nash equilibrium here. The instability increases with every gradient

update because of the huge oscillations happening with every update. Mode collaps-

ing might also occur while training GANs where multiple inputs to the generator result

in the generation of the same output. This is the case where generator is able to trick

the discriminator but is actually stuck in a small space(oscillates) with very small vari-

ations and is unable to learn any complex target distribution. GANs have also shown

high sensitivity to hyperparameter selections. Diminishing gradients is another cause of

instability. With a good discriminator, imbalance between generator and discriminator

training leading to overfitting in one. This happens because generally the discriminator

learns faster as discrimination is an easier task than generation. The loss function falls

to 0 and we have no gradient updates. We use several methods like virtual batch normal-

ization, mini-batch discrimination, feature selection and adding noise to tackle some of

these issues and obtain stability while training GANs for complex data distributions.
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CHAPTER 2

RELATED WORK

3D object modelling has been extensively studied and researched. Deep networks has

been used in the 3D research community for tasks like 3D object recognition (Yangyan Li

and Guibas, 2015), learning joint embedding of 3D shapes and image synthesis (Hang Su

and Learned-Miller, 2015), single image 3D object reconstruction (Abhishek Kar and

Malik, 2015), 3D shape classification (Andrew Brock and Weston, 2016a) and 3D shape

retrieval (Andrew Brock and Weston, 2016b) , to name a few. Some notable architec-

tures like Convolutional Deep Belief Net(CDBN) (Honglak Lee and Ng., 2009), Con-

volutional Volumetric Auto-Encoder(VConv-DAE) (Abhishek Sharma and Fritz, 2016)

and Voxception-ResNet (VRN) (Andrew Brock and Weston, 2016c) made use of 3D

volumetric representations of 3D objects to exploit the full geometry of the object.

These models come with the limitation of being computationally extensive because

the filters are of volumetric type which increases the computational complexity cubi-

cally. However, with adequate resources at hand, the performance of the models has

to proven to be very effective and practical. A lot of the existing architectures to solve

the problem require the supervision or the generation followed by supervision of depth

maps to guide the network. Convolutional Neural Networks (CNN) along with Kinect

data (N. Silberman and Fergus, 2012) has been used to obtain features and refined depth

maps to generate the 3D models. A unified CNN framework was proposed (Jiyoung Lee

and Sohn, 2017) which used a spatial transformer module for the automatic 2D-to-3D

conversion without separately generating or requiring the use of depth maps. A similar

notion is used for an end-to-end training of network to automatically convert 2D im-

ages to 3D models with the help of video pairs(Junyuan Xie, 2016) making use of the

temporal information.

More specific applications of this problem include 3D human body reconstruction

which has found uses in gaming and visual effects industry. Some of the parametric

methods to solve this problem make use of statistical models like SMPL (M. Loper

and Black, 2015) and boiling down the problem to the estimation of these parameters.



A volumetric approach to infer the 3D human body from a single RGB image called

BodyNet (G. Varol and Schmid, 2018) used a cascade of networks for 2D and 3D pose

inference and the final 3D shape estimation network using the estimates of these pre-

vious networks. 3D human face reconstruction has also found light in recent years

aiming to capture shape, pose and expressions of the human face. A popular represen-

tation used to model human faces in 3D is the 3DMM which captures the variability

of the human face in terms of geometry and texture. Parametric methods make use of

architectures like VGG-face (O. M. Parkhi, 2015) and Face-Net (F. Schroff and Philbin,

2015) using the 3DMM representation (Blanz and Vetter, 1999) and regress to obtain

the parameters with L2 loss trained under 3D supervision.

