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ABSTRACT

With the improvements in electric powered vehicles,grew the want for estimation of
State of health for batteries in real-time,consequently numerous strategies had been
evolved for estimation of State of health.Methods like coulomb counting, open circuit
voltage, kalman filer, etc. had been mentioned withinside the report. Latest traits
in Al, have brought about its numerous programs and State of health estimation also
can be accomplished the use of deep learning models. State of Health estimation the
use of deep artificial neural network models has been mentioned in detail. Various
models had been tested and compared. And a very last version has been evolved with

minimum loss of 0.268.
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CHAPTER 1

INTRODUCTION

The battery machine has emerged as one of the maximum famous power garage ma-

chine in cellular applications. It reduces worldwide carbon emission. However, with

out right tracking and controlling of the battery, troubles regarding safety,reliability,sturdiness
and price will appear.

Battery Management System(BMS) includes two main modules:

¢ BMS master

e BMS slave

These two modules can be combined into an integrated system. An accurate health
assessment provides important information about the aging rate of the battery, which
can be used for maintenance or operational strategies to extend battery life.

Due to the complex non-linear mechanism of battery aging, SOH assessment
is more difficult. Although electrochemical impedance spectroscopy is usually used
to determine the degree of aging of the battery offline, the strict requirements for the
input signal are an obstacle to its online application in BMS.

Various model-based SOH estimation methods have been developed to ensure accu-
rate monitoring of battery conditions. However, with the increase in the number of
battery cells and the complexity of the built-in algorithms, BMS is facing problems
with processing performance and data storage. Use model-based algorithms to accu-
rately estimate and predict battery status

SOH and strategy optimization is based on historical operation data of the battery
cells, so they are difficult to be implemented onboard. They can be achieved by ap-
plying cloud computing and the Internet of Things (IoT) technologies.

The digital twin can show the data measured by sensors in battery and also visualize



the internal state of battery with diagnostic algorithms. Further-more, the system re-
liability increases with wireless IoT communication. Compared with on board BMS,
digital twin for battery systems has potential benefits in aspects as follows:

* Continuous and accurate monitoring of the battery state with advanced diagnostic
algorithms, supported by high computation power.

* Early detection of glitches in several levels with big data analysis, increasing the
system safety and relability.

* Optimization of the system design and operation strategy by evaluating the large data
from battery systems with different operations scenarios.

* The technical details of both software and hardware design of the cloud BMS were
rarely introduced and therefore the functionalities of the system haven’t been validated
with field operation.

* Cloud-suited battery diagnostic algorithms are missing, which may improve the di-
agnostic accuracy and enjoy the high computation power and data storage capability

of the cloud BMS.

1.1 Motivation

The adverse effects of the global climate change and greenhouse effect have
pushed researchers to develop energy sources and storage devices worldwide. Among
these various energy storage devices, Li-ion batteries are considered to be the main
source of power for electric vehicles. The SOH is the estimate of the remaining battery
capacity and an important parameter for a control strategy. So, an accurate estimation
of the SOH helps in protection of the battery, prevention of over-discharge, improving

the battery life and making rational control strategies to save energy.



1.2 Digital twin

The term “digital twin” first mentioned in the field of aerospace engineering, the term
“digital twin” has evolved into a more general understanding of the concept, one which
is notably driven by the trends in digitalization, Internet of Things (IoT)and Industry
focus on the usage of digital twins in production processes and state that, depending on
the field of application, the term is used and understood in a variety of ways.Digital
twin is a multi-discipline simulation of a real-world product, which uses data and
sensor information as input to models that mirror and predict the states and behavior
over the lifespan of the physical system. In all contributions discussed the digital twin
concepts incorporate a collection of data and a set of multi-discipline methods such
as models, algorithms or simulations that transform the collected real-world data into

knowledge.

1.3 Battery system

Due to electrification, the most costly and complex component in a car is now the
energy storage, in most cases a Li-lon battery. Li-Ion batteries, as perishable goods,
show aging effects. Hence, they cannot be used for an unlimited period of time in an
automobile . A widely accepted limit for the automotive battery usage is given at SOH
0f80%.

a) Design Layout:

Nowadays, battery systems consist of a modular structure . The battery system com-
prises several battery modules, which in turn consist of the actual battery cells. Since
temperature is crucial for battery safety and performance, thermal systems are used
to keep the cells at a reasonable working temperature. The main task of a battery
management system (BMS) is to monitor and control the battery system components.
Over- and under voltages as well as high temperatures during car usage and charg-
ing processes need to be avoided to keep the battery within safe operating conditions.
Furthermore, the BMS controls cell-balancing and estimates the inner states of the
battery, e. g.State of Charge (SOC) and SOH.

b) Production:

Producing battery systems is also divided up according to the system’s modular struc-



ture. As a first step, the battery cells are manufactured. In the next layer,several cells
with the same performance characteristics are brought together and form a homoge-
neous module. In the system layer, multiple battery modules are fit into the system
case and connected electrically. After integrating the BMS and the thermo system, the
HVBS is sealed and closed with alid. After assembly, the entire system undergoes an

end-of-line test, where visual checks and technical test routines are performed.

