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ABSTRACT

KEYWORDS: Ken Burn Effect, Depth Maps, View Synthesis, Inpainting, GridNet.

3D Ken Burns effect is an image processing that mimics real camera motion to

create a video from a static picture. This photographic effect consists of the combination

of tracking shots, panning and zooming effect. Generating 3D ken burns effect from

a single image is a challenging task that takes a lot of time and requires advanced

editing skills. This effect is created by generating 3D scene of the initial image and

then rendering novel views along the camera path.

We propose a fully automated solution to generate a 3D ken burn effect from a single

image in real-time. We divide this method in mainly two components: depth prediction

and image inpainting for view synthesis. We propose a novel GridNet based convolu-

tion neural network for predicting geometric and semantic consistent depth maps that

are suitable for view synthesis. We also propose a UNet based depth refinement net-

work for up-scaling and refinement of the predicted depth and to achieve accurate depth

prediction at object boundaries. We then introduce our view synthesis pipeline to gen-

erate the 3D ken burn effect from the predicted depth and the input image. We convert

the image and predicted depth into a point cloud and render novel views from different

camera positions. We perform joint color and depth inpainting to fill the disocclusion

in the rendered novel view. We use inpainted depth to extend the point cloud and repeat

the process until the point cloud is sufficiently extended. The proposed depth predic-

tion model achieves state-of-the-art performance in both qualitative and quantitative

evaluation on iBims and NYUv2-Depth dataset. Our subjective analysis shows that the

proposed fully automated 3D ken burn effect method achieves better results compared

to the manual and existing methods of generating 3D ken burns effect.
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CHAPTER 1

Introduction

1.1 The Ken Burn Effect

The Ken Burns effect is a photographic effect that consists of the combination of track-

ing shots, panning and zooming effect, created from still imagery. A tracking shot is

a camera movement during the recording. It can be lateral to the scene, following the

motion of a character. Or it could be orthogonal, in that case the camera moves either

backward or forward to the scene and creates a realistic zoom as if the spectator was

getting farther or closer. Existing image- and video-editing tools could be used to freely

augment photographs with virtual animation and depth effect, i.e., enabling motion par-

allax as the virtual camera scans over a still picture. This visual effect is called as 3D

Ken Burns effect. Compared to its traditional 2D counterpart, creating the illusion of 3D

movement adding 3D zoom, pan and parallax transitions allows much more compelling

experiences. It is widely used in order to embed still images into videos. This 3D effect

has become increasingly popular in films, documentaries, and commercial media pro-

duction where they lack video footage to illustrate the words. However, creating such

effects from a single photograph fully automatically is a challenging task that takes a

lot of time and requires advanced editing skills.

For Generating 3D Ken Burns effect 2 cropping windows are chosen in the image.

The first window would be the starting frame and the second window would be the end-

ing frame of the video. The automated ken burns effect synthesis chooses the start and

ending frame automatically such that it minimizes the disocclusions. The in-between

frames of the video are created by a view synthesis model which converts the image

and its depth map into a 3d point cloud and then render the novel views by moving the

virtual camera along the two endpoints. View synthesis model also performs joint color

and depth inpainting in the dis-occluded regions and extends the 3d point cloud in the

process, this ensures that rendered views are free from disocclusion artifacts.



1.2 Depth Estimation

As mentioned in the above section, we need depth maps to create 3d point cloud, re-

quired for rendering novel views. The problem statement is to synthesis ken burn effect

from single image and so depth estimation should also be achieved from single image.

The task of estimating depth map from a single image is termed as monocular depth

estimation. For each pixel of the image a depth value is assigned which is an estimate

of the distance between the camera and object in the scene. Especially for synthesizing

ken burn effect we need geometric and semantic consistent depth maps with no depth

boundary error ideally. To achieve this we introduced a novel GridNet [Fourure et al.

(2017)] based convolutional neural network that make explicit use of geometric infor-

mation from bilateral geometric map of [Mansi et al. (2020)] and semantic information

from pool_4 layer of pre-trained VGG-19 network [Simonyan and Zisserman (2014)].