The usage of adversarial discriminator in the generative models proposed as Gener-

ative Adversarial Nets(GANs) (Ian Goodfellow and Bengio, 2014) opened up a plethora

of applications where GANs were used from image synthesis (Emily L Denton and Fer-

gus, 2015), image style modelling (Wang and Gupta, 2016), texture synthesis and image

editing (Jun-Yan Zhu and Efros, 2018), etc. There have also been several attempts at

using GANs for 3D object generation like PrGANs (Gadelha and Wang, 2016) and

the usage of conditional GANs (Ong¨un and Temizel, 2018). However, the training of

GANs has been difficult due to several reasons like non-convergence, mode collaps-

ing, high sensitivity to hyperparameter selections, diminishing gradients and imbalance

between generator and discriminator training leading to overfitting in one. There have

been several advances towards achieving a stable training methodology for GANs like

usage of regularization (Kevin Roth and Hofmann, 2017), historical averaging, virtual

batch normalization and mini-batch discrimination (Tim Salimans and Chen, 2016).

4



CHAPTER 3

PROBLEM STATEMENT

3.1 Problem statement

Let I = {Ij, j = 1, 2, . . . , k} be a set of k ≥ 1 images of an object. We can pose

the problem of generation of 3D models from I as learning an estimator yθ that takes

I and the ground truth model X and learns a 3D shape X̂ with the overall objective of

minimizing `(I) = d(yθ(I), X) where θ is the set of learnable parameters of y, X is

the original/ground truth 3D shape and d(., .) is some metric to measure the distance

between the original 3D model X and the reconstructed model fθ(I) and ` is the loss

function. The predictor y consists of h and g with y = g ◦ h. g and h differ during

training and testing phases and are called the decoder and encoder respectively.

In the following sections, we discuss the choice of fθ, ` and d. Note we train the

our model f using multiple 3D images I obtained by rendering the ground truth 3D

model of ShapeNet dataset as images in various orientations. However, the testing is

done only on a single RGB image. We also discuss the representation of the 3D model

chosen.

3.2 Representation of 3D models

We choose volumetric representation of the 3D models instead of surface-based repre-

sentations because 2D convolutions can be simply extended to 3D with the replacement

of up-convolutions in 2D to 3D. This combined with the fact that this representation

can be very extensively adapted in network architectures based on deep learning in the

three dimensional space allowing the parameterization of 3D shapes using regular voxel

grids, makes it a suitable representation. One disadvantage of using the volumetric rep-

resentation is that they lean towards the heavier side in terms of demands of memory

space and can quickly exhaust the memory as the size of the output 3D voxel grid grows.



CHAPTER 4

METHODS

In this section, we discuss the encoding-decoding architecture needed to obtain 3D

models from 2D images. For the decoder, we use two main models namely 3D-GAN

and 3D-IWGAN for 3D object generation from a random input in the low-dimensional

probabilistic space (latent vector). For the encoder, we discuss the use of a Variational

Auto Encoder(VAE) with the decoder so that the entire resultant framework can learn

the mapping of 2D-images to 3D-objects.

4.1 Enconding stage - VAE

The input image(s) I need to be encoded into a feature vector m = h(I) ∈ χ where χ

is a continuous latent space. We have chosen the latent space to be continuous because

a good encoder should satisfy:

• A good encoder h maps two input images I1 and I2 with 3D models close in the
3D voxel space to latent embeddings m1,m2 ∈ χ that are close to each other.

• A small change in the encoding in m should correspond to a small change in the
input image I and vice-versa.

Hence, we use 3D-VAE because their latent spaces are implicitly continuous which

helps in generative modelling and easy sampling. In VAE, the input is not mapped

directly to a point in the latent space. Instead, it is mapped to mean vector µ and

a standard deviation vector σ of a multivariate Gaussian distribution. We then take

random samples of these two vectors to obtain the final encoding x in the continuous

latent space. One additional advantage of using a VAE as an encoder is that we can use

random samples from these lower dimensional space which are used as embeddings to

obtain multiple variations of the input which can be used to obtain multiple possible 3D

models for a given input image.



