
The Effect of Error Correcting Output
Codes and Learnable Output Codes on

Adversarial Robustness of Deep
Neural Networks

A project report submitted in partial fulfillment of the

requirements for the award of

Dual Degree (BTech + Mtech) in Electrical Engineering

Submitted by: Farhad Asim Ashfaq Ahmad Shaikh
EE16B149

Under the supervision of
Guide: Dr. Avhishek Chatterjee

Department of Electrical Engineering
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

Chennai, Tamil Nadu - 600036

JULY 2021



Department of Electrical Engineering
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

Chennai, Tamil Nadu 600036

CANDIDATE’S DECLARATION

I, Farhad Asim Ashfaq Ahmad Shaikh, Roll No: EE16B149 , student

of Dual Degree in Electrical Engineering, hereby declare that the project

dissertation titled "The Effect of Error Correcting Output Codes and

Learnable Output Codes on Adversarial Robustness of Deep Neural

Networks" which is submitted by me to the Department of Electrical Engi-

neering, Indian institute of Technology Madras, Chennai, Tamil Nadu 600036

in partial fulfillment of the requirement for the award of Dual Degree (Btech

+ Mtech) in Electrical Engineering is original and not copied from any source

without proper citation. This work has not previously formed the basis for

the award of any Degree, Diploma Associateship or other similar title or

recognition.

PLACE: Udgir

DATE: 24/07/2021

Farhad Asim Ashfaq Ahmad Shaikh

EE16B149

1



Department of Electrical Engineering

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

Chennai, Tamil Nadu 600036

CERTIFICATE

I hereby certify that the Project Dissertation titled “The Effect of Error

Correcting Output Codes and Learnable Output Codes on Adver-

sarial Robustness of Deep Neural Networks” which is submitted by

Farhad Asim Ashfaq Ahmad Shaikh, Roll No - EE16B146, student of

Dual Degree (Electrical Engineering), Indian Institute of Technology Madras,

Chennai, Tamil Nadu - 600036, in partial fulfillment of the requirement for

the award of the Dual Degree (B.Tech + M.Tech) in Electrical Engineering, is

a record of the project work carried out by the student under my supervi-

sion. To the best of my knowledge this work has not been submitted in part

or full for any Degree or Diploma to this University or elsewhere.

PLACE: Chennai

DATE: 24/07/2021
GUIDE: Dr. Avhishek Chatterjee

2



Department of Electrical Engineering

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

Chennai, Tamil Nadu 600036

ACKNOWLEDGEMENT

I wish to express my sincerest gratitude to Professor Dr Avhishek Chatterjee

for his continuous guidance and mentorship that he provided me during the

project. He showed me the path to achieve my targets by explaining all the

tasks to be done and explained to me the importance of this project as well

as its research relevance. He was always ready to help me and clear my

doubts regarding any hurdles in this project. Without his constant support

and motivation, this project would not have been successful.

PLACE: Udgir

DATE: 24/07/2021

Farhad Asim Ashfaq Ahmad Shaikh

EE16B149

3



ABSTRACT

Over the past few years, Deep Neural Networks (DNNs) have been shown to

achieve state-of-the-art performance on several applications such as com-

puter vision, natural language processing. However, DNN models are sus-

ceptible to adversarial attacks where minor modifications to the original in-

puts can lead to significantly different output distributions and incorrect pre-

dictions. A recent work [1] shows that using ideas from the principles of error

correction in coding theory improves the robustness of DNNs to adversarial

attacks. In this project, we first implement the various ideas proposed in [1]

viz. (i) using a sigmoid decoder instead of softmax activation (ii) using error

correcting output codes for class representations (iii) improving indepen-

dence in the output bits through model ensembling. Next, we investigate

the idea of learning the output codes instead of a fixed set of output codes.

