
Performance analysis and enhancement of hardware

prefetchers for Shakti I-Class processor

A Project Report

submitted by

MEENAKSHI SOMISETTY

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

&

MASTER OF TECHNOLOGY

in

ELECTRICAL ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

June 2021

THESIS CERTIFICATE

This is to certify that the thesis titled Performance analysis and enhancement of

hardware prefetchers for Shakti I-Class processor, submitted by Meenakshi Somisetty,

to the Indian Institute of Technology, Madras, for the award of the degree of Bachelor

of Technology & Master of Technology in Electrical Engineering, is a bona fide

record of the research work done by her under our supervision. The contents of this

thesis, in full or in parts, have not been submitted to any other Institute or University

for the award of any degree or diploma.

Prof. V. Kamakoti
Project Guide
Professor
Dept. of Computer Science & Engineering
IIT-Madras, 600 036

Prof. Harishankar Ramachandran
Project Co-Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 28th June 2021

ACKNOWLEDGEMENTS

I would like to express my gratitude towards my project guide, Prof. V. Kamakoti for

giving me the opportunity to work on this project. His extensive knowledge and experi-

ence in this field has been a great source of inspiration. I would also like to acknowledge

Prof. Harishankar Ramachandran as the co-guide of this project and I am grateful for

his support. I would also like to express my deepest gratitude to my project mentor,

Dr. Nitya Ranganathan for her immense guidance and constant support throughout the

course of my project.

I would like to thank my parents and sister for their encouragement and unwavering

support throughout my life. Finally, I would also like to thank my friends for extending

their help and support at all times.

i

ABSTRACT

KEYWORDS: Prefetcher; Stride; I-Class; Bluespec SystemVerilog.

Hardware prefetching is a microarchitectural feature to anticipate addresses that a pro-

cessor may likely reference in future based on past access patterns and speculatively

fetch data or instructions from slow lower-level memories into faster upper-level mem-

ories before the core requests them. The objective of this optimization technique is to

reduce the average memory access time. It helps to reduce the cache miss rate or miss

penalty via parallelism. Hardware prefetchers can be of two types: data prefetchers and

instruction prefetchers. The aim of this project is to modify or enhance the existing L1

data cache prefetchers for the Shakti I-Class core and also design new prefetchers for

this out-of-order RISC-V processor in order to achieve higher instructions per cycle or

frequency. The design of the prefetchers has been done in the Bluespec SystemVerilog

(BSV) language. The implementation of the most common next-line prefetcher and

different program counter based prefetchers is discussed in this thesis.

The various directed tests that were written for the performance check of the prefetch-

ers are also mentioned in this thesis. The performance of the processor with and without

prefetchers is analysed and the comparison of the different prefetchers in different con-

figurations is highlighted in further sections of the thesis.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vi

LIST OF FIGURES vii

ABBREVIATIONS viii

1 INTRODUCTION 1

1.1 Introduction to prefetchers . 1

1.2 About the I-Class processor . 5

1.3 Why Bluespec SystemVerilog? . 5

1.4 Organization of thesis . 6

2 PREFETCHERS 7

2.1 Prefetch parameters . 7

2.2 Next-line/Previous-line prefetcher 8

2.2.1 Existing work . 8

2.2.2 Modification introduced 9

2.3 Stride prefetcher . 9

2.3.1 Existing work . 10

2.3.2 Enhancements . 11

2.4 Line stride prefetcher . 12

2.4.1 Register array version . 13

2.4.2 BRAM version . 14

3 DIRECTED TESTS 15

3.1 Tests for next-line/previous-line prefetcher 15

3.2 Tests for stride prefetcher . 16

iii

3.3 Tests for line stride prefetcher . 16

4 PERFORMANCE ANALYSIS 18

4.1 Experimental setup . 18

4.1.1 I-Class core default configuration 18

4.1.2 I-Class L1 data cache parameters 18

4.2 Experiments . 19

4.3 Results . 20

4.3.1 Next-line/Previous-line prefetcher 20

4.3.2 Stride prefetcher . 21

4.3.3 Register based line stride prefetcher 23

4.3.4 BRAM version of line stride prefetcher 25

4.4 Observations . 27

5 CONCLUSION 29

5.1 Future Work . 29

A DIRECTED TESTS EXAMPLES 30

A.1 test_prefetch_nl1 . 30

A.2 test_prefetch_saxpy_word . 31

A.3 test_prefetch_linestride2 . 34

LIST OF TABLES

2.1 Stride Prefetch Table . 10

2.2 Stride Prefetch Table for line stride prefetcher 13

4.1 Values of parameters in the default configuration of I-Class core. . . 18

4.2 Statistics of no prefetcher performance vs next-line/previous-line prefetcher
performance with no additional memory latency. 20

4.3 Statistics of no prefetcher performance vs next-line/previous-line prefetcher
performance with additional memory latency of 100 cycles. 20

4.4 Statistics of no prefetcher performance vs next-line/previous-line prefetcher
performance with additional memory latency of 200 cycles. 21

4.5 Statistics of no prefetcher vs stride prefetcher performance for addi-
tional memory latency = 0 cycles, prefetch distance = 2. 21

4.6 Statistics of no prefetcher vs stride prefetcher performance for addi-
tional memory latency = 0 cycles, prefetch distance = 4. 21

4.7 Statistics of no prefetcher vs stride prefetcher performance for addi-
tional memory latency = 100 cycles, prefetch distance = 2. 22

4.8 Statistics of no prefetcher vs stride prefetcher performance for addi-
tional memory latency = 100 cycles, prefetch distance = 4. 22

4.9 Statistics of no prefetcher vs stride prefetcher performance for addi-
tional memory latency = 200 cycles, prefetch distance = 2. 22

4.10 Statistics of no prefetcher vs stride prefetcher performance for addi-
tional memory latency = 200 cycles, prefetch distance = 4. 23

4.11 Statistics of no prefetcher vs register based version of line stride prefetcher
performance for additional memory latency=0 cycles, prefetch distance=2. 23

4.12 Statistics of no prefetcher vs register based version of line stride prefetcher
performance for additional memory latency=0 cycles, prefetch distance=4. 23

4.13 Statistics of no prefetcher vs register based line stride prefetcher perfor-
mance for additional memory latency=100 cycles, prefetch distance=2. 24

4.14 Statistics of no prefetcher vs register based line stride prefetcher perfor-
mance for additional memory latency=100 cycles, prefetch distance=4. 24

4.15 Statistics of no prefetcher vs register based line stride prefetcher perfor-
mance for additional memory latency= 200 cycles, prefetch distance=2. 24

4.16 Statistics of no prefetcher vs register based line stride prefetcher perfor-
mance for additional memory latency=200 cycles, prefetch distance=4. 25

v

4.17 Statistics of no prefetcher vs BRAM version of line stride prefetcher
performance for additional memory latency=0 cycles, prefetch distance=2. 25

4.18 Statistics of no prefetcher vs BRAM version of line stride prefetcher
performance for additional memory latency=0 cycles, prefetch distance=4. 25

4.19 Statistics of no prefetcher vs BRAM version of line stride prefetcher
performance for additional memory latency=100 cycles, prefetch dis-
tance=2. 26

4.20 Statistics of no prefetcher vs BRAM version of line stride prefetcher
performance for additional memory latency=100 cycles, prefetch dis-
tance=4. 26

4.21 Statistics of no prefetcher vs BRAM version of line stride prefetcher
performance for additional memory latency=200 cycles, prefetch dis-
tance=2. 26