4.2 Decoding stage - 3D-GAN architecture

The encoded representation of the input image I has to be decoded by g which is the

generator in the generator-discriminator architecture. This will map the obtain vector

encoding into a volumetric voxel grid. The space around the 3D object is discretized

to give this voxel grid. We want the discretization to be as fine as possible to get

more accurate representation. This is done using 3D-GANs which have a generator

architecture essentially acting as an up-convolutional network or convolutional decoder

mirroring the convolutional encoder. However, architectures involving volumetric 3D

representations have high computational complecity and memory requirements. As a

result, they produce low resolution grids(32×32×32 in our case). We can try to upscale

the architecture to obtain high resolution volumetric grids. However, this comes at the

cost of risking exhausting the memory available as the memory requirement will grow

cubically with the increase in the output 3D voxel grid resolution. Also, GANs become

unstable for high-resolution shapes (Weng, 2019) with mode collapsing and gradient

vanishing.

4.3 3D-GAN

The Generative Adversarial Network(GAN) (Ian Goodfellow and Bengio, 2014) con-

sists of two networks, a generator G and a discriminator D, which together play a

mini-max game to learn a target distribution, Pdata. The generator learns to convert la-

tent vector z into samples as close to a sample x from the target distribution Pdata so

as to confuse the discriminator and the discriminator learns to differentiate correctly

between these synthesized samples and the original data samples. In our context, z is a

200-dimensional randomly sampled latent vector from a probabilistic space andGmaps

z to G(z) of dimension 64 × 64 × 64 which represents the 3D object in the 3D-voxel

space (J. Wu and Tenenbaum, 2016). The discriminator D produces a confidence value

D(G(z)) to assert how real or synthetic the data is. We have used a binary cross-entropy

loss as the overall loss of the 3D-GAN model L3D-GAN given as:

L3D-GAN = logD(x) + log(1−D(G(z))) (4.1)

7



This model is called 3D-GAN (J. Wu and Tenenbaum, 2016). However, training GANs

is very tricky as it might not converge to the desired saddle point optimum. Inspired

by Deep Convolutional Generative Adversarial Networks(DCGAN) (Alec Radford and

Chintala, 2016), which have become the de facto standard for stable GAN training, we

use all-convolutional layers in our generator model. Fig. 4.1 below shows the generator

architecture of the model:

Figure 4.1: The generator architecture of 3D-GAN

The architecture consists of five fully convolutional layers where each kernel is of

size 4×4×4 and stride 2 with using ReLU activation and sigmoid activation at the end.

Every layer also uses batch-normalization. It will be seen later on that we later find the

use of virtual batch normalization providing better stability during training GANs than

vanilla batch normalization. The disciminator network mimics the generator network

with a slight difference of using Leaky ReLU instead of ReLU.

4.3.1 Limitations of 3D-GAN

3D-GANs, like GANs, suffer from instability in training. In particular, we need to have

independent models each trained on a single class as training a single 3D-GAN model

with multiple classes and varied poses is difficult and leads to instability.

4.4 3D-IW-GAN

To overcome the limitation posed by 3D-GAN, we use Wasserstein training objective

with gradient penalty, with the aim of attaining stable joint training over multiple classes

with complex distributions. The model is called 3D Improved Wasserstein Generative

8



Adversarial Network 3D-IWGAN (Smith and Meger, 2017).

G and D play a mini-max game as discussed above with a value function V (G,D)

given by(following the notations from the previous section on 3D-GANs):

min
G

max
D

V (G,D) = Ex∼Pdata [logD(x)] + Ez∼Pnoise [log(1−D(G(z)))] (4.2)

GAN training training tries to minimize the KL divergence between the generated and

true data distributions which should ideally converge. However, the use of gradient

descent while training GANs using this objective leads to instability. There will be an

imbalance between the learning of the generator and discriminator which would lead

to vanishing gradients. To solve this we use the Wasserstein GAN algorithm (M. Ar-

jovsky and Bottou, 2017) which minimizes the Wasserstein distance between the two

distributions. This is defined as:

W (Pr, Pg) = inf
ψ∼Π(Pr,Pg)