1.4 Objectives

Our goal is to develop a cloud battery management system which can estimate/predict
remaining life of a battery. battery life is estimated using a DNN model using histor-
ical data of the battery. The prognostic process involves two phases. The first phase
of prognostics aims to assess the current health status or state of health (SoH). Terms
that are usually used to describe this phase in most of the literature are severity de-
tection and degradation detection, which can also be considered under diagnostics.
Classification or clustering techniques can be utilized to perform tasks such as model
training ,data cleaning in this phase. The second phase aims to predict the failure
time by forecasting the degradation trend,and by identifying the remaining useful life
(RUL). Trend projection, tracking techniques, or time series analysis are included in
this phase. Most of the academic articles regarding prognostics analysis only consider
the first phase . This paper aims to construct and analyze both SoH and RUL, in which

focus is made on both the first and second phases of prognostics for the battery system

1.5 literature survey

Generally, there are two existing major approaches for prognostics evaluation; the
data-driven model, and physics-based models. Data-driven methods require adequate
data or samples from systems that were run until failure, while physics-based methods
evaluate the system’s failures via the physics of failure progression. Both the data-
driven and physics-based model also have different requirements and use cases, and

both also have different advantages and drawback as well. There have been many ad-



vancements contributed by researchers from various disciplines to PHM of lithium-ion
batteries. Downey et al.proposed a physics-based prognostic approach that considered
multiple concurrent degradation mechanisms [6]. Susilo et al. studied the estimation
of the lithium-ion battery SoH with the combination of Gaussian distribution data and
the least square support vector machines regression approach [7]. Bai et al.developed
a generic model-free approach based on ANN and the Kalman filter,to help to im-
prove the health management system of the lithium-ion battery [8]. Other filtering
techniques,for example,particle filtering [9] or its variation of the unscented particle
filtering technique [10] had been employed in the PHM aspect for lithium-ion batter-
ies.Recently, Li et al. A data-driven model based on the deep learning approach for
lithium-ion battery prognosticsis the main focus of this paper. Although various ap-
proaches had been proposed to improve the PHM prediction of lithium-ion batteries,
the deep learning approach for PHM is still limited. The advancement of computa-
tional tools and big data algorithms have largely impacted the development of this ap-
proach. The machine learning algorithms,in particular, ANN, have been proven to be
able to empirically learn and recognize the more complex patterns of the system’s data
in many applications. This feature of machine learning algorithms also benefits prog-
nostic analysis modeling as well.This paper presents the preliminary development of
a data-driven model using Deep Neural Networks (DNN) to predict the SoH and RUL
of lithium-ion batteries.DNN is a deep learning approach that was developed based on
Artificial Neural Networks with multiple hidden layers,to analyze more complex data
and features. Although some deep learning algorithms, such as Recurrent Neural Net-
work (RNN) and Long Short-Term Memory Network (LSTM),are employed to model
prognostic of lithium-ion battery recently, to date,there is no work that has employed
a DNN model to perform similar tasks.In addition, there are limited works that have
performed a deep learning approach against other data-driven algorithms.The effec-
tiveness of the proposed approach was tested in the lithium-ion battery dataset derived
from the NASA Ames Prognostics Center of Excellence (PCoE). A DNN approach
was employed to predict the SoH and RUL and the results were compared against
other machine learning algorithms such as Linear Regression (LR), k-Nearest Neigh-
bors (k-NN), Support Vector Machine (SVM), and ANN. This paper is constructed
with the following sections: Section 2 discusses the overview of the Cloud BMS ap-

plication and the characteristics of the lithium-ion battery used in this paper, Section



3 provides a concise literature review of the proposed approach for DNN analysis and
modeling, Section 4 details the experimental results and the comparison of DNN and
other machine learning algorithms, and Section 5 concludes the findings and investi-

gates possible future work.

1.5.1 Data Driven

Based on The empirical lifetime data and the use of previous data of the operation of
the system Physical understanding of the physical rules of the system, the exact for-
mulas that represent the system Advantages The real behavior of the complex phys-
ical system is not required.One of the data-driven model approaches for prognostics
and diagnostics mentioned earlier are machine learning approaches, which will be the
main discussion topic of this paper.

Advantages :

Data driven models are less complex, easier to employ into a real application The
model represents a real system, the model can be observed and judged in a more real-
istic manner.

Drawbacks:

The data driven models do not represent the actual system, it requires more effort to

understand the real system behavior based on the collected data .

1.5.2 Physicial models

Model is based on physical understanding of the physical rules of the system, the ex-
act formulas that represent the system

Advantages:

Higher accuracy because the model is based on an actual (or near-actual) physi-
cal system. The model represents a real system, the model can be observed and
judged in a more realistic manner.Highly complex, requires extensive computational
time/resources, which may not be very suitable for employment in real-world appli-
cations

Drawbacks:

Limitations in modeling, especially in cases of large and complex systems with non-



measurable variables

1.5.3 Prognostics and health managment

The PHM of the battery has to be included as part of the condition-based maintenance
(CBM) plan of the system. The CBM plan is considered as a preventive strategy,
which means that maintenance tasks will be performed only when need arises. This
need can be determined by continuously evaluating health status of a particular sys-
tem’s components,or the health state of the system as a whole [11]. CBM has included
two major tasks: diagnostics and prognostics. Diagnostics is the process of the identi-
fication of faults and part of the current health status of the system, which is described
as an SoH, whereas prognostics is the process of forecasting the time to failure. The
time left before observing a failure is described as the remaining useful life (RUL) of
such a system [12]. To avoid severe negative consequences when systems run until
failure, the maintenances must be performed when the system is still up and running.
These type of maintenance require early plans and preparation [13]. Thus, CBM must
properly be included as part of the system’s operation, especially for the critical sys-

tems. The prognostic of the system is a crucial factorin CBM.