4.22 Statistics of no prefetcher vs BRAM version of line stride prefetcher
performance for additional memory latency=200 cycles, prefetch dis-
tance=4. 27

vi

LIST OF FIGURES

1.1 Block diagram of a memory system without prefetcher. 2

1.2 Block diagram of a memory system with a core side prefetcher (Present
in the I-Class version of this project). 3

1.3 Block diagram of a memory system with an L1 data cache side prefetcher
(Not present in the I-Class version of this project). 4

2.1 An illustration of prefetch requests issued for prefetch degree equal to
1 to 4. 7

2.2 Next-line/Previous-line prefetcher case (i): Prefetching next n lines. 8

2.3 Next-line/Previous line prefetcher case (ii): Prefetching previous n lines. 9

2.4 Enhancements to existing stride preftcher. 12

2.5 Extraction of line address from the full address. 13

vii

ABBREVIATIONS

BSV Bluespec SystemVerilog

PC Program Counter

SPT Stride Prefetch Table

PRQ Prefetch Request Queue

BRAM Blocked Random Access Memory

SAXPY Single-Precision A·X Plus Y

MSHR Miss Status Handling Register

DTLB Data Translation Lookaside Buffer

PRG Prefetch Requests Generated

PRE Prefetch Requests Enqueued

PRD Prefetch Requests Dropped

viii

CHAPTER 1

INTRODUCTION

This chapter is an introduction about prefetchers, the processor for which prefetchers

have been designed in this project and the language they are implemented in. The last

section of the chapter gives an outline of the flow of the thesis.

1.1 Introduction to prefetchers

Processors use prefetching as a technique to enhance their execution performance. It in-

volves fetching instructions or data from where they are originally stored (usually main

memory) to a local memory (like caches or external buffers) before they are actually

requested by the processor. It helps in the reduction of cache miss rate or miss penalty.

Main memory latency is high compared to caches. Prefetching is a latency-hiding tech-

nique as prefetching data into faster memories like caches and then accessing it from

there is usually many orders of magnitude faster in comparison to directly accessing it

from main memory. Hence, timely and accurate prefetching of data can result in im-

provement in performance. But the disadvantage with prefetchers is that, when they

become too aggressive it can cause increase in traffic on the memory interconnection

network which can lead to extra miss penalty for genuine demand requests from the cur-

rent core or other cores in multi-core processors. If the speculatively prefetched blocks

evict or replace useful demand data or cache lines , it can cause pollution of cache that

could result in a net increase in the cache miss rate. In such cases, prefetchers can

degrade a processor’s performance.

The most common method of prefetching is one in which whenever there is a miss

on a block, the processor fetches two blocks: the requested block and the next con-

secutive block from the main memory into the cache. There are several other types

of prefetchers including Program Counter (PC)-based prefetchers like stride prefetcher

and its modifications, address-based prefetchers and hybrid prefetchers. Most prefetch-

ers predict what address needs to be prefetched based on past access patterns.

Figure 1.1: Block diagram of a memory system without prefetcher.

In this project, data prefetchers like next-line/previous-line prefetcher, PC-based

stride prefetchers and its modifications have been implemented.

2

Figure 1.2: Block diagram of a memory system with a core side prefetcher
(Present in the I-Class version of this project).

3

Figure 1.3: Block diagram of a memory system with an L1 data cache side prefetcher
(Not present in the I-Class version of this project).

4

1.2 About the I-Class processor

The Shakti I-Class core for which prefetchers have been designed in this project, is a

superscalar multi-wide out-of-order processor aimed at the compute, mobile, storage

and networking segments. It has potential applications in general purpose computing

and high-end embedded markets with a target operating frequency range of 1.5-2.5 Ghz.

It is a 4-wide out-of-order core that can fetch/dispatch/issue/commit 4 instructions

per cycle. It implements RV64IMAFDC: multiplication and division, atomic, single

and double precision floating point, compressed instructions extensions of the RISC-V

64-bit base integer instruction set. It is equipped with performance oriented features

like aggressive branch prediction, deep pipeline stages, register renaming which re-

moves false dependencies along with checkpointing, reorder buffer that stores instruc-

tion metadata for all instructions in flight, operand bypass, memory dependence pre-

dictor and non-blocking cache supporting multiple outstanding misses with Miss Status

Handling Registers (MSHRs).

1.3 Why Bluespec SystemVerilog?

All the prefetchers in this project have been designed and implemented in Bluespec

SystemVerilog (BSV) language. BSV is a high-level functional hardware description

programming language to handle chip design which comes with a SystemVerilog fron-

tend. Concurrency can be realized reliably in BSV since it is a rule-based language

where hardware is described as object-oriented modules. The model of atomic rules in

BSV helps to eliminate race conditions that are unwanted and makes it easily scalable

to large designs. BSV also supports more polymorphism. A designer can easily rework

designs, reuse them and integrate them together in more flexible ways in BSV since

rules, modules, interfaces, functions and actions are all objects in this language. This

leads to greater level of correctness, lucidity and preciseness . With all these features,

BSV can greatly raise a hardware designer’s productivity and is hence preferred. The

bsc compiler is used to generate Verilog from the BSV code. From Verilog, the further

steps in the VLSI design flow like generation of netlist, physical layout etc. can be

continued as in the usual process.

5

1.4 Organization of thesis

The outline of the thesis is as follows. Chapter 2 is an elaborate description of the design

and functionality of the existing prefetchers, their enhancements or optimizations and

also the new prefetchers implemented. Next, in Chapter 3, the various tests written

to check the functional correctness and evaluate the performance of each prefetcher

are discussed. Chapter 4 shows the experimental setup and the statistics and results

from the performance analysis of the prefetchers. Finally towards the end, Chapter 5

concludes the thesis with the future scope of this project and further work that can be

done. Appendix A contains examples of some the directed tests mentioned in Chapter

3. The references for this project have been cited at the end of the thesis.

6

CHAPTER 2

PREFETCHERS

As mentioned in the introduction chapter, most prefetchers predict what address needs

to be prefetched based on past access patterns. This process takes place in two stages:

training stage and generate stage. In the training stage, the prefetcher observes the load

PCs and the distance between the memory addresses referenced by the load instruction.

Here, the prefetcher learns and detects the pattern. If the prefetcher has enough confi-

dence in the pattern and all conditions are met, it predicts and issues prefetch requests

in the generate stage. The design and implementation approach of each prefetcher is

described in various sections of this chapter. The first section defines the important

parameters involved in prefetcher design.

2.1 Prefetch parameters

Some of the key parameters in the design of prefetchers are:

• Prefetch degree: Number of prefetch requests to issue at a given time.

Figure 2.1: An illustration of prefetch requests
issued for prefetch degree equal to 1 to 4.

• Prefetch distance: Determines how far ahead from the prefetch address esti-
mated are the prefetch requests issued. It is usually preferred to keep this value
as a power of 2.

• Number of entries: The total number of entries in the Stride Prefetch Table
(SPT).

• Stride (or Line stride) width: Number of bits used to capture the stride (or line
stride) value. It is chosen based on the expected maximum stride (or line stride)
value that can be seen in most situations.

• Maximum confidence: Maximum possible confidence value. Number of bits
used to capture the value of confidence in the stride (or line stride) pattern depends
on this value.

• Threshold confidence: If the confidence value in the stride (or line stride) pattern
seen is greater than or equal to this threshold value, prefetch requests can be
generated.

• Line offset: log2(cache_line_size). It is equal to log of number of bytes in a
cache line. It is used to calculate line address in line stride prefetcher.