E(x,y)∼ψ[||x− y||] (4.3)

where Π(Pr, Pg) is the set of all joint distributions with marginals Pr and Pg. This

scheme clips the discriminator’s weights to lie within a compact space. However,

weight clipping might lead the model towards learning more simple distributions and

can lead to gradients either exploding or vanishing. The Improved Wasserstein GAN

training scheme(IWGAN), instead of clipping the discriminator’s gradients, penalizes

the discriminator when they diverge from unity. Let Pg and Pr be defined as the gener-

ator and target distributions and Px is the distribution sampling uniformly on a straight

line between Pg and Pr, then the resultant loss function of the discriminator becomes:

Ex̂∼Pg [D(x̂)]− Ex∼Pr [D(x)] + λEx̂∼Px [(||∇x̂D(x̂)||2 − 1)2] (4.4)

This scheme, unlike WGAN, shows more promising results in terms of stable conver-

gance and learning more complex distributions.

4.4.1 Network architecture:

The generator consists of a fully connected layer with 2048 nodes which takes a 200-

dimensional vector as an input. The resultant output is then passed through four 3D

9



deconvolutional layers each having kernels of size 4 × 4 × 4 and stride 2 which have

ReLU activation. Every layer also uses batch-normalization and as we will see later on

is changed to use virtual batch normalization to increase stability. The final activation

layer is tanh which outputs a 32× 32× 32 3D-voxel object.

The discriminator takes this object and passes it through four convolutional layers each

having kernels of size 4× 4× 4 and stride 2. There are batch normalization and Leaky

ReLU layers in between. The final layer is a fully-connected layer with 2048 nodes and

outputs a single value which indicates the confidence of the discriminator of how real

the passed sample is. Fig. 4.2 below shows the generator and discriminator architecture

of the model:

Figure 4.2: The generator and discriminator architecture of 3D-IWGAN

4.5 Mapping 2D images to 3D objects: 3D-VAE-IWGAN

Inspired by VAE-GAN (Anders Boesen Lindbo Larsen and Winther, 2016), we pro-

pose the use of a Variational Auto Encoder(VAE) E which learns the mapping from a

2D image(samples from target distribution) to a latent representation z. This is then

used by 3D-IWGAN as discussed, for the generation of a 3D object corresponding to

the 2D image. Essentially, the entire network combines the encoding power of VAE

and generative power of GANs to synthesize samples conditioned on prior data. We

call the overall model 3D-VAE-IWGAN. This model consists of three networks: Varia-

tional Auto Encoder E which is essentially an image encoder, generator G(also acting

as image decoder) and discriminator D.

Architecture of VAE: The VAE consists of five spatial convolutional layers with ReLU

activation. Each layer uses batch-normalization. It finally samples a 200-dimensional

latent vector z used by the generator G to synthesize the 3D object.

Loss function: Let y be the 2D image and x be its corresponding 3D object. Let

10



the variational distribution of z given the 2D image y be given by q(z|y). We want

this variational distribution q(z|y) to be as close as possible to the prior distribution

p(z)(chosen to be multivariate Gaussian with zero mean and unit variance). Here,

p(z|y) ∼ N(µ,Σ)) and p(z) ∼ N(0, I) where µ is the means Σ is variances given

by the VAE. To achieve this, we add a loss function measuring the KL divergence be-

tween them and is given as:

LKL = DKL(q(z|y)||p(z)) = DKL(N(µ,Σ)||N(0, I)) (4.5)

We also add a reconstruction loss Lreconst which minimizes the Euclidean distance be-

tween generated and the ground-truth 3D object and is given as:

Lreconst = ||G(E(y))− x||2 (4.6)

So the overall loss function of E given by LVAE is the linear combination of these two

loss and is written as:

LVAE = α1LKL + α2Lreconst = α1DKL(q(z|y)||p(z)) + α2||G(E(y))− x||2 (4.7)

However, the obtained shape of the 3D object might be ambiguous especially when

the number of views observed is small because the testing is only done on a single

view of the image. Therefore, the generated object might appear correct only from

the observed viewpoint and blurry/incorrect from the unobserved ones especially when

training hasn’t been done for a good number of viewpoints for images of the class from

where test image comes from. To overcome this limitation, we propose the addition of

perceptual loss component to the overall loss function. Addition of perceptual loss has

shown to improve the visual performance of GANs (He Zhang and Patel, 2020) in 2D

Computer Vision tasks when the new input doesn’t come from the training distribution.