To achieve consistent depth of each object in the depth map we make use segmentation

maps from [Vladimir Nekrasov (2018)] and attribute average depth of the mask to every

pixel in that mask in the depth map. 3D ken burns effect synthesized using our depth

maps shows more pleasing to the eyes results.

1.3 View Synthesis and Image Inpainting

Image Inpainting is the growing field in the past few years, especially with rise of deep

learning. It can be done using convolutional neural network based deep learning meth-

ods like [Liu et al. (2018a)] or more recently with generative models like [Yeh et al.

(2017)] and [Xie et al. (2012)]. Image inpainting is mostly used for photo editing pur-

pose like restoring old pictures, CT-scan or MRI images.

In view synthesis when we move the virtual camera along the specified path to gen-

erate novel views it causes some disocclusion. These disocclusions needs to fixed with

geometric consistent image inpainting for generating 3d ken burn effect with distortions.

We use a convolutional neural network inspired from GridNet [Fourure et al. (2017)] to

make image inpainting model. This model is used to fill the missing information caused

of dis-occluded areas in the rendered novel views.
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1.4 Contribution

In this work, we proposed a fully automated solution to generate a 3D ken burn effect

from a single image in real-time. To achieve this we divide the work into two main

components: depth prediction and image inpainting for view synthesis. We proposed a

novel GridNet based convolution neural network for predicting geometric and semantic

consistent depth maps. We also proposed a UNet based depth refinement network for

up-scaling and refinement of the predicted depth and to achieve accurate depth predic-

tion at object boundaries. We worked on improving existing view synthesis methods to

generate the 3D ken burn effect from the predicted depth and the input image. And we

finally showed from our informal user study that we achieve better results compared to

the manual and existing methods of generating 3D ken burns effect.
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CHAPTER 2

Related Work

The novel view synthesis of scenes or 3D objects from reference images captured from

different viewpoints has a wide range of applications in image or video manipulation

[Klose et al. (2015)], virtual and augmented reality [Hedman et al. (2017), and 3D

displays [Didyk et al. (2013)]. Existing depth-image-based rendering (DIBR) or com-

puter vision based techniques generate high-quality view synthesis results [Hedman

and Kopf (2018)]. With the advent of deep neural networks, learning-based approaches

have become steadily gaining popularity for novel view synthesis [Flynn et al. (2016)].

Typically, most of the view synthesis algorithms require multiple input views acquired

from sparse camera viewpoints to render a virtual view. Though, our target in this paper

is to generate novel views with a virtual camera scan along a path and zoom, given only

a single monocular image.

There are inherent challenges of rendering novel viewpoints from a single image.

Existing learning based methods are giving quality output only for specific scene types,

3D object models, domain specific data such as light fields [Srinivasan et al. (2017)].

The quality of view synthesis is dependent on precision of scene geometry. Several

approaches for depth estimation from a single image have been presented based on nor-

mal maps [Liu et al. (2018b)] or layered depth [Tulsiani et al. (2018)]. In proposed

formulation, we predict scene depth suitable for rendering high quality views for syn-

thesizing a plausible 3D Ken Burns effect. We particularly present our depth prediction

and view synthesis results on challenging cases such as natural scenes with moderate or

large depth variation, natural lighting, reflections and transparency, high details or thin

structures. In such complex scenarios, the existing depth estimation approaches usually

suffer to customize the depth prediction in suppressing geometric artifacts for the task

of view synthesis.

Synthesizing realistic visual camera effects such as bullet-time freeze effect, zoom

in/out, 2D-to-3D, depth-of-field synthesis, photo pop-up for creative pursuits can be

produced using 3D scene geometry or scene layout information. We focus on the more



challenging 3D Ken Burns effect which is a camera motion effect with realistic zoom,

pan and parallax. Previous efforts tried to create fly-through effects from a single im-

age. [Horry et al. (1997)] semi-automatic system demand user intervention in fore-

ground object segmentation and generating a mesh based simplified representation of

the scene. The 3D illusion effect of camera flying is created by projecting images on

