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ABSTRACT

In recent years, the task of single image super resolution (SISR) has seen a signifi-
cant progress with the advent of data-driven deep learning based methods. Most of the
state-of-the-art models employ supervised-training method where LR images are syn-
thetically generated using simple bicubic downsampling, and hence do not generalize

well to real-world data.

Very recently several attempts using unsupervised training have been made to solve
this problem. They try to model real-world degradations and produce more data for
supervised training. These methods assume availability of large amounts of degraded
data, which may not be true in certain cases, where they will fail to faithfully estimate

the real-world distributions.

To solve this problem, we propose a empirically-motivated data augmentation pipeline
to generate training data. Our experiments with a KLLA-SR dataset validate the effec-
tiveness of our proposed method, producing near-realistic SR images. We also discuss
the challenges involved in training SR models on datasets with limited variation, namely
the unstable GAN training and noise-induced artefacts. We investigated these problems
througly, and provide simple guidelines to avoid them. Our proposed solutions has
been evaluated on all the KLLA-SR datasets, and solves all the major challenges faced

by previous methods.

il



Original images used for our experiments are the property of KLA Corp. and hence,

censored with alternate fake [source | images.

il


https://www.math.ust.hk/~masyleung/Teaching/CAS/MATLAB/image/target2.html
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CHAPTER 1

INTRODUCTION

The task of single image super-resolution (SISR) involves reconstruction of high res-
olution (HR) image from a low resolution (LR) image. It has broad applications in
tasks like medical imaging and surveillance, and for image enhancement tools. In our
case, the need for super-resolution is primarily motivated by need of accelarated yet ro-
bust defect detection on semiconductor substrate using Scanning Electron Microscope

(SEM) images.

In recent years, deep learning based methods, specifically Convolutional Neural
Networks (CNNs) have achieved remarkable results on the SR task, sparking huge in-
terest among the computer vision community. These methods are based on superised
learning approach under which models are trained on large number of LR-HR pairs and
learns the mapping between them. But LR images used for training are generated using
simple bicubic downsampling, both during the training and testing phase. Such a data-
creation mechanism does not capture the real-world degradations failing to generalize

for real applications.

In order to solve this limitation, unsupervised learning methods have been proposed
very recently. They basically try to model the real-world degradations, for example, the
sensor noise and artefacts present in real-images. Most of these methods adopt either
cycle consistency loss to style transfer the degradations from real LR images to clean
LR image, and create more training data. But these methods require enough samples of
real LR images to capture the distribution. Another set of popular approach is based on
the idea of blind SR in which LR degradations are assumed to be fixed but unknown.

By far, the blind SR solutions assume only a simple blur and noise degradation.

We consider a related version of blind SR problem, in which the degradations are
mild structural distortions. Specifically, we are presented a training dataset with clean
LR-HR images, and we learn a end-to-end SR model which can generalize the mapping
from training LR-HR pairs to LR images containing slight distortions, namely defects

in the images. Our problem statement is slighly different that blind SR because the



SR model is not supposed to remove or repair the defects; rather it needs to enhance
them because the goal of super-resolving these images is to improve the defect detection
performance. We call it the blind-defects SR problem. The problem of generalizing SR
mapping to defects is interesting because defects are majorly manufacturing anomalies
and hence, are rare considering the modern six-sigma standards. Creating a dataset
with defective LR-HR pairs or simply with defective LR images, large enough to train

deep-learning models is a cumbersome task.

(a) N1 (b) proposed method (¢) GT

Figure 1.1: SR results obtained by (a) N1 (b) The proposed method (c) ground truth HR

(a) N1 (b) GT

Figure 1.2: The lost defects issue (a) SR result from N2 (b) ground truth HR

We experimented with 4 different SEM image datasets, and identified two major

challenges in solving the blind-defects SR problem:

* Popular deep learining based SR models do not always generalize the mapping
learnt from clean LR-HR pairs to defects. In such cases, defects are heavily
distorted in the generated images, as shown in Fig. 1.1. More alarmingly, for
small defects, the structural alterations due to the defects are ignored, and defects
are absent in the generated outputs, as shown in figure Fig 1.2. We call this the
lost defects problem. If defects are lost in LR to SR conversion, our main aim of
boosting defect detection is defeated.



* Semiconductor substrate datasets contain very less variation across different sam-
ples, when compared to natural images datasets. This leads to GAN training
issues when using GAN-based SR methods.

We sill discuss these issues in more details in Chapter 2. The 4 SEM datasets will

be discussed in Section 4.

To solve the lost defects issue, we propose a empirically-motivated data augmen-
tation approach. This method is based on the ability of a modern SR networks to
identify the defects regions and learning a totally separate LR-HR mapping for these
identified regions, all in a automatic end-to-end manner. To solve the GAN training
problem, we suggest simple hyperparameter free combination. This solution is not
dependent on dataset in any manner, hence can be easily incorporated to improve the
GAN training stability in other domains. Our overall solution draws heaviy from a pre-
vious solution, namely N/. Hence, We call the proposed method as Enhanced NI or
ENI. We also investigate artefacts issue faced by another previous method, namely N2.
We evaluate our methods on all 4 SEM datasets. The proposed method is compared to
N1 and N2, to show the show the qualitative improvements in results. An example is

shown in Fig. 1.1.

In the following sections, we will look at the previous work in super-resolution and

blind-defect SR.

1.1 Related work in Super-resolution

Recently, significant progress has be achieved in performing SISR based on Convolu-
tional Neural Networks (CNNs). The first one is proposed by [Dong et al. (2015)],
which was a shallow neural network. Initial works [Dong et al| (2015), [Kim et al.
(2016), Tai et al. (2017)] used a bicubically interpolated LR image as input to CNN. In
contrast, |Shi et al.| (2016) take a actual LR image as input and perform the upsampling
as part of the SR network. Recently, many succesfult architectures [Lim et al.| (2017),
/hang et al.| (2018)), Haris et al.| (2018), |Dai et al.| (2019)] have been proposed for SISR
task which achieve state-of-the-art performance on PSNR metrics. Ledig et al.| (2017)
proposed GAN based framework to improve the perceptual quality of the SR results.
Many successful works [Wang et al.| (2018)), |[Zhang et al.| (2019), Rad et al. (2019)]



follow a similar GAN-based design now.

As discussed earlier, the aforementioned methods use supervised training on LR-HR
pairs in which LR images is generated by bicubic downsampling. Bulat ez al.|(2018]) in-
troduced realSR dataset containing true LR-HR images. However, creating real LR-HR
dataset sufficient to train a neural network, and repeating it for every domain-specific

SR task, is a cumbersome task. Hence, such datasets are limited.

Lugmayr et al.| (2019) introduced unsupervised learning into the domain of SISR.
They style-transfer the degradations in real-world images (e.g. sensor noise artifacts)
by using cycle consistency loss[Zhu et al. (2017)]. This synthetic generated images
are used as LR images for supervised training on a neural network.Yuan et al.| (2018))
use cycle GAN to achieve the opposite, i.e. produce noise-free LR image, followed by
separate SR step. (Chen et al.| (2020) use similar framework of unsupervised learning of

degradation followed by supervised SR learning.

Another philosophy to deal with real-world degradtion is assuming the degradation
to be blind-SR problem, meaning the degradation is fixed but unknown. Recent works
[Zhou and Susstrunk| (2019), Bell-Kligler et al.| (2019))] assume blur degradation use
deep learning models to estimate blur kernels. Shocher et al.| (2018)) train a CNN on

single LR images.

