
Prevention of timing-based micro-architectural attacks

A Project Report

submitted by

NITHESH N. HARIHARAN

in partial fulfilment of the requirements

for the award of the degree of

DUAL DEGREE (B.Tech. and M.Tech.)

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

June 2021

THESIS CERTIFICATE

This is to certify that the thesis titled Prevention of timing-based micro-architectural

attacks, submitted by Nithesh N. Hariharan, to the Indian Institute of Technology,

Madras, for the award of the degree of DUAL DEGREE (B.Tech. and M.Tech.),

is a bona fide record of the research work done by him under our supervision. The

contents of this thesis, in full or in parts, have not been submitted to any other Institute

or University for the award of any degree or diploma.

Prof. Chester Rebeiro
Research Guide
Professor
Dept. of Computer Science Engineer-
ing
IIT Madras, 600 036

Place: Chennai

Date: 12 June 2021

ACKNOWLEDGEMENTS

I would like to thank Prof. Chester Rebeiro for guiding me through the project, and

Keerthi K. for helping me while working on the project. I would like to thank all my

professors at IITM for helping me through my journey. I would also like to thank my

parents and all my friends for the constant support.

i

ABSTRACT

We explore popular micro-architectural attacks, and tools commonly used to detect such

attacks. We explore advantages and disadvantages of existing work on this area, and

propose a new solution which would aid with preventing timing attacks on programs.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES 1

1 INTRODUCTION 2

1.1 Description of the attacks, with examples 3

1.1.1 Instruction based timing attacks 3

1.1.2 Cache timing attacks . 4

1.1.3 Meltdown . 6

2 LLVM 7

2.1 LLVM . 7

2.1.1 LLVM IR . 7

2.1.2 LLVM passes . 8

2.1.3 An Analysis Pass Example 9

3 Analysis of existing solutions 14

3.1 Eliminating Timing Side-Channel Leaks using Program Repair . . . 14

3.1.1 Unbalanced conditional branches 14

3.1.2 Inconsistent cache accesses 15

3.1.3 Detecting timing leaks using an LLVM pass 16

3.1.4 Advantages, disadvantages, and possible improvements . . . 17

3.2 ct-fuzz: Fuzzing for Timing Leaks 19

3.3 An Efficient Mitigation Method for Timing Side-Channels on the Web 19

4 A new solution using multiple threads 21

4.1 A simple timing attack example 21

iii

4.2 Proposed solution using multi-threading 23

4.3 Implementation . 25

4.4 Implementing on cryptomaniac . 28

4.5 Results . 30

4.6 Further possibilities . 31

5 Detect Meltdown style attacks using static analysis 32

5.1 Attack scenarios considered . 32

5.2 Attack methodology . 32

5.3 A minimal example . 33

5.4 A variable’s state . 33

5.5 The range data structure . 33

5.6 Solving the minimal example . 34

5.7 Generalizing from the minimal example 34

5.7.1 Arithmetic operations . 34

5.7.2 Arrays . 35

5.7.3 Branching instruction . 35

5.7.4 Function calls . 35

5.8 Conclusion . 36

LIST OF TABLES

4.1 Performance effect on different modes of operation supported by cryp-
tomaniac . 31

v

LIST OF FIGURES

3.1 LLVM pass to mitigate sensitive conditional branches. 17

4.1 Successful attack on the victim function 23

4.2 Successfully prevented attack on the victim function 31

1

CHAPTER 1

INTRODUCTION

Micro-architectural attacks are becoming very popular and a focus of a lot of security

researches off late. Timing based attacks typically have the attacker use the running

time of the program on a variety of inputs to deduce some secret values in the program.

The timing differences could occur because of multiple reasons. Two common things

that cause timing differences are cache accesses (hit and a miss result in very different

runtimes) and instruction count differences (caused by branches, loops, etc). Based

on knowledge of the algorithm and the implementation, attackers try to extract secret

information by just using runtime.

The 2 popular attacks in this domain are Meltdown and Spectre. Meltdown has

some really good solutions to prevent it, while some of the variants of Spectre have

been prevented. There are more variants of Spectre that get discovered every so often,

which bypasses all the previous solutions that were built up.

The other attacks use techniques like the "prime and probe" to exploit the cache

timing, or just plain timing based if you know the internal code and architecture (e.g. if

you know a certain condition forces the algorithm to early quit, that can be used).

Cloud and distributed computing make these attacks really powerful because now

if you have different virtual machines on a cloud server, they might share the same

hardware. If one of the virtual machines is compromised, the attacker could possibly

use the fact that both share the same hardware to time the actions performed by the

other VM and decipher any secrets.

Typically, the secrets that attackers are interested in are encryption keys, which

(depending on the algorithm) tend to be 128 or 256-bit keys. If the attacker would like

to bruteforce the key, it would take 2256 tries. But, if the attacker can get any kind of

information or signal from the runtime, it tends to drastically reduce the search space.

We shall see this in an example later.

We will explore existing solutions which aim to prevent such attacks, and the pros

and cons of each of these solutions. We will also look at possible performance improve-

ments for these solutions, and impacts on security by trying to improve performance.

Finally, I propose a new solution which would provide security against timing attacks.

Also, will mention my work on trying to prevent meltdown style attacks using a static

analysis pass in LLVM.

1.1 Description of the attacks, with examples

1.1.1 Instruction based timing attacks

These type of attacks rely just on the programming running, and taking different times

based on inputs. There are a variety of scenarios that cause the program runtime to

vary. These include if clauses without else, or unbalanced if and else block lengths,

loops which depend on the input to terminate, or calls to functions whose runtime is

dependent on the inputs. These attacks depend a lot on the knowledge of the underlying

algorithm.

These attacks could be prevented by making all code paths take time independent of

the secret variable, which was written as a transformation pass in LLVM as explained

by Wu et al. (2018). However, this causes a huge performance hit. We will explore this

existing solution in a further chapter.

Some common examples of this type of attack are mentioned below. Also men-

tioning some equivalent timing attack free code. These examples are inspired from

(Wikipedia contributors, 2021).

1 i n t s t r c m p V u l n e r a b l e (s t r i n g s1 , s t r i n g s2) {

2 i f (s t r l e n (s1) != s t r l e n (s2))

3 r e t u r n 0 ;

4 f o r (i n t i = 0 ; i < s t r l e n (s1) ; i ++)

5 i f (s1 [i] != s2 [i])

6 r e t u r n 0 ;

7 r e t u r n 1 ;

8 }

We see that the if the 2 strings have different sizes only the first if clause is executed.

3

This would mean the runtime is very short in comparison to an execution where the sizes

are the same. This fact can be exploited to figure out information about either s1 or s2.

Implementations like this could have wide ranging consequences, like if this function

is used in a password checker, it would hypothetically be possible to brute force the

password using just the runtime.

Another version of this, which is still vulnerable would be as follows.

1 i n t s t r c m p V u l n e r a b l e 2 (s t r i n g s1 , s t r i n g s2) {

2 i n t a r e E q u a l = 1 ;

3 i f (s t r l e n (s1) != s t r l e n (s2))

4 a r e E q u a l = 0 ;

5 f o r (i n t i = 0 ; i < s t r l e n (s1) ; i ++)

6 i f (s1 [i] != s2 [i])

7 a r e E q u a l = 0 ;

8 r e t u r n a r e E q u a l ;

9 }

Here, even if the strings have different lengths, the return is only at the end. Which

might deceive you to think that this program is not vulnerable to timing attacks. Notice

that if the strings are different lengths, the statement inside the if block gets executed,

while if they are the same length, then this statement is not executed. Same argument

for the if in the for loop. This again results in a difference in runtimes based on the code

path taken.

In this simple example itself we see how cumbersome it gets to fix this problem. In a

large codebase, these timing differences could arise from interactions between multiple

functions, and it would become impossible ensure the full codebase is free of timing

attacks. The focus of most research in this area is to ensure all encryption algorithms

which are standards, are timing attack free. This includes multiple implementations of

the same algorithm.

1.1.2 Cache timing attacks

In the previous section we saw how the number of instructions run affects time taken

and can be exploited. Another major problem that gets exploited in side channel attacks

is the fact that there is a huge difference in time taken by a cache hit and a cache

4

miss. Typically, cache accesses happens several orders of magnitudes faster than a

main memory access, which will result in a stark difference in the runtime.