We propose a framework consisting of an input encoder and a label encoder

and jointly learn their parameters to minimize the cross-entropy loss. We

furthermore implement regularization on learnable output codes which pro-

duces similar codes to error correcting output codes but are learned at the

time training. We show that our proposed framework outperforms the base-

line Softmax and Logistic models on both normal and adversarial inputs in

the MNIST and CIFAR-10 datasets. Incomparison to the Tanh model with

hadamard code, while our proposed framework performs better on normal

inputs, its performance is lower on the adversarial inputs.
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1. INTRODUCTION

Deep neural networks (DNNs) achieve state-of-the-art performance on

image classification, speech recognition, and game-playing, among many

other applications. However, they are also vulnerable to adversarial ex-

amples, inputs with carefully chosen perturbations that are misclassified

despite containing no semantic changes . Often, these perturbations are

“small” in some sense, e.g. some Lp norm. From a scientific perspective,

the existence of adversarial examples demonstrates that machine learning

models that achieve superhuman performance on benign, “naturally occur-

ring” data sets in fact possess potentially dangerous failure modes. The

existence of these failure modes threatens the reliable deployment of ma-

chine learning in automation of tasks. Many defenses have been proposed

to make DNNs more robust to adversarial examples; virtually all have been

shown to have serious limitations. Adversarial defenses can be broadly clas-

sified by which part of the learning pipeline they aim to protect. i) manifold-

based which projects the input into a different space ii) quantization-based,

which alters input data resolution or encoding iii) randomization-based, in

which portions of the input and/or hidden layer activations are randomized

or zeroed out. Model based approach seek to defend either by training (aug-

mented) with adversarial examples or by seeking to model properties of in-

puts or hidden layers and detect adversarial examples with small probability

under natural data distribution. We make an attempt towards adversarial

robustness by drawing inspiration from coding theory, the branch of infor-

mation theory which studies the design of codes to ensure reliable delivery

of a digital signal over a noisy channel. Coding theory formalizes the idea

that in order to minimize the probability of signal error, codewords should be
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well-separated from one another. We find that encoding outputs using such

codes, as opposed to one-hot encoding significantly improved the probabil-

ity estimates and increased the robustness to adversarial examples. While

implementing the error correcting output codes which are well-separated,

we do not really know whether maximizing the separation give us the best

performances. In other words,we do not know whether Hamming distance is

the optimal criteria for class representation. Hence, we investigate the idea

of learning output codes instead of fixed output codes apriori. We propose

a framework consisting of an input encoder and a label encoder and jointly

learn their parameters to minimize the cross-entropy loss. We discuss our

experimental results on the MNIST and CIFAR-10 datasets.

2. MODEL FRAMEWORK

We denote C, the M× N matrix of codewords, where M denotes the num-

ber of classes and N denotes the length of codeword. The kth row of C, Ck, is

the desired output of DNN when input is from class K. For one-hot encoding

C = M, the identity matrix of order M. We will consider codes with N = M and

N > M.

2.1 ERROR CORRECTING OUTPUT CODES

We firstly describe the model framework which uses fixed error correcting

output codes for class representation.

2.1.1 SOFTMAX ACTIVATION

The softmax maps a vector z in RM into (M − 1)-dimensional probability

simplex. We will denote the M-dimensional vector of softmax activation by
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ψ. The kth softmax activation is given by

pψ(k) =
ep(zk)

∑M
=1 ep(z)

(1)

2.1.2 SIGMOID ACTIVATION

As proposed by [1], the idea is to map model logits to the elements of a

codeword and assign probability to class k as proportional to how positively

correlated the model output is to Ck

pσ(k) =
m(σ(z) ·Ck,0)

∑M
=1(m(σ(z) ·C,0))

(2)

where σ(z) and Ck are vectors of length N. The possible choices of σ can be

tanh function taking values in (-1,1). When C takes values in (0,1) logistic

function is appropriate to use. The function max() is used when C takes val-

ues in (-1,1) and the operator is used to avoid negative probabilities.

Figure 1: Probability of class 0 as a function of logits, for the (a) softmax

activation and (b) sigmoid decoding scheme.

It shows that pσ allocates non-trivial volume in logit space to uncertainty.

Hence, pσ effectively shrinks the attack surface available to an attacker

seeking to craft adversarial examples.
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2.1.3 HAMMING DISTANCE

The hamming distance between any two binary codewords x and y, de-

noted d(x,y) is | − y|0, where | · |0 denotes the L0 norm. The hamming

distance of codebook C is defined as

d =mn{d(, y) : x,y ∈ C,x 6= y} (3)

The standard one-hot coding scheme has a Hamming distance of only 2.