Let the ground-truth 3D object corresponding to the 2D image y be given by X and x̂

be the synthesized output of the generator which is given as:

x̂ = G(E(y))

We render both the 3D objects x and x̂ as images in the same set of orientations. Let the

11



number of orientations be K. Let YR = {y1, y2, . . . , yK} and ŶR = {ŷ1, ŷ2, . . . , ŷK}

denote the set of rendered ground-truth and synthesized images in these orientations

and Wi, Hi and Ci be the width, height and number of channels in the ith rendered

images respectively. Then the perceptual loss Lpercept is given by:

Lpercept = ΣK
k=1ΣCk

c=1ΣWk
w=1ΣHk

h=1

1

CkWkHk

||V (yk)
c,w,h − V (ŷk)

c,w,h||22

where V is a non-linear CNN transformation of the image. Here, we have the used the

output at layer relu2_2 in VGG-16 model.

The overall loss of 3D-VAE-IWGAN is the summation of the adversarial loss, VAE

loss and the perceptual loss.

4.6 Joint 2D and 3D embedding

In order to have a good latent representation we need to make sure of the following:

• The enoceded representation should map to the 3D model by the generator

• It is inferrable from the 2D image that is the 2D image can be encoded into that
representation

In order to achieve these two goals, we use TL-embedding networks (R. Girdhar

and Gupta, 2016) which consists of a 2D-encoder which is the usual 3D-VAE and an

additional 3D encoder. Both of these encoders are trained to encode an image and its

3D model to the same embedding. Figure below shows the TL embedding network

during the training and testing phases:

Figure 4.3: 3D-VAE-GAN architecture along with 3D encoder during: (a) Training
phase, (b) Testing phase
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4.6.1 Loss function

Instead of using the Euclidean distance between generated and the ground-truth 3D

object as the reconstruction loss, we use Intersection over Union (IoU) which measures

the fraction of the intersection of the ground truth and predicted 3D voxel grid to the

union of them. Let Xk be the kth voxel of the ground truth 3D model and X̂k be the kth

voxel of the predicted 3D model. Then the IoU loss is given formally as:

IoUε =
X̂ ∩X
X̂ ∪X

=

∑
k{I(X̂k > ε) ∗ I(Xk)}∑

k{I(I(X̂k > ε) + I(Xk))}
(4.8)

4.6.2 Projections for perceptual loss

A modified version of the perceptual loss (M. Gadelha and Wang, 2017) is tried where

we assume an orthographic projection. LetX be the 3D grid and Pr(.) is the projection

operator. It is given by:

Pr((i, j), X) = 1− exp−
∑

mX(i,j,m) (4.9)

We use the render and compare loss (A. Kundu and Rehg, 2018) as the perceptual loss

given as:

Lpercept = 1− IoU(y, ŷ) + dL2(y, ŷ) (4.10)

where IoU is the Intersection over Union loss and dL2 is the L2 loss between the ren-

dered(projected) images of ground truth and obtained 3D models.

4.6.3 Adding noise

Given a single-viewpoint image, the ground-truth shape is ambiguous, i.e. there can be

multiple shapes that fit the given 2D image quite well. The current model we have fails

to address this issue. We use Min-of-N(MoN) loss (H. Fan and Guibas, 2017) in order

to mitigate the issue. The idea is to use a multivariate normal distribution N (0, I) and

sample a random vector p from it. This p is used as noise to perturb the input. All these

variations of the noisy inputs are used to train the network which is expected to generate
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possible 3D models for each of them. The loss functions is given as:

`MoN =
∑
i

min
p∼N (0,I)

{d(f(I, p), X)} (4.11)

We can generate various plausible reconstructions for any given input image I using

different samples of the random vector p drawn from N (0, I). We also add noise to

the input of the discriminator which has shown to increase the stability during train-

ing (Tim Salimans and Chen, 2016).