Typically in these attacks we assume the attacker has access to perform basic cache

operations like flush, or loading the cache with some values. This can be done easily if

the cache architecture is known, as the attacker can access particular memory addresses

and it will do the required operation. There are many popular attacks in this domain,

and we’ll briefly look at them. Some examples include ’prime and probe’ and ’flush

and reload’.

Flush and Reload attack

In this attack, the attacker should be able to flush the cache. Assume a particular instruc-

tion or data entry needed by the program is cached. If the attacker flushes the cache, it

gets removed, and now when the program accesses that memory address again, it is go-

ing to take significantly longer for the program to run. Careful use of the flush operation

gives the attacker valuable information about secrets.

Prime and probe attacks

This is a different approach where the attacker sets up the cache with some data (called

the prime phase) and then probes the cache. During the probe phase, some of the data

previously loaded might be replaced, which will increase the access time.

All the cache based attacks rely a lot on the algorithm. What information you would

like to get depends completely on the algorithm. A strategy to retrieve keys from AES

encryption using cache timing attacks was explained in the first paper for cache timing

attacks. The attacker exploits inherent knowledge about OpenSSL’s AES encryption

implementation, and uses that to guess the key byte by byte. This shows how these

attacks allow attackers to reduce the space to search for the key using the auxiliary

information (runtime) .

The other 2 very popular cache attacks include meltdown and spectre Kocher et al.

(2019). These 2 demand separate attention, so we will dedicate a section for them.

5

1.1.3 Meltdown

Lipp et al. (2018) first describes an attack called Meltdown which allows attackers

to breach the memory barriers between user space and kernel space and access any

memory location. This is possible due to the behaviour of the cache alongside out-of-

order execution which is implemented on processors.

The typical idea in meltdown is to access a memory location that is not accessible,

and use the data to access a part of a large array. That part of the array would be cached

during out of order execution, and later the program would actually error out. But then

if you re-access the array that you tried to access before, only one block would have low

access time, as it got cached already. This can be used to figure out what the data byte

in the memory location was, and hence repeating this for different memory addresses,

you can get a full dump of the memory.

Now any program that was running in other threads would have stored variables and

other data in the RAM. Even kernel uses the same RAM. If the attacker gets a dump of

the RAM, basically any secret variables used in any program can be extracted from the

RAM.

To patch this vulnerability, Intel had added memory fences, which forces ordering

of instructions around statements where these instructions are used. By preventing out

of order execution, such vulnerabilities are prevented.

However, this poses a severe performance impact as the pipeline would be empty

during these instructions. In a later section, we will discuss a possible strategy using

static LLVM passes to detect such memory leaks.

6

CHAPTER 2

LLVM

2.1 LLVM

A lot of further discussions of both existing and new solutions rely on LLVM introduced

by (Lattner and Adve, 2004). LLVM provides a set of tools which allow compiler

operations to be performed on code. You can use it to build a front-end for an existing

language, or create a back end for a supported instruction set. It also comes with a full

set of tools like clang, opt, a debugger, etc.

LLVM operations are performed on a language independent representation called

the LLVM IR (LLVM intermediate representation). This is a strongly typed language

that can be generated using clang. This is then processed using LLVM passes written in

C++, which can be either analysis or transformation. An analysis pass just looks at the

IR to determine some characteristics. A transformation pass can convert the existing IR

to a new IR which can then be converted to an executable to be run. We will see both

these kinds of passes which help us tackle the timing attack issues.

2.1.1 LLVM IR

We will generate the IR from a c code. Assuming you have llvm, clang and opt installed,

we can then run the following command on a program to obtain the LLVM IR. Lets take

a simple program in c that just creates 3 variables and prints it.

1 # i n c l u d e < s t d i o . h>

2

3 i n t main () {

4 i n t a = 5 ;

5 i n t b = 1 0 ;

6 i n t c = a + b ;

7 p r i n t f ("%d " , c) ;

8 r e t u r n 0 ;

9 }

Now we run the following command to get the LLVM IR for the code.

1 c l a n g −S −O0 −emit − l lvm h e l l o . c −o h e l l o . l l

We get the following LLVM IR output. We will understand the various aspects of

the LLVM IR.

1 d e f i n e i 3 2 @main () #0 {

2 %1 = a l l o c a i32 , a l i g n 4

3 %2 = a l l o c a i32 , a l i g n 4

4 %3 = a l l o c a i32 , a l i g n 4

5 %4 = a l l o c a i32 , a l i g n 4

6 s t o r e i 3 2 0 , i 3 2 * %1, a l i g n 4

7 s t o r e i 3 2 5 , i 3 2 * %2, a l i g n 4

8 s t o r e i 3 2 10 , i 3 2 * %3, a l i g n 4

9 %5 = l o a d i32 , i 3 2 * %2, a l i g n 4

10 %6 = l o a d i32 , i 3 2 * %3, a l i g n 4

11 %7 = add nsw i 3 2 %5, %6

12 s t o r e i 3 2 %7, i 3 2 * %4, a l i g n 4

13 %8 = l o a d i32 , i 3 2 * %4, a l i g n 4

14 %9 = c a l l i 3 2 (i 8 * , . . .) @ p r i n t f (i 8 * g e t e l e m e n t p t r i nb o u n d s ([3 x

i 8] , [3 x i 8]* @. s t r , i 3 2 0 , i 3 2 0) , i 3 2 %8)

15 r e t i 3 2 0

16 }

We see that it creates 4 variables, of type i32 which is a 32 bit integer. These are

referenced using %1, %2 and so on. It then has the store instructions to load 3 of the

variables. Then it perfoms the add operation by using temporary variables %5 and %6.

It then stores the result to the correct variable. We then see it call the print statement,

and finally return 0.

The IR also supports a variety of branching instructions and comparison instruc-

tions.

2.1.2 LLVM passes

We then move on to understand how LLVM passes work, and the general structure of an

LLVM pass. LLVM provides us with a pass manager class, which works in conjunction

with the opt tool to run the pass. Note, the following discussions use the old LLVM

8

pass manager which was replaced by a new pass manager in the new LLVM versions.

However, as all online documentation still reference the old pass manager, and there is

no significant resources for the new pass manager, we had implemented passes using

the old pass manager.

We code up the passes using C++, and the LLVM libraries. There are a lot of useful

data structures, and functions that can make processing LLVM IR very easy.

To begin with, you need to create a subclass of a Pass class provided by LLVM. This

could be one of FunctionPass, ModulePass, LoopPass, RegionPass, and some more pro-

vided by the LLVM library. Each of these trigger differently, for e.g. the FunctionPass

runs the pass per function. So you’ll need to pick the largest sub-unit of the program

that you would like to start navigating.

The subclass needs to satisfy a few properties. Firstly, it needs an ID field, which

allows opt to identify the pass uniquely. It needs to have a constructor, which calls

the baseClass’ constructor with the ID. It needs a runOn* method. For example, for a

FunctionPass, you’ll have a runOnFunction with the following signature.

1 boo l runOnFunc t ion (F u n c t i o n &F) ;

Similarly, you’ll have a runOnModule or runOnLoop and so on for each type of

pass. The return value denotes whether the pass modifies the Control Flow Graph (CFG)

or not. This is important, because the passManager needs to know this.

Finally, outside the class, you need to use RegisterPass with the PassName to regis-

ter the pass to be used by opt. This c++ file can then be compiled to a .so file, which can

then be used directly in opt to run the pass on a particular .ll file which can be generated

as per the instructions above.

2.1.3 An Analysis Pass Example

At the start of the project, while learning LLVM, I had worked on an assignment prob-

lem, and this section can be used by anyone trying to learn LLVM to quickly grasp all

the basics.

The problem statement was to analyse a given program with for loops to ensure all

variables in the initialization block of the for loop are used in the condition block of

9

the for loop. All input for loops will be preceeded with a call to printf immediately

before. Here is the code that performs this operation, and after that we’ll break it down

to understand how it works.