1.2 Network N1

This network, introduced in 2019, uses a ESRGAN[Wang et al. (2018))] generator. ESR-
GAN introduced two important features to the SRResNet[Ledig ez al.|(2017)] generator:
1) removal of all BN layers 2) replace the basic building block of original SRResNet
with a Residual-in-Residual Dense Block (RRDBs). They argue that BN layers can
introduce unpleasant artifacts at the time of testing, when using a GAN framework.
RRDB blocks boost performance by allowing more layers and connections. N1 uses 8

RRDBs generator with 128 channels. Fig. 1.3 (b) shows the RRDB structure.
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Figure 1.3: (a) N1 generator architecture (b) RRDB structure [source :

@0T))
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Fake
Real
Figure 1.4: ESRGAN discriminator architecture. Conv (z,y, 2) stands for 2D conv
layer with channels z, kernel size y and stride z. N1 uses same distrimi-

nator with =32, [source : [Vasu et al.| (2018)]

Apart from this, its features are very similar to SRGAN|[Ledig et al| (2017)]. It
uses a SRGAN discriminator (used in ESRGAN as well) with 8 convolutional layers,

starting with 32 channels in 1st conv layer. The overall generator loss function is given

as follows:

Le = Lvea + A Laaw (1.1)

Where Ly ¢, used as perceptual loss, is defined as euclidean distance between features
representation of ground truth HR image and SR image produced by generator. We will
explain the VGG loss design more in Section 3.4. L4, is adversarial loss. N1 uses
the Standard non-saturating GAN loss for L,g4,. We will exlain about adversarial loss
in more detail in Section 3.4. N1 uses VGG19-31(after activation) features, which are

much shallower when compared to the levels VGG19-22 and VGG19-54 as prescribed

5



by the papers (VGG features naming convention is as described in [Ledig et al. (2017)]).

No pointwise losses are used in generator loss. It also uses a early stopping regularizer
for discriminator. The discriminator learning rate is annealed much faster compared to
generator, effectively stopping its training after few epochs. This is done to stabilize the

GAN training.

This model, when proposed as solution to dataset 4, used A = 0.01 and no L1 or
L2 loss pretraining. For dataset 4, N1 produced very impressive results. Compared to
its predecessor, the results were much sharper and detailed. It had one drawback : the
results were missing the background noise pattern and hence, looked overly clean and
unrealistic. As we will see in Section 2.2, this is related to presence of early stopping

regularizer.

1.3 Network N2

This network, introduced in 2020, is modified SRGAN][Ledig ez al| (2017)] based net-

work. It used a SRGAN generator with BN layers replaced by Instance Normaliza-

tion[[Ulyanov et al.|(2016)], and pixshuffle layers [Shi e al.| (2016)] with convolutional

layers using computationally-efficient bilinear upsampling. The generator was 8 Resid-

ual blocks SRResNet with only 16 channels.

Generator Network B residual blocks

k9n64s1 "k3nB4s1  k3nbds1 ' k3n64s1 k3n256s1 k9n3s1

o~
x
=
7}
=
£
&5
=
]
]
X
o

skip connection

Figure 1.5: SRResNet architecture. kznysz stands for Conv layer with kernel size =z,
channels y and stride z. N2 uses similar generator with B=8 and 16 channels

instead of 64 [souce : [Ledig ef al. (]QTTWI)]

The dicriminator is a fully convolutional network with expanding and shrinking

feature maps blocks. Both the blocks have 2 convolutional layers each. The generator

6




loss used has the same expression as Equation 1.1, but it uses a VGG19-32 features for
VGG loss and WGAN-GP[Gulrajani et al.| (2017)] loss for adversarial loss. WGAN-
GP loss has been shown to stabilize GAN training, and hence no separate regularizer is

required for N2.

This network was proposed for dataset 2, for which A = 0.1 was suggested and pre-
training with MSE loss was also prescribed. Due to very small size training data (only
20 samples) provided for dataset 2, N2 uses a small 16-channels generator, which is
much smaller to that used in practice. For dataset 2, the network produced good results
both qualitiatively (realistic looking) and quantitaively (defect detection accuracy). It
was also computationally fast requiring only 65 mins to train completely. It had one
major drawback though : The results contained artefacts due to heavy noise present in
input images. We will see in Section 2.1. that this is related to using the small-size

generator.



CHAPTER 2

CHALLENGES WITH LIMITED-DATA SR

As discussed in chapter 1, most state-of-the-art SR models, using supervised or unsu-
pervised nethods, use large amount of data. In our case, we do not have the luxury of
large image data, especially the ones with defects. In this chapter, we will look at what

issues manifest when we train SR models with limited data.

We will first look at defect distortion issue arising from the overfitting of large gen-
erators on limited data, and why naive reduction in size of the generator is not a good
solution. In section 2.2, we will look at GAN training issue arising from the limited
variation in the data. We will use network N1 for experiments and inferences in this
chapter, for both its simplicity and impressive performance in the past. Since most
of the popular SR methods use similar architectures, we believe our observations and

inferences should generalize to them.

2.1 Defects distortions

Our aim under the blind defects SR is to generalize the LR-HR mapping from our lim-
ited dataset to the LR images with defects. Upon training N1 with dataset 2, we observe
a peculiar behaviour. Fig. 2.1 shows a N1 result for a test samples from dataset-2 (see
section 4.1 for deetails of this dataset). Surprisingly, we get a background (everything
other than defects) to be very clean and more visually appealing compared even to
ground truth HR, but the defects are significatly distorted, to the extent that they convey

almost no information about the real defects structures (Fig.2.1 (c)).



(a) LR (b) HR (c) GT

Figure 2.1: SR results obtained on dataset 2 by N1. The yellow bounding box shows
the defect region in each image

Fig. 2.2 shows some more results for defects, obtained by N1. Fig. 2.2 (a) shows a
tripetal defect, formed from boundaries of 3 neighboring balls dissolving into one other.
The N1 results do not capture this information. The produced results contains 3 distinct
balls as if there is no defect at all. This is what we call the lost defects problem. The SR
results are completely losing the information of small defects. When we use these SR
images for defect detection, these small defects cannot be captured at all. So, by using

SR naively, we are hurting the defect detection performance instead of improving it.

(a)

(b)

(c)

LR HR GT

Figure 2.2: SR performance by N1 on dataset 2 defects



Through rigorous sensitivity analysis experiments to study of the effects of various
factors on defect distortion, we conclude that the overfitting is the primary reason. Re-
ducing the size of the generator network, allowed it to generalize the LR-HR mapping
to defect regions, improving defect structure drasticly and even fixing the lost defect
problem. This conclusion advocates the use of small generator networks to avoid over-
fitting. Following this philosophy, we designed a network similar to N1, but using
much smaller networks with less number of parameters. We call this network N1 cguced-

Appendix A gives details related to N1 equceq architecture.