4.6.4 Feature matching

In this technique, we have a new objective which requires the generator to generate

data that matches the statistics of real data and this is used to update the weights of the

generator. More specifically, we train the generator to match the expected values of the

features of an intermediate layer of the discriminator architecture. Training on this new

objective enforces the discriminator to find the most discriminative features between the

real and synthesized data. The new objective function for the generator can be written

as:

arg max
θ

||Ex∼pdataf(x)− Ez∼p(z)f(Gθ(z))||22 (4.12)

where f(x) is the activations on some intermediate layer of the discriminator architec-

ture. The discriminator is trained as vanilla GANs.

4.6.5 Virtual Batch normalization

Batch normalization is widely used to stablize the training of GANs as it normalizes the

activations of the previous layer to have zero mean and unit variance. However, it leads

to the samples within the same batch to be dependent on each other. For example, it has

been seen that images generated within the same mini-batch to have peculiarities of the

same type like a greenish or orange tint. To avoid interdependence of samples within

each mini-batch, we make use of virtual batch normalization (Alec Radford, 2015). In

this technique, each sample x is normalized based on a reference batch of samples fixed

at the beginning of training rather than normalizing it against samples from its own
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mini-batch. While training, we have chosen the first batch as the reference batch.

4.6.6 Minibatch discrimination

A very common cause of failure in GANs is mode collapsing in which the generator

produces the same data and fools the discriminator. The discriminator recognizes the

synthesized data eventually and forces the generator to find another mode. This goes

on indefinitely, resulting in the generator not learning any meaningful distribution of

data. To solve this, we make use of minibatch discrimination (Tim Salimans and Chen,

2016). The idea is to feed batches of real and synthetic data and then produce a simi-

larity score instead of directly producing a score based on a single input. Whenever the

samples within a batch are similar, the similarity score shoots up and the discriminator

can accordingly penalize the generator to avoid the mode collapsing.

More formally, let o(xi) be the similarity score between the image xi and the other im-

ages in the same btach. We use a transformation matrix T to transform the features in

image xi to Mi and is given as:

M(xi) = f(xi)T (4.13)

where f(xi) is the output in some intermediate layer of the discriminator for image

xi. Now the similarity between images xi and xj denoted as c(xi, xj) is given by the

L1-norm as:

c(xi, xj) = exp (−||Mi,Mj||1) ∈ R (4.14)

Now the total similarity between xi and other images in the batch is given by:

o(xi) =
K∑
j=1

c(xi, xj) ∈ R (4.15)

where K is the number of images in one batch.
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CHAPTER 5

Experiments and results

In this section, we discuss the training details and obtained 3D objects for both 3D-

GANs and 3D-VAE-IWGANs.

5.1 3D-GANs

In the subsequent subsections, we discuss the training methodology and results for 3D-

GAN.

5.1.1 Training:

We train the model on ShapeNet dataset with the following classes: car, chair, desk, gun

and sofa. The problem of image discrimination is much easier than image generation.

As a result the discriminator learns much faster than the generator leading to unstable

training. Hence, we update the discriminator weights after every p updates of the gener-

ator weights. p is a hyperparameter which after tuning is set to 5. ADAM optimization

with β = 0.5 and a batch size of 50 is used. The learning rates of G and D are set at

0.0025 and 10−5 respectively.