1 # i n c l u d e " l lvm / IR / LegacyPassManager . h "

2 # i n c l u d e " l lvm / P a s s e s / P a s s B u i l d e r . h "

3 # i n c l u d e " l lvm / P a s s e s / P a s s P l u g i n . h "

4 # i n c l u d e " l lvm / S u p p o r t / r aw_os t r eam . h "

5 # i n c l u d e < l lvm / IR / I n s t r u c t i o n s . h>

6 # i n c l u d e < l lvm / A n a l y s i s / LoopInfo . h>

7 # i n c l u d e < l lvm / IR / I n s t r T y p e s . h>

8 # i n c l u d e <map>

9 # i n c l u d e < v e c t o r >

10 # i n c l u d e < s e t >

11

12 u s i n g namespace l lvm ;

13 u s i n g namespace s t d ;

14

15 namespace {

16 s t r u c t L o o p M u l t i p l e I n i t P a s s : p u b l i c F u n c t i o n P a s s {

17 s t a t i c c h a r ID ;

18 L o o p M u l t i p l e I n i t P a s s () : F u n c t i o n P a s s (ID) {}

19

20 boo l runOnFunc t ion (F u n c t i o n &F) o v e r r i d e {

21 LoopInfo &LI = g e t A n a l y s i s < LoopInfoWrapperPass > () . g e t L o o p I n f o () ;

22 i n t loopCount = 0 ;

23 f o r (LoopInfo : : i t e r a t o r i = LI . b e g i n () , e = LI . end () ; i != e ; i

++) {

24 Loop * l = * i ;

25 s e t <Value *> v a l u e s ;

26

27 s e t <Value *> v a l u e s U s e d ;

28 v e c t o r < s t r i n g > va luesUnused ;

29 s e t <Value *> m u l t i p l e I n i t V a l u e s ;

30

31 / / Get t h e b a s i c b l o c k j u s t b e f o r e t h e loop .

32 B a s i c B l o c k * p r e h e a d e r = l −> g e t L o o p P r e h e a d e r () ;

33 i n t c a l l _ f o u n d = 0 ;

34 f o r (B a s i c B l o c k : : i t e r a t o r bb = p r e h e a d e r −> b e g i n () ; bb !=

p r e h e a d e r −>end () ; bb ++) {

10

35

36 / / I n t h e m u l t i p l e i n i t , we c a r e a b o u t a l l s t o r e i n s t r u c t i o n s

37 i f (c a l l _ f o u n d && s t r cmp (bb−>getOpcodeName () , " s t o r e ") == 0)

{

38 / / The 2nd ope rand of t h e s t o r e i n s t r u c t i o n has t h e

v a r i a b l e d a t a .

39 Value * v a l = c a s t <Value >(bb−> ge tOperand (1)) ;

40 m u l t i p l e I n i t V a l u e s . i n s e r t (v a l) ;

41 }

42

43 / / Wait t i l l we f i n d t h e p r i n t c a l l (which i d e n t i f i e s t h e

s t a r t o f t h e m u l t i p l e i n i t s e c t i o n) .

44 i f (s t r c mp (bb−>getOpcodeName () , " c a l l ") == 0) {

45 c a l l _ f o u n d = 1 ;

46 }

47 }

48

49 / / Get t h e loop h e a d e r (c o n d i t i o n b l o c k)

50 B a s i c B l o c k * h e a d e r = l −> g e t H e a d e r () ;

51 f o r (B a s i c B l o c k : : i t e r a t o r bb = header −> b e g i n () ; bb != header −>

end () ; bb ++) {

52 Value * v a l = c a s t <Value >(bb) ;

53

54 / / Add t h e r e s u l t t o v a l u e s used .

55 v a l u e s U s e d . i n s e r t (v a l) ;

56

57 / / Add a l l o p e r a n d s t o v a l u e s used .

58 f o r (i n t k = 0 ; k < bb−>getNumOperands () ; k ++) {

59 Value *v = bb−> ge tOperand (k) ;

60 v a l u e s U s e d . i n s e r t (v) ;

61 }

62 }

63

64 / / Check t h a t a l l e l e m e n t s i n t h e m u l t i p l e i n i t s e t i s p r e s e n t

i n t h e v a l u e s used s e t .

65 f o r (a u t o i t = m u l t i p l e I n i t V a l u e s . b e g i n () ; i t !=

m u l t i p l e I n i t V a l u e s . end () ; i t ++) {

66 i f (v a l u e s U s e d . f i n d (* i t) == v a l u e s U s e d . end ()) {

67 va luesUnused . push_back ((* i t) −>getName ()) ;

68 }

11

69 }

70 i f (va luesUnused . s i z e () > 0) {

71 e r r s () << "No"<< " \ n " ;

72 f o r (a u t o elem : va luesUnused) {

73 e r r s () << elem << " " ;

74 }

75 } e l s e {

76 e r r s () << " Yes " << " \ n " ;

77 f o r (a u t o elem : m u l t i p l e I n i t V a l u e s) {

78 e r r s () << elem −>getName () << " " ;

79 }

80 }

81 e r r s () << " \ n " ;

82 }

83 r e t u r n f a l s e ;

84 }

85

86 vo id g e t A n a l y s i s U s a g e (A n a l y s i s U s a g e &AU) c o n s t o v e r r i d e {

87 AU. s e t P r e s e r v e s C F G () ;

88 AU. addRequi red < LoopInfoWrapperPass > () ;

89 }

90 } ;

91 }

92

93 c h a r L o o p M u l t i p l e I n i t P a s s : : ID = 0 ;

94

95 s t a t i c R e g i s t e r P a s s < L o o p M u l t i p l e I n i t P a s s >

96 X(" loop − m u l t i p l e − i n i t − p a s s " , " Loop M u l t i p l e i n i t p a s s " ,

97 t r u e , f a l s e) ;

A loopInfo object needes to be created using the getLoopInfo() function. This object

provides useful information about loops in the program. This Object is an iteratable

collection. As we see on line 21, we first generate a LoopInfo object. Then we loop

over the loop info object. At each loop, we first get the Loop object (Line 24).

The whole program is divided into basic blocks. Each basic block may contain

1 or more instructions. BasicBlocks are very commonly used in passes. Similar to

Assembly, each instruction has an Opcode. The Opcodes uniquely define the operation

being performed.

12

The loop object has some useful utilities. We use the getLoopPreheader function in

line 32 to get the preheader block for the loop. This is the block just before the loop

header. The header is the block that defines the condition (this is where control comes

back to in the branch statement at the end of the loop).

The preheader contains all the initialization statements, and the call statement, and

might contain statements above the call (this is as per the input structure defined). By

looping over the preheader basic block (line 34), it iterates over each instruction. The

iterator bb is analogous to an instruction object. Instruction objects have useful methods

like getOpcodeName and getOperand(OperandPosition) which we use. In line 44, we

detect a call instruction, which marks the printf call. If we have found the printf call,

then we care about store instructions. These instructions will be of the form "store

variableName value". The target variable, which gets initialized will be the 1st operand.

GetOperand gets a pointer (which is of type Instruction). We Cast it to a Value type

(which is what LLVM uses to represent operands).

We make a dictionary of all the operands which are used in the initialization sec-

tion. Next we get the LoopHeader, which has the condition blocks. We then insert all

operands used in the conditions. Operands can be on both LHS and RHS of a condition.

We add all operands to the dictionary.

Finally, we Loop through the dictionaries to match. If any element is not used, we

print it. We see that we can call getName() to get the variable name as it is in the code.

13

CHAPTER 3

Analysis of existing solutions

There is a lot of existing literature that outlines solutions that help detect and prevent

timing based attacks. Each of them have some advantages, and disadvantages. Some

of these use LLVM based passes to process the data. We will look at these solutions in

detail in the below sections.

3.1 Eliminating Timing Side-Channel Leaks using Pro-

gram Repair

This section is based on work by Wu et al. (2018). This is a pure LLVM based pass,

which transforms the program to eliminate timing attacks. The algorithm here guaran-

tees that the input program is time invariant to changes in secret variables. It aims to

eliminate both instruction and cache based timing attacks relating to secret variables.

The Authors also use a variety of inputs to prove correctness (the number of cycles

taken by the program is equal for different secret inputs). It uses a variety of interesting

techniques to detect sensitive branches and make sure that the sensitive code is time

invariant. We’ll explore those techniques below.