the mesh geometry. Follow-up work improves the scene representation to accommodate

diverse camera motions and pictures containing multiple vanishing points. Still realis-

tic effects cannot be achieved for general scenes and the process is not fully automatic,

demands significant manual supervision. [Zheng et al. (2009)] method somewhat sort

out these issues and output realistic parallax from still pictures, but it works only with

multiple images as input. 3D ken burns [Niklaus et al. (2019)] approach is close to our

work, animating still views with a virtual camera scan adding parallax and compelling

results on different scene types including “indoor”, “landscape”, “outdoor”, and “por-

trait”. However, in many challenging natural scenes with high details or thin structures,

occlusions, reflection or transparency, their approach gives unnatural synthesis results

with unexpected blurring, flickering around object boundaries, and semantic distortions.

Our approach synthesizes desirable effects in such complex scenes with realistic motion

parallax and strong depth perception.
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CHAPTER 3

3D Ken Burn Effect View Synthesis

For ken burn effect we need 2 cropping windows, one as start frame and other as end

frame for creating the virtual zoom. Instead of asking user to provide coordinates of

these 2 windows our algorithm chooses the start and ending frame automatically such

that it minimizes the disocclusions. The framework for generating 3D ken burn effect

consist of two main components, depth estimation and view synthesis.

3.1 Geometric & Semantic Consistent Depth Prediction

The Ken burn effect is to be performed on the single image and the depth estimation

should also be achieved from the single image. Unsupervised learning methods can per-

form the depth estimation but their performance is still behind the supervised learning

methods. Therefore we choose to do depth estimation task using supervised learning.

Inspired from Niklaus et al. [Niklaus et al. (2019)] work we used two separate neural

networks, one for coarse depth estimation and one for up-scaling and depth refinement.

3.1.1 Depth Estimation

We introduced a GridNet architecture [Fourure et al. (2017)] that explicitly uses the

semantic and geometric information of the scene to predict the depth from a single

image. To extract the semantic features of the image we pass the input image to a pre-

trained VGG-19 [Simonyan and Zisserman (2014)] network and extract the features

from the pool_4 layer of it. To extract the geometric features of the scene we make

use of the bilateral geometric map from [Mansi et al. (2020)] and pass it through a pre-

trained VGG-19 [Simonyan and Zisserman (2014)] network and extract the features

from the pool_4 layer of it. Providing this information explicitly to our model helps us

in achieving geometric and semantic consistent depth prediction.



Figure 3.1: Depth Estimation Network

We choose a GridNet architecture of 6 rows and 6 columns where the first 3 columns

perform downsampling and the last 3 columns perform upsampling with a per-row

channel size of 32, 64, 128, 256, 512, and 512. We give the input image into the

first row and explicitly provide the semantic and geometric features to the 4th row of

grid. This information encourages the network to better capture the geometry of the

scene and thus solve the problem of geometric distortion. Since the rows followed af-

ter we provide this information have a relatively higher number of channels it further

encourages the network to make use of the semantic and geometric information.

Loss function: To supervise the depth estimation network we make use of scale

invariant L1 data loss and multi-scale level MSE gradient loss. The data loss penalizes

the network to produce depth maps that are different from the ground truth, pixel-wise.

Ldata =
1

WH

∑
u,v

(ξN(u, v))
2 −

(
1

WH

∑
u,v

ξN(u, v)

)2

where dN(u, v) is the ground truth depth, d̂N(u, v) is the estimated depth at pixel

(u, v), and ξN(u, v) = log(dN(u, v))− log(d̂N(u, v))

The gradient loss penalizes the gradient of the depth estimation and gradient of the

ground truth to be different. This loss function enforces smoothness in the homoge-

neous regions of predicted depth map.
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Lgrad =
1

WH

∑
k=1,2,4,8,16

∑
u,v

‖∇kd̂N(u, v)−∇kdN(u, v)‖2

The gradient of the image is computed by shifting the image by one pixel hori-

zontally (or vertically) and taking the difference between the intensities. ∇xI(u, v) =

I(u, v)− I(u−1, v) at scale 1, similarly for scale k ≥ 1 : ∇xI(u, v) = I(u, v)− I(u−

k, v).