(a) 1 RRDB (b) 4 RRDB (c) N1 (8 RRDB)

Figure 2.3: SR results obtained on dataset 2 by N1 equced

Fig. 2.3 shows SR results produced by 1 RRDB and 4 RRDB deep Nl equced- By
network size reductions, We observe improvement in defect sharpness and structure.
However, there is significant fall in background quality. Smaller networks produce
backgrounds with distorted balls. Fig. 2.4 compares the defects produced using 1
RRDB and 4 RRDBSs N1 ,cquced- As we move from 1 RRDB to 4 RRDBs, we see the de-
fects are already being distorted due to overfitting, although we do not have lost defects
problem. The distortions similar to Fig. 2.4 also exist for 2 and 3 RRDBs N1 cqyced-
This shows that increasing the size even from 1 RRDB to 2 RRDB, the generalization
of LR-HR mapping to defects falls apart. We get generalization only for 1 RRDB. But 1
RRDB network capacity is too small to produce good quality backgrounds. Moreover,
we still do not get ideal defects structures even after exploiting 1 RRDB generator’s

generalization.

There is another problem to reducing network size. Fig. 2.5 shows the SR results

produced by N1 (8 RRDBs), and those from 1 RRDB N1 ¢q4yceq, On dataset-1 (see section

10



(a)

(b)

(©

(d)

1 RRDB 4 RRDB GT

Figure 2.4: SR performance by N1,cq4uceq On dataset 2 defects

11



4.2 for details of this dataset). We see dark undesirable artifacts in the 1 RRDB N1
results. Similar artifacts are observed in SR results obatined by N2 (Section 1.3) on
dataset-1. The only common feature N1gueq and N2 is their small size. Also, we
do not get such artefacts by increasing N1 equceq depth to 3 RRDBs. Figure 2.5 also
shows that the artifacts are highly correlated to noise present in input LR image. This
observations prove that small generator size is susceptible to input noise. The reason
is that the network capacity is too small to learn a complex denoising and SR mapping
from LR to HR domain. It is difficult to produce results which are perfect in all aspects,

using small network size.

(a) LR (b) 1 RRDB N2,4uced (c) GT

Figure 2.5: SR results obtained on dataset 1 by Nl equced

Although defect distortion is caused by overfitting, we see that reduction in network
size is not a good solution in the face of limited data. In section 3.1, we motivate and
propose a dataset-augmentation approach which allows us to use large generator, and

retain background quality which improving defect structure.

2.2 GAN training instability

To understand the problem, we need to understand the GAN loss function and its op-

timal solution. The basic idea of Generative Adversarial Network[Goodfellow et al.|

(2014)] (GAN) is to conduct a game between two neural networks. The Generator net-

work G, takes some input z (generally noise) and transforms it into G(z). Ideally, the
generated outputs G/(z) distribution should resemble a target distribution p,. The sec-

ond network, namely the discriminator D, is optimized towards correctly identifying the

12



generator output GG(z) from real samples of target distribution p,.. This target for each
network is framed as a differentiable cost function. L and Lp are the cost functions

for generator and discriminator respectively. There expressions are given below:

Lp = ~Euny, log[D(x)] — E,np log[l — D(G(x))] @.1)

L = Eyep.logll — D(G(x)) 2.2)

These loss functions result in a zero-sum game between the two players, and Good-
tellow et al.|(2014) have shown that there exists a unique solution to the problem. They
show that the overall GAN framework tries to optimize the Jensen-Shannon divergence

(JSD) between the target distribution p, and generator ouptut distribution p,

1 -+ 1 .+
JSD(p: || py) = 5 KL <p7~ i 2pg> + KL (pg |12 2p9> (2.3)

Where KL is the Kullback-Leibler divergence. Using the above expression, the

optimal discriminator function D* is

D*(z) = _ plw) (2.4)

Pr(2) + py(2)

However, when discriminator function D becomes close to D*, the gradients of Lg
vanish.

lim VQ]EINPTD — D(GQ(ZE))] =0 (25)

D—D*

This fact is terrible (and counter-intuitive), because it means that as discriminator
becomes accurate, generator gets less useful information from the discriminator. For
solving this vanishing gradient problem, the popularly used alternative to equation 2.2,

referred to as non-saturating (NS) loss Ly is given below:

Lys = —E,.log|[D(G(x))] (2.6)

Arjovsky and Bottou (2017) show that this modification alleviates the problem.

When discriminator approches optimality, distribution of gradients of L ¢ become zero

13



mean and infinite variance. Not only is the feedback from discriminator absent (zero

mean) but make the training highly unstable (large variance).

Notice that the unstability conclusions are pivoted on the fact that discriminator
is or close to its optimal solution. In unsupervised learning tasks, this assumption is
very easily realised because generator tasks is much difficult compared to discrimina-
tor. From the literature using supervised learning approach, GAN instability does not
appear to be a very alarming problem in practice, because we have other sources of
feedback to the generator, namely pointwise loss and/or perceptual loss in the SR case,
apart from adversarial loss. Our experiments with SEM images of semiconductor sub-
strate show that, in certain cases, even supervised learning methods can be faced with
unstable GAN training. Fig. 2.6 shows the SR results produced by N1, without its
early stopping regularizer for the discriminator, with high values of \. We have verified

through experiments that this behaviour is due to GAN training only.

() (b) (©)

Figure 2.6: unstable training results obtained by N1 on dataset 2 (a) A =0.1 (b) A = 3.3
c)A=0.5

A possible reason for manifestation of GAN instability in our case, is the fact that
semiconductor substrate dataset have very small variation across samples, and their dis-
tribution lies in a low dimensional manifold, on which discriminator can easily overfit
on. With natural images with lots of variation, it is difficult for discriminator to capture

all the variations and reach optimality very fast.

In supervised SR settings like ours, GAN instability is more vexing. Through ex-
periments, we have observed that, with smaller values of A\ which are generally used,

the SR results and corresponding loss values look acceptable, but results have high vari-
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ance. Fig. 2.7 shows the SR results for various lambda values. From these results, it is
diffcult to recognize the presence of training instability. We recommend trying larger A

values in general, to detect whether the training is unstable.

() (b) (c) (d)

Figure 2.7: SR results obtained by N1 for small lambda values (a) A = 0 (b) A = 5e-3
(c) A =1e-2 (d) A = 2e-2. All the results look acceptable, which makes it
difficult to spot the presense of GAN instability

The previously proposed solutions employ very different methods to deal with GAN
instability issue. The original N1 network uses a early stopping regularizer for dis-
criminator which freezes the discriminator weights after some epochs, while genera-
tor continues to learn. This stops the discriminator before becoming too accurate and
therefore, avoids unstable gradients. We observe empirically that stopping the discrim-
inator training too early, results in output being very similar to not using disriminator
at all. To really exploit the adversarial loss, we need to train discriminator for sufficient
number of epochs. But tuning the discriminator epoch limit is very non-intuitive and

time-consuming.

N2 uses WGAN-GP[Gulrajani et al.| (2017)] loss for stable training. WGAN-GP

uses wassertian distance[Arjovsky ez al.| (2017)] belonging to IPM family, and has been

shown to be very effective at improving training stability both in theory and in prac-

tice. In our opinion, this solution is equivalent to using a sledgehammer to crack a

nut. [Gulrajani ef al.| (2017)] show that WGAN and WGAN-GP use non-intuitive hy-

perparameters and their performance is very sensitive to tuning. Moreover, they require

many more epochs to converge, and do not always produce results which are superior

to Non-saturating GAN loss [Gulrajani et al.| (2017), Lucic et al.| (2017)].