3.1.1 Unbalanced conditional branches

Suppose you have an if-else block which switches based on the secret, and the lengths of

the if and else block are different, then this is a potential leak. If for some configuration

of the secret, the shorter block runs, then this is valuable information gained by the

attacker. The goal should involve making the branches depending on the secret the

same size (size meaning number of instructions).

Here is an example of a vulnerable program and the mitigation used.

1 i f (a [0]&1) b [2] | = 1 ; / / l e a k

2 i f (a [1]&1) b [1] | = 1 ; / / l e a k

3 i f (a [2]&1) b [0] | = 1 ; / / l e a k

The first mitigation suggested was to balance it by using an else block, where you

assign a dummy variable. however, this solution when tested for time independence

failed for different secrets. This might possibly be due to caching effects differing the

number of cycles needed for accessing the dummy variable and the actual variable.

Due to all these microarchitectural effects coming into play, the author then proceeds to

define an LLVM intrinsic called CTSEL, which performs the same operation as above,

but does it in a time independent fashion. The true implementation depends on the

architecture, but the LLVM version would be as follows.

1 b [2] = CTSEL(a [0]&1 , b [2] | 1 , b [2]) ;

2 b [1] = CTSEL(a [1]&1 , b [1] | 1 , b [1]) ;

3 b [0] = CTSEL(a [2]&1 , b [0] | 1 , b [0]) ;

This has no branches, and depending on the first value, will either assign the second

or the third value to the Left hand side. This is the final strategy used to remove branch

statements, which can potentially cause timing leaks.

3.1.2 Inconsistent cache accesses

This is caused typically because most cryptography algorithms implementations use

a lookup table for the sbox. Now if the full lookup table is present in the cache, all

accesses will take the same time, and there will be no timing leaks. If we can ensure

that all elements are in the cache before we look it up, it will work. The author outlines

3 countermeasures possible, each with some advantages and disadvantages.

We would like to prevent a timing leak for a line of the form

1 b l o c k [i] = sbox [b l o c k [i]] ;

As a first mitigation, we access all elements in the sbox everytime. If it is not in the

cache, it will incur a miss and load that block into the cache.

1 b l o c k _ i = b l o c k [i] ;

2 f o r (j =0 ; j < 256 ; j ++) {

3 s b o x _ j = sbox [j] ;

15

4 v a l = (b l o c k _ i == j) ? s b o x _ j : b l o c k _ i ;

5 }

6 b l o c k [i] = v a l ;

This does 255 calls which are pointless, and has a new branching instruction which

depends on blocki which typically would depend on the secret value. This will prevent

the timing leak but at a really large performance hit.

The second mitigation strategy, assuming you know the size of a cache block in the

architecture the program is running on, is to access 1 element from each block to ensure

the block gets cached. This is more efficient compared to the above, and achieves the

same objective.

1 b l o c k _ i = b l o c k [i] ;

2 f o r (j = b l o c k _ i % CLS ; j < 256 ; j +=CLS) {

3 s b o x _ j = sbox [j] ;

4 v a l = (b l o c k _ i == j) ? s b o x _ j : b l o c k _ i ;

5 }

6 b l o c k [i] = v a l ;

The last mitigation strategy is to use a pre-loading loop, where all blocks get cached

and then we access normally. If the program for sure doesn’t remove these elements

from the cache after the pre-loading loop, this will work, assuming no external inter-

ference. If, for example, the attacker has access to flush the cache, and decides to flush

just after the pre-loading loop is done, the program becomes vulnerable again. So this

is a really efficient but risky approach.

1 f o r (j =0 ; j < 256 ; j +=CLS)

2 temp = sbox [j] ;

3

4 / / a c c e s s t o sbox [. . .] i s a lways a h i t

5 b l o c k [i] = sbox [b l o c k [i]] ;

3.1.3 Detecting timing leaks using an LLVM pass

The paper now suggests a strategy to detect possible timing leaks using an LLVM pass

on the IR. The pass expects a list of secret variables as the inputs. Any variable directly

computed using the secret variable, or uses conditions on the secret variables will be

16

Figure 3.1: LLVM pass to mitigate sensitive conditional branches.

marked as sensitive. They also approach pointer structures differently by marking spe-

cific fields as sensitive instead of the full array. As an example, if a[0] is dependent on

the secret, only a[0] is sensitive and not a.

Now, once all sensitive variables are determined, a sensitive branch is where the

condition depends on the sensitive variables. Such branches get replaced by CTSEL as

mentioned above. The other sensitive instructions are accesses to lookup tables, where

the index is a sensitive variable. This algorithm is demonstrated in Figure 3.1 (taken

from the original paper by Meng Wu).

Similar approach is taken for the sensitive lookup table accesses. As the author

assumes a weak attacker model, where the attacker only gets to observe the runtime of

the program, he goes ahead with the risky, but efficient pre-loading strategy mentioned

in the previous section. He also proceeds to discuss a strategy to decide using static

analysis to determine if a particular instruction will surely hit cache, in which case the

pre-loading is not necessary. This would not be possible if you assume a stronger attack

scenario.

3.1.4 Advantages, disadvantages, and possible improvements

This algorithm definitely does make the timing leaks non-existent in programs. How-

ever, the weak attacker assumption results in only a small section of attacks being coun-

tered by this algorithm. Even if the attacker just executes another program in parallel

17

which can interfere with the cache, timing leaks can be caused.

However, as the algorithm works to ensure equal CPU cycles regardless of the se-

cret, most statistics based attacks are mitigated (where attackers time multiple runs to

deduce secrets).

We also notice in the results that even with such relaxed assumptions on the attack-

ers, this algorithm suffers from a 3-10x slowdown (across different algorithms). Also,

the transformed code is 5-10x larger than the normal executable. This could be con-

cerning for small budget devices, which would like to use cryptography algorithms as

they have both limited space and compute power.

This approach is as optimized as it can be, for the assumed threat model. As the

transformation operations are only performed on sensitive branches or lookup table

accesses, if we try to gamble and not optimize any of these sensitive operations, it can

cause a timing leak by carefully designing inputs.

Another issue is this approach has been tailored to fit cryptography algorithms. If

the program uses any external functions (library functions maybe), which depend on the

sensitive variables, then the LLVM pass will fail. The programmer needs to be careful

to avoid using any such functions. It also depends on the size of the input look up table.

If a new program has a variable sized table, then this runs into problems. It does solve

the timing leak issue in crypto libraries, but on a larger scale cannot protect programs

from timing leaks. There might be non-crypto programs which would like to protect

their variables from timing attacks, but they can’t really benefit from this approach due

to the lack of generalization.

In conclusion, this work provides a lot of insights into detecting timing leaks through

static analysis and prevention of weak attacks by making the program runtime indepen-

dent of the sensitive data. It works really well in practice when used on cryptography

algorithms like AES. The code can still be vulnerable to attacks like Meltdown, Spec-

tre, and attacks where the attacker can control the cache (either through flush, load,

etc). The performance hit and executable size is significantly increased, but attempting

to reduce either of these results in a potential leak.

18

3.2 ct-fuzz: Fuzzing for Timing Leaks

This paper by He et al. (2020) dives into a very different approach to prevent timing

leaks. They use fuzzers which are typically used to detech memory leaks by testing

complex software. They use these fuzzers to detect issues where 2 different runs of the

same program might express a property (say runtime) differently. Thus this would be

able to detect a program vulnerable to timing attacks.

The core idea that ct-fuzz uses is to execute 2 copies of a given program, in isolation

so both don’t interfere, and then the program crashes if the 2 executions are distinguish-

able based on the test property. For example, if the 2 executions take significantly

different time, then the program would crash.

This approach uses a fuzzer which uses some randomization and a fixed algorithm

to generate new inputs from existing inputs. The ct-fuzz algorithm manages to detect

timing vulnerabilities, but does not aim to solve the timing vulnerability problem.

It is a very efficient solution to detect, as it uses intelligently crafted inputs to detect

a timing leak. However, its utility seems limited as it would be impossible as a program-

mer to manually fix all possible timing leaks so as to "pass" the test posed by ct-fuzz.

This is the key disadvantage of this method. A key advantage is that with suitable tools,

this methodology can be used to detect any leaks, where the expected behaviour is con-

stant across multiple runs. For example, if you can measure the power consumed by the

2 programs, this can be used to detect attacks that use the power side channel.