This means that if the adversary can sufficiently alter even a single logit,

an error may occur. Ideally, we want the classifier to be robust to changes

to multiple logits. Consider the M = N = 32 case where each of 32 classes

is represented by a 32-bit codeword (meaning that the DNN has 32 outputs

versus 2 for the case in Figure 1). Figure 2 shows the probability of class 0

as a function of a 3 dimensional slice of the logits (z29, z30, z31), where the

fixed logits are set to be consistent with class 0

Figure 2: Probability of class 0 as a function of logits, for different choices
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of output activation and code, for a 32 class multi-classification problem:

(leftmost column) softmax (Eq 1) with C = I32, (middle column) sigmoid de-

coder (Eq 2) with logistic activation and C = I32, (rightmost column) sigmoid

decoder (Eq 2) with tanh activation and C = H32, a Hadamard code. 29 logit

values are fixed and remaining logits (here denoted z29, z30, z31) are allowed

to vary. The magenta circle shown has probability > 0.999 of being in class

0.

Note how the softmax decoder has a very small region corresponding to

uncertainty (i.e., probability near 0.5); as the logits vary, the model rapidly

transitions from assigning probability ≈ 1 to class 0 to assigning probability

≈ 0. In contrast, the logistic decoder assigns far more volume to uncertainty.

The Hadamard code based decoder is even more robust; it still assigns large

probability to class 0 despite large changes to multiple logits.

2.1.4 CODE DESIGN

The work that has followed on ECOC (Error Correcting Output Codes) fo-

cused on potential gains in generalization of multi-class settings over one-

hot coding. Several methods exist in order to create the good ECOC which

focus on achieving a large Hamming distance between codes. We state a

theorem which is used to select a near optimal choice of C.

Theorem 1 (Plotkin’s Bound). For a M × N coding matrix C, d ≤
�

N
2

M
M−1

�

Theorem states an upper bound on the Hamming distance of C. For large M

and even N, the bound approaches N
2 which can be achieved if Hadamard

matrix is chosen. We use the notation HP to denote a P×P Hadamard matrix.

If there are more codewords P available than actual classes(M), we use first

M rows of HP.
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2.1.5 BIT INDEPENDENCE

In a typical DNN, a singe network outputs all the bits of the output code in

its final layer. The errors in the individual bits that are made up by a DNN or

an ensemble method are often correlated and input causing an error in one

particular output often correlates to errors in other outputs. Such correla-

tions reduce the effective Hamming distance between codewords since the

dependent error process means that multiple bit flips are likely to co-occur.

Therefore, promoting diversity across the constituent learners is crucial and

is generally a priority in ensemble-based methods. For ECOCs, each ensem-

ble member j solves a different classification problem (specified by the jth

column of C). Thus we find that it is sufficient to simply train an ensemble

of networks, where each member outputs B ≤ N bits (neurons) of the output

code.

2.2 LEARNABLE OUTPUT CODES

Previously we assumed a predetermined set of codewords for class rep-

resentations. We describe our framework to jointly learn the class represen-

tation and the model parameters.

2.2.1 LABEL ENCODER

The framework described previously implemented the error correcting

output codes which are well-separated and hence used Hadamard codes

and we do not really know whether maximizing the separation give us the

best performances. The label encoder takes the one-hot representation of

a class-label and maps it to dense distributed vector representations. Math-

ematically, given a one-hot representation of a class label y, the label en-

coder Lθ(.) converts y into a d-dimensional vector representation Lθ(y). The
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objective of the label encoder is to learn the implicit structural similarities

between the classes in the dataset. For example, in the CIFAR-10 dataset,

we expect the class representation of automobiles and trucks to be more

similar to each other than automobiles and horses.

2.2.2 INPUT ENCODER

The input encoder converts an input image into dense vector represen-

tation. Mathematically, given an input X, the input encoder Iϕ(.) converts X

into a d-dimensional vector representation Iϕ(X). The role of input encoder

is to extract relevant features from a given image that will be useful for its

classification.

We use the previously proposed idea to calculate the output probabilities.