CHAPTER 2

Cloud battery management system

By connecting the physical and virtual worlds, the digital twin enables the
virtual unit to access the battery system while seamlessly transferring data. In terms
of hardware, cloud BMS has powerful computing power, huge storage capacity and
high system reliability. These functions also support the use of advanced algorithms
in the software. The performance of the functions that already exist in the embedded
BMS can be further improved by more advanced algorithms. On the other hand, there
are new functions such as life-based data prediction and system optimization. What
is difficult to implement in an embedded BMS can be deployed in the cloud. This

section introduces the principles of cloud BMS and the functions of subsystems.
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2.1 Cloud

Since IoT devices usually have limited computing and storage capabilities
and do not allow complex data processing, cloud computing provides scalable real-
time analysis of IoT device data with almost unlimited storage and processing capa-
bilities. It consists of a data logger and a database. The data logger collects a large
amount of unstructured or semi-structured data generated by the battery system, and
provides a secure gateway and data transmission to a widely certified distributed cloud
database. Prevent denial of service (DDoS) and multiple redundant connections. Only
the owner and operator of the battery system can access the data; the confidentiality

and security of the data are guaranteed.

2.2 BMS Slave

The BMS-Slave performs data acquisition by measuring the voltage, current
and temperature of the battery cells with sensors at different sampling rates.While
BMS slave is responsible for monitoring battery cells with signal acquisition and fil-
tering, more advanced functions such as battery diagnosis algorithms, which require
high computation power, are implemented in BMS-master. However, with increase
in number of cells and the scale of battery systems, the reliability and cost of wiring
communication are becoming challenging.

The fundamental components withinside the BMS-Slave for information sensing are
multi cell battery monitors LTC6804G-2 and LPC11C14F/301. The LTC measures as
much as 12 battery cells connected in series with a complete measurement error of
much less than 1.2mV, which also can be related in collection to screen high-voltage
battery strings. The LPC is a 32-bit ARM Cortex-MO primarily based totally micro
controller, which sends the measurement instructions to the LTC and gets the mea-

sured information in hexadecimal values from the LTC.



2.3 10T Components

The idea behind IOT is to make the devices, mobile battery systems embed-
ded with electronics and connected with the cloud, communicate with others to be
monitored. Therefore, a stable internet connection is important for a stable real-time

data transfer between the battery system and the digital twin.

Functions that require historical operating data can only be performed in the cloud.
The digital twin communicates with the battery system and updates model parame-
ters to improve system performance and slow down battery degradation. Taking into
account the advantages of the Raspberry Pi as a single-board computer, the price and
weight are relatively low, and it is responsible for collecting battery data and commu-
nicating with battery systems such as cloud platforms. The measurement data from the
battery cell is sent to the [oT component. Based on BMS slave controller. Local Area
Network Protocol (CAN). The software is designed and implemented using Python
in IoT components to convert CAN signals into physical values. In addition, the [oT
component is also responsible for sending the generated data to the cloud through
TCP/IP and Message Queuing Telemetry Transport Protocol (MQTT), and ensuring

security and data protection.

10



CHAPTER 3

SOH Estimation

The SOH of a battery could be expressed as the ratio of maximum available
capacity in the present condition to the nominal capacity of the battery in a fresh

condition. This can be stated as

SOH — 2present 1000,
}Frfsh

Figure 3.1: Soh formula

where () p,eseni denotes present available capacity of the battery and Q) pesp, in-
dicates the capacity of the battery in the fresh condition.Below 80% of its original
capacity, the battery is considered unusable Used for application purposes. This is
due to exponential degradation of the battery capacity exhibited below 80% cut-off.
There are numerous inner and outside factors the health of the LIB and its overall
performance degradation over a length of time. Some of the inner elements con-
sists of battery material, calendar ageing and increase in inner resistance. The out-
side factors are operating temperature, uncertain using circumstance and overcharg-
ing/discharging. Due to many unknown and unpredictable factors influencing the
health of the battery, estimating battery SOH will become pretty challenging. These
factors are liable for the unpredictable battery ageing process. The fundamental source
of ageing mechanisms consists of chemical, mechanical, thermal and enormously re-

lies upon on electrode compositions. aging Occurs in two types :

* Calendar ageing

* Cycle ageing



3.1 Calendar ageing

Due to Storage situations the calendar ageing quickens ageing of battery and
it will increase inner resistance and self-discharge rate. This form of ageing is based
totally on outside environmental elements which includes temperature beneathneath

storage condition.

3.2 Cycle ageing

Cycle ageing takes place during charging or discharging conditions. It is
mostly influenced by battery-charging methods and discharge rate. In addition, cy-
cle ageing may result cycle-life loss in the LIB due to irreversible damage caused to

electrodes under improper battery operation.

3.3 Different methods to estimate battery SOH

Most of the prevailing strategies make use of a capacity fading and electro-
chemical (EC) model to measure SOH due to the fact, as battery age capacity de-
creases, EC parameters are modified. However, a majority of these strategies estimate
SOH below sturdy assumptions and static cycling condition. These conditions aren’t
appropriate for real world EV batteries due to the fact this requires real-time SOH
computation and charging/discharging takes place in a dynamic manner. Therefore,

we will adapt machine learning algorithms for estimation of battery SOH.