3.3 An Efficient Mitigation Method for Timing Side-Channels

on the Web

This paper by Schinzel (2011) goes into a few possible strategies which can be used to

prevent timing side-channel attacks. They look at it from a web perspective, where the

client would measure time taken between a request and a response. Though not strictly

cache related, these ideas are interesting to look at.

First, he proposes fixing a time T, which is greater than all possible runtimes of the

19

program, and send a response at T. This way the attacker will only observe T. He then

proceeds to discard this approach as for most programs, worst case runtime would be

much worse than the average runtime. The performance hit would be too high.

Next, he proposes adding a random delay at the end of the program before sending

the packet. This though sounds reasonable, is not particularly secure. Consider the same

random number generator is used to get the random number you decide to wait for. This

will mean that the random delay you add gets sampled from the same distribution each

time. If possible, the attacker could sample from this distribution infinitely and figure

out reasonable estimates for the noise. Once you know the noise distribution, it will

be possible to estimate the true values using a de-noising logic (something like MAP

estimation). Thus, using simple statistics, it would be possible to deduce the true timing

characteristics assuming the attacker is allowed to collect enough samples.

Finally, he proposes a really nice idea to prevent timing attacks, which is to use a

fixed hash function which uses the inputs and the secrets and outputs the amount of time

to wait for. This is really nice because now the wait time is a function of the input and

the secret. Its not a random number that can be estimated statistically. This is going to

give a fixed delay to the execution, and its going to be really hard to reverse engineer

either the true runtime or the secret inputs. The only way the attacker can figure stuff

out is to figure out the hash function used. A good hash function is not reversible, i.e.

given the output, there is no way to know what the input (or a range of possible inputs)

is. In this situation, the attacker doesn’t know the hash output. He only knows the sum

of the hash output and runtime of the program, and there is no way to separate these 2

values.

This solution would however be vulnerable to a power side channel attack if the

attacker had the means to access the power traces. When the thread sleeps, the power

consumption would be a flat curve. So that wouldn’t really help as you can time the

execution from the start of the power spike to the end. But assuming that the attacker

only can measure the runtime, this is a pretty good strategy to prevent timing attacks.

20

CHAPTER 4

A new solution using multiple threads

We will devise a new strategy to help prevent timing attacks. First we will demonstrate

a timing attack, which will then be prevented by the proposed solution. We will also

integrate the solution with a library implementing AES to demonstrate performance of

the solution.

4.1 A simple timing attack example

We consider the vulnerable strcmp function mentioned earlier and perform an attack on

it. The setup is where 1 string is a secret value, and the other is the input. The attacker

times the runtime, and uses it to figure out the secret. Here is the victim function

1 i n t s t r i n g _ c m p _ v i c t i m (c h a r * s1 , c h a r * s2) {

2 i n t n1 = s t r l e n (s1) ;

3 i n t n2 = s t r l e n (s2) ;

4 i f (n1 != n2)

5 r e t u r n 0 ;

6

7 f o r (i n t i = 0 ; i < n1 ; i ++) {

8 i f (s1 [i] != s2 [i])

9 r e t u r n 0 ;

10 }

11 r e t u r n 1 ;

12 }

Here we see the early return if 2 characters don’t match. So theoretically, it is

possible to figure out a string by repeatedly calling this function with guesses of the

other string.

Let us assume s1 = “password” which we want to guess using s2. For simplicity,

let’s assume we know the size of the string.

We start our guess as s2 = “aaaaaaaa”, and then time the function. Then we change

only the first character, and try again, i.e. s2 = “baaaaaaa”. Try all possible values for

the first spot, and the maximum time will be taken only by the correct guess. Repeat

this by fixing the first i characters to figure out the (i+1)th character.

Does this idea work in practice? So let’s try it out. . . Below is an implementation of

the above attack. To add more confidence to the guess, and to eliminate randomness due

to setup/internal reasons, we make guesses based on the total time taken by 1000 runs

of the function on the same input, and take the mode of 1000 guesses. (These numbers

were tweaked based on experiments).

1 c h a r * password = " password " ;

2 c h a r g u e s s [8] = " a a a a a a a a " ;

3 f o r (i n t i = 0 ; i < 8 ; i ++) {

4 i n t c o u n t s [2 6] = { 0 } ;

5 f o r (i n t l = 0 ; l < 1000 ; l ++) {

6 l ong max_time = 0 ;

7 c h a r b e s t _ g u e s s = 0 ;

8 f o r (c h a r j = ’ a ’ ; j <= ’ z ’ ; j ++) {

9 g u e s s [i] = j ;

10 c l o c k _ t t = c l o c k () ;

11 f o r (i n t k = 0 ; k < 1000 ; k ++)

12 s t r i n g _ c m p _ v i c t i m (guess , password) ;

13 t = c l o c k () − t ;

14 i f (t > max_time) {

15 max_time = t ;

16 b e s t _ g u e s s = j ;

17 }

18 }

19 c o u n t s [b e s t _ g u e s s − ’ a ’] + + ;

20 }

21 i n t max_count = 0 ;

22 p r i n t f (" c h a r a c t e r %d \ n " , i) ;

23 f o r (i n t j = 0 ; j < 2 6 ; j ++) {

24 p r i n t f ("{%c , %d} " , j + ’ a ’ , c o u n t s [j]) ;

25 i f (c o u n t s [j] > max_count) {

26 g u e s s [i] = j + ’ a ’ ;

27 max_count = c o u n t s [j] ;

28 }

29 }

22

Figure 4.1: Successful attack on the victim function

30 p r i n t f (" \ n ") ;

31 }

32 p r i n t f ("%s \ n " , g u e s s) ;

See Figure 4.1 for a screenshot of the output of the attack.

We see the script very reliably guessing the correct password, just by measuring

runtime of the function calls. Now let’s see how to prevent this (there are many good

existing solutions out there).

4.2 Proposed solution using multi-threading

I would like to propose a simple, but elegant solution that can work against all timing

attacks. The key idea is derived from ct-fuzz which uses 2 threads, and runs the same

program in parallel where 1 thread uses a randomized input and other uses the given

inputs, and if both threads do not finish at nearly the same time, it errors.

This idea can be extended, to have one thread mask the runtime of the actual pro-

gram, and hence, the attacker will not be able to decipher the true runtime of the pro-

gram.

To do this, consider two threads, thread1 and thread2. Thread1 runs the program

with the correct inputs. Thread2 runs the same program repeatedly with randomized

inputs until thread1 completes. Once thread1 completes its execution, it sets a shared

mutex variable to true, which signals to thread2 that thread1 is done. Thread2 checks

this shared variable after each run, before rerunning with random inputs. Thread1 and

Thread2 are barrier synchronized, and will terminate together.

How does this help? Because thread2 is the decider for the total runtime always

(thread2 terminates only when thread1 terminates, and also waits for its current execu-

23

tion to complete before terminating), The total runtime will be only dependent on the

randomized inputs. Why is this secure? There is no way for the attacker to get the actual

runtime of the program, unless they can tap into the hardware (to see state of variables).

There are a few other good things this approach gives us.

1. Healthy intermixing in the cache, can lead to slightly longer executions, but de-
nies information to the attacker. Because both threads run the same program, and
use similar variables (like the sbox), the same cache will be used by both threads,
and can result in some rows being removed unpredictably, or other rows being
added unpredictably. Usually attackers rely on the knowledge that something is
present in the cache, and in this execution, it is not possible to guarantee that
knowledge.

2. Can the attacker use a side channel, like power consumption to determine the
actual runtime? This will not be possible in a single core, multi threaded envi-
ronment as the threads will be scheduled in a round robin fashion, and the power
consumption by both threads will look nearly identical. Theoretically, it wouldn’t
be possible for the attacker to distinguish both threads’ power just by looking at
the power trace, and will not be able to figure out where the first thread completes.

3. To be double careful, in case you do want to protect the runtime better, the first
thread can wait an arbitrary number of milliseconds before flagging the termina-
tion. This can be easily done, without even using a sleep(), by just doing similar
dummy operations (like xor, bitwise comparisons, etc) as done in the algorithm.
To make the power trace similar to the normal executions.