One more important point to mention here is using smaller and simpler networks

also alleviates GAN instability issue, as suggested by Karras et al.|{(2017). We observed
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that, unlike N1, N1,q,ceq does not face GAN instability, But we have already discussed

in section 2.1 that reduction in network size is not a good solution in general.
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CHAPTER 3

PROPOSED METHOD

In previous chapter, we discussed the major challenges that manifest when performing
SR in presence of limited data. In this chapter, we provide solutions to these challenges

and propose a complete solution for the task of blind defects SR.

First, We will look at a data augmentation scheme which solves the overfitting prob-
lem and avoids defect distortion issue (Section 3.1). Then we look at 3 simple changes
suggested for GAN training stability (Section 3.2), and and simple extension of pro-
posed GAN framework to work with augmentated dataset (Section 3.3). Following this,
we will discuss the loss functions (Section 3.4) in detail. The results presented in this
chapter are obtained by applying our proposed changes to network N1, but the flexibilty

of these solutions allows them to be applied on top of any supervised SR method.

3.1 Data Augmentation

We discussed in Section 2.1 that defect distortion is due to overfitting and reducing
the size of network does alleviate overfitting but produces sub-standard results due to
limited capacity. We need a method to reduce overfitting without reducing network
capacity. The only way to do this is to extend the dataset. But we need to be thoughful
about the kind of augmentations we use. Simple geometric augmentation techniques
(e.g. rotation, flipping) are not enough because it is likely that large networks continue
to overfit on such extended datasets, and these transformations do not capture the actual

degradation that appears in test samples: the defects.

Many unsupervised SR methods create a sythetic training dataset with degradation
copied from real degraded images to clean samples, using deep learning techniques.
But we do not have real defects to use such deep learning transfer methods. Hence we
propose a empirically-motivated image degradation technique. In next subsection, we

discuss the properties of deep-learning models underlying the proposed method.



3.1.1 Motivation

Fig. 3.1 shows a non-defective LR-HR pair each for dataset-1, 2 and 3 (see chapter 4 for
dataset details). Dataset-2 is the dataset for which we see significant defect distortion

when performing blind defects SR.

(a) dataset 1 (b) dataset 2 (c) dataset 3

Figure 3.1: LR-HR pairs from training set of dataset 1, 2 and 3

As an attempt to introduce synthetic defects to the training dataset of dataset-2,
lets add random cropped patches LR patches from dataset-1 and 3 to random locations
in dataset-2 LR images, and corresponding HR patches to corresponding locations in
dataset-2 HR images. Fig. 3.2 (a) shows 2 pairs of LR-HR images obtained by such
a method. Fig. 3.2 (b) shows an LR-HR pair for a real defect from testing dataset.
From Fig. 3.2, it is easy to notice that our synthetically-added defects are far from real
defects. Producing defects similar to real defects is a difficult task, if not impossible.
Our idea is to instead just break the uniform ball mesh pattern present in non-defective

images (see Fig 3.1 (b)).
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(@) (b)

@

(i)

(iii)

(iv)
(a) (b) ()

Figure 3.3: SR Results obtained by N1 on dataset 1 (a) using original clean data (b)
synthetic defects data (c) ground truth HR
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Fig. 3.3 shows the results produced by training N1 on dataset with and without
synthetic-defects. As we can observe, the produced defects are very different in the
both the results, but the background results are surprisingly similar. There are 2 more

interesting points to note about produced defects:

* Although while creating synthetic-defect samples, we added the patches cropped
from other datasets at random locations, we see that defects in SR results appear
only at the place where real defects are present, and not anywhere in the back-
ground. This shows that, inspite of its simplicity, the defect-synthesizing method
mentioned above guides the networks to accurately detect structural degrada-
tions, namely defects.

* The produced results look very similar to synthetic-defects cropped from dataset
1. Figure 3.4 shows how produced defects look like patches cropped from dataset
2 image. However, the background results are not affected by the use of synthetic-
defects.

(a) (b)

Figure 3.4: (a) SR defects produced by N1 using synthetic defects data (b) dataset-1
HR. The annotated portion in (a) looks similar to the annoted portion with
corresponding color in (b)

This above obversations remain true even if we make alterations to generator loss
function. This implies that training on synthetic-defects dataset as created above trains
a neural network to decouple the SR task for defects from SR task on backgrounds,
irrespective of the loss function. It can accurately classify the LR input into defect and
background regions, and performs SR on each region differently. Figure 3.5 illustrates
the same idea pictorically. More importantly, the properties of SR function learnt for
defect region depends highly on datasets we used for adding synthetic defect patches
(dataset 2 in the example above), while the SR function for background is not affected

by synthetic defects and its properties are determined by background portions of train-
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ing images. So, it is possible to control the SR performance for defects independent

of SR performance of background, by changing datasets used for synthetic defects.

A

SR function for SR function for
Background defects

Region
classification

E LR image J

Figure 3.5: The pipeline learnt by network implicitly when trained with synthetic de-
fects dataset

3.1.2 Proposed augmentation method

Based on these observations, we propose to use DIV2K dataset[Agustsson and Timofte|

(201°7)] LR-HR pairs for LR and HR defects patches respectively. Fig. 3.6 (a) shows

some samples of DIV2K dataset. DIV2K is a public dataset with diverse 2k resolution
high quality images, and is used as training data for general SR tasks. Fig. 3.6 (b) shows
some synthetic-defect samples generated using DIV2K dataset. Since our images are
grayscale, we convert DIV2K images to grayscale. The motivation is to use DIV2k
dataset for defects SR, is to encourage our network to retain maximum information
about defect structure from LR images, in the SR output. Figure 3.7 shows the results
obtained by training N1 on synthetic DIV2K-based defects. The defects are structurally
accurate but do not look realistic. In section 3.3, we will see that we can get around this

using GAN-based stylization of generated defects.
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(a) (b)

Figure 3.6: (a) DIV2K samples (b) dataset-2 LR-HR pairs with synthetic defects using
DIV2K images

(a)

(b)

(c)

(d)

LR SR GT

Figure 3.7: SR performance by N1 on dataset 2 defects, using DIV2K-based synthetic
defects

The psuedo code for the proposed augmentation method is given algorithm 1. We

take o x « crops from each image in the original training dataset, add  randomly
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Algorithm 1: our proposed augmentation method. All experiments in the
paper use o = 64, = 128
Input: Training dataset A with N clean images with dimensions W x H,
F' = dataset to crop defect patches from,
a = dimension of output images, 5 = number of defective images per original
cropped image
Output: Training dataset R with N.| % | | £].3 defective images with
dimensions o X «
R={}
for z < o x « cropped(A) do
for:=0,...,6do
r < random image from F’
7 <— random shape crop(r)
xg4 < add defect (z, 7)
T4 < rotate x4 by 0; = %z
R+ RU {jd}

shaped patches from DIV2K dataset to each cropped image, generating [ defective
copies. Then, We rotate each of the 3 copies by different angles to generate final dataset.
Rotation is crucial because apart from the synthetic defects, these copies are similar to

each other.

3.2 Improving GAN stability

In Section 2.2, we discussed that SRGAN training can become unstable when using
datasets with limited variation. There are various solutions to solve this problem based
on regularizing the discriminator[Salimans et al.| (2016), Arjovsky et al. (2017), |Ar-
jovsky and Bottou (2017), |Gulrajani et al.| (2017), Senderby et al.| (2016)), Roth et al.
(2017)], but they are too complicated and restrictive for a SR task. In this section, we
shall discuss 3 simple modifications to GAN framework of N1 which are flexible and

hyperparameter-free.