The probability function now becomes,

pσ(y|X, θ, ϕ) =
m(Iϕ(X) · Lθ(y),0)

∑M
=1m(Iϕ(X) · Lθ(),0)

(4)

The overall loss function now becomes,

L(y,X, θ, ϕ) = −(ypσ(y|X, θ, ϕ) + (1 − y)(1 − pσ(y|X, θ, ϕ))) (5)

We mention the training procedure to jointly learn the parameters of the

label encoderθ and input encoder ϕ
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Algorithm 1: Training procedure to jointly learn label encoder θ and

input encoder ϕ

for number of training iterations do

for k steps do

sample minibatch of m examples {(x(1), y(1)) . . . (x(m), y(m))}

from training. data.

Update the input encoder’s parameters using its stochastic

gradient:

−∇ϕ
�

ypσ(y|X, θ, ϕ) + (1 − y)(1 − pσ(y|X, θ, ϕ))
�

end

for j steps do

Sample minibatch of n examples {(x(1), y(1)) . . . (x(n), y(n))}

from training. data.

Update the label encoder’s parameters using its stochastic

gradient:

−∇θ
�

ypσ(y|X, θ, ϕ) + (1 − y)(1 − pσ(y|X, θ, ϕ))
�

end

end

2.2.3 REGULARIZATION

We now add regularization to the existing label encoder which aims to

minimize the Euclidean distance between L(y) and H(y), where L(.) is the

label encoder, y is one-hot representation of class label and H(y) is the cor-

responding Hadamard code vector representing that class and the distance

is given as:

d(L(y),H(y)) = ‖L(y) − H(y)‖ (6)
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This regularization will let the codes to be able to learn the implicit structural

similarities between different classes while being close to hadamard codes

in Euclidean space. The loss function for label encoder changes as follows:

L′(y,X, θ, ϕ) = −(ypσ(y|X, θ, ϕ) + (1 − y)(1 − pσ(y|X, θ, ϕ))) + λ

∑M
=1 d(L(),H())

M

λ is the regularization hyperparameter. The training procedure changes as

follows:

Algorithm 2: Training procedure to jointly learn label encoder θ and

input encoder ϕ

for number of training iterations do

for k steps do

sample minibatch of m examples {(x(1), y(1)) . . . (x(m), y(m))}

from training. data.

Update the input encoder’s parameters using its stochastic

gradient:

−∇ϕ
�

ypσ(y|X, θ, ϕ) + (1 − y)(1 − pσ(y|X, θ, ϕ))
�

end

for j steps do

Sample minibatch of n examples {(x(1), y(1)) . . . (x(n), y(n))}

from training. data.

Update the label encoder’s parameters using its stochastic

gradient:

−∇θ
�

ypσ(y|X, θ, ϕ)+(1−y)(1−pσ(y|X, θ, ϕ))−λ

∑M
=1 d(L(),H())

M

�

end

end
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3. EXPERIMENTS

We conduct experiments with a series of models which vary the choice of

code C, the length of the codes N, and the activation function applied to the

logits. Our training and adversarial attack procedures are standard. Table 1

summarizes the various models used.

Model Architecture Code Activation

Softmax Standard I10 softmax
Logistic Standard I10 logistic
Tanh16 Standard H16 tanh

LogisticEns10 Ensemble I10 logistic
TanhEns16 Ensemble H16 tanh
TanhEns32 Ensemble H32 tanh

Learnable16 Standard Learnable tanh
Learnable16(λ = 0.3) Standard Learnable tanh

Table 1: Characterization of various models that were tested

“Standard” refers to a standard convolutional architecture with a dense fully

connected output layer while ”ensemble” refers to the setup described in

Section 2.1.5 . λ for learnable desribes the value of regularization hyperpa-

rameter used. Table 2 shows the results of our experiment on MNIST and

Table 3 shows the results of our experiment on CIFAR-10. All models are

trained for E epochs using the Adam optimizer and a learning rate of 2e-

4, where E = 150 for MNIST dataset and E = 400 for CIFAR-10 dataset. To

prevent overfitting , we add zero-mean gaussian noise with standard de-

viation 0.3 for MNIST and 0.032 for CIFAR-10. We also use standard data

augmentation (flipping, rotating and shifting images). For softmax models,

we use the standard cross-entropy loss. For logistic models, we use the

binary cross-entropy loss on a per output neuron basis. For tanh models,

we which implement fixed hadamard codes we use (SVM) hinge loss on a
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per output basis. The column 2 shows the accuracy of test sets. The re-