4. Runtime is quantized to be equal to a number of runs of the algorithm on random
inputs. Say the expected runtime of the algorithm is T. Then the expected runtime
of the modified algorithm would be O(nT) where n is the number of times thread2
executed the algorithm. In practice, it is very likely for n=2 to be the outcome if
we assume nearly similar runtimes for the algorithm. The differences in runtime
due to extra branches, cache hits/misses, etc would not theoretically exceed the
total runtime of the algorithm itself (T).

5. This means that theoretically, the slowdown caused by the algorithm would be
2x. We shall test this in practice, because a few things could take longer than
expected (like setting up threads, and checking shared mutex variables).

6. Because of this quantization, runtimes will now fall in buckets T spaces apart. It
is also very likely that most executions would lie in the same bucket (As argued
above). This would mean, with significant probability, most executions take the
same amount of time to finish. And anything that takes longer will be at least a
whole T time units away.

7. The proposed solution is language agnostic, and can be implemented with any
algorithm with any number of parameters. The idea is also simple enough, that it
can be implemented in libraries which need it. It is also possible to write this as a
generic, which would take in a function, with a set of parameters, and implement
the masking functionality.

24

Thus we see a lot of great properties which would make it hard for attackers to

actually extract useful information from the runtime of the program.

4.3 Implementation

We consider the same victim function we had above, and we use this as a black box,

and write an algorithm around it. It doesn’t matter what this algorithm is, but as long as

we have the algorithm, and its inputs, we can implement our algorithm. We first define

2 structures which we will use later on in the implementation.

1 s t r u c t R u n n i n g S t a t u s {

2 i n t c o m p l e t e ;

3 i n t r e s u l t ;

4 p t h r e a d _ m u t e x _ t l o c k ;

5 } ;

6

7 t y p e d e f s t r u c t R u n n i n g S t a t u s R u n n i n g S t a t u s ;

8

9

10 s t r u c t Args {

11 c h a r * s1 ;

12 c h a r * s2 ;

13 R u n n i n g S t a t u s * s t a t u s ;

14 } ;

15

16 t y p e d e f s t r u c t Args Args ;

Running status is used to communicate the actual result, and message the second thread

that the first thread has completed. It has a lock to prevent both threads from editing it at

once. The threads will first wait for the other thread to release the lock before accessing

variables.

Args is a structure that depends on the algorithm. This has all the parameters for the

algorithms. And it has the running status. Both threads will be supplied with the same

args object, and they will use these parameters to execute.

Next we need a randomizer for the inputs. For our situation we need a random

string. Depending on the algorithm, this function is going to be different (for example,

25

we might generate a random 128-bit secret for AES).

1 c h a r * g e t _ r a n d o m _ s t r i n g (i n t s i z e) {

2 c h a r * s = (c h a r *) (ma l l oc (s i z e * s i z e o f (c h a r))) ;

3 f o r (i n t i = 0 ; i < s i z e ; i ++)

4 s [i] = ’ a ’ + (r and () % 26) ;

5 r e t u r n s ;

6 }

This is a simple function that calls rand() and generates an input of required size.

Size is important, because size actually determines the runtime. So we would like to

mock the true runtime, and generate a random input.

Now, we code the thread2’s behaviour. Let’s call this the masking function, which

masks the runtime of the algorithm.

1 vo id * s t r i n g _ c m p _ m a s k e r (vo id * a r g s) {

2 Args * t _ a r g s = a r g s ;

3 i n t c n t = 0 ;

4 do {

5 i f (c n t == 1) c n t = 2 ;

6 c h a r * m1 = g e t _ r a n d o m _ s t r i n g (s t r l e n (t _ a r g s −>s1)) ;

7 c h a r * m2 = g e t _ r a n d o m _ s t r i n g (s t r l e n (t _ a r g s −>s2)) ;

8 i n t r e s u l t = s t r i n g _ c m p _ v i c t i m (m1 , m2) ;

9 i f (c n t != 2) {

10 p t h r e a d _ m u t e x _ l o c k (& t _ a r g s −> s t a t u s −> l o c k) ;

11 c n t = t _ a r g s −> s t a t u s −> c o m p l e t e ;

12 p t h r e a d _ m u t e x _ u n l o c k (& t _ a r g s −> s t a t u s −> l o c k) ;

13 }

14 } w h i l e (c n t < 2) ;

15 r e t u r n NULL;

16 }

The function takes a structure which has the arguments. We generate 2 random

strings with the same size as the input. We have a cnt variable to ensure we run the

randomized input 1 extra time after the true thread has completed. This can be removed,

but it prevents the situation where while waiting for the lock, the first thread actually

finished, and thus the second thread completes nearly at the same time as the first thread.

The loop ends when cnt == 2, which happens 1 iteration after the status is marked as

complete by the first thread.

26

Now we implement the first thread’s behaviour. This is easier to do.

1 vo id * s t r i ng_cmp_ma in (vo id * a r g s) {

2 Args * t _ a r g s = a r g s ;

3 i n t r e s u l t = s t r i n g _ c m p _ v i c t i m (t _ a r g s −>s1 , t _ a r g s −>s2) ;

4 p t h r e a d _ m u t e x _ l o c k (&(t _ a r g s −> s t a t u s −> l o c k)) ;

5 t _ a r g s −> s t a t u s −> c o m p l e t e = 1 ;

6 t _ a r g s −> s t a t u s −> r e s u l t = r e s u l t ;

7 p t h r e a d _ m u t e x _ u n l o c k (& t _ a r g s −> s t a t u s −> l o c k) ;

8 r e t u r n NULL;

9 }

We just call the victim function, pass the true values, and then mark the status as

complete, and update the result. We also use locks to prevent multiple updates or race

conditions between the threads.

Now the final integrating function which sets up the 2 threads

1 i n t s t r i n g _ c m p _ f i x e d (c h a r * s1 , c h a r * s2) {

2 R u n n i n g S t a t u s * s t a t u s = (R u n n i n g S t a t u s *) ma l lo c (s i z e o f (

R u n n i n g S t a t u s)) ;

3 p t h r e a d _ t t h r e a d 1 , t h r e a d 2 ;

4 s t a t u s −> c o m p l e t e = 0 ;

5 s t a t u s −> r e s u l t = −1;

6 p t h r e a d _ m u t e x _ i n i t (& s t a t u s −> lock , NULL) ;

7 p t h r e a d _ m u t e x _ u n l o c k (& s t a t u s −> l o c k) ;

8 Args a r g s 1 ; a r g s 1 . s1 = s1 ; a r g s 1 . s2 = s2 ; a r g s 1 . s t a t u s = s t a t u s ;

9

10 i n t r e t 1 = p t h r e a d _ c r e a t e (& t h r e a d 1 , NULL, s t r ing_cmp_main , (vo id

*)&a r g s 1) ;

11 i n t r e t 2 = p t h r e a d _ c r e a t e (& t h r e a d 2 , NULL, s t r i ng_cmp_maske r , (

vo id *)&a r g s 1) ;

12

13 p t h r e a d _ j o i n (t h r e a d 1 , NULL) ;

14 p t h r e a d _ j o i n (t h r e a d 2 , NULL) ;

15 r e t u r n s t a t u s −> r e s u l t ;

16 }

27

4.4 Implementing on cryptomaniac

We then go ahead and modify the code of cryptomaniac, which is a popular open source

implementation of AES encryption in C. This was easy to understand and modify, and

hence was chosen to modify.

The code changes follow the same structure as above, only the Args struct, and the

randomizer will need to be changed.

Here is the full set of changes that were added. After that, we did a timing analysis

to determine the performance hit on a real algorithm.