3.2.1 Relativistic GAN

Equations 2.1 and 2.6 give the Standard GAN loss function expressions, as proposed
by and |Goodfellow et al.| (2014) used by N1. With Standard GAN loss, discrimina-

tor tries to maximise the probability of real samples being real and fake samples being
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fake. With the relavistic GAN[Jolicoeur-Martineau! (2018))] (RGAN) loss, discriminator
instead maximizes the probability of real samples being more realistic than fake sam-
ples and fake samples being more fake than real samples. To achieve this we need to

following modifications to the discriminator and loss function.

Dsgan(z) = o[C(x)] = Drgan(vr, x5) = o[C(x,) — C(xy)] G.1)
LgSGAN = —E(M,Z)N(phpz)log[DRGAN(G<Z)7 -Tr)] (3'2)
LN = —Eip torp)l0g[Draan (@0, G(2))] (3.3)

where x, and z; are real and fake samples respectively, fed to the discriminator,
and C' is pre-sigmoidal functional expression for discriminator. [Jolicoeur-Martineau
(2018)] show that such a modification makes the gradients more similar to IPM-based
GANs[Mroueh et al.| (2017)], thereby, improving stability. Using equations 3.2 and
3.3 is computationally expensive. Hence, we use a more practical version of RGAN
called relavistic averaging GAN (RAGAN). The RAGAN discriminator maximizes the
relative probabilities on average. The discriminator and loss function for RAGAN are

as follows:

o[C(z) = E..,.C(G ' [
D () = [C(x) (G(2))] wisrea -
olC(x) — E; . Clx,)]  xis fake

LAY = —Eqynp, log[Dracan ()] = Eonp.log[l = Dracan(G())] 3-5)

LgAGAN = —Esnp.log[Dracan(G(2))] — Eyep,log[l — Dracan()] (3.6)

The expectataion in equation 3.4 can be approximated by averaging over the mini-
batch. ESRGAN[Wang et al.|(2018)] also advocates the use of RGAN but the motiva-
tion was to improve the finer details in the output. Our motivation is based on training

stability.
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3.2.2 Fully Convolutional Discriminator

Next change is replacing the N1 discriminator with a fully convolutional discrimina-
tor. N1 uses SRGANJLedig et al.|(2017)] discriminator which has 2 dense-connected
layers before final ouput layer. DCGAN|[Radford ef al.|(2015)] have shown that using
a fully concolutional discriminator stabalizes the GAN training. Recent state-of-the-
art SR methods[Ji et al.| (2020), Jo et al| (2020)] are also using fully convolutional
discriminators, with the motivation to improve details and reduce unwanted artefacts.
We use DCGAN discriminator suggested for 128 x 128 dimensional input [Jolicoeur-

Martineau| (2018))]. The architecture is given below.

x € SR/HR images
Conv2d 4x4, stride 2, pad 1, no bias, 1->64

LeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 64->128

BN andLeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 128->256
BN andLeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 256->512
BN andLeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 512->1024
BN andLeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 1024->1

3.2.3 Pretraining

In section 2.2, we mentioned that GAN training is more stable in supervised settings
like SR, because generator depends more on pixelwise and perceptual loss instead of
GAN loss. Pretraining is taking this idea of exploiting the supervised setting to the
fullest. If we do not use pretraining (as proposed by N1), we have the discriminator
training with generator from epoch 1. As in any generative task, generator starts by
generating absurd results which slowly become better as training progresses. But, the

absurd results from generator makes it easier for discriminator to identify it accurately
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as fake sample, which leads to unstable updates. By pretraining the generator before it
goes against discriminator, makes the discriminators task more difficult, reducing

the chances of becoming too accurate.

Although the exact loss functions used for pretraining should not have too much
impact, we advocate using pretraining with L1 loss, because ESRGAN[Wang et al.
(2018)] also uses the same for its pretraining. Previous GAN methods encourage pre-
training from the the viewpoint of avoiding local minima, but our experiments have

shown that a simple pretraining phase has major impact on stability.

The 3 modifications suggested above: RAGAN, fully convolutional discriminator,
pretraining, are very flexible in the sense that each of them can be changed indepen-
dently without losing the benefits of others. Even more involved GAN loss [Arjovsky
et al.| (2017), Gulrajani et al.| (2017), Berthelot et al.| (2017)] functions can be used on
the top of RAGAN, without lossing its benefits.

3.3 PatchGAN

Fig. 3.7 (section 3.1) shows the results obtained by N1 on dataset 2 defects when
trained on DIV2K-based synthetic defects data. The defects look unrealistic because
the SR function learnt from DIV2K defects merely super-resolved the defects. But
inspecting the LR-HR pairs of dataset 2 shows that the function is more complicated
than super-resolution. It also colorizes the LR images and adds other details like
shadows and a fine-grainy pattern throughout. The DIV2K dataset does not capture
these transformations, but neither do we have any other dataset which captures these

transformation.

So, we need to stylize the defects using the dataset-2 samples, that are available to us
in the training data. We suggest a GAN-based style transfer to the generated defects
using PatchGAN [Isola ef al. (2017)]. The PatchGAN discriminator classifies P x P
patches of the input image, instead of looking at the entire image. The patch size P is
chosen to be much smaller than the image dimensions, which means the receptive field
P x P of the discriminator is much smaller compared to the image. This encourages
GAN to only stylize the image and leave the low-frequency structural control to other

losses (Perceptual and pixelwise losses). Fig. 3.8 shows the working of the PatchGAN
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for our case. Notice that we feed only clean samples from training dataset to PatchGAN

as real samples. We never feed synthetically-generated defective samples to PatchGAN.

Generated images

- AEVIA

PatchGAN Discriminator ...Em.
N | e
SEEEZRER Stye

H H D — . transfer

N
i

Clean real images ...'...‘. Real

Figure 3.8: Working of PatchGAN. The discriminator looks at P x P sizes patches at
a time, which results in style-transfer at patch-level

Based on the guidelines by (2019)], We propose the following discriminator

architechture which has receptive field P = 34 pixels.

2 € SR/HR images

Conv2d 4x4, stride 2, pad 1, no bias, 1->64
LeakyReLU 0.2
Conv2d 4x4, stride 2, pad 1, no bias, 64->128
BN andLeakyReLU 0.2
Conv2d 4x4, stride 1, pad 1, no bias, 128->256
BN andLeakyReLU 0.2
Conv2d 4x4, stride 1, pad 1, no bias, 256->1

Also, note that using PatchGAN to reduce the receptive field is independent of sug-
gestions in Section 3.2. Section 3.2 proposed method to stabilize GAN training and
PatchGAN is used purely for stylizing the generated defects. PatchGAN is also a fully
convolutional discriminator (infact, it can be thought of as tuned DCGAN discrimina-

tor), and RAGAN and pretraining can be used with PatchGAN as well. The architecture
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given in Section 3.2.2 is for cases when we do not use synthetic defects (see section

4.2.1).

3.4 Loss functions

The proposed loss functions is a slight modification of those used for N1 (equation 1.1).

The overall generator loss function is formulated as:

Le=(1—-90).Lyge + L1 + ALaaw (3.7)

In this section, we discuss each of the component in detail.