2.2 Next-line/Previous-line prefetcher

The most easy to implement version of the next-line prefetcher is one which simply

prefetches the next cache line on a demand access. There are several enhancements

possible to this simple prefetcher to improve its performance. Here, the prefetcher used

in I-Class is explained.

2.2.1 Existing work

The next-line/previous-line prefetcher that was implemented for the I-Class core works

as follows for prefetch degree equal to ‘n’:

Case (i): If the current demand access address is greater than the previous address, the

prefetch requests will be issued for next ‘n’ cache lines.

Figure 2.2: Next-line/Previous-line prefetcher case (i): Prefetching next n lines.

8

Case (ii): If the current address is lesser than the previous address, prefetch requests

will be issued for the previous ‘n’ lines.

Figure 2.3: Next-line/Previous line prefetcher case (ii): Prefetching previous n lines.

2.2.2 Modification introduced

Prefetch requests mentioned in the existing prefetcher will be generated only if the

prefetch address falls in the same page as that of the current demand load address.

2.3 Stride prefetcher

Typically in programs with simple loops, addresses which are at a constant distance or

offset are referenced continuously in consecutive iterations. For example, when access-

ing the elements of an array: if the addresses X, X+4, X+8, X+12 ... are referenced, the

difference between the addresses is 4. This difference is called stride. Here, the stride

pattern is a constant 4. So, it can be predicted that the next address to be fetched may be

at a distance of 4 from the previous address. Hence, we can prefetch the predicted ad-

dress. This is the idea behind a PC-based stride prefetcher. In other terms, observe and

record the distance between the memory addresses referenced by a load instruction (i.e.

stride of the load) as well as the last address referenced by the load. If the same stride

is detected multiple times for that load instruction, the confidence in that stride pattern

increases and when the confidence is above a certain chosen threshold value, prefetch

[current address + stride] address (when prefetch degree and distance are both equal

to 1). The addresses to be prefetched can be predicted accordingly when the prefetch

degree or distance is a different value.

9

2.3.1 Existing work

The stride prefetcher implemented for the I-Class core uses a register array for the

SPT. The prefetcher observes the PC of the load instruction and load addresses. The

SPT keeps track of observed addresses and their stride patterns. It is a PC-indexed

direct mapped table. Some bits of PC become the index used to locate a particu-

lar SPT entry and the other PC bits are used for tag. Each entry of the SPT has the

following components: tag, previous address, stride and confidence counter. Each

component/column of the SPT is represented by a vector with Num_Entries num-

ber of entries. All the counters and widths are parameterizable (Num_Entries, stride

width, maximum confidence, confidence threshold, prefetch degree and prefetch dis-

tance). Index width will be log2(Num_Entries) and confidence counter width will be

log2(Maximum_confidence). Stride is calculated in bytes.

(Current stride) = (Current address) - (Previous address)

Tag Previous address Stride Confidence counter
...
. . . .
. . . .
. . . .
. . . .

...

Table 2.1: Stride Prefetch Table

There are two stages involved. In the training stage, whenever a load instruction is

seen, the table is read and one of the following operations takes place:

1. Load PC hits in the SPT i.e. tag of the current load instruction matches with the
tag present in the SPT entry at that index. If current stride matches stride pre-
viously stored in SPT entry, increment confidence counter in SPT if (confidence
counter) < (maximum confidence) and update previous address in SPT.

2. Load PC hits in the SPT. If current stride does not match stride previously stored
in SPT entry and (confidence counter) > 0, then decrement confidence counter.

3. Load PC hits in the SPT. If current stride does not match stride previously stored
in SPT entry and (confidence counter) = 0, then update the stride field in SPT
with the current stride and update previous address.

4. Load PC misses in the SPT (tag mismatch). Check whether the confidence
counter = 0. If it is, it can be replaced by the information from the current load

10

(tag and previous address) and the stride field can be reset to default value (= 64).
If not, decrement the confidence counter.

In the generate stage, if (confidence counter) >= (threshold confidence), prefetch

degree number of prefetch addresses are sent to the Prefetch Request Queue (PRQ).

Default values of parameters used:

• Maximum value of confidence = 15

• Confidence threshold = 7

• Prefetch degree = 1

• Prefetch distance = 2

• Number of entries in SPT (Num_Entries) = 256

• Stride width = 12

The most common stride seen for a particular load PC is a single positive or negative

stride during one small execution window in the lifetime of a program. However, during

other phases of execution in the same program, the stride observed for the same load

instruction may change. For example, a load may be striding through the first field (with

offset m) of a structure for the first 1000 loop iterations and may be striding through the

second field (with offset n) in the next 1000 loop iterations. Both these scenarios can

be easily captured by this stride prefetcher.

2.3.2 Enhancements

The following improvisations have been introduced to the existing stride prefetcher:

1. The prefetch addresses generated will now depend on prefetch distance value as:

(Prefetch address) = (Current address) + (stride)*(prefetch distance)

2. A prefetch request will be issued only if the prefetch address doesn’t fall in the
same cache line as the previous prefetch request generated.

3. Prefetch requests will be generated only if the prefetch address falls in the same
page as that of the current load address.

11

Figure 2.4: Enhancements to existing stride preftcher.

2.4 Line stride prefetcher

The line stride prefetcher is a modification of the stride prefetcher. Here, the stride is

captured in multiples of cache lines instead of bytes. Though this may be less accurate

comparatively, it saves a lot of space in the SPT. In the stride prefetcher, it takes more

space to store stride value and the complete previous address. Here, the space for storing

stride reduces and also, instead of storing the entire previous address, only the previous

line address will be stored i.e. only the upper order bits of the address will be stored.

If a cache line size is k (64 for this processor) bytes, then the ‘line offset’ parameter

is log2 k (=6 here) and the line address then becomes (load address » line offset) i.e.

ignoring the ‘line offset’ number of lower order bits. Now, stride will be computed as

the difference between the previous line address and the current line address and this

stride has been called as line stride henceforth in the thesis.

(Current line stride) = (Current line address) - (Previous line address)

(Prefetch line address) = (Current line address) + (line stride)*(prefetch distance)

12

Figure 2.5: Extraction of line address from the full address.

Tag Previous line address Line Stride Confidence counter
...
. . . .
. . . .
. . . .
. . . .
...

Table 2.2: Stride Prefetch Table for line stride prefetcher

Default values of parameters used:

• Maximum value of confidence = 7

• Confidence threshold = 3

• Prefetch degree = 1

• Prefetch distance = 2

• Number of entries in SPT (Num_Entries) = 256

• Line Stride width = 5

2.4.1 Register array version

The working of register array based line stride prefetcher is same as that of stride

prefetcher along with the enhancements except that line stride replaces stride in all

computations and line addresses replace the full addresses.

13

2.4.2 BRAM version

In this version, the SPT is stored as a PC-indexed table in Blocked Random Access

Memory (BRAM). The implementation uses the BRAMCore package of BSV. In BRAM,

the read operation has one cycle extra latency (i.e. data is available one cycle after read

request is put).

The design of the line stride prefetcher in this version is as follows: It is imple-

mented with 1R and 1W dual ported BRAM (one port for reading and one port for

writing to the BRAM). A simple 3-cycle pipelined design is chosen (cycle 0, 1, 2).