We give more emphasises on gradient loss than data loss while training the depth

estimation network and present the total loss function for network as

Ldepth = Lgrad + 0.0001Ldata

For training we chose the Adam optimizer with α = 0.0001, β1 = 0.9 and β2 =

0.999 and trained the network on 20k samples from NYUv2 depth dataset [Nathan Sil-

berman and Fergus (2012)], 8k samples MegaDepth dataset [Li and Snavely (2018)]

and 4k samples DIML [ (DIML)] dataset for 200K iterations.

This depth estimation is not done directly on the full scale image. Instead, the input

image is resized so that its largest dimension is 512 pixels. Therefore an other step is

necessary in order to produce a full scale depth map.

3.1.2 Depth Up-scaling and Refinement

Figure 3.2: Depth Refinement Network

We use the another neural network to perform depth refinement. The refinement

8



network is a modified UNet architecture that takes the original image as the input, down-

scales it to the same size as the size of above depth estimate so it can be inserted in the

network and then up-scaled and refined with the guidance of original input image. This

model is also trained using the same loss functions as for the depth estimation. This

gives us the full size geometric & semantic consistent depth map required to synthesize

3D ken burn effect.

For training we chose the Adam optimizer with α = 0.0001, β1 = 0.9 and β2 =

0.999. For training data, we downsample and distort the ground truth depth to simulate

coarse depth and use the ground truth depth and downsampled depth for training. We

took 8k samples from NYUv2 depth dataset [Nathan Silberman and Fergus (2012)], 5k

samples MegaDepth dataset [Li and Snavely (2018)] and 3k samples DIML [ (DIML)]

dataset for 100K iterations.

3.1.3 Depth Smoothing

Often the depths are assigned inconsistently inside the region of the same object and it

results in strange view synthesis outputs such as objects being stretched (or torn apart)

or objects sticking to another objects. To overcome these issue we locate the objects

in the image and assume that the depth is constant on these objects. We make use of

pre-trained Mask R-CNN by Light Weight RefineNet [Vladimir Nekrasov (2018)] to

generate segmentation masks of different objects in the scene. The average depth on a

mask is then attributed to every pixel in that mask in the depth map.

Our depth maps are semantic-aware and preserve high frequency details in the depth

map needed for artifact free 3D ken burn view synthesis. Ken Burn effect generated us-

ing depth map from our depth prediction pipeline shows geometrically and semantically

consistent results and are pleasing to the eyes.

3.2 View Synthesis and 3D Inpainting

The View Synthesis is the next important step to generate 3D-ken burn effect after esti-

mating Geometrically and Semantically consistent depth of the image. View synthesis

is the process to generate new scenes of an image from a shifted camera position. Some

9



Figure 3.3: View Synthesis Model

parts of the object may not be visible from the starting camera position that can become

visible when the scenes are generated from different camera position, these regions were

occluded in the initial scene. To address the problem of disocclusion while generating

new views it is necessary to fill the missing information in these regions to create the

realistic 3D effect, the process of filling this information is known as image inpainting.

Off the shelf color inpainting methods fails to perform geometrically consistent in-

painting. To perform inpainting in which the filled-in area resembles the background

with the clear separation of the foreground object we need inpainting methods which

incorporate depth. There are many techniques for color inpainting and some of them do

take depth information into account. But only few techniques focuses on the problem of

joint color and depth inpainting. We performed joint color and depth inpainting using a

single neural network specifically trained to fill disocclusion.

Architecture: We used a architecture similar to our depth prediction network, we

used a GridNet architecture that takes color and depth of the incomplete rendered novel

view and returns the inpainted color and depth. We choose a GridNet with 4 rows and

4 columns with channels size of 32, 64, 128, and 256 in the 4 rows.

Loss function: To supervise the color inpainting we use the reconstruction and per-

ceptual loss. Reconstruction loss enforces the match between the reconstructed image

and the ground truth image. It is been observed that L2 loss penalize less to the small

variations compared to L1 loss and produces blurry outputs. Hence, we used pixel-wise

10



L1 loss for reconstruction.