3.4.1 VGG Loss

Consider ¢; ; the feature maps obtained by the j-th convolution (after activation) before
the i-th maxpooling layer of pretrained VGG-19[Simonyan and Zisserman| (2014))] net-
work. Then, the VGG loss is defined as euclidean distance between feature maps of SR

image G(Ig) produced from LR image I rand ground truth HR image /.

W; j Hi,j
. ,
Lvee = 3 > (6 Tnr)ey — 6ii(GULR))wy) (3.83)
iwiHig = =

where W, ; and H; ; are the dimensions of ¢; ; feature maps. The perceptual property
of VGG loss has been pointed in [Johnson et al.| (2016)]. The VGG19 network can be
thought of as a filter of high-frequency details retaining only high level features of
the input image. Thus, reducing VGG loss requires the generated image to match the
ground truth image perceptually, and not exactly as required by pointwise losses. This
gives more freedom to style losses (e.g. adversarial loss) to control the finer details
independently. We use VGG19-34 (after activation) features when training on synthetic
defects dataset, while VGG19-31 (after activation) for original datasets. We will study

at impact of VGG loss in Section 4.3.
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3.4.2 Pointwise Loss

The pointwise loss can be expressed as:

w H

1
Liv =57 2 D _|Tnn)ey — Gy (3.9)

z=1 y=1

where W and H are the dimensions of HR/SR images. Equation 3.9 calculates the L1
distance between generated and groud truth image. Similarly to L, , we can have L,
calculating euclidean distance. Empirically, we found out that both the norms have very
similar behaviour, atleast as far as SR is concerned. So, we use only L1 distance in the
final generator loss function, because of its superiority in avoiding artefacts as compared
to L2 shown by |Zhao e? al. (2016). Apart from using VGG loss, using pointwise losses
is crucial because VGG loss has some drawbacks (will be discussed in Section 4) which

can be overcome by using combination of VGG and L1 loss.

3.4.3 Adversarial Loss

SRGAN]Ledig et al.| (2017)] show that using only pointwise losses produces over-
smooth results, because of convergence to the mean value of all possible HR images
instead of generating a single valid image with good perceptual quality. They suggest a
adversarial loss to improve the low-frequency details. For adversarial loss, We use the
RAGAN loss function formulations discussed in 3.2.1 for both generator and discrimi-

nator, with all expectations approximated by empirical averages over mini-batches.
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CHAPTER 4

EXPERIMENTS

We train our models on 4 different dataset provided by KLA Corp. These datasets con-
tain SEM images of semiconductor substrate separated into training and testing set.
Following section outline the training process for different datasets. For all our experi-

ments, We use Nvidia GeForce RTX 2080 Ti GPU.

4.1 Dataset-2

4.1.1 Training details

It contains a total of 20 non-defective training images and 64 test images with moderate
structural defects. LR image resolution is 240 x 240 and HR image resolution is 960 x
960 (4x SR) in both training and testing set. The original datasets are non-aligned and
we use normalized correlation maximization to align them. Figure 4.1 shows LR-HR

pair sample from training and testing set each.

(a) (b)

Figure 4.1: LR-HR pair for dataset-2 (a) training set (b) testing set



This dataset is more challenging compared to other datasets (discussed in Section
4.2) because of its simple topology (repetitive patterns) which can be represented in a
low-dimensional manifold. Due to this, N1 exhibits significant defect distortion in SR
results (Fig. 1.1). We propose synthetic-defects based augmentation specifically for
this dataset. Additionally, training samples in this dataset contain higher levels of noise
compared to test samples, which makes the producing test-images-like results more

challenging.

For dataset-2, We use exact same generator as that of N1 (discussed in section 1.2)
because of its complex dense-connected modules which allows us to learn the required
LR-HR tranformation accurately. The PatchGAN architecture (section 3.3) is used for
our discriminator to stylize defects. We feed(generate) grayscale images (number of

channels = 1) to(from) generator.

Training dataset is created using Algorithm 1 (subsection 3.1.2). The original 240 x
240 training images form the input set A. We crop 64 x 64 size non-overlapping patches
in a tiled-fashion (o« = 64) from original LR images. Similarly, we crop 64 x 64 size
non-overlapping patches for DIV2K images (grayscale) and use as our defects dataset

B, and use 7 = 128.

The training is preformed in two phases. As dicussed in subsection 3.2.3, we train
the generator with L1 loss for 50 epochs. Using pre-trained generator as initialization,
we perform GAN-based training using loss function in equation 3.1. with § = 0.9 and
A = 0.04 for 200 epochs. For both pre-training and GAN-based training, the learning
rate is set to = 2 x 107* and decayed by a factor of 0.85 every 10 epochs. Both
training phases use a batch size of 16. We use Adam and SGD optimizer for generator
and discriminator training respectively. The training time is around 60 hours on our

system. Inference takes 0.8 secs per test image.

4.1.2 Qualitative Results

We compare our proposed solution to previously suggested methods N1 and N2 on the
test dataset provided. Since the test LR-HR pairs are highly unaligned, we cannot use

any quantitative metrics (e.g. PSNR, SSIM) to evaluate the results.

It can be observed from Fig. 4.2 and 4.3 that our proposed EN1 obtains much better
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results in terms of both defects and background, compared to other two methods. The
background is clean (not distorted) yet looks real, with all the finer details like shadows
and colorization. PatchGAN works effectively in similarly stylizing our defects, with-
out have any observable impact on their structure (compare to Fig. 3.7). Fi.4.3 (a) and
(d) defects results are especially close to the ground truth HR. N1, as discusssed previ-
ously overfits and produces distorted defects. The background produced by N1 looks
very clean but looks very unrealistic compared to HR. This is because of GAN training
being unstable and not contributing much. N2, on the other hand, produces fairly real-
istic results (due to WGAN-GP) but produces lot of undesirable noise-induced artefacts

due to overly small network size.

N2 ENI1

Figure 4.2: SR result of various methods on dataset-2 background
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(a)

(d)

(©)

(d)

LR

N1 N2

ENI1

Figure 4.3: SR result of various methods on defects in dataset-2 test set

4.2 Other datasets

4.2.1 Training details

Apart from dataset-2, we have 3 other SEM datasets, namely dataset-1, 3 and 4. Table

4.1 gives their details, while Figure 4.4 show a LR-HR sample for each.

dataset | LR dimensions HR dimensions training set size | testing set size
1 256 x 256 1024 x 1024 (4x SR) 28 328
3 512 x 512 1024 x 1024 (2x SR) 15 606
4 128 x 128 512 x 512 (4x SR) 843 56

Table 4.1: Dataset 1,3 and 4 details

33




() (b) (c)

Figure 4.4: LR-HR pair for (a) dataset-1 (b) dataset-3 (c) dataset-4

These datasets are not as challenging as dataset-2, because the basic structure of the
images is complex enough that training SR methods on original images generalizes well
to the test set. So, we do not recommend using synthetic data augmentation for these
datasets. Instead, only simple rotation augmentation is sufficient to produce realistic

results. Also, unlike dataset-2, test and train images have similar noise characteristics.

Using large networks like N1, we still observe unstable GAN training even on these
datasets. Hence, we propose changes described in Section 3.2. The DCGAN discrimi-

nator from subsection 3.2.2 should be used because we are not using synthetic datasets.