In cycle 0, the load PC and address are received by the prefetcher and the address is

latched in the read port of the BRAM. The load information is latched in the pipeline

register for stage 0. In cycle 1, the SPT entry read is available and one of the four opera-

tions (same as that in stride prefetcher) and the computation for table entry update takes

place. These values are latched in the pipeline register for stage 1. In cycle 2, if there

is a need to update the table entry, the new entry is written using the write port. Com-

putation and generation of prefetch requests also happens in this cycle if the generate

conditions are satisfied.

An optimization is introduced to deal with the case where the same load PC comes

in to train the prefetcher in back-to-back cycles. In this case, there is a PC that is writing

the updated SPT entry to BRAM in stage 2 and in the same cycle, the same PC from

another load instance is trying to train again using the old values read from SPT in stage

1. This problem is solved using bypassing. In stage 1, it is checked if the stage 2 valid

register is true in that cycle and if the PCs match, the updated values computed by the

previous load are used and if not, the SPT entry values read from the BRAM are used.

14

CHAPTER 3

DIRECTED TESTS

Directed tests in our context, are small assembly language programs written to test the

functionality and performance of a particular feature that we are interested in. They

help in realising if the feature works in the way that we expect it to i.e. perform well in

certain expected scenarios and show degraded performance in certain other scenarios.

They can also be used to tune the various parameters involved in the design. These tests

also serve as a basis for the performance analysis. The directed tests written for the

prefetchers are discussed in the below sections. The loop limit or number of iterations

for the loops mentioned in the tests below is 2048.

3.1 Tests for next-line/previous-line prefetcher

• test_prefetch_nl1: This program has a simple loop in which values are loaded
from addresses which are 64 bytes apart and the cumulative sum of them is cal-
culated. The load address of each iteration is 64 bytes ahead of the that in the
previous iteration. After the loop finishes execution, the sum is stored into a
memory location. Since the addresses that are being referenced are in consec-
utive lines, the next-line/previous-line prefetcher is expected to perform well in
this case and should improve the performance of the processor.

• test_prefetch_nl2: This test is a modification of the previous test. In this test
instead of storing the sum at the end of the loop, it is stored into a memory location
in every iteration of the loop. This is to observe how the prefetch requests are
considered when there are several store operations along with the loads and how
it affects the performance.

• test_prefetch_nl3: This test is same as the first test (test_prefetch_nl1) except
that the addresses are 144 bytes apart. Since the addresses that are being ref-
erenced are not in consecutive lines but instead at a distance of two lines, the
next-line/previous-line prefetcher is expected to degrade the performance as it
always keeps prefetching the next line which is unused.

• test_prefetch_nl4: Similar to the second test (test_prefetch_nl2), this test also
has store operations inside the loop. The rest of the program is same as the pre-
vious test (test_prefetch_nl3). It is also expected to show degraded performance
with next-line/previous-line prefetcher.

3.2 Tests for stride prefetcher

• test_prefetch_stride1: This test has two simple loops. In the first loop values
are loaded from addresses which are 32 bytes apart and the cumulative sum of
them is calculated. The load address of each iteration is 32 bytes ahead of the
that in the previous iteration. In the second loop also values are loaded from
addresses which are 32 bytes apart and the cumulative sum of them is calculated
but the load address of each iterations is 32 bytes behind of the that in the previous
iteration. After the loop finishes execution, the sum is stored into a memory
location. So this test covers scenarios of both positive and negative stride. Since
the stride value is constant for the entire loop, the stride prefetcher is expected
to identify this pattern easily and generate prefetches which should improve the
performance.

• test_prefetch_stride2: This test is a modification of the previous test. In this
test instead of storing the sum at the end of the loop, it is stored into a memory
location in every iteration of the loop.

• test_prefetch_stride3: This test is similar to test_prefetch_stride1 but the stride
in the loop keeps increasing by 16 in every iteration. Since the addresses that
are being referenced are not with a constant stride, the stride prefetcher is not
expected to improve the performance.

• test_prefetch_stride4: Similar to the second test (test_prefetch_stride2), this test
also has store operations inside the loops. The rest of the program is same as the
previous test (test_prefetch_stride3).

• test_prefetch_saxpy_word: This program has a simple Single-Precision A·X
Plus Y (SAXPY) loop. SAXPY is a combination of scalar multiplication and
vector addition: it takes as input two vectors of 32-bit floats X and Y with N
elements each, and a scalar value A. It multiplies each element X[i] by A and
adds the result to Y[i]. In this test, the elements of X are 4 bytes apart in memory
and the elements of Y are 4 bytes part. So, this is again a case of constant positive
stride of 4 which the stride prefetcher should be able to detect easily. So, stride
prefetcher is expected to perform well in this context.

3.3 Tests for line stride prefetcher

• test_prefetch_linestride1: This test is same as test_prefetch_stride1 but the ad-
dresses are 128 bytes i.e. two lines apart. Since the line stride value is constant
for the entire loop, the line stride prefetcher is expected to capture this pattern and
generate prefetches which should improve the performance. The stride prefetcher
can also capture this but the line stride prefetcher can do it while using lesser
space for the SPT.

• test_prefetch_linestride2: This test is a modification of the previous test. In this
test instead of storing the sum at the end of the loop, it is stored into a memory
location in every iteration of the loop.

16

• test_prefetch_linestride3: This test is similar to test_prefetch_linestride1 but it
has just a single positive stride loop.

• test_prefetch_linestride4: Similar to the second test (test_prefetch_linestride2),
this test also has store operations inside the loops. The rest of the program is same
as the previous test (test_prefetch_linestride3).

• test_prefetch_linestride5: This test is a modification of first test. The loop ad-
ditionally has multiplication and division instructions. This is to simulate and
observe the effect of these longer latency instructions.

• test_prefetch_linestride6: This test is a variant of test_prefetch_linestride5. Here,
the addresses are 16 bytes apart instead of 128 bytes.

• test_prefetch_saxpy_line: This test is a modification of test_prefetch_saxpy_word.
The difference is that in this test, the addresses in this test are 16 bytes apart.

Appendix A of the thesis shows assembly code of some of the tests mentioned above.

17

CHAPTER 4

PERFORMANCE ANALYSIS

This chapter contains the results and observations from the performance analysis of the

prefetchers. The experimental setup and the different configurations for which the tests

were run are explained in the first two sections of this chapter.

4.1 Experimental setup

4.1.1 I-Class core default configuration

The I-class core is highly parameterizable but the default configuration is being used

for the experiments for performance analysis of the prefetchers. The values of some the

important parameters of the default configuration of the core are as follows:

Parameter Value
Fetch stage width (instructions per cycle) 4

Decode stage width (instructions per cycle) 4
Issue stage width (instructions per cycle) 4

Commit stage width (instructions per cycle) 4
Number of entries in Load queue in Load Store Unit 16
Number of entries in Store queue in Load Store Unit 16
Number of registers in unified physical register file 128

Number of entries in Re-order buffer 96

Table 4.1: Values of parameters in the default configuration of I-Class core.

4.1.2 I-Class L1 data cache parameters

Details about the data cache and some of the important cache parameters are as follows:

• Cache type: 4-way set associative, Virtually Indexed Physically Tagged, non-
blocking cache

• Cache size: 16 Kilobytes

• Cache line size: 64 bytes

• Maximum number of requests accepted by cache per cycle: 1

• Maximum number of responses sent by cache to the core per cycle: 1

• MSHR size: 8

• MSHR FIFO depth: 3

• DTLB size: 16

4.2 Experiments

To understand the effects of various parameters and evaluate the performance of prefetch-

ers better, the directed tests were run with I-Class default core and cache while varying

the following parameters:

• Additional memory latency cycles: In the current implementation of I-Class,
L2 cache is not yet present. A load hit in the L1 data cache would return the
data back in 2 cycles. A miss will go the DRAM whose latency is typically over
100-200 cycles in a real-time system. To realize this long latency of a miss in
simulation too, we can enforce additional memory latency by increasing the value
of that parameter. A prefetcher primarily helps in hiding the memory latency and
hence the impact of a prefetcher in improving the performance is expected to be
higher in these long latency simulations. Tests were run for 3 values of additional
memory latency = 0, 100 and 200 cycles to observe the effects.