Lrec = ‖I − Î‖1

where Î is the reconstructed novel view and I is the ground truth novel view.

For perceptual loss we used a pre-trained VGG-19 [Simonyan and Zisserman (2014)]

to extract features from the ground truth and inpainted novel view. Perceptual loss pe-

nalize the inpainting network for producing reconstruction with different features maps

than the ground truth one.

Lperc =
∑
k∈K

1

Nφk

‖φk(I)− φk(Î)‖1

where φk is the feature map after the kth convolution layer in the VGG-19 network,Nφk

is the size of the feature map φk and K is the set of first 4 pooling layers of VGG-19

network.

To supervise the depth inpainting we use the scale invariantLdata data loss andLgrad
gradient loss function same as the loss function in depth estimation network. Now, the

total loss function to supervise the training of joint color and depth inpainting becomes:

Linpaint = Lrec + Lperc + Lgrad + 0.0001Ldata

For training we chose the Adam optimizer with α = 0.0001, β1 = 0.9 and β2 = 0.999.

We trained our network multi novel view synthetic dataset of [Niklaus et al. (2019)] for

100k iteration with learning rate of 10(−5) and learning rate decay of 0.9999.

Now, In order to do view synthesis we first create a point cloud from the input image

and the estimated depth. Then we use point cloud to render consecutive novel views

from new positions along the specified camera path. However, the render views faces

the issue of disocclusion since the point cloud is only a partial view of the scene. We

perform geometrically consistent joint color and depth inpainting to fill-in the missing

information in the occluded regions to get the complete novel view from the incomplete

render. We extract the inpainted points from the reconstructed novel view and extend

our point cloud in each iteration until we get to the last novel view.

11



CHAPTER 4

Training and Experiments

In this section, we describe experiments to evaluate the performance of proposed GSDP-

GridNet neural network with the state-of-the-art CNN algorithms for monocular depth

estimation and further how that depth effects affect the view synthesis results.

4.1 Training Data & Experimental Settings

We used benchmark NYUv2 RGB-D dataset [Nathan Silberman and Fergus (2012)],

MegaDepth dataset [Li and Snavely (2018), and DIML RGB-D dataset [ (DIML)] for

training and validation of our novel depth prediction method. NYUv2 dataset consists

of indoor scenes of high quality aligned RGB and depth images acquired from a Mi-

crosoft Kinect sensor. Where as Megadepth and DIML dataset brings more scenes into

training as MegaDepth dataset consist of outdoor scenes and DIML dataset consists of

both indoor and outdoor scenes. The comparative analysis is performed on 2 dataset

separately and presented in the next section. We used iBims-1 benchmark [Koch et al.

(2018)] dataset which contains 100 images and 450 images from the NYUv2-Depth

dataset [Nathan Silberman and Fergus (2012)].

We implemented our depth and view synthesis pipeline in PyTorch. The models are

trained on Intel i7-9750H CPU, 16 GB RAM, RTX 2080 GPU with 8 GB VRAM with

GPU acceleration. The details of the loss functions, optimizer and hyper-parameters

settings is written in the above chapter [3]. Training for depth estimation network took

2+ days. The depth refinement model training took around 12+ hours. The training of

view synthesis network took around 20+ hours.

Our depth estimation pipeline takes 2-3 seconds to estimate the depth map of a

image. The view synthesis pipeline takes around 7-8 seconds per image to synthesize

a 3D ken burn video from depth map and input image. Both depth and view synthesis

pipeline combine takes 9-10 seconds to generate 3D ken burn effect video.



4.2 Depth Comparison

We compare our depth estimation GSDP-GridNet with state-of-the-art monocular depth

estimation methods, including Niklaus et al. [Niklaus et al. (2019)], DenseDepth [Al-

hashim and Wonka (2018)], FCRN [Laina et al. (2016)], 3DBGES-UNet [Mansi et al.

(2020)] and SharpNet [Ramamonjisoa and Lepetit (2019)].

