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ABSTRACT

The use of Hardware Performance Counters (HPCs) to profile malicious behavior of

programs has grown popular in literature in the last decade (Demme et al., 2013). How-

ever, the deployment of HPCs in malware detection is an unintended consequence from

the design point of view of these counters. In this work we try to explore the possibility

of designing counters that are tuned for malware detection at design time. To this end

we plan to come up with, (a) a metric to represent to quantify the malicious behavior

of a program as a function of its execution parameters, eg. instruction sequence, (b) a

model that takes the sequence of this metric observed during the course of the program

execution and classifies malicious and benign behavior.
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CHAPTER 1

Background

1.1 Introduction

The proliferation of computers in any domain is followed by the proliferation of mal-

ware in that domain. Viruses, rootkits, spyware, adware and other classes of malware

exploit the ever increasing number of vulnerabilities in systems to execute malign code.

Conventional software based anti-virus systems have been used to detect and quarantine

such malwares. However they have a few key flaws:

1. The anti-virus systems are itself vulnerable to attack due to bugs in the anti-virus
or at the OS/kernel level.

2. Production anti-virus software typically use static characteristics of malware such
as suspicious strings of instructions in the binary to detect threats. However these
can be overcome by data obfuscation techniques that malware writers use to gen-
erate semantically similar code which look drastically different.

This is where we see the advantages of a hardware based malware detection system

1. It cannot be shut down even if kernel is compromised.

2. It might be able to protect against kernel exploits and other attacks against hyper-
visors.

3. As we have access to process information at the instruction level, it is easier to
add arbitrary static and dynamic monitoring capabilities.

The seminal work in this direction was Demme et al. (2013), which used the ex-

isting Intel performance counters to build a HW based malware detector. The work

showed that the data from performance counters can be used to identify malware. The

dynamic detection techniques they employ were found to be robust to minor variations

in malware programs. They propose a HW modification which allows the detector to

run securely beneath the system software. However, from a design point of view, the de-

ployment of performance counters in malware detection is an unintended consequence.



1.2 Problem Statement

We try to explore the possibility of designing counters that are tuned for malware de-

tection at design time. To this avail, we plan to come up with,

1. A metric to quantify the malicious behavior of a program as a function of its
execution parameters, eg. instruction sequence

2. A model that takes the sequence of this metric observed during the course of the
program execution and classifies malicious and benign behavior.

1.3 Program representation

Developing a program representation is a problem that has several long standing impli-

cations in the realms of understanding the inner workings of malware, finding vulner-

abilities in existing systems, and detecting patent infringements in released software.

General program representation tools depend on generating a robust vector representa-

tion of the assembly code in order to get a glimpse at the semantic relevance of portions

of the code. The conventional manual feature engineering techniques of developing

signatures for specific portions of code has been shown to be ineffective against differ-

ent compiler optimizations and data obfuscation techniques which have been used by

malware developers to generate semantically similar codes that look distinct from each

other.

Several works have surfaced recently which attempt to curb this flaw by learning the

lexical semantic relationship along with feature vectors for an assembly function, so

that the semantics of any piece of code has a part to play in the sections representation.

Platforms like asm2vec (Ding et al., 2019) which is primarily a binary clone search

tool are examples of the same and along with features to check similarities between 2

assembly functions, it also learns a semantic vector representation for every token in

the assembly code. Another work relating to the same is code2vec (Alon et al., 2018),

which tries to generate a fix-length vector for any code snippet, that can be used to pre-

dict the semantic propoerties of the snippet. This is performed by decomposing code to

a collection of paths in its abstract syntax tree, and learning the atomic representation

of each path simultaneously with learning how to aggregate a set of them.
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However these are both static models. They do not explicitly run the code snippet pro-

vided but simply generate representations of the same. In this work, we are interested

in hardware based malware detection, which would be mean a dynamic tool that detects

presence of a malware during runtime. Hence in this work, we attempt to develop a

vector representation for the x86 instruction set, by looking at the instruction sequences

during execution of a program and by using NLP techniques we generate semantic em-

bedding on the instruction set. We test the robustness of the same by observing how

changing the base code corpus affects the vocabulary learnt along with compiler opti-

mizations. We then evaluate the usefulness of such a vector representation by using it

for applications like program type classification and trying to establish various types of

code blocks encountered in a typical program.