5.1.2 Results:

For testing, we randomly sampled a 200-dimensional vector z where each dimension is

i.i.d uniformly distributed in [0, 1]. Fig. 5.1- 5.5 below shows the obtained 3D objects

for each class:



Figure 5.1: Objects from ‘chair’ class generated by 3D-GAN trained on the
corresponding class in ShapeNet dataset. The images are obtained from a

200-dimensional randomly sampled latent vector z from I[0,1]

Figure 5.2: Objects from ‘desk’ class generated by 3D-GAN trained on the
corresponding class in ShapeNet dataset. The images are obtained from a

200-dimensional randomly sampled latent vector z from I[0,1]
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Figure 5.3: Objects from ‘car’ class generated by 3D-GAN trained on the
corresponding class in ShapeNet dataset. The images are obtained from a

200-dimensional randomly sampled latent vector z from I[0,1]

Figure 5.4: Objects from ‘gun’ class generated by 3D-GAN trained on the
corresponding class in ShapeNet dataset. The images are obtained from a

200-dimensional randomly sampled latent vector z from I[0,1]
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Figure 5.5: Objects from ‘sofa’ class generated by 3D-GAN trained on the
corresponding class in ShapeNet dataset. The images are obtained from a

200-dimensional randomly sampled latent vector z from I[0,1]

5.2 3D-VAE-IWGAN

In the subsequent subsections, we discuss the training methodology and results for 3D-

VAE-IWGAN. Note: Only one model is used for joint training of multi-class inputs

in various poses as opposed to 3D-GAN(where a separate model had to be trained for

each class) because of the stability provided by Wasserstein training objective to learn

complex distributions.

5.2.1 Training:

Both 2D images and their ground truth 3D models are required to train 3D-VAE-

IWGAN. The dataset consists of images obtained by rendering 3D shapes from the

ShapeNet dataset consisting of object classes: chair, desk, gun, sofa and car, at ran-

dom poses and lighting conditions. A subset of it is used to train the model for 1100

epochs. We also adapt our training to include historical averaging for better stability

during training. We add an extra term ||Θ − 1
t
Σt
i=1Θi||2 into the loss function where

Θ is the weight for generator and discriminator and Θi are their weights in the past

training update i (Weng, 2019). This is done to penalize large changes in Θ. We tune

t and set it to 3. The remaining subset of rendered images is used to test to the model
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and generate corresponding 3D objects.

Fig. 5.6- 5.10 below shows some of these rendered images for each class with a sin-

gle image in different orientations:

Figure 5.6: Rendered images in different orientations using 3D shapes from ShapeNet
dataset for class ‘chair’
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Figure 5.7: Rendered images in different orientations using 3D shapes from ShapeNet
dataset for class ‘desk’

Figure 5.8: Rendered images in different orientations using 3D shapes from ShapeNet
dataset for class ‘car’
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Figure 5.9: Rendered images in different orientations using 3D shapes from ShapeNet
dataset for class ‘gun’

Figure 5.10: Rendered images in different orientations using 3D shapes from
ShapeNet dataset for class ‘sofa’

22



5.2.2 Results:

For testing, we used the remaining subset of rendered images(from 3D objects of ShapeNet).

Fig. 5.11- 5.15 below shows the obtained 3D objects for each class:

Figure 5.11: Input image and its obtained 3D model using 3D-VAE-IWGAN for class
‘chair’

Figure 5.12: Input image and its obtained 3D model using 3D-VAE-IWGAN for class
‘desk’

Figure 5.13: Input image and its obtained 3D model using 3D-VAE-IWGAN for class
‘car’

Figure 5.14: Input image and its obtained 3D model using 3D-VAE-IWGAN for class
‘gun’
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Figure 5.15: Input image and its obtained 3D model using 3D-VAE-IWGAN for class
‘sofa’

5.3 3D-VAE-GAN with 3D encoder

In the subsequent sections, we discuss the training methodolgy and results obtained

with the use of an additional 3D encoder along with the 3D-VAE-GAN.

5.3.1 Training

The model is trained in three phases for each epoch:

• The 2D encoder along with the decoder is trained independent of the 3D encoder
in the first phase.

• The 3D encoder is trained to regress the latent embedding obtained for each input
image in the next phase.

• In the final phase, the entire network is fine-tuned together.