We perform quantitative analysis on iBims-1 benchmark [Koch et al. (2018)] dataset

and NYUv2 Depth dataset [Nathan Silberman and Fergus (2012)]. We evaluate our

model using most common error metrics, root mean squared error (RMSE),average

error (log10), average relative error (rel), threshold accuracies (σ) on both iBims-1

benchmark and NYUv2 dataset. Additionally, we use mean structural similarity index

(mSSIM) and depth reliability metric (DERM) while evaluating on NYUv2 dataset.

Table 4.1: Comparison of different methods on NYUv2-Depth data.

SharpNet DenseDepth FCRN 3D Ken Burns GSDP-GridNet

rel ↓ 0.14 0.12 0.13 0.10 0.12

log10 ↓ 0.05 0.05 0.05 0.04 0.09

RMS ↓ 0.49 0.46 0.57 0.36 0.32

σ1 ↑ 0.89 0.85 0.81 0.90 0.93

σ2 ↑ 0.98 0.97 0.95 0.98 0.99

σ3 ↑ 0.99 0.99 0.99 0.99 0.99

mSSIM ↑ 0.72 0.98 0.95 0.95 0.99

DERM ↑ 0.51 0.72 0.64 0.70 0.80

Table 4.2: Comparison of different methods on iBims-1 data.

3DBGES-UNet DenseDepth FCRN 3D Ken Burns GSDP-GridNet

rel ↓ 0.23 0.13 0.13 0.10 0.11

log10 ↓ 0.04 0.04 0.04 0.04 0.03

RMSE ↓ 0.34 0.46 0.47 0.47 0.22

σ1 ↑ 0.46 0.59 0.53 0.90 0.92

σ2 ↑ 0.73 0.95 0.83 0.97 0.97

σ3 ↑ 0.90 0.99 0.97 0.99 0.99
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4.3 View Synthesis Comparison

We generate high-quality novel view synthesis results using geometric and semantic

consistent depth maps obtained from the GSDP-GridNet model. Intermediate frames

from rendered 3D ken burns effect animation when the zoom is maximum are shown

in Fig. 5.7, Fig. 5.8 and Fig. 5.9 for the purpose of comparison. These videos are

synthesized by shifting virtual camera positions using the estimated depth maps of

3DBGES-UNet [Mansi et al. (2020)], FCRN [Laina et al. (2016)], DenseDepth [Al-

hashim and Wonka (2018)], 3D Ken Burns [Niklaus et al. (2019)], and our proposed

GSDP-GridNet. To clearly see the generated 3d ken burn effect using different methods,

readers are encouraged to see the results uploaded at the website [Prateek and Mansi

(2021)] or by clicking here.

For quantitative comparison of the synthesized 3D ken burns effect we compute

blinds scores for each of the them. Blinds scores considers distortion, quality and arti-

facts in the video. There are 4 metrics are Brisque, Niqe, Piqe and Blinds.

Table 4.3: View Synthesis quality analysis

3DBGES-UNet DenseDepth FCRN Kens Burn GSDP-GridNet

Brisque ↓ 40.26 39.74 39.73 39.43 39.33

Niqe ↓ 3.66 3.65 3.67 3.66 3.64

Piqe ↓ 44.48 44.46 44.87 44.69 44.38

Blinds ↑ 6.00 5.98 5.97 6.02 6.03

4.4 Subjective Quality Analysis

We carry out an informal user study to evaluate the performance of our proposed method

for creating the 3D Ken Burns effect. The five complex scenes are selected from the

3D HDR stereo dataset Wadaskar et al. (2019). The scenes are chosen from indoor,

outdoor, nature and portrait. This covers a variety of complex scenarios. The subjective

analysis is performed with the help of eight participants from IITM ’Computational

Imaging & Display’ lab. We compare the proposed approach for creating the 3D Ken

Burns effect with Niklaus et al. [Niklaus et al. (2019)] and 2D ken burns effect.
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To evaluate the impact of geometric, semantic, and inaccurate depth boundaries

distortions on rendered videos, we carried out in-lab subjective experiments. The con-

ducted visual perception experiments are basically designed to observe the realism of