1.4 Experimental Plan

1. Build a corpusP (at least 40K programs) of random programs collected by differ-
ent means like via web crawlers, public databases and program generation tools.

2. Divide P into two random halves P and Q.

3. Use Intel Pin tool (Luk et al., 2005) to generate the instruction sequence IPi and
memory access sequences MP

i for each program Pi ∈ P. Similarly, generate
the instruction sequence IQi and memory access sequences MQ

i for each program
Qi ∈ Q.

4. For both halves P and Q, use language models like word2vec or Glove to come
up with a set of mathematical embeddings, EP and EQ for each instruction. Fig-
ure out a similar way to represent the memory access sequences. Essentially we
want to have EP ≡ EQ ≡ Einst. This would mean that E is a stable and uni-
versal embedding on the instruction set. A similar approach can be taken for the
memory access sequences to get Emem.

5. Design c = f(Einst, Emen).

6. Build a model M that takes in c values for a program during its execution and
classifies it as malicious or benign.

7. Iteratively refine c and M.

8. If the number of parameters to calculate c becomes huge we can also split them
into multiple metrics, hence multiple counters and in turn multiple features to M.

3



CHAPTER 2

Experiments

2.1 Data Collection

In order to obtain a sufficient number of programs to build the vocabulary, the first

approach used was to build a Github crawler to sample repositories which are primarily

C-based. Initial attempts were using standard scraping libraries like Scrapy, but for

URLs of github repositories, the hit-rate was simply too low.

To get a better success-rate, the Git API was used (the python library of it). The query

feature can be used to randomly sample repositories. The response for each repo also

contains a dictionary for language-wise split-up of # of lines.

Every response can only give atmost 1000 repos per query. And so the query was made

date wise. Further, size of the repos were filtered in query to be between 1kb-1Mb, in

order to remove empty and massive repos.

There is a 60 req/minute and 1500 req/hour rate limit per user(’s access token), which

although we were never exceeding, seemed to be triggered at around 20 minutes. Hence

access tokens from multiple (5) accounts were used and switching was done when one

tokens rate is exceeded. In finality, a rate of about 90 successful repos were cloned

every 10 minutes(running queries for 3 separate years simultaneously).

The current number of predominantly C based repos (in which atleast 55% of the lines

of code are in C) on a year wise split is:



Year # Repos

Before 2012 2167

2012 2030

2013 3209

2014 4089

2015 5316

2016 6518

2017 7167

2018 8259

2019 7669

2020 4595

Total 51019

Another source of C programs was the code corpus used for the work Karampatsis et al.

(2020). It boasts 4601 projects, with around 750k individual C programs. However as

the work is about using the code corpus to generate a uniform vocabulary using NLP, a

majority of the programs were lacking necessary scripts and other dependencies to be

run. In total only about 7k programs were compilable and hence usable.

Further the csmith tool (Yang et al., 2011) was used to generate random C programs to

generate large purely C based code copora.

2.2 Extracting Instruction Sequences

As a hardware based solution would essentially have information of a process at the

instruction level, a way simulate this would be to study the dynamic execution of a C

program. The Intel Pin tool (Luk et al., 2005) can be used to insert code into a program

to collect run-time information. These instrumentation functions can be used to monitor

the program during dynamic execution, including printing out the instructions that are

being executed. We will be using this to generate the instruction mnemonics of various

programs and use this to build a general vocabulary for each instruction.
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2.3 Using asm2vec to generate vocabulary

The asm2vec tool is a platform that can be used as binary clone search tool, to check

similarities of various functions between 2 separate program. For each token (which is

any part of the executable, including function name, instruction, operands etc), the tool

learns 2 multidimensional vectors, out of which one is used for checking similarity and

the other is used to hold the semantics learnt about the token.

What is to be noted is that asm2vec is a static analysis tool unlike pin. Only the exe-

cutable is required for the tool to learn a vocabulary for the various instructions of the

program and the dynamic running of the executable does not come into play in this

case.

However the tool learns a vocabulary for each executable. Hence we learn a vocab-

ulary from a batch of files by simply initializing the vocabulary at each point as the

vocabulary learnt from previous executables. As discussed before, in order to test the

robustness of the vocabulary learnt, we perform the algorithm on 2 different data sets

and observe the level of similarity between the 2 learnt vocabularies. We will be using

the cosine-similarity metric for the sake of these experiments.