5.3.2 Results

Fig. 5.16- 5.19 below shows the obtained 3D objects for each class along with their

corresponding 3D ground truth models:
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Figure 5.16: Two examples of ground truth model(on the left) and its obtained 3D
model(on the right) in different orientations for the class ‘car’

Figure 5.17: Two examples of ground truth model(on the left) and its obtained 3D
model(on the right) in different orientations for the class ‘chair’
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Figure 5.18: Two examples of ground truth model(on the left) and its obtained 3D
model(on the right) in different orientations for the class ‘plane’

Figure 5.19: Two examples of ground truth model(on the left) and its obtained 3D
model(on the right) in different orientations for the class ‘table’

Fig. 5.20- 5.23 below shows the obtained 3D model(on the right) along with the

ground truth(in the middle) for a given input image(on the left):
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Figure 5.20: Input image(on the left), its ground truth 3D model(in the middle) and the
obtained 3D model(on the right) for the class ‘car’

Figure 5.21: Input image(on the left), its ground truth 3D model(in the middle) and the
obtained 3D model(on the right) for the class ‘chair’

Figure 5.22: Input image(on the left), its ground truth 3D model(in the middle) and the
obtained 3D model(on the right) for the class ‘plane’

Figure 5.23: Input image(on the left), its ground truth 3D model(in the middle) and the
obtained 3D model(on the right) for the class ‘table’
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CHAPTER 6

Future work

The work done in this project along with current state-of-the-art methods obtain coarse

3D voxel grids. Several improvements can be made to obtain high resolution 3D mod-

els. Some of the techniques used are space partitioning (P.-S. Wang and Tong, 2017),

occupancy networks (Chen and Zhang, 2019) and shape partioning (J. Li and Guibas,

2017).

Several of current techniques use single object images without any occlusion or

cluttering in the background Weng (2019). However, most of the images obtained in

real-life contain multiple objects with cluttered background. Previous works to solve

this have used regions of interest to detect the objects. The identification and generate

modules in these works are trained independent of each other. However, since clearly

these tasks are inter-dependent, a jointly trained model can be expected to have better

performance.

In our project and most research done in the area, the same dataset is split as train-

ing, validation and test data. The performance is reported on the data coming from the

same dataset. However, an ideal goal would be to see the generalization of the model

on unseen images/objects. An ideal model should be able to generate reasonable 3D

models from any arbitrary image containing aribtrary objects. It has been explored re-

cently (I. Cherabier and Geiger, 2018) and would be a good direction to further the

focus on.

The final goal would be able to do parse an entire scene into 3D using one or more

RGB images. This would require capturing the spatial interaction between multiple

objects and their joint detection and modelling. However, not much advancement has

been done in this area. Existing work related to full scene 3D parsing have made some



inviolable and harsh assumptions like only considering objects in indoor scenes. Weng

(2019).
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CHAPTER 7

Conclusion

In this project, we use three models for generation of 3D objects from 2D images. First,

we train the 3D-GAN model(separate model for each class) and show its limitations

for joint training of multi-class complex distributions. For stable training and better

convergence, we then use the improved Wasserstein training objective with the 3D-

IWGAN model and add a VAE to learn the mapping from 2D images to 3D-voxel

space. We also increase the novelty of the established framework by adding a perceptual

loss component to the model which improves the visual performance of the generated

outputs as the new input to the model is a single image(single viewpoint). An extra

loss component is added for historical averaging which ensures the parameters of the

generator and discriminator do not change drastically in between consecutive updates to

partially mitigate the problem of exploding or vanishing gradients. For a single view-

point of a scene, there can be multiple 3D models which explain the scene. A good

encoder which maps two points close in the 2D space to two points in the 3D voxel

space which are close and vice versa, is needed to reduce the ambiguity. This is done

with the help of an additional 3D encoder which is jointly trained with VAE encoder.

Several other techniques like minibatch discrimination and virtual batch normalization

are used to obtain stablility in GAN training.
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