• Prefetch distance: Timeliness of the prefetch requests can be observed by vary-
ing the prefetch distance parameter. A higher prefetch distance value can result
in more timely prefetches. However if the value is too large, the prefetch ad-
dresses generated may be too far and the program is less likely to require the data
at those addresses which may result in lower accuracy of the prefetches. Two
values of prefetch distance: 2 and 4, have been considered for the experiments in
this project.

• Prefetch degree: The value of prefetch degree was set to 1 for all the runs.
Higher prefetch degree could worsen performance as cache accepts only one re-
quest per cycle and more number of prefetch requests would lead to MSHR get-
ting full and cache getting busy.

• Prefetch throttling: In the initial stages of the performance analysis, it was ob-
served that most of the times MSHRs get full with prefetch requests causing the
cache to put busy and affecting the performance of the processor. For all later
runs, prefetch throttling has been enabled. This ensures that 2 MSHRs are always
reserved for demand requests. This drops some prefetch requests but helps avoid
the situation of cache putting busy due to MSHRs getting full with the prefetch
requests.

19

4.3 Results

The following are the statistics observed for the different prefetchers by running them

with the directed tests mentioned in the previous chapter and various parameter values

described in the previous section. The cycles column in the following tables represents

the number of core cycles taken by the processor to finish the test execution.

Abbreviations used in tables:

PRG: Prefetch Requests Generated

PRE:Prefetch Requests Enqueued

PRD: Prefetch Requests Dropped

4.3.1 Next-line/Previous-line prefetcher

• Additional latency = 0 cycles:

Test No prefetcher Next-line/Previous-line prefetcher
Cycles Cycles PRG PRE PRD

prefetch_nl1 44171 43244 2029 412 385
prefetch_nl2 49487 49484 2028 1958 1920
prefetch_nl3 44171 43331 2029 396 375
prefetch_nl4 49487 49522 2028 1926 1895

Table 4.2: Statistics of no prefetcher performance vs next-line/previous-line prefetcher
performance with no additional memory latency.

• Additional latency = 100 cycles:

Test No prefetcher Next-line/Previous-line prefetcher
Cycles Cycles PRG PRE PRD

prefetch_nl1 83749 83788 2030 638 617
prefetch_nl2 86341 86335 2028 1179 1163
prefetch_nl3 83749 83961 2030 619 600
prefetch_nl4 86341 86438 2030 1170 1154

Table 4.3: Statistics of no prefetcher performance vs next-line/previous-line prefetcher
performance with additional memory latency of 100 cycles.

20

• Additional latency = 200 cycles:

Test No prefetcher Next-line/Previous-line prefetcher
Cycles Cycles PRG PRE PRD

prefetch_nl1 135541 135541 2029 360 334
prefetch_nl2 138143 138135 2029 1525 1499
prefetch_nl3 135541 135742 2029 351 327
prefetch_nl4 138143 138338 2030 1540 1515

Table 4.4: Statistics of no prefetcher performance vs next-line/previous-line prefetcher
performance with additional memory latency of 200 cycles.

4.3.2 Stride prefetcher

• Additional latency = 0 cycles, prefetch distance = 2:

Test No prefetcher Stride prefetcher
Cycles Cycles PRG PRE PRD

prefetch_stride1 42099 42175 1901 1621 1363
prefetch_stride2 48631 49180 1689 1609 5
prefetch_stride3 43246 43246 0 0 0
prefetch_stride4 49483 49483 0 0 0

prefetch_saxpy_word 56159 55598 4323 1413 4

Table 4.5: Statistics of no prefetcher vs stride prefetcher performance for additional
memory latency = 0 cycles, prefetch distance = 2.

• Additional latency = 0 cycles, prefetch distance = 4:

Test No prefetcher Stride prefetcher
Cycles Cycles PRG PRE PRD

prefetch_stride1 42099 42088 1830 1467 1052
prefetch_stride2 48631 48671 1323 1202 30
prefetch_stride3 43246 43246 0 0 0
prefetch_stride4 49483 49483 0 0 0

prefetch_saxpy_word 56159 55598 4315 1413 4

Table 4.6: Statistics of no prefetcher vs stride prefetcher performance for additional
memory latency = 0 cycles, prefetch distance = 4.

21

• Additional latency = 100 cycles, prefetch distance = 2:

Test No prefetcher Stride prefetcher
Cycles Cycles PRG PRE PRD

prefetch_stride1 77554 79325 1916 1605 1195
prefetch_stride2 80922 84377 551 362 187
prefetch_stride3 83749 83749 0 0 0
prefetch_stride4 86357 86357 0 0 0

prefetch_saxpy_word 80798 66816 4200 2155 3

Table 4.7: Statistics of no prefetcher vs stride prefetcher performance for additional
memory latency = 100 cycles, prefetch distance = 2.

• Additional latency = 100 cycles, prefetch distance = 4:

Test No prefetcher Stride prefetcher
Cycles Cycles PRG PRE PRD

prefetch_stride1 77554 78063 1854 1571 1195
prefetch_stride2 80922 82839 1082 756 187
prefetch_stride3 83749 83749 0 0 0
prefetch_stride4 86357 86357 0 0 0

prefetch_saxpy_word 80798 66816 4192 2151 3

Table 4.8: Statistics of no prefetcher vs stride prefetcher performance for additional
memory latency = 100 cycles, prefetch distance = 4.

• Additional latency = 200 cycles, prefetch distance = 2:

Test No prefetcher Stride prefetcher
Cycles Cycles PRG PRE PRD

prefetch_stride1 123234 125211 961 664 407
prefetch_stride2 127165 166527 1961 1408 26
prefetch_stride3 135741 135741 0 0 0
prefetch_stride4 138362 138362 0 0 0

prefetch_saxpy_word 127165 85526 4288 1299 2

Table 4.9: Statistics of no prefetcher vs stride prefetcher performance for additional
memory latency = 200 cycles, prefetch distance = 2.

22

• Additional latency = 200 cycles, prefetch distance = 4:

Test No prefetcher Stride prefetcher
Cycles Cycles PRG PRE PRD

prefetch_stride1 123234 123608 1833 1701 1499
prefetch_stride2 127165 138377 1113 856 30
prefetch_stride3 135741 135741 0 0 0
prefetch_stride4 138362 138362 0 0 0

prefetch_saxpy_word 127165 85783 4280 1229 2

Table 4.10: Statistics of no prefetcher vs stride prefetcher performance for additional
memory latency = 200 cycles, prefetch distance = 4.

4.3.3 Register based line stride prefetcher

• Additional latency = 0 cycles, prefetch distance = 2:

Test No prefetcher Register line stride prefetcher
Cycles Cycles PRG PRE PRD

prefetch_linestride1 62751 60882 3486 301 244
prefetch_linestride2 70143 70088 3804 3771 3621
prefetch_linestride3 44171 43204 1749 16 4
prefetch_linestride4 70312 70304 3598 3323 2394
prefetch_linestride5 43259 43261 904 409 384
prefetch_linestride6 37127 37127 0 0 0
prefetch_saxpy_line 105435 85798 5932 4951 1944

Table 4.11: Statistics of no prefetcher vs register based version of line stride prefetcher
performance for additional memory latency=0 cycles, prefetch distance=2.