We crop 64 x 64 size non-overlapping patches in a tiled-fashion (o« = 64) from
original LR images. We rotate these by 16 different angles to generate final training
dataset. For dataset 1 and 3, we use 6 = 0.7, while we use only VGG loss for dataset-4
because it has brightness inconsistency between LR-HR images. There are samples in
dataset-4 for which at some portion of LR image where it is brightly lit, HR image is
dark, and for some other samples, the visa versa. We use A = 0.06 for all 3 datasets.

All other details remain as a those mentioned in subsection 4.1.1.
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4.2.2 Qualitative Results

We compare our proposed solution to previously suggested methods N1 and N2 on the
test dataset provided. Although LR-HR test pairs are aligned for these dataset, we still
avoid comparing based on quantitative metrics for uniformity and simplicity. The real
quantitative test for our SR results is to defect-detection performance (as on the date of

submission of this work, this is yet to be measured).

Fig. 4.5, 4.6 and 4.7 show results for dataset 1, 4 and 3 respectively. Our meth-
ods improves the realistic look of the outputs. Due to small size, N2 produces lots of
noise-induced artefacts for dataset-2, while N1 can filter most of the artefcts, but some
striking ones are still visible in outputs. EN1, due to its better GAN loss, can filter these
artefacts even more effectively. Since the dataset-3 LR-HR mapping is very simple
(only requires super-resolution, unlike dataset-2 which requires super-resolution, col-
orization and shadow-effects), all methods perform satisfactorily on it, but EN1 results
are slightly better. For dataset-4, we see most improvement in fine details and bright-
ness levels. But brightness cannot be made very accurate because of LR-HR brightness

inconsistency in the training data.

N2 EN1

Figure 4.5: SR results obtained by various methods on dataset-1. The highlighted re-
gion shows noise-artefacts in N1 and N2 results. EN1 does not produce
such artefacts.
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EN1 HR

Figure 4.6: SR results obtained by various methods on dataset-4
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N2 ENI1

Figure 4.7: SR results obtained by various methods on dataset-3

4.3 VGG Loss Study

We conducted a study to better understand the effects of using VGG Loss as opposed to
pixelwise losses. For this, we use our proposed EN1 network on dataset-2 and remove
the adversarial loss (set A = 0) to study the effects independent of adversarial loss. We
have experimentally verified that L1 and L2 loss have very similar behaviour even in
presence of VGG loss. So, we present the results only for VGG and L1 loss combina-
tion, but same inferences hold true for VGG and L2 loss combination. Fig. 4.8 show

the SR results obtained by 6 = [0.0, 0.3, 0.7, 0.9. 1.0].

Brightness ¢ stands for the percentage of VGG loss in VGG-L1 combination. With
0 = 0, the brightness is not accurate. But adding a small amount of L1 loss, at § = 0.9,
we see huge improvement in the same. This shows VGG loss cannot produce accurate

brightness on its own, but needs another loss to take care of it. Similar behaviour is

observed by Wang ef al| (2018)). Such a behaviour probably stems from how pixel

values in different regions of the image are scaled differently in feature maps used for
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VGG loss. We have observed this behaviour to cause contrast variance in presence of
adversarial loss. So small amounts of L1/L2 loss should always be used in combination

to VGG loss.

(©) (d)

(e ()

Figure 4.8: EN1 (GAN ablated) results on dataset-2 using (a) 6 = 0.0 (b) 6 = 0.3 (¢)
0=0.7(d)d=09 () =10 ) HR

Over-clean results With increasing ¢, we also see SR outputs looks overly clean, and
finer detais are missing. It probably result of VGG loss filtering high-frequency details
in the image. This produces unrealistic looking results with higher level of VGG loss.

But, this issue can be solved with adversarial loss adding the finer details.

Checkboard pattern Using high percentage of VGG loss also adds checkboard pat-
tern, which is also observed for VGG-based texture loss[Waleed Gondal ez al.| (2018))].

Adversarial loss also solves this problem to some extent, but this issue can still result in
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repetitive patterns in presense of adversarial loss [Jo ef al.| (2020)].

Although, the VGG loss has many drawbacks it is essential to use a perceptual loss
which give finer level control to adversarial loss. Without the perceptual property of
VGG loss, we cannot achieve the stylization of defects. Apart from GAN-friendliness,
over-cleanliness property of VGG loss can produce visually more appealing results, but

it is completely a subjective matter.
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CHAPTER 5

CONCLUSION

In this thesis, we explore the various challenges involved in super-resolving SEM im-
ages in face of limited data. We show that directly using state-of-the-art methods causes
defects distortion due to overfitting, and instead of reducing network size, we should
augment the dataset to include the degradations. We saw that GAN training can be-
come unstable in supervised settings with limited data, but can be stabilized using sim-
ple modifications. We also discussed various properties of VGG loss as a perceptual

loss for SR.
We suggest following directions for future work in blind-defects SR:

* For our use-case (KLA-SR), we did not require styling our synthetic-defects
dataset to match the characterics of LR background. In a general case, style
transfer techniques should be adopted for LR synthetic-defects so that they blend
in with the LR background.

» Use of latest style transfer tenchinques instead of simple adversarial loss should
be adopted to improve the output-defects stylization.

* In this thesis, We have considered a hard version of blind-defects SR problem
where we do not use real defects at all. A soft version can be considered where
limited number of real defects samples can be used to create synthetic-defects
using deep learning methods, similar to unsupervised SR methods.

* For styling output-defectss, perceptual loss plays an important role. In section
4.3, we discussed the drawbacks of VGG loss. Searching a better perceptual loss
which overcomes these drawbacks, can improve the blind-defects SR.

* Developing a quantitative metric which works with unaligned images, might help
to direct future work.



APPENDIX A

Network N1, cquced

In section 2.1, we discuss network size reduction as a way to reduce overfitting on
training dataset. Along this line, we modified the Network N1 (section 1.2) to reduce
its number of weight parameters. Apart from this, we use this tuned various other
parameters to achieve best results. We call this tuned network as Nlguceq. All the

features of this network are listed below:

1. The generator is still an ESRGAN[Wang et al.| (2018)] generator, with B RRDB
blocks and 64 channels. The value of B is chosen to be smaller that 8.

2. A reduced SRGAN]Ledig et al|(2017)] discriminator is used, with only 2 con-
vololutional layers and starting with 16 channels.

3. VGG Loss is removed from the generator loss function, and is formulated as
follows, instead:
L¢ = Ly + 0.06LEACAN (A.1)

adv

where Ly, is the L1 loss discussed in section 3.4.2 and LEI¢AN i the RAGAN
loss discussed in section 3.2.1.

4. The training dataset is augmented by using simple stretching and sheering srans-
formations to help the network learn LR-HR structure correlation.

5. No pretraining and discriminator regularizer is required, because of the small
network sizes.



APPENDIX B

Frequency-based View of Synthetic defects

In section 3.1, we motivated our proposed data sugmentation method using empirical
results. In this chapter, we shall discuss an alternate view of the same solution based
on frequency, and extend the solution to solve blind-defects SR problem for general
datasets. Please note that we do not need the extended solution for KLLA-SR dataset 2

(See section 4.1).

B.1 Frequency view of Defects distortion problem

In section 2.1, we mentioned that the reason for defects distortion (and lost defects in
certain cases) is overfitting. Now let us look at frequency-domain view of this problem.
Fig. B.1(a) shows amplitude spectrum of non-defective and defective HR images from
Dataset-2, shown in Fig. B.1(b). The x-axis of the plot represents spatial frequency
and the amplitude spectra are obtained by averaging the 2D spectra azimuthally, and is

plotted as dBs.