Ken Burns effect on different chosen scenes. The age distribution of eight subjects (3

female, 5 male) participated in the study ranged between 20 to 35. The major factors

that influence visual quality in rendered Ken burns videos that affect human realism

ratings are identified as a) Geometric distortions, b) Semantic distortions, c) unreliable

depth boundaries. The source of such artifacts could be visibility, disocclusion, resam-

pling issues associated with 3D warping and distortions caused by rendering virtual

motion parallax effect. The subjects were asked two main questions: 1) What are the

key factors you perceive that influence the realism of synthesized Ken Burns effect?.

2) How do you perceive the variations in different distortion factors that affect your

judgment of realism?. The participants were asked to rate each view synthesis results

based on visual quality and 3D perception on a continuous quality scale with five levels

ranging from 1−5: 1 (poor), 2 (fair), 3 (good), 4 (very good), 5 (excellent). The videos

are presented to the subjects randomly. The time for each evaluation is limited to 20-25

sec and every rendered scene is evaluated 5+ times. The rating or “opinion score” pro-

vided for each synthesized sequence is recorded and the mean opinion score (MOS) is

computed. The MOS (mean opinion score) for all the five scenes are plotted in Fig 4.1.
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Figure 4.1: Results from subjective user study comparing Niklaus et al, Ours and 2D
ken burn
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CHAPTER 5

Results

5.1 Depth Results

The depth estimation results are shown in the below figures on complex scenes se-

lected from 3D HDR database [Wadaskar et al. (2019)]. In most cases, our proposed

GSDP-GridNet model produces higher quality depth maps for generating 3D ken burns

effect compared from other state-of-the-art methods. Apart from [Niklaus et al. (2019)]

the rest of the papers do not highly focus on geometric, semantic and depth boundary

distortion that is why they unable to synthesize perceptually good 3D ken burns effect.

In Fig 5.1 there are semantic distortions in [Niklaus et al. (2019)] depth where

the depth of deer head is not separated from the background. Other methods have

many semantic and geometric distortions which results in objects being teared apart

and stretched/expanded unnaturally in the 3D ken burns effect.

(a) RGB (b) 3DBGES-UNet (c) FCRN

(d) DenseDepth (e) 3D Ken Burns (f) Proposed

Figure 5.1: Comparison of Depth maps on Deer Scene.

In Fig 5.2 there is depth boundary error in depth maps of FCRN and DenseDepth.

Ours and [Niklaus et al. (2019)] depth are equally good but the later produces better

ken burn effect in this scene.



(a) RGB (b) 3DBGES-UNet (c) FCRN

(d) DenseDepth (e) 3D Ken Burns (f) Proposed

Figure 5.2: Comparison of Depth maps on Hall Scene.

In Fig 5.3 there is geometric distortion in FCRN and DenseDepth depth maps where

the geometry of the left side is not visible and it directly affects the synthesis of ken burn

effect. The [Niklaus et al. (2019)] depth has semantic distortion as the depth of the man

is not consistent throughout the body. Ours depth map shows clear separation of the

man from the background.

(a) RGB (b) 3DBGES-UNet (c) FCRN

(d) DenseDepth (e) 3D Ken Burns (f) Proposed

Figure 5.3: Comparison of Depth maps on Baba Scene.

Fig 5.4 has a complex depth structure with large depth variations, and high fre-

quency regions of tree bushes. Apart from our depth map, others fail to capture the

depth of canopy properly. Many semantic distortions can be observed in the depth

maps of others which results in canopy being detached from the pole in the synthesized

3D ken burns effect.
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(a) RGB (b) 3DBGES-UNet (c) FCRN

(d) DenseDepth (e) 3D Ken Burns (f) Proposed

Figure 5.4: Comparison of Depth maps on NAC Canopy Scene.

In Fig 5.5 the [Niklaus et al. (2019)] depth map fails to capture the bush in front

of the tree. Only our method gives depth map which captures the bush depth. Other

methods fails to even capture the basic geometry of the scene which results in unnatural

stretching of the tree branches in the synthesized 3D ken burns effect.