• Additional latency = 0 cycles, prefetch distance = 4:

Test No prefetcher Register line stride prefetcher
Cycles Cycles PRG PRE PRD

prefetch_linestride1 62751 60861 3004 469 412
prefetch_linestride2 70143 70029 3561 3525 3386
prefetch_linestride3 44171 43193 1513 222 205
prefetch_linestride4 70312 70313 3285 3122 2386
prefetch_linestride5 43259 43277 42 34 11
prefetch_linestride6 37127 37127 0 0 0
prefetch_saxpy_line 105435 86413 5740 5364 2815

Table 4.12: Statistics of no prefetcher vs register based version of line stride prefetcher
performance for additional memory latency=0 cycles, prefetch distance=4.

23

• Additional latency = 100 cycles, prefetch distance = 2:

Test No prefetcher Register line stride prefetcher
Cycles Cycles PRG PRE PRD

prefetch_linestride1 140794 138841 3387 410 349
prefetch_linestride2 140361 140346 3829 3403 3257
prefetch_linestride3 83728 83721 1720 330 314
prefetch_linestride4 140769 140810 3795 3397 3265
prefetch_linestride5 83843 83857 727 386 361
prefetch_linestride6 62783 62783 0 0 0
prefetch_saxpy_line 380610 231580 5943 5014 2372

Table 4.13: Statistics of no prefetcher vs register based line stride prefetcher perfor-
mance for additional memory latency=100 cycles, prefetch distance=2.

• Additional latency =100 cycles, prefetch distance = 4:

Test No prefetcher Register line stride prefetcher
Cycles Cycles PRG PRE PRD

prefetch_linestride1 140794 138828 2920 616 563
prefetch_linestride2 140361 140411 3560 2758 2630
prefetch_linestride3 83728 83721 1478 328 314
prefetch_linestride4 140769 140832 3541 3083 2993
prefetch_linestride5 83843 83870 684 369 347
prefetch_linestride6 62783 63709 0 0 0
prefetch_saxpy_line 380610 213462 5751 5254 3574

Table 4.14: Statistics of no prefetcher vs register based line stride prefetcher perfor-
mance for additional memory latency=100 cycles, prefetch distance=4.

• Additional latency = 200 cycles, prefetch distance = 2:

Test No prefetcher Register line stride prefetcher
Cycles Cycles PRG PRE PRD

prefetch_linestride1 240712 238756 3457 377 316
prefetch_linestride2 240278 240208 3828 3401 3258
prefetch_linestride3 135541 135532 1720 330 314
prefetch_linestride4 240669 240810 3795 3397 3265
prefetch_linestride5 135756 135770 727 386 361
prefetch_linestride6 93221 93221 0 0 0

Table 4.15: Statistics of no prefetcher vs register based line stride prefetcher perfor-
mance for additional memory latency= 200 cycles, prefetch distance=2.

24

• Additional latency = 200 cycles, prefetch distance = 4:

Test No prefetcher Register line stride prefetcher
Cycles Cycles PRG PRE PRD

prefetch_linestride1 240712 238743 2969 609 555
prefetch_linestride2 240278 240321 3564 3131 3000
prefetch_linestride3 135541 135532 1478 328 314
prefetch_linestride4 240669 240832 3541 3083 2993
prefetch_linestride5 135756 135783 683 369 347
prefetch_linestride6 93221 93221 0 0 0

Table 4.16: Statistics of no prefetcher vs register based line stride prefetcher perfor-
mance for additional memory latency=200 cycles, prefetch distance=4.

4.3.4 BRAM version of line stride prefetcher

• Additional latency = 0 cycles, prefetch distance = 2:

Test No prefetcher BRAM line stride prefetcher
Cycles Cycles PRG PRE PRD

prefetch_linestride1 62751 61300 1723 416 296
prefetch_linestride2 70143 70073 3804 3786 3641
prefetch_linestride3 44171 43204 796 168 159
prefetch_linestride4 70312 70302 3769 3683 3567
prefetch_linestride5 43259 43279 1492 679 661
prefetch_linestride6 37127 37127 0 0 0
prefetch_saxpy_line 105435 83595 5908 4450 1477

Table 4.17: Statistics of no prefetcher vs BRAM version of line stride prefetcher per-
formance for additional memory latency=0 cycles, prefetch distance=2.

• Additional latency = 0 cycles, prefetch distance = 4:

Test No prefetcher BRAM line stride prefetcher
Cycles Cycles PRG PRE PRD

prefetch_linestride1 62751 60934 1520 126 53
prefetch_linestride2 70143 70021 2329 2322 2192
prefetch_linestride3 44171 43260 1372 52 34
prefetch_linestride4 70312 70302 3539 3440 3331
prefetch_linestride5 43259 43273 833 394 380
prefetch_linestride6 37127 37127 0 0 0
prefetch_saxpy_line 105435 84340 5681 4811 2294

Table 4.18: Statistics of no prefetcher vs BRAM version of line stride prefetcher per-
formance for additional memory latency=0 cycles, prefetch distance=4.

25

• Additional latency = 100 cycles, prefetch distance = 2:

Test No prefetcher BRAM line stride prefetcher
Cycles Cycles PRG PRE PRD

prefetch_linestride1 140794 139471 868 263 155
prefetch_linestride2 140361 140390 1804 1410 1269
prefetch_linestride3 83728 83719 522 33 19
prefetch_linestride4 140769 140754 2774 2769 2653
prefetch_linestride5 83843 83858 1895 964 942
prefetch_linestride6 62783 62783 0 0 0
prefetch_saxpy_line 380610 223210 4906 3622 1101

Table 4.19: Statistics of no prefetcher vs BRAM version of line stride prefetcher per-
formance for additional memory latency=100 cycles, prefetch distance=2.

• Additional latency = 100 cycles, prefetch distance = 4:

Test No prefetcher BRAM line stride prefetcher
Cycles Cycles PRG PRE PRD

prefetch_linestride1 140794 139137 854 321 258
prefetch_linestride2 140361 140408 3548 2284 2154
prefetch_linestride3 83728 83719 516 30 17
prefetch_linestride4 140769 140762 3539 3533 3428
prefetch_linestride5 83843 83870 1770 967 945
prefetch_linestride6 62783 62783 0 0 0
prefetch_saxpy_line 380610 210123 5716 5011 3324

Table 4.20: Statistics of no prefetcher vs BRAM version of line stride prefetcher per-
formance for additional memory latency=100 cycles, prefetch distance=4.

• Additional latency = 200 cycles, prefetch distance = 2:

Test No prefetcher BRAM line stride prefetcher
Cycles Cycles PRG PRE PRD

prefetch_linestride1 240712 238743 2969 609 555
prefetch_linestride2 240278 240321 3564 3131 3000
prefetch_linestride3 135541 135532 1478 328 314
prefetch_linestride4 240669 240832 3541 3083 2993
prefetch_linestride5 135756 135783 683 369 347
prefetch_linestride6 93221 93221 0 0 0

Table 4.21: Statistics of no prefetcher vs BRAM version of line stride prefetcher per-
formance for additional memory latency=200 cycles, prefetch distance=2.