3.3.1 Direct methods

* Coulomb counting
* Open circuit voltage

* Electro chemical impedance

Direct measurement is a widely known approach used for estimation of

battery SOH through at once measuring parameters like internal resistance. Internal

12



resistance is inversely proportional to SOH of a battery/capability of a battery. Direct
strategies are mostly primarily based totally on measuring internal resistance of a bat-
tery the use of ohms law, additionally through measuring electro-chemical impedance
value as function of frequency SOH of a battery may be estimated. And through track-
ing fee and discharge of current(Ah counting) it may be estimated. Direct strategies
are commonly completed in labs with lot of checking out equipment and those are

carried in static conditions/non-dynamic situations

3.3.2 MODEL BASED

¢ Electro chemical model

* Equivalent circuit model

In this approach SOH of a battery is measured/estimated by developing
equivalent circuit models(ECM) and developing ECHM models using basic electrical
components such as resistor, capacitor and voltage source. The models are used to
determine some parameters such as voltage ,temperature,current. These experiments
generate huge data set, they need high computation cost and these tests are mostly not

reliable

3.3.3 ADAPTIVE FILTERS
e Kalman filter
¢ Particle filter

* Least square

In this method battery parameters are monitored continuously which are
sensitive to aging of battery. kalman filter process consists of two process. First,
prediction stage filters are designed to estimate current battery parameters then update

stage estimation is estimated with current battery parameters for precise output.

13



3.3.4 DATA DRIVEN
* Fuzzy logic
¢ Artificial neural networks

 Support vector machine

3.4 Data driven SOH estimation

EV batteries discharges dynamically based on driving behavior, traffic con-
ditions and other external factors. To eliminate such limitations, this research work
is a data-driven technique to predict SOH based on vital data such as voltage (V),
Capacity (C)and temperature (T) collected from LIBs under variable load conditions.
An artificial neural network(ANN) framework is developed to establish the non-linear
relationship among battery parameters(V, C, T) and SOH.

*A new approach is adopted to identify and extract a set of input features associated
with the battery degradation process.
*A data-driven based SOH estimation using an independently recurrent neural network

(RNN)is developed with the help of vital battery parameters collected from LIBs.

3.5 Developing model

This model is developed on google-collab platform with 12GB gpu access for training

machine learning models using python language with following libraries:

e Tensorflow 2.0

* Numpy

Pandas

* Scipy

Sci-kit learn

Matplot

14



3.6 DATA-SET

To train the Deep Learning model proposed, it is necessary to collect the large
amount data related to the discharge of the battery, the data used for developing
this model is collected from " NASA Ames Prognostics Data Repository" . To
extract this data from the ".mat" file and store it in pandas DataFrames for later
access, we have used the load_data function mentioned below. After loading
the dataset, a description of the data is made using panda functions to verify if
the data loading was correct.

def load_data (battery):
mat = loadmat ('/content/drive/MyDrive/data/' + battery + '.mat'
print ('Total data in dataset: ', len (mat[battery] [0, 0]['cycle']

counter = 0
dataset = []
capacity_data = []
for i in range (len (mat[battery] [0, O] ['cycle'][0])):
row = mat[battery] [0, 0] ['cycle'] [0, i]
if row['type'][0] == 'discharge'
ambient_temperature = row['ambient_ temperature'][0][0]
date_time = datetime.datetime (int (row['time'][0][0]),
int (row['time'][0][1]),
int (row['time']1[0]11([21),
int (row['time'] [0][31),
int (row['time'][0][4])) + datetime.
data = row['data']
capacity = datal[0] [0]['Capacity"][0][0]
for 7 in range(len(datal[0] [0]['Voltage_measured'][0])) :
voltage_measured = datal[0][0]['Voltage_measured'][0][7]]
current_measured = data[0][0]['Current_measured'][0][7]]
temperature_measured = datal[0] [0] ['Temperature_measured'] |
current_load = datal[0] [0] ['Current_load'][0][]]

voltage_1 ocad = datal[O0][0]['Voltage_load'][0][]]
time = datal[O0][0]['Time"] [0][]]
dataset.append([counter + 1, ambient_temperature, date_tin
voltage_measured, current_measured,
temperature_measured, current_load,
voltage_load, time])
capacity_data.append([counter + 1, ambient_temperature, date
counter = counter + 1
print (dataset [0])
return [pd.DataFrame (data=dataset,
columns=["'cycle', 'ambient_temperature', 'O
'capacity', 'voltage_measured’,
'current_measured', 'temperature_m
'current_load', 'voltage_load', 't
pd.DataFrame (data=capacity_data,
columns=["'cycle', 'ambient_temperature', 'G
'capacity']) ]

15



3.7 Pre-processing the data

The data-set contains following attributes:

voltage, current,battery, temperature, vector time: the date and time of the start
of the cycle, capacity, current load,voltage load.

Above data is used as input for the deep network model. This data is reduced to
3 inputs which are time, capacity, temperature and 1 output value which is SOH
value for the given inputs.combining all cycles drive together , the whole data
has more than 5,00,000 data points which can be used in training and testing
model. This data has been normalized between a range of 0-1.

Discharge BO0O0S
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Figure 3.2: actualSOH value

Total data in dataset:

blb
[ . . - - -

cycle ambient temperature datetime capacity
0 1 24 2008-04-02 15:25:41 1.B8564E7
1 1 24 2008-04-02 15:25:41 1.E8564E7
2 1 24 2008-04-02 15:25:41 1.8564E87
3 1 24 2008-04-02 15:25:41 1.E504E7
4 1 24 2008-04-02 15:25:41 1.8564E7

current measured temperature measured current load wvoltage load
0 -0.004902 24.330034 -0.0006 0.000
1 -0.001478 24,3250943 -0.0008 4,208
2 -2.012528 24,3B00B5 -1.98E82 3.062
3 -2.013978 24,544752 -1.98B82 3.030
4 -2.011144 24.731385 —-1.9882 3.011

Figure 3.3: data extracted from dataset
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3.8 DNN model