maining columns show results on various attacks; all such results are in the

white-box setting (adversary has full access to the entire model). Columns

3 and 4 show results for the projected gradient descent (PGD, ε = 0.3) and

Carlini-Wagner (CW) attacks [2], respectively, These columns show the frac-

tion of adversarially crafted inputs which the model correctly classifies, i.e.,

examples which fail to be truly adversarial. Column 5 contains results of the

“blind spot attack” [3], which first scales images by a constant α close to 1

before applying the Carlini Wagner attack. Column 6 shows the fraction of

random inputs for which the model’s maximum class probability is smaller

than 0.9; here, a random input is one where each pixel is independently

and uniformly chosen in (0,1). Column 7 shows the accuracy on test inputs

where each pixel is independently corrupted by additive uniform noise in

[−γ,γ], where γ = 1 for MNIST and 0.1 (CIFAR-10) and clipped to lie within

the valid input range, e.g.(0,1).

4. CONCLUSION

The approach to improve model robustness is centered around three core

ideas. i) Moving from softmax to sigmoid decoding so that non-trivial vol-

ume of the Euclidean logit space is allocated. In crafting convincing adver-

sarial, perturbation, the adversary must now guard against landing in such

regions.i.e the attack surface is smaller. ii) Changing the codewords from

M to one with larger Hamming distance so that the Euclidean distance in

logit space between any two regions of high probability for any given class

becomes larger. The adversary’s perturbation has to be larger in magnitude

to attain same level of confidence.
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Model Benign PGD CW
BSA

α = 0.8 Rand Uniform

Softmax 0.9905 0.09 0.53 0.18 0.24 0.71
Logistic 0.9911 0.09 0.56 0.21 0.68 0.82
Tanh16 0.9916 0.34 0.79 0.28 0.64 0.79

LogisticEns10 0.9913 0.31 0.84 0.49 0.91 0.77
TanhEns16 0.9922 0.87 0.99 0.97 0.99 0.84
TanhEns32 0.9930 0.88 0.99 0.99 0.99 0.86

Learnable16 0.9924 0.34 0.70 0.19 0.69 0.80
Learnable16(λ = 0.3) 0.9929 0.26 0.72 0.20 0.67 0.81

Table 2: Accuracies of models trained on MNIST against various attacks

Model Benign PGD CW
BSA

α = 0.8 Rand Uniform

Softmax 0.866 0.08 0.11 0.07 0.41 0.78
Logistic 0.859 0.10 0.13 0.10 0.47 0.80
Tanh16 0.862 0.34 0.16 0.09 0.72 0.84

LogisticEns10 0.868 0.08 0.15 0.13 0.48 0.84
TanhEns16 0.884 0.55 0.75 0.77 0.96 0.85
TanhEns32 0.891 0.59 0.77 0.78 0.97 0.87

Learnable16 0.871 0.13 0.17 0.13 0.56 0.82
Learnable16(λ = 0.3) 0.877 0.10 0.16 0.14 0.60 0.82

Table 3: Accuracies of models trained on CIFAR-10 against various attacks

iii) Learning output bits with multiple disjoint networks, we reduce corre-

lations between outputs. Such correlations are implicitly capitalized on by

common attack algorithms. We then propose a framework to learn the out-

put codes instead of using a fixed set of output codes. Our framework con-

sists of an input encoder and a label encoder and we jointly learn their pa-

rameters to minimize the cross-entropy loss. On the MNIST and CIFAR-10

datasets, we show that our proposed framework outperforms the baseline

softmax and Logistic models on both normal and adversarial inputs. In com-

parison to the Tanh model with hadamard code, while our proposed frame-
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work performs better on normal inputs, its performance is lower on the ad-

versarial inputs. We further added regularization which tends to minimize

the distances between the output codes and Hadamard codes. The results

were similar to learned output codes with no regularization. One important

avenue to study further is to consider datasets of larger input dimensional-

ity, such as ImageNet. It may be possible that in very high input dimensions,

adversarial perturbations exist that can still surmount the larger Hamming

distances afforded by ECOCs.
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