1

2 s t r u c t R u n n i n g S t a t u s {

3 i n t c o m p l e t e ;

4 i n t r e s u l t ;

5 p t h r e a d _ m u t e x _ t l o c k ;

6 } ;

7

8 t y p e d e f s t r u c t R u n n i n g S t a t u s R u n n i n g S t a t u s ;

9

10 s t r u c t Args {

11 c h a r * i n f i l e ;

12 c h a r * o u t f i l e ;

13 vo id * key ;

14 vo id * i v ;

15 EVP_CIPHER * c i p h e r ;

16 i n t enc ;

17 R u n n i n g S t a t u s * s t a t u s ;

18 } ;

19

20 t y p e d e f s t r u c t Args Args ;

21

22

23 vo id * e n c r y p t _ m a i n (vo id * a r g s) {

24 Args * t _ a r g s = a r g s ;

25 i n t r e s u l t = a e s _ e n c r y p t _ f i l e (

26 t _ a r g s −> i n f i l e , t _ a r g s −> o u t f i l e , t _ a r g s −>key , t _ a r g s −> iv ,

27 t _ a r g s −> c i p h e r , t _ a r g s −>enc , 1) ;

28 p t h r e a d _ m u t e x _ l o c k (&(t _ a r g s −> s t a t u s −> l o c k)) ;

28

https://github.com/alinush/cryptomaniac

29 t _ a r g s −> s t a t u s −> c o m p l e t e = 1 ;

30 t _ a r g s −> s t a t u s −> r e s u l t = r e s u l t ;

31 p t h r e a d _ m u t e x _ u n l o c k (& t _ a r g s −> s t a t u s −> l o c k) ;

32 r e t u r n NULL;

33 }

34

35 c h a r * ge t_random_key () {

36 c h a r * s = (c h a r *) (ma l l oc (EVP_MAX_KEY_LENGTH* s i z e o f (c h a r))) ;

37 c h a r * temp = " 0123456789ABCDEF" ;

38 f o r (i n t i = 0 ; i < EVP_MAX_KEY_LENGTH; i ++) {

39 s [i] = temp [r and () % 1 6] ;

40 }

41 c h a r * r e s = (c h a r *) (ma l l oc (EVP_MAX_KEY_LENGTH* s i z e o f (c h a r))) ;

42 hex2b in (s , r e s , EVP_MAX_KEY_LENGTH) ;

43 r e t u r n r e s ;

44 }

45

46 c h a r * ge t_ random_iv () {

47 c h a r * s = (c h a r *) (ma l l oc (EVP_MAX_IV_LENGTH* s i z e o f (c h a r))) ;

48 c h a r * temp = " 0123456789ABCDEF" ;

49 f o r (i n t i = 0 ; i < EVP_MAX_IV_LENGTH ; i ++) {

50 s [i] = temp [r and () % 1 6] ;

51 }

52 c h a r * r e s = (c h a r *) (ma l l oc (EVP_MAX_IV_LENGTH* s i z e o f (c h a r))) ;

53 hex2b in (s , r e s , EVP_MAX_IV_LENGTH) ;

54 r e t u r n r e s ;

55 }

56

57 vo id * e n c r y p t _ m a s k e r (vo id * a r g s) {

58 Args * t _ a r g s = a r g s ;

59 i n t c n t = 0 ;

60 do {

61 i f (c n t == 1) c n t = 2 ;

62 c h a r * key = get_random_key () ;

63 c h a r * i v = ge t_ random_iv () ;

64 i n t r e s u l t = a e s _ e n c r y p t _ f i l e (

65 t _ a r g s −> i n f i l e , t _ a r g s −> o u t f i l e , key , iv ,

66 t _ a r g s −> c i p h e r , t _ a r g s −>enc , 0) ;

67 i f (c n t != 2) {

68 c n t = t _ a r g s −> s t a t u s −> c o m p l e t e ;

29

69 }

70 } w h i l e (c n t < 1) ;

71 r e t u r n NULL;

72 }

73

74

75 i n t e n c r y p t _ f i x e d (c o n s t c h a r * i n f i l e , c o n s t c h a r * o u t f i l e , c o n s t

vo id * key , c o n s t vo id * iv , c o n s t EVP_CIPHER * c i p h e r , i n t enc) {

76 R u n n i n g S t a t u s * s t a t u s = (R u n n i n g S t a t u s *) ma l lo c (s i z e o f (

R u n n i n g S t a t u s)) ;

77 p t h r e a d _ t t h r e a d 1 , t h r e a d 2 ;

78 s t a t u s −> c o m p l e t e = 0 ;

79 s t a t u s −> r e s u l t = −1;

80 p t h r e a d _ m u t e x _ i n i t (& s t a t u s −> lock , NULL) ;

81 p t h r e a d _ m u t e x _ u n l o c k (& s t a t u s −> l o c k) ;

82 Args a r g s 1 ;

83 a r g s 1 . i n f i l e = i n f i l e ; a r g s 1 . o u t f i l e = o u t f i l e ;

84 a r g s 1 . key = key ; a r g s 1 . i v = i v ;

85 a r g s 1 . c i p h e r = c i p h e r ; a r g s 1 . enc = enc ;

86 a r g s 1 . s t a t u s = s t a t u s ;

87

88 p t h r e a d _ c r e a t e (& t h r e a d 1 , NULL, enc ryp t_ma in , (vo id *)&a r g s 1) ;

89 p t h r e a d _ c r e a t e (& t h r e a d 2 , NULL, en c r y p t _ m a s ke r , (vo id *)&a r g s 1) ;

90

91 p t h r e a d _ j o i n (t h r e a d 1 , NULL) ;

92 p t h r e a d _ j o i n (t h r e a d 2 , NULL) ;

93 r e t u r n s t a t u s −> r e s u l t ;

94 }

We use 2 randomizers, 1 to get a random Key, and 1 to get a random Initialization

Vector. We generate random hex values and then convert them to binary.

4.5 Results

We first look at the correctness by rerunning the same above attack on the modified

strcmp function which uses the masker.

We see in Figure 4.2 that all the characters are predicted at nearly equal counts (and

30

Figure 4.2: Successfully prevented attack on the victim function

that the output is actual gibberish).

Thus we see that this actually does confuse the attacker, and makes it impossible to

perform a timing attack based on the runtime.

Now we will do a performance analysis using some crypto algorithms. For this, we

use this repo which provides an implementation to encrypt a file using AES-256 with

OpenSSL’s library.

We modify the above implementation based on our algorithm, and time the run.

Here are the results on an input file which was 90Mb in size.

Table 4.1: Performance effect on different modes of operation supported by cryptoma-
niac

Situation Time (raw algo) in s Time (modified algo) in s Slowdown
Encrypt CBC 0.17 0.378 2.22x
Decrypt CBC 0.112 0.215 1.91x

Encrypt block mode 0.092 0.216 2.34x
Decrypt block mode 0.129 0.241 1.86x

We see that the modified algorithm results in around 2x slowdown as predicted

theoretically above.

4.6 Further possibilities

Instead of immediately terminating when thread1 completes, thread2 can take a decision

with some probability p on whether to terminate or not. This can further add noise to

the masked runtimes, which would make it impossible to use the runtime to predict

anything about the actual runtime. We could use an array of threads, instead of a pair,

but not sure what value this provides

31

https://github.com/alinush/cryptomaniac

CHAPTER 5

Detect Meltdown style attacks using static analysis

In this chapter we will look at an initial attempt to look solve memory leaks like melt-

down using a static analysis pass. This idea was proposed during the project but not

pursued as we felt meltdown had good existing solutions and was nearly a solved prob-

lem. However, if we manage to ensure security with a static pass that would mean this

can be caught during compile time, and the program can run faster without the runtime

safety guards that were added as prevention for meltdown.

5.1 Attack scenarios considered

Typically I would categorize micro-architectural attacks into 2 main categories. Attacks

that use just 1 program/thread (like meltdown), where the attacker exploits some inter-

nal behavior failure to extract data. The others are situations where there is 1 victim

program and 1 attacker program. This include scenarios like the flush + reload, prime

+ probe attack, etc which were discussed in Chapter 1. The previous chapters aimed at

fixing multi-process attacks, while in this chapter we will explore a static analysis based

technique that can possibly prevent a single process attack.

5.2 Attack methodology

The attacks of this type typically rely on an out of bounds memory access, through

speculative execution, which gets cached. Then the attacker uses some creative method

to actually extract the cached data. As an example, we have meltdown which was

described in Chapter 1 where the attacker would cache a block in the cache and then

look at the timing profile to determine which block was cached.

The only way the attack works, and exposes some internal data is if the program

manages to violate memory safety in a speculative sense. Assuming we can ensure

that all memory accesses are safe, in a speculative sense, the attacker will not be able

to read outside the scope of the program. As this is a single process attack, and the

attacker controls the attack program, it would make the attacks pointless because the

attacker owns the program that he is able to read data from.