(a) (b)

Figure B.1: (a) Amplitude spectrum of Dataset-2 defective and non-defective HR sam-
ples (b) Samples used for spectrum plots.



Due to the repeating patterns, we see several discrete frequency peaks in low fre-
quency bands of both the spectra. Fig. B.1 (a) highlights them with dashed lines. One
noticable difference between the two spetra is how the power in low-pass band is in-
creased due to presence of a defect. This is expected because defects do not have any
repeating pattern in particular, and high frquency content is similar to that of back-
ground. Fig. B.2 shows amplitude spectrum of defect cropped, and compares it to
amplitude spectra of natural image patch taken from a DIV2K[Agustsson and Timofte
(2017)] image used. We can observe that the effect brought by a defect to the image has
very similar frequency charactericstics to that of natural image, especially in the very

low frequency band. This explains why DIV2K is a good choice for defects dataset.

(a) (b)

Figure B.2: (a) Amplitude spectrum of cropped defects and natural image (b) Natural
image used.

One more thing to note in Fig. B.1 and Fig. B.2, which was already apparent, is that
high frequency content of defect and background are same. To summarize, defects has
low frequency characteristics of natural image and high frequency characteristics
of background. With this insight, we can extend the solution to take advantage of these
defect charateristics. Although, we showed the results for only HR, similar properties

hold for defects in LR space.

B.2 Systematic degradation in LR space

In section 3.1, we discussed that we can degrade the both LR and HR images by adding

random-shaped patches from natural image space. But as discussed in previous section,
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defects only have low frequency characteristics of natural images. For our synthetic LR
defects to mimic original LR defects completely, the synthetic defects need to match
the high frequency characterstics of background. For Dataset-2, we did not require this
process because it seems that LR background fairly matches natural images in high

frequency characteristics, but this may not be the case in general.

[Fritsche et al.|(2019)] suggest handling different frequency bands using separate
specialised loss functions. The advantage is that optimization of each loss component
becomes easier because of a focused target for each component, and no interference
between different loss functions. Following the same philosophy, we can use follow-
ing loss function to transfering high frequency characteristics of LR defects before our

proposed data sugmentation method (section 3.1)

LG =9 Lperc + (1 - 6) Lcont + )‘1 Ltez + /\2 Lcol (Bl)

LPF HPF LPF| | HPF
v v v v
W(ISR) H(ISR) W(Icont) W(Isty/e) H(Isryle)
Le = (1'8)Lcont + 8Lperc + A1 Lca + Az Liex
A A A
r N r \ s \

W(lsz) W) H(Isr)  H(syie)
|| W(Isg) = W(Ieone) |1~ LvesIsz Icont) ) Wi Fills) "

RAGAN Loss RAGAN Loss

Figure B.3: Procedure for low-frequency degradation

Fig. B.3 illustrates the training framework. It is very similar to ESRGAN frame-
work, with only difference being that there is no change in dimensions between input
and output of the generator (&, and use of two disriminators, one optiizing color loss and
. In fact, we use the same ESRGAN[Wang et al.| (2018)] generator (with upsampling

layers removed) (section 1.2) and PatchGAN architectures for GG and discriminators D1,
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D5 (section 3.3). In next subsections we elaborate on the each loss function component.

B.2.1 Content Loss

The content loss can be calculated as:

Lcont = Ll [W<Inat)7 W<Ideg)] (BZ)

where L; is the L1 loss function as defined in equation 3.9, [,,; is the natural image
whose high frequency components are to be altered, /4, = G(I,) is the generated
output. W is a low-pass filter. As suggested by |Fritsche et al.| (2019), we use 5 x 5
moving average filter for this. Unlike L, loss, L., matches only the low frequency
contents on the I,,,; and ;44, thereby not interfering with L,., which is responsible for

high frequency details.

B.2.2 Texture Loss

The loss function expression is similar to that used previously (equation 3.4, 3.5 and
3.6), with only difference being instead of passing G/(1,,4¢) and I, we pass high-pass
filtered versions, H (G (I,,4¢)) and H (L) to the discriminator Ds. The high-pass filter
is simply calculated as H(/) = I — W(I). Since, the main motivation to use GAN is

for learning high frequency details, passing exactly the same makes optimization easier.

B.2.3 Color Loss

We add another GAN-based loss function which takes only the low-pass versions of
Inat and Igy.. Why do we do this? This is used to make sure that color statistics of
generated images matches that of background image. It is possible that color statistics
of SEM image are skewed compared to natural images. Using a low receptive fields
patchGAN on low-frequency content encourages generated image color distribution to
match the background[Isola et al.| (2017)]. We use a separate discriminators to learn
color and high frequency distribution, instead of using a single GAN to handle both

(by passing the unfiltered I,,; and Iy to it), because separating the target makes
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optimization for each GAN easier, and gives increased control through hyperparameter

tuning.

B.2.4 Perceptual loss

The perceptual loss is calulated as :

Lperc - LVGG []nata Ideg] (B3)

Where Ly ¢ 1s the VGG19-based perceptual loss from equation 3.8. This loss function
also works on matching high level features like L.,,;, but is used to make sure that

various loss functions fit together to produce a consistent image.

B.2.5 Qualitative results

We try our degradation method on Dataset-2 just as an illustration of the idea. As
mentioned earlier, for Dataset-2, directly using natural images suffices, but we perform
the experiments for demonstration of the suggested method. For the experiments, we
use 8 RRDB ESRGAN generator with 64 channels, and both generator use PatchGANs
with 9 x 9 receptive field. Hyparameters values are 6 = 0.1, Ay = A = 0.06 .From
Figure B.4, We can see high frequency and color characteristics being transformed to

those of dataset-2 LR. Now, these modified samples can be used as defects dataset.

natural transformed natural transformed

Figure B.4: High frequency characterictics transfer results on dataset-2 LR
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B.3 Frequency-Separation based super-resolution

We can use the process discussed in section B.2 to transfer high-frequency character-
istics from HR images to natural images before cropping patches from it. A better ap-
proach is to rather perform frequency separation based super-resolution and transfer the
high-frequency characterstics to HR domain defects while performing super-resolution.
This reduces overall training time of the complete process, and avoids discriminator
overfitting on static generated noise. Fig. B.5 illustrates the SR framework with fre-
quency separation. For experiments, we use 9 x 9 moving average filter as low-pass
filter and same GG and D architecture for generator and both discriminator as mentioned
in section 4.1.2. We used hyperparameters 6 = 0.9, \; = Ay = 0.04. Experiments till
the date of submission of this work do not produce any significant improvement over
results shown in Section 4.1.2, but again the motivation is to have more control for bet-

ter generalization.

I nat

LPF LPF|  |HPF LPF HPF
v v v v v
W(I nat) W(I deg) H (I deg) W( I sty/e) H (Istyle)
Le = (1-8)Lcont + SLperc+ A1Lcol + Az Ltex
A A A
a N ( \ ( \

| Wilhad) = Wilieg) [l:+ Lvoo(Tnat, Lueg) V[W{*y’ W.”T’ ”[(ﬁ“”’ ””.“3’8’
D1 D2
v vy v

RAGAN Loss RAGAN Loss

Figure B.5: Procedure for SR with frequency-separation
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