RNN is a category of deep neural community, which has precise ca-
pabilities called inner cell state or memory to observe input capabilities and
time dependencies from sequential enter data to predict the estimate output.
Therefore, the output from every neuron now no longer relies upon on current
input however additionally the records of previous hidden state outputs. De-
pending upon the wide variety of time steps, RNN can efficaciously preserve
information about the past. In addition, RNN can be greater appropriate for
time-collection forecasting packages like SOH estimation, which are expecting
their present output primarily based totally on a records of preceding output and
present input over a time. But, RNN and its version LSTM is without prob-
lems inclined to long-variety dependency problem, which vanishes gradient in
the course of again propagation operation. In version preparation 3 dense lay-
ers and one dropout layer(to prevent network from over-fitting) are used. As
an optimizer, Adam optimizer is capable of lowering the mistake rate variation
among real and expected value for each iteration,consequently it’s miles used
as an optimizer. Adam is in reality efficient while we’re operating with huge
dataset
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1.Definition states phase. This phase specifically focuses on defining the failure
of the system, identifying the prognostic problem, and evaluating system health
states.

2.Pre-processing phase. In this phase, sensory data are collected according to
the predefined health state,in order to build a raw dataset for the experiment. The
raw datasets are pre-processed and normalized, and then divided into a training
and a testing dataset.

3.Training phase. In this phase, initial parameters are developed,and the classi-
fication model is trained by the training dataset,based on deep learning theory.
It is particularly important to fine-tune the classification model through misclas-
sification errors (such as RSME).

4 Testing phase. In this phase, the testing dataset is put into the trained classifi-
cation model to identify prognostic predictions or projection results.
5.Evaluating phase. This phase mainly finishes with computing the accuracy,
reportin gon, and evaluating the diagnosis results from the final model.

The prognostic model of the battery data using DNN was developed based on
the aforementioned framework. The experiment with the data was constructed
by varying the number of dense layers in DNN. In this experiment, the hidden
layer was varied to analyze the SoH of battery data until it delivered the best
RMSE results. In addition, the dropout layer was also applied as the last layer
before the output layer,to prevent the over-fitting problem. The dropout layer ap-
plied to the last layer of DNN,to randomly drop neurons during the model train-
ing. Each neuron is retained with a fixed probability,p which is independent of
other neurons. The neural network after being sampled, the so-called “thinned”
network, will contain only the surviving neurons . By training a neural network
with some dropouts, the whole network can be trained more often than training
regular networks without dropout,because the network is thinned so that it can
be trained at less frequency. The network then becomes less sensitive to some
specific weights. This results in the network being better at generalization. In
this work,a p-value of 0.25 is applied to the network,as suggested,to be the op-
timal dropout rate for the network to avoid over-fitting,but to still maintain the
best prediction accuracy

Figure 3.4: a)network without dropout layer b) network with dropout layer
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no.of hidden layers | Rmse

2 0.046
3 0.037
4 0.041

Table 3.1: RMSE alue wrt layers

3.9 Model Training

To train the model 5028 samples and 50 epochs(iterations) are used.
After 50 epochs the training would be completed and the model starts to pre-
dict/estimate SOH of battery

cycle datetime capacity ScH
a 1 2008-04-02 15:25:41 1.835e487 1.000000
1 2 2008-04-02 19:43:48 1.84e327 0.9894527
2 3 2008-04-03 00:01:06 1.835345 0.9EBEecl4
3 4 2008-04-03 04:16:37 1.B35263 0.9BE5&7
4 o 2008-04-03 08:33:25 1.834c4e 0.8988235
(50285, T)
(50285, 1)
Model: "seguential 4"
Layer (type) Cutput Shape Param #
dense 10 (Dense) (Mone, B) a4
dense 11 (Dense) (Mone, B) T2
dense 12 (Dense) (None, B) T2
dropout 10 (Dropout) (None, &) 0
dense 13 (Dense) (Mone, 1) g

Total params: 217
217
Non-trainakle params=: 0

Trainable params:

Figure 3.5: model training
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3.10 Model Testing

For training, 70% of data is used and rest of the data is used for testing
the model. The accuracy of the model decreases with increase in epochs, this is
due to over fitting of model, if we have high training accuracy then the validation
accuracy will decrease because model will not be able to generalize well. To
overcome these problems we are adding a dropout layer

cycle datetime capacity ScH
0 1 2006-04-02 15:25:41 2.035338 1.000000
1 2 2008-04-02 19:43:48 2.025140 0.904080
2 3 2008-04-03 00:01:08 2.013326 0.9B91E5
3 4 2008-04-03 04:18:37 2.013285 0.9891s&5
4 5 2008-04-03 08:33:25 2.000528 0.9B2BOE
fuasr/local/lik/python3.7/dist-packages/tensorflow/py
warnings.warn(' "Model.state updates’™ will be remov
(30285, 1)
cycle SoH NewScH
0 1 1.000000 0.960147
1 2 0.98948080 0.95T7485
2 3 0.989185 0.934390
3 4 0.9B89165> 0.93437¢6
4 5 0.9B2898 0.931027
3 6 0.989467 0.934335
8 7 0.8B907 0.954328
7 B 0.967304 0.94271¢
B 8 0.%9gg8987 0.8942549
g 10 0.961625 0.89396798
Root Mean Sguare Error: 0.09212289008432578
Total data in dataset: &1&

[1, 24,
Model:

datetime.datetime (2008,

"sequential 1"

4, 2, 15, 25, 41), 1

Figure 3.6: Testing Data
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CHAPTER 4

RESULTS

4.1 Predicted SOH vs Actual SOH

This plot shows the comparison between actual SOH value and predicted
SOH value. Because of the model training, there would be delay in SOH prediction.
The red line indicates the predicted value and blue line indicates actual SOH derived
from the data set and the dotted line indicates threshold value after which battery is

completely degraded.