5.3 A minimal example

We consider a small example that we can use to test out a proof of concept solution.

We assume that the program contains only load or store instructions, and we use only

integers, no arrays. Pointers are allowed.

An invalid access can happen if you load from an out of bounds address. Derefer-

encing pointers to valid integers is a valid operation, while dereferencing an arbitrary

pointer is not valid.

Keeping these constraints in mind, lets define some book-keeping we would like to

do to be able to code up these checks.

5.4 A variable’s state

We define a "state" of a variable. Each operation in the program modifies the state of

the variables involved. Lets consider our minimal example above, and our variable state

would need 2 things. First being the range of values it can take. To represent the range,

we will create a Range data structure. Secondly, for pointers, it doesn’t make sense to

know the range as it would store a variable’s address (if valid obviously). So we would

like to know the variable it points to. This is the second attribute of the state.

5.5 The range data structure

To effectively store and process ranges, we need to create a range data structure, which

supports all arithmetic operations. A range is defined as a collection of subranges. We

create a subrange using 2 numbers which denote the start and end of the subrange, and

2 booleans denoting if the endpoints are included or not.

33

To define a range, we create 4 sets.

1. Set of included discrete points.

2. Set of all excluded points (e.g if we do "if(x!=0)" then the state of x will exclude
0).

3. Set of all included subranges. These will be validated to be non-overlapping.

4. Set of all excluded subranges. These will also be validated to be non-overlapping.

The range data structure should support addition/deletion of of a point, while pre-

serving validity of the range. There will be utility functions that process 2 ranges under

some arithmetic operation, and give the output range.

5.6 Solving the minimal example

Now assuming each variable has a state, we go ahead and do the following.At each load

instruction, we update the state of the variable being loaded to if the right hand side is

a constantExpr. This can be implemented by figuring out the type of the operand in

LLVM. If it isn’t a constant expression, then it is a pointer dereference, which needs

to be checked for safety. There are 2 possibilities, the pointer points to a variable, in

which case it is safe, or the pointer stores a constant value, in which case it probably

isn’t safe. We check the state of the pointer. If the variable it points to is null, then we

deem it unsafe. If it points to a known variable, then it is considered safe. This ensures

memory safety in this small scenario.

5.7 Generalizing from the minimal example

5.7.1 Arithmetic operations

These can be handled by processing the states properly using the range manipulation

utilities that will be provided. There are no other special considerations that need to be

added.

34

5.7.2 Arrays

Now each pointer will need another state attribute. We need to know the size of the

array it points to, if it is an array. This is because the safe range for a pointer is larger.

This new state attribute needs to be managed for pointers. The size can be obtained

from the LLVM at the initialization statement.

5.7.3 Branching instruction

This is the most important instruction because all the attacks rely on this. This is where

specultative execution could change the course of execution. These can be of 2 types.

In the control flow graph, if there is a backward edge due to the branch, it is a loop. If

there is a forward edge then it is a conditional statement.

To handle these types of instructions, we define a speculative execution limit. This

is the max number of instructions that can be executed speculatively. So now, each

variable can have a set of possible states in a particular spot in the program depending

on the paths it could have taken. If all states are safe, the program is deemed safe.

At every branch, we consider both possibilities (branch or no branch) unless it is

an unconditional jump. This will ensure that the program is safe under a speculative

setting.

Let us consider cases where the loops execute a finite known number of times. This

is the case for most cryptographic algorithms. If the loop executes for an unknown or a

user driven number of iterations, it will not be possible to figure out when to terminate

the analysis. This can be considered in future work.

5.7.4 Function calls

Lets consider calls to user-defined functions. Each function can be analysed, and we can

compute a “Read set” for the function. The “Read set” would depend on the function

parameters, any global variables and constants (dependence on internal variables can be

replaced with some expressions of the above, or constants). Each element in the “Read

set” should specify the operations to be performed on the inputs before performing the

35

read. It should also specify (if any) conditions need to be met before checking for

safety. For each function, we also store an “Output set” which again depends on the

same inputs as above. It will also store conditions, based on which a particular output

is chosen.

Functions will be analysed as follows. First we obtain the call graph of the module.

The call graph will have a relation such that if there is an edge (f, g) then f calls g. This

would be a rooted dag, rooted at main(). Any cycles would mean a cyclic call, which

is a compile issue, so hence cycles can’t be present, making it a dag. By traversing this

graph, we can compute the read sets and outputs for every node. We can perform a

recursive dfs, and do the computation when we are going to return to the parent (at that

point, all its children will have been computed already, and its results can be used in the

computation at the current node, as it calls its children). After the DFS, the full module

would be analysed.

If the code uses library functions, we would need to analyse those too. If its possible

to generate a single .ll file with all functions called, then it can be analysed in 1 pass.

If not, there needs to be a way to store the read and output sets of all functions for

the libraries. Once we can generate that, we can load that for the library function in

question and use that in our analysis. This can be considered for future work in this

area.

5.8 Conclusion

With some constraints, it will be possible to ensure memory safety in a speculative

fashion with just static analysis. We did implement a small pass that solved programs

within the "minimal example" constraints. The generalizations were planned out in

theory, and are expected to provide the core ideas to be able to solve the memory bound

checking problem.

This can then be integrated in the compilation to prevent code with such vulnerabil-

ities to compile successfully. Thus, attackers will not then be able to execute programs

which exploit the memory out of bounds to extract information they dont have access

to.

36

REFERENCES

1. He, S., M. Emmi, and G. Ciocarlie, ct-fuzz: Fuzzing for timing leaks. In 2020 IEEE
13th International Conference on Software Testing, Validation and Verification (ICST).
2020.

2. Kocher, P., J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, Spectre attacks:
Exploiting speculative execution. In 40th IEEE Symposium on Security and Privacy
(S&P’19). 2019.

3. Lattner, C. and V. Adve, Llvm: A compilation framework for lifelong program analysis
amp; transformation. In Proceedings of the International Symposium on Code Genera-
tion and Optimization: Feedback-Directed and Runtime Optimization, CGO ’04. IEEE
Computer Society, USA, 2004. ISBN 0769521029.

4. Lipp, M., M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Man-
gard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, Meltdown: Reading kernel
memory from user space. In 27th USENIX Security Symposium (USENIX Security 18).
2018.

5. Schinzel, S., An efficient mitigation method for timing side channels on the web. 2011.

6. Wikipedia contributors (2021). Timing attack — Wikipedia, the free encyclope-
dia. URL https://en.wikipedia.org/w/index.php?title=Timing_
attack&oldid=1026700778. [Online; accessed 18-June-2021].

7. Wu, M., S. Guo, P. Schaumont, and C. Wang, Eliminating timing side-channel
leaks using program repair. In Proceedings of the 27th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2018. Association for
Computing Machinery, New York, NY, USA, 2018. ISBN 9781450356992. URL
https://doi.org/10.1145/3213846.3213851.

37

https://en.wikipedia.org/w/index.php?title=Timing_attack&oldid=1026700778
https://en.wikipedia.org/w/index.php?title=Timing_attack&oldid=1026700778
https://doi.org/10.1145/3213846.3213851

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Description of the attacks, with examples
	Instruction based timing attacks
	Cache timing attacks
	Meltdown

	LLVM
	LLVM
	LLVM IR
	LLVM passes
	An Analysis Pass Example

	Analysis of existing solutions
	Eliminating Timing Side-Channel Leaks using Program Repair
	Unbalanced conditional branches
	Inconsistent cache accesses
	Detecting timing leaks using an LLVM pass
	Advantages, disadvantages, and possible improvements

	ct-fuzz: Fuzzing for Timing Leaks
	An Efficient Mitigation Method for Timing Side-Channels on the Web

	A new solution using multiple threads
	A simple timing attack example
	Proposed solution using multi-threading
	Implementation
	Implementing on cryptomaniac
	Results
	Further possibilities

	Detect Meltdown style attacks using static analysis
	Attack scenarios considered
	Attack methodology
	A minimal example
	A variable's state
	The range data structure
	Solving the minimal example
	Generalizing from the minimal example
	Arithmetic operations
	Arrays
	Branching instruction
	Function calls

	Conclusion