(a) RGB (b) 3DBGES-UNet (c) FCRN

(d) DenseDepth (e) 3D Ken Burns (f) Proposed

Figure 5.5: Comparison of Depth maps on NAC Trees Scene.

Fig 5.6 also has complex depth structure with large depth variation, minute details

of trees and rain water reflections. Semantic distortion can be seen in [Niklaus et al.

(2019)] depth map where the depth of bus top is not consistent. Depth boundary distor-

tion can also be seen in FCRN and DenseDepth depth map which results in flickering

issue in the synthesized ken burns effect.
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(a) RGB (b) 3DBGES-UNet (c) FCRN

(d) DenseDepth (e) 3D Ken Burns (f) Proposed

Figure 5.6: Comparison of Depth maps on Jamuna bus stand Scene.

5.2 View Synthesis Results

The view synthesis results obtained using the depth maps of 3DBGES-UNet[Mansi

et al. (2020)], FCRN[Laina et al. (2016)], DenseDepth[Alhashim and Wonka (2018)],

3D Ken Burns [Niklaus et al. (2019)], Ours GSDP-GridNet method are shown in the

below figures.

In Fig 5.7 the left vertical wall and window shed gets bent, the tree branches and

bushes get unnaturally stretched in the ken burns effect while using 3DBGES-UNet,

FCRN and DenseDepth depth maps. The result from 3D ken burns [Niklaus et al.

(2019)] has the issue of blurring artifacts in the disocclusion areas.

(a) RGB (b) 3DBGES-UNet (c) FCRN

(d) DenseDepth (e) 3D Ken Burns (f) Proposed

Figure 5.7: Snapshots of 3D ken burns effect of Baba Scene.
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In Fig 5.8 geometric artifacts appear where deer horns get blended with the back-

ground for 3DBGES-UNet depth. The body and neck get unnatural expansion for

DenseDepth and FCRN depth. While using 3D ken burns depth we observe seman-

tic distortions where the head of the deer is torn apart from the body in the synthesis of

3D ken burns effect because of inconsistent depth predictions in Fig. 5.1.

(a) RGB (b) 3DBGES-UNet (c) FCRN

(d) DenseDepth (e) 3D Ken Burns (f) Proposed

Figure 5.8: Snapshots of 3D ken burns effect of Deer Scene.

In Fig 5.9 geometric distortions of the bus and tree branches can be seen in the ken

burns effect generated from depth maps of 3DBGES-UNet, DenseDepth and FCRN.

Some flickering artifacts in the novel view renderings of 3D Ken Burns are also visible

around the outer body of the bus due to inaccurate depth boundaries of the object.

(a) RGB (b) 3DBGES-UNet (c) FCRN

(d) DenseDepth (e) 3D Ken Burns (f) Proposed

Figure 5.9: Snapshots of 3D ken burns effect of Jamuna bus stand Scene.
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Artifacts like stretching and expansion of objects occur due to incorrect depth or-

derings in predicted geometric relations. The rendering separates the parts of the object

from the rest of the object because of inconsistent depth estimation inside the region

of the object which sometimes make it indistinguishable from its background. That

eventually results in part of the objects sticking to the background and being torn apart.

Our proposed method generates 3D ken burns effect that are pleasing to the eye with

unnoticeable distortions compared to other methods. We also carried out an informal

subjective user study to find out which method gives the best experience in Fig 4.1.
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CHAPTER 6

Conclusion

In this work, we built a fully automated framework to generate a 3D ken burn effect from

a single image in real-time. Our method consists of depth prediction pipeline which

predicts geometric and semantic consistent depth map with accurate depth boundaries

and view synthesis pipeline to render novel views to generate the 3D ken burns video.

Our novel depth prediction network makes explicit use of the semantic and geometric

information to predict depth maps suitable for view synthesis. We experimented with

a wide variety of images and showed that our method generates realistic 3D ken burn

video. Our subjective analysis showed that our proposed fully automated framework

generates better results compared to the manual and existing methods of generating 3D

ken burns effect.
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