Discharge BO0OS (prediction) start in cycle 50 -RULe=-8, window-size=10

13

17

-
-1

Capacity

15

14

13

— Actual data
—— Prediction data
= = ftreshold

0 5 50 75 100 125 150
oycle

Figure 4.1: SOH Prediction

After training, the model is tested using 200 epochs. Our model predicts/estimates

SOH with an error of 13cycles.
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Te=t BMSE: 0.037

The Actual fail at cycle number: 128

The prediction fail at cycle number: 141
The error of BUL= 13 Cycle(s)

Figure 4.2: Prediction error

To check the model and validate the accuracy we will use different dataset.

Estimation of BOO06 model:

Discharge BO0OS (prediction) start in cycle 50 -RULe=-8, window-size=10

18

17

16

Capacity

15

14

13

— Actual data
— Prediction data
== treshold

oycle

Figure 4.3: RMSE value

For the given dataset, RMSE value is 0.064 with an error of 21 cycles

Test RMSE: 0.064
The Actual fail at eycle numkber: 128
The prediction fail at cycle number: 148

The error of RUL= 21 Cycle(s)

Figure 4.4: SOH Estimation

This model works for different data-sets, BOOO5 data-set have lesser RMSE value

which indicates prediction/estimation was more accurate. Final specs of the model:
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ADAM optimization
Model: Sequential

Loss : Mean Squared Error
ReLu activation.

Complete python code has been attached at the end of this paper for reference

4.2 Testing model with different data

We will train the model with data-set(B0005) and test the model with data-set(B0006).
By doing this process, we can confirm that model works with real time value(feeding

the trained model with realtime data).

temperature_measured = data[0][0][’ Temperature_measu voltage_load =

data[0][O][* Voltage_load’J[O][j]red ][O][]]

Discharge BOD06

— SoH

\

10 \'V‘\ Predicted SoH

oycle

Figure 4.5: B6 SOH estimation with B5 trained model

The above graph shows the SOH estimation of B6 data set with BS trained model

23

175



4.3 Test result with sgd optimier

Discharge B0O0OS (prediction) start in cycle 50 -RULe=-8, window-size=10
— Actual data
= Prediction data
— — treshold

148

17

16

Capacity

15

14

13
100 125 150

25
cycle

Figure 4.6: SGD optimizer estimation

Test EMSE: 0.031
The Actual fail at cycle number: 128

The prediction fail at cycle number:

The error of BUL= 15 Cycle(s)
/usr/local/lib/python3.7/dist-packages/ipykernel laur

& walue i=s trying to be set on a copy of a slice fror

143
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4.4 Test result with RMSProp optimizer

Discharge B0O0OS (prediction) start in cycle 50 -RULe=-8, window-size=10

— Actual data
= Prediction data
— — treshold
18
17
16
2
P
[=%
3
15
14
13
o 25 50 L] 100 125 150 175
cycle

Figure 4.7: soh estimation using rmsprop optimizer

0.0063003607448300485
Test RMSE: 0.07%9

The Actual fail at cycle number: 128
The prediction fail at ecyecle number: 162

The error of RUL= 34 Cycle(s)

- - - - -
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4.5 Comparative analysis with other research papers

SOH method Approach used SOH error% Reference
ocv Parameter varying approach (PVA) 0.5% to 3% [11]
cc Linear function andoperations 1.08% [12]
KF Forgetting factorrecursive least square 1.52% [14]
LS Ordinary leastsquares and total leastsquares <5% [15]
SVM Grid search method,Radial basis function <2% [16]
ANN Multi layer perceptron(MLP) <1.5% [17]
ECM Incremental capacity analysis based model | NASA dataset:—0.57 [13]

Table 4.1: Caption

our model has lesser error percentage when compared with other papers.When model
is compared with other models which have same parameters but different optimizer(sgd,rmsprop,adam)
adam optimizer gives us best results. This model can used to predict SOH in our pro-

posed cloud bms system.

Author Contributions: Conceptualization; methodology; software,; validation; for-
mal analysis; investigation; resources; data curation; writing—original draft prepara-

tion; writing—review and editing;
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CHAPTER 5

Observations and Conclusion

From the above simulations with different number of hidden layers and different op-
timizer we have made an conclusion that an model with three hidden layers and one
dropout layer each with 8 nodes gives us best rmse value when compared with other
models with 2 and layers.Among sgd , rmsprop , adam optimizer adam optimizer gives
us less error percentage This model can be used in Cloud BMS to predict/estimate

RUL of battery

5.1 Possible Research

Digital twin technology can revolutionize automotive industry, with this method-
ology we can develop full diagnostics devices for automobile. we can diagnose every
part of automobile and this helps us for maintenance,operational strategies and helps
to increase mileage and reduces maintenance charges of vehicle. Digital twin technol-
ogy can be incorporated in many other Fields and helps us monitor in real time with

less cost and wiring communications.



impo
impo
impo
from
from
from
from
impo
impo
#Def
def

mat

CHAPTER 6

Python code

rt datetime

rt numpy as np

rt pandas as pd

scipy.io import loadmat
sklearn.preprocessing import MinMaxScaler
sklearn.metrics import mean_squared_error
sklearn import metrics

rt matplotlib.pyplot as plt

rt seaborn as sns

ine loading data method

load_data (battery) :