26

• Additional latency = 200 cycles, prefetch distance = 4:

Test No prefetcher BRAM line stride prefetcher
Cycles Cycles PRG PRE PRD

prefetch_linestride1 240712 239250 1163 258 191
prefetch_linestride2 240278 240247 2547 1717 1592
prefetch_linestride3 135541 135532 516 29 17
prefetch_linestride4 240669 240662 3539 3533 3428
prefetch_linestride5 135756 135786 1770 967 945
prefetch_linestride6 93221 93221 0 0 0

Table 4.22: Statistics of no prefetcher vs BRAM version of line stride prefetcher per-
formance for additional memory latency=200 cycles, prefetch distance=4.

4.4 Observations

• Next-line/Previous-line prefetcher: With next-line/previous-line prefetcher, the
performance was expected to improve for tests ‘prefetch_nl1’ and ‘prefetch_nl2’
but it is observed that it improved only marginally and most of the prefetch re-
quests that enqueued were dropped later as the MSHRs were all full. For the tests
‘prefetch_nl3’ and ‘prefetch_nl4’, the prefetcher degraded the performance like
it was expected to: the processor took more cycles for test execution with the
prefetcher.

• Stride prefetcher: For the test ‘prefetch_saxpy_word’ the stride prefetcher im-
proves the performance significantly and the number of prefetches dropped is
very low. This shows that the stride pattern was detected correctly and prefetches
generated were timely for this type of test which has longer latency operations in-
cluded. The performance was also expected to improve for tests ‘prefetch_stride1’
and ‘prefetch_stride2’ but it is observed that the performance has not improved
and most of the prefetch requests that were enqueued were dropped later due to
the demand requests. As expected, since there is no constant stride pattern for the
tests ‘prefetch_stride3’ and ‘prefetch_stride4’, no prefetch requests are generated.

• Register based line stride prefetcher: Again, the saxpy test ‘prefetch_saxpy_line’
shows significant improvement in performance with the line stride prefetcher.
For the tests ‘prefetch_linestride1’ to ‘prefetch_linestride5’ too it was expected
that the line stride prefetcher would improve the performance but it is observed
most of the prefetch requests that were enqueued were dropped later as all the
MSHRs are full too soon and the cache puts out busy and thus the performance
has not improved. It can also be observed that for tests that have store operations
inside the loop (‘prefetch_linestride2’ and ‘prefetch_linestride4’), greater num-
ber of prefetches are generated compared to tests that do not have stores inside
the loops (‘prefetch_linestride1’ and ‘prefetch_linestride3’).From the statistics of
‘prefetch_linestride6’ we see that the line stride prefetcher is unable to detect a
line stride value that is less than 1. So it is suitable to use it when the stride value
is more than 64 bytes or line stride is more than 1.

27

• BRAM version of line stride prefetcher: The statistics are similar to that of the
register based version of line stride prefetcher. However due to the difference in
the design, the number of prefetches is lesser in this case.

• Prefetch distance: It is observed that in most of the tests, there was not much
change in the performance with different values (2 and 4) of prefetch distance.
However, the test ‘prefetch_saxpy_line’ took fewer cycles in case of distance =
4 compared to distance = 2 with both register based and BRAM versions of line
stride prefetcher when the additional memory latency was 100 cycles. It shows
that in some contexts, having a higher value of distance can make the prefetches
more timely and advantageous.

• Additional memory latency: In most of the tests, there is a marginal improve-
ment in the relative performance with increased latency. With a large additional
memory latency value (200 cycles), the test ‘prefetch_saxpy_line’ did not execute
correctly and returned no results.

28

CHAPTER 5

CONCLUSION

From this project, we learn that prefetching, when working accurately and timely can

improve the performance of the processor to some extent. However, several factors

like the MSHR count and prefetch distance can affect the prefetcher performance. In

the future version of I-Class where the cache can accept 2 requests per cycle, these

prefetchers can be more beneficial as it may mitigate the problem of MSHRs getting

full soon. Simple prefetchers like next-line/previous-line prefetcher can work well in

certain situations while more advanced prefetchers like stride prefetchers perform better

in other contexts. The advantage of PC-based stride prefetchers at the L1 level for I-

Class is that the design is simpler to implement with fewer bytes of storage. Based on

the requirements of the application that the processor is used for, a suitable prefetcher

can be implemented and further modifications or optimizations can be done.

5.1 Future Work

Further work can be done in the performance analysis of the prefetchers implemented in

terms of accuracy, coverage and timeliness. Detailed analysis can also involve aspects

like prefetcher performance with higher MSHRs, interaction with memory dependence

speculation and interaction with cache replacement policies. Timeliness or usefulness

feedback from cache to prefetcher can also be thought of, to improvise the prefetch-

ers. Parameter tuning can also be done to higher extents to find the suitable values of

parameters for the best performance. There are also several other types of prefetchers

that can be implemented like stream prefetchers, correlation based prefetchers, address

based prefetchers, pre-computation or execution-based prefetchers etc. The implemen-

tation of instruction prefetchers, L2 cache prefetchers and prefetchers for heterogeneous

multi-core processors can also be explored.

APPENDIX A

DIRECTED TESTS EXAMPLES

The following are excerpts of code from some of the directed tests mentioned in Chapter

3. The code section and beginning of data section of the tests are shown here.

A.1 test_prefetch_nl1

Test for next-line/previous-line prefetcher with a single loop where cumulative sum of

data which are 64 bytes apart is calculated and stored at the end of the loop.

Assembly language code excerpt:

t e s t _ 0 :

l i t6 , 0 ; # loop i n d e x

l i t0 , 0x40 ; # loop l i m i t

l a t1 , t d a t 0 ; # base add r

l i t3 , 0 ; # t o s t o r e sum v a l u e

loop

loop_0 :

lw t2 , 0 (t 1) ; # l o a d d a t a from a d d r e s s

add t3 , t3 , t 2 ; # c u m u l a t i v e sum

a d d i t1 , t1 , 6 4 ; # n e x t a d d r e s s

a d d i t6 , t6 , 1 ;

bne t6 , t0 , loop_0 ;

l a t1 , t d a t 0 ;

sw t3 , 0 (t 1) ; # s t o r e t h e sum

j s h a k t i _ e n d ;

d a t a s e c t i o n

. d a t a

. a l i g n 6 ;

. g l o b a l t o h o s t ;

t o h o s t : . dword 0 ;

. a l i g n 6 ;

. g l o b a l f r o m h o s t ;

f r o m h o s t : . dword 0 ;

. a l i g n 6 ;

. g l o b a l b e g i n _ s i g n a t u r e ;

b e g i n _ s i g n a t u r e :

t d a t 0 : . dword 0 x0101010101010101

t d a t 1 : . dword 0 x2323232323232323

t d a t 2 : . dword 0 x4545454545454545

t d a t 3 : . dword 0 x6767676767676767

t d a t 4 : . dword 0 x8989898989898989

A.2 test_prefetch_saxpy_word

Test for stride prefetcher with a single SAXPY loop where elements of the array are at

addresses which are 4 bytes apart.