= loadmat ('/content/' + battery + '.mat')

print ('Total data in dataset: ', len(mat[battery] [0, 0] ['cycle'][0]))

cou
dat

cap

for

nter = 0
aset = []
acity_data = []

i in range (len (mat [battery] [0, O] ['cycle'][0])):

row = mat [battery] [0, 0] ['cycle'] [0, 1i]

i

f row['type'][0] == 'discharge':
ambient_temperature = row['ambient_temperature'][0][0] date_time
int (row['time'][0][1]1),
int (row['time'] [0][2]),
int (row['time'] [0][3]),
int (row['time'] [0][4])) + datetime.timedelt
data = row['data']

capacity = datal[0][0]['Capacity'][0][0]

for 7 in range(len(datal[0] [0]['Voltage_measured'][0])) :



voltage_measured data[0] [0] ['Voltage_measured'] [0][]]
current_measured = datal[0][0] ['Current_measured'][0][]]
temperature_measured = data[0] [0] ['Temperature_measu
voltage_load = datal[0][0]['Voltage_load'][0][3jlred"][0][7]
current_load = datal[0] [0]['Current_load'][0][]]
time = datal[O0][0]['Time']1[0][]]
dataset.append([counter + 1, ambient_temperature, date_time, capac

voltage_measured, current_measured,
temperature_measured, current_load,
voltage_load, time])
capacity_data.append([counter + 1, ambient_temperature, date_time
counter = counter + 1
print (dataset [0])
return [pd.DataFrame (data=dataset,
columns=["'cycle', 'ambient_temperature', 'datet
'capacity', 'voltage_measured’,
'current_measured', 'temperature_measu
'current_load', 'voltage_load', 'time'
pd.DataFrame (data=capacity_data,
columns=["'cycle', 'ambient_temperature', 'datet

'capacity'])]

#Import data set from custom function 05
dataset, capacity = load_data ('B0005")
pd.set_option('display.max_columns', 10)
print (dataset.head())

dataset .describe ()

plot_df = capacity.loc|[ (capacity['cycle']>=1), ['cycle', "capacity']]
sns.set_style ("darkgrid")

plt.figure(figsize=(12, 8))

plt.plot (plot_df['cycle'], plot_df['capacity'])

#Draw threshold
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plt.plot ([0., len(capacity)], [1.4, 1.41)
plt.ylabel ('Capacity"')

# make x—-axis ticks legible

adf = plt.gca() .get_xaxis () .get_major_formatter ()
plt.xlabel ('cycle')

plt.title('Discharge B0O005")

attrib=["'cycle', 'datetime', 'capacity']

dis_ele = capacitylattrib]

C = dis_ele['capacity'][0]

for i in range(len(dis_ele)):
dis_ele['SoH']=(dis_ele['capacity'])/C

print (dis_ele.head(5))

plot_df = dis_ele.loc[(dis_ele['cycle']>=1),['cycle', "SoH"]]
sns.set_style ("white")

plt.figure(figsize=(8, 5))

plt.plot (plot_df['cycle']l, plot_df['SoH'])

#Draw threshold

plt.plot([0.,len(capacity)], [0.70, 0.701)

plt.ylabel ('SOH")

# make x—-axis ticks legible

adf = plt.gca() .get_xaxis().get_major_formatter ()

plt.xlabel ('cycle')

plt.title('Discharge B0O005")

C = dataset['capacity'][0]
soh = []
for i in range(len (dataset)):
soh.append ([dataset['capacity'][i] / C])

soh = pd.DataFrame (data=soh, columns=['SoH'])
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attribs=["'capacity', 'voltage_measured', 'current_measured',
'temperature_measured', 'current_load', 'voltage_load', 'time

train_dataset = dataset[attribs]

sc = MinMaxScaler (feature_range=(0,1))

train_dataset = sc.fit_transform(train_dataset)

print (train_dataset.shape)

print (soh.shape)

##Model Making

#Use 3 layers of dense, and use these parameters according to: 3 dense

import tensorflow.compat.vl as tf
tf.disable_v2_ behavior ()
#import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Dropout
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import LSTM
from tensorflow.keras.optimizers import Adam
#Set GPU resource allocation avoid#Set GPU resource allocation avoid B
gpu_options = tf.GPUOptions (per_process_gpu_memory_ fraction=0.333)
sess = tf.Session(config=tf.ConfigProto (gpu_options=gpu_options))
#Settings keras
from tensorflow.python.keras.backend import set_session
config = tf.ConfigProto()
config.gpu_options.allocator_type = 'BFC'
#A "Best-fit with coalescing" algorithm, simplified from a version of
config.gpu_options.per_process_gpu_memory_fraction = 0.8

config.gpu_options.allow_growth =True

set_session(tf.Session(config=confiqg))
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model = Sequential ()

model.add (Dense (8, activation='relu', input_dim=train_dataset.shapel[l]
model.add (Dense (8, activation='relu'))

model.add (Dense (8, activation='relu'))

model .add (Dropout (rate=0.25))

model.add (Dense (1))

model . summary ()

model .compile (optimizer=Adam(beta_1=0.9, beta_2=0.999, epsilon=1e-08),
#HH##

model.fit (x=train_dataset, y=soh.values, batch_size=25, epochs=50)

#H#A

##In order to verify the correctness of the model, load the 06 data se
dataset_val, capacity_val = load_data('B0006")
attrib=["'cycle', 'datetime', 'capacity']
dis_ele = capacity_vallattrib]
C = dis_ele['capacity'][0]
for i in range(len(dis_ele)):
dis_ele['SoH']=(dis_ele['capacity']) / C
print (dataset_val.head(5))

print (dis_ele.head (5))

attrib=['capacity', 'voltage_measured', 'current_measured',
'temperature_measured', 'current_load', 'voltage_load', 'time'
soh_pred = model.predict(sc.fit_transform(dataset_vallattribl]))

print (soh_pred. shape)

C = dataset_val['capacity']I[0]
soh = []
for i in range(len(dataset_val)):
soh.append (dataset_val['capacity'][i] / C)

new_soh = dataset_val.loc/[ (dataset_val['cycle'] >= 1), ['cycle']]
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new_soh['SoH'] = soh

new_soh['NewSoH'] = soh_pred

new_soh = new_soh.groupby(['cycle']) .mean() .reset_index ()

print (new_soh.head (10))

rms = np.sqgrt (mean_squared_error (new_soh['SoH'], new_soh['NewSoH']))

print ('Root Mean Square Error: ', rms)

plot_df = new_soh.loc[ (new_soh['cycle']>=1), ['cycle', "SoH', 'NewSoH']]
sns.set_style("white")

plt.figure(figsize=(16, 10))

plt.plot (plot_df['cycle'], plot_df['SoH'], label="'SoH')

plt.plot (plot_df['cycle'], plot_df['NewSoH'], label='Predicted SoH")
#Draw threshold

#plt.plot ([0.,1len (capacity)], [0.70, 0.70], label='Threshold')
plt.ylabel ('SOH")

# make x—-axis ticks legible

adf = plt.gca() .get_xaxis().get_major_formatter ()

plt.xlabel ('cycle')

plt.legend()

plt.title('Discharge B0O006")

###Use the first data of the first 50 cycles to use the battery capaci

dataset_val, capacity_val = load_data('B0005")

attrib=['cycle', 'datetime', 'capacity']
dis_ele = capacity_vallattrib]
rows=['cycle', "capacity']

dataset=dis_ele[rows]
data_train=dataset [ (dataset['cycle']<50)]
data_set_train=data_train.iloc[:,1:2].values
data_test=dataset [ (dataset['cycle']>=50)]

data_set_test=data_test.iloc[:,1:2].values

sc=MinMaxScaler (feature_range=(0,1))
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data_set_train=sc.fit_transform(data_set_train)

data_set_test=sc.transform(data_set_test)

X_train=[]

y_train=[]

#take the last 10t to predict 10t+1

for i in range (10,49):
X_train.append(data_set_train[i-10:1,0])
y_train.append(data_set_train[i,0])

X_train,y_train=np.array(X_train),np.array(y_train)

X_train=np.reshape (X_train, (X_train.shape[0],X_train.shapel[l],1))

regress = Sequential ()

regress.add (LSTM (units=200, return_sequences=True, input_shape=(X_trai
regress.add (Dropout (0.3))

regress.add (LSTM (units=200, return_sequences=True))
regress.add (Dropout (0.3))

regress.add (LSTM(units=200, return_sequences=True))
regress.add (Dropout (0.3))

regress.add (LSTM (units=200))

regress.add (Dropout (0.3))

regress.add (Dense (units=1))

regress.compile (optimizer="'adam', loss="mean_squared_error')

regress.summary ()

regress.fit (X_train,y_train,epochs=200,batch_size=25)

print (len (data_test))

data_total=pd.concat ((data_train['capacity'], data_test]['capacity']), a
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inputs=data_total[len(data_total)-len(data_test)-10:].values
inputs=inputs.reshape(-1,1)

inputs=sc.transform(inputs)

X_test=[]
for i in range(10,129):

X_test.append (inputs[i-10:1,0])
X_test=np.array (X_test)
X_test=np.reshape (X_test, (X_test.shape[0],X _test.shape(l],1))
pred=regress.predict (X_test)
print (pred. shape)
pred=sc.inverse_transform(pred)
pred=pred([:, 0]
tests=data_test.iloc[:,1:2]
rmse = np.sqgrt (mean_squared_error (tests, pred))
print ('Test RMSE: %.3f' % rmse)

metrics.r2_score (tests,pred)

###Theoretically, it should be seen that the average value of RMSE 1is
1ln = len(data_train)

data_test['pre']l=pred

plot_df = dataset.loc][ (dataset['cycle']>=1), ['cycle', "capacity']]
plot_per = data_test.loc|[ (data_test['cycle']>=1ln), ['cycle','pre']]
plt.figure (figsize=(16, 10))

plt.plot (plot_df['cycle'], plot_df['capacity'], label="Actual data", c
plt.plot (plot_per['cycle'],plot_per['pre'],label="Prediction data", co
#Draw threshold

plt.plot ([0.,168], [1.38, 1.38],dashes=[6, 2], label="treshold")
plt.ylabel ('Capacity"')

# make x—-axis ticks legible

adf = plt.gca() .get_xaxis () .get_major_formatter ()

plt.xlabel ('cycle')
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plt.legend()

plt.title('Discharge B0O005 (prediction) start in cycle 50 —-RULe=-8, wi

pred=0

Afil=0

Pfil=0
a=data_test['capacity'].values
b=data_test['pre'] .values

3=0

k=0

for i in range(len(a)):

actual=al[i]

if actual<=1.38:
J=1i
Afil=j
break
for i in range(len(a)):
pred=b[i]
if pred< 1.38:
k=1
Pfil=k
break
print ("The Actual fail at cycle number: "+ str(Afil+ln))
print ("The prediction fail at cycle number: "+ str (Pfil+ln))
RULerror=Pfil-Afil

print ("The error of RUL= "+ str (RULerror)+ " Cycle(s)")
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