Assembly language code excerpt:

s e t up a d d r e s s e s

l i t0 , 0 x800 ; # num . e l e m e n t s / l oop l i m i t

s l l i t1 , t0 , 2 ; # a r r a y s i z e

l a t2 , t d a t 0 ; # a d d r e s s o f f a c t o r A

f lw f t 0 , 0 (t 2) ; # l o a d A (0 . 5)

l a t2 , t d a t 1 ; # base add r f o r a r r a y X

add t3 , t2 , t 1 ; # base add r f o r a r r a y Y

31

i n i t i a l i z i n g d a t a v a l u e s

l i t5 , 0 x3f000000 ; / / To make y [i] = x [i] + 0 . 5

fmv .w. x f t 1 , t 5 ;

l i t6 , 0 x3f800000 ; / / To make x [i +1] = x [i] + 1 . 0

fmv .w. x f t 2 , t 6 ;

i n t i a l i z i n g X v a l u e s

l i t4 , 1 ; # loop i n d e x s t a r t i n g from 1 (f i r s t e l e m e n t a l r e a d y i n i t i a l i z e d i n d a t a s e c t i o n)

loop_0 :

f lw f t 3 , 0 (t 2) ; / / x [i]

a d d i t2 , t2 , 4 ;

a d d i t4 , t4 , 1 ;

f add . s f t 3 , f t 3 , f t 2 ; / / x [i +1] = x [i] + 1 . 0

fsw f t 3 , 0 (t 2) ; / / s t o r e t o x [i +1]

bne t4 , t0 , loop_0 ;

l a t2 , t d a t 1 ; / / R e t r i e v i n g base add r o f a r r a y X

l i t4 , 0 ; / / R e s e t t i n g loop i n d e x t o 0

j loop_1 ;

i n i t i a l i z i n g Y v a l u e s

loop_1 :

f lw f t 3 , 0 (t 2) ; / / y [i]

f add . s f t 3 , f t 3 , f t 1 ; / / I n i t i a l i z i n g as y [i] = x [i] + 0 . 5

fsw f t 3 , 0 (t 3) ; / / s t o r e t o y [i]

a d d i t3 , t3 , 4 ;

a d d i t2 , t2 , 4 ;

a d d i t4 , t4 , 1 ;

bne t4 , t0 , loop_1 ;

l i t4 , 0 ; / / R e s e t t i n g loop i n d e x t o 0

l a t2 , t d a t 1 ; / / R e t r i e v i n g base add r o f a r r a y X

32

add t3 , t2 , t 1 ; / / R e t r i e v i n g base add r o f a r r a y Y

j loop_2 ;

loop Y = AX+Y

loop_2 :

f lw f t 1 , 0 (t 2) ; # x [i]

f lw f t 2 , 0 (t 3) ; # y [i]

fmul . s f t 3 , f t 1 , f t 0 ; # (a * x [i])

f add . s f t 4 , f t 3 , f t 2 ; # (r e s u l t + y [i])

fsw f t 4 , 0 (t 3) ; # s t o r e t o y [i]

a d d i t2 , t2 , 4 ;

a d d i t3 , t3 , 4 ;

a d d i t4 , t4 , 1 ;

bne t4 , t0 , loop_2 ;

j s h a k t i _ e n d ;

d a t a s e c t i o n

. d a t a

. p u s h s e c t i o n . t o h o s t , " aw " , @progb i t s ;

. a l i g n 6 ;

. g l o b a l t o h o s t ;

t o h o s t : . dword 0 ;

. a l i g n 6 ;

. g l o b a l f r o m h o s t ;

f r o m h o s t : . dword 0 ;

. p o p s e c t i o n ;

. a l i g n 4 ;

. g l o b a l b e g i n _ s i g n a t u r e ;

b e g i n _ s i g n a t u r e :

t d a t 0 : . word 0 x3f000000

t d a t 1 : . word 0 x3f800000

33

A.3 test_prefetch_linestride2

Test for line stride prefetcher with a positive stride (128 bytes) loop and a negative stride

(128 bytes) loop. In each iteration of the loop, the cumulative sum up to that iteration

is stored back in memory .

Assembly language code excerpt:

t e s t _ 0 :

l i t6 , 0 ; # loop i n d e x

l i t0 , 0 x800 ; # loop l i m i t

l a t1 , t d a t 0 ; # base add r

l i t3 , 0 ; # t o s t o r e sum v a l u e

loop_0 :

lw t2 , 0 (t 1) ;

add t3 , t3 , t 2 ;

sw t3 , 0 (t 1) ;

a d d i t1 , t1 , 128 ;

a d d i t6 , t6 , 1 ;

bne t6 , t0 , loop_0 ;

l i t6 , 0 ;

j loop_1 ;

loop_1 :

lw t2 , 0 (t 1) ;

add t3 , t3 , t 2 ;

sw t3 , 0 (t 1) ;

a d d i t1 , t1 , −128;

a d d i t6 , t6 , 1 ;

bne t6 , t0 , loop_1 ;

l a t1 , t d a t 0 ;

sw t3 , 0 (t 1) ;

j s h a k t i _ e n d ;

34

d a t a s e c t i o n

. d a t a

. a l i g n 6 ;

. g l o b a l t o h o s t ;

t o h o s t : . dword 0 ;

. a l i g n 6 ;

. g l o b a l f r o m h o s t ;

f r o m h o s t : . dword 0 ;

. a l i g n 6 ;

. g l o b a l b e g i n _ s i g n a t u r e ;

b e g i n _ s i g n a t u r e :

t d a t 0 : . dword 0 x0101010101010101

t d a t 1 : . dword 0 x2323232323232323

t d a t 2 : . dword 0 x4545454545454545

t d a t 3 : . dword 0 x6767676767676767

t d a t 4 : . dword 0 x8989898989898989

t d a t 5 : . dword 0 xabababababababab

t d a t 6 : . dword 0 xcdcdcdcdcdcdcdcd

t d a t 7 : . dword 0 x e f e f e f e f e f e f e f e f

t d a t 8 : . dword 0 x a a a a a a a a a a a a a a a a

t d a t 9 : . dword 0 xbbbbbbbbbbbbbbbb

t d a t 1 0 : . dword 0 x c c c c c c c c c c c c c c c c

35

REFERENCES

1. I-Class GitLab repository:
https://gitlab.com/shaktiproject/cores/i-class.git

2. John L. Hennessey and David A. Patterson, Computer Architecture: A Quantita-
tive Approach, Fifth edition, 2011.

3. Bluespec, Inc. Bluespec SystemVerilog Reference Guide, Revision 2014.

4. Rishiyur S. Nikhil and Kathy Czeck, BSV by Example, Revision 2010.

5. Onur Mutlu, Computer Architecture Lecture 24: Prefetching, Notes from Carnegie
Mellon University, Fall 2011.

6. Biswabandan Panda, Modern Memory Systems Lecture 12: Hardware Prefetch-
ing, Notes from Indian Institute of Technology Kanpur.

7. https://en.wikipedia.org/wiki/Cache_prefetching

36

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	Introduction to prefetchers
	About the I-Class processor
	Why Bluespec SystemVerilog?
	Organization of thesis

	PREFETCHERS
	Prefetch parameters
	Next-line/Previous-line prefetcher
	Existing work
	Modification introduced

	Stride prefetcher
	Existing work
	Enhancements

	Line stride prefetcher
	Register array version
	BRAM version

	DIRECTED TESTS
	Tests for next-line/previous-line prefetcher
	Tests for stride prefetcher
	Tests for line stride prefetcher

	PERFORMANCE ANALYSIS
	Experimental setup
	I-Class core default configuration
	I-Class L1 data cache parameters

	Experiments
	Results
	Next-line/Previous-line prefetcher
	Stride prefetcher
	Register based line stride prefetcher
	BRAM version of line stride prefetcher

	Observations

	CONCLUSION
	Future Work

	DIRECTED TESTS EXAMPLES
	test_prefetch_nl1
	test_prefetch_saxpy_word
	test_prefetch_linestride2