2.3.1 Preliminary Tests

We use 2 datasets of 1k programs each and examined the average cosine similarity

between the learned vocabularies. Hence at each file we have a vocabulary that is learnt

from all the programs till then. The initial values we received were:

Repo 1 File No. Repo 2 File No. Cosine Sim # Tokens

1000 1000 0.0031 16187

10 10 -0.004 322

100 100 0.00016 1108

Within the same repository the similarity remained pretty consistent from one file no. to

the next (similarity between file no. 900 and 1000 was 0.985). The observations from

the same are,

• The number of tokens increases to around 10k when many of these tokens are just
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operands which rarely occur again. Hence their semantics play no real part in the
similarity of the vocabularies.

• Between different permutations the cosine similarity is quite low. However in the
same permutation on comparison of different file numbers, the similarity was still
quite high.

Inferences:

• Perhaps due to the blowup in number of tokens, a token is being rarely used and
so nothing much is learned about it. Hence checking cosine similarity of just the
instruction set is a viable option.

• Performing the same tests on larger datasets might see improvement.

2.3.2 Final Test

We now use data-sets with 10k programs each in order to record behaviour. For calculat-

ing the results in this case, we only look at the cosine similarities of the x86 instruction

set, as non-operation based tokens may not have enough test cases in the programs, to

learn anything relevant about. Further we are looking at only instructions that have a

sizeable fractions of occurrences in the corpus. Let this threshold be denoted by t. For

different values of the t, the following results were obtained.

Repo 1 File No. Repo 2 File No. t # Tokens Cosine Sim

10000 10000 0.001 48 0.019

10000 10000 0.01 13 -0.002

10000 10000 0 226 0.023

1000 1000 0.001 48 0.022

100 100 0.001 48 0.028

Another concern was that the order of input of the programs are having an effect on the

learned vocabulary. In order to remove this bias a random subset of 8k program each

out of each dataset was permuted and the results computed.

Repo 1 File No. Repo 2 File No. t # Tokens Cosine Sim

8000 8000 0.001 48 -0.11

1000 1000 0.001 48 -0.107

100 100 0.001 48 0.099
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Although the value of the cosine similarity is considerably larger than in the first case,

its similar value throughtout the file nos. seems to suggest that it is simply because of

initialization that these elevated values are observed.Hence we infer

• The asm2vec tool seems to be unable to pick up on similar embeddings for the
instruction set, when it is learnt on 2 seperate datasets. This may be due to a
variety of reasons besides the possibility of the original assumption being false.

• The asm2vec is a static tool, whose original purpose is as a binary clone detection
software. Hence the semantics that the tool learns might just be particular to that
program and not hold any information about the general dynamic beviour of the
tokens.

• It could also be that we are still using too few programs to observe any meaningful
results.

2.4 Using word2vec to generate vocabulary

A piece of code can be viewed as a series of instructions which could be modeled effec-

tively as sentences. Hence we train word2vec (Mikolov et al., 2013) with the series of

instructions that are executed in a program and observe the vocabulary that is generated.

What is to be noted here, is that as we are looking for the exact sequence of instructions

that are executed when the code is run, and hence this would be a dynamic analysis. Pin

tool will be used here to print out the instruction mneumonics during run time.

In order to learn a vocabulary from a dataset of multiple programs, the instructions

mneumonics of the programs are appended into a single file which is passed as input

to word2vec. This method would have the disadvantage that at the intersection of 2

programs, a few instructions would be misidentified as being in the same neighbour-

hood when they belong to different programs. However considering that the number

of instruction is very large, the number of such neighbourhoods would be a very small

fraction.

In order to populate the datasets, csmith was used which generates random programs

(in addition to programs from the previous corpus). Two datasets of 20k programs were

generated and their corresponding pin tool outputs were obtained.
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2.4.1 Preliminary Tests

The 2 datasets of 20k programs are now passed on to word2vec and vocabularies are

learnt for the same for different parameters:

• size: The dimensionality of the vectors learnt for each instruction in the vocabu-
lary.

• window: Size of the window considered in the neighbourhood of a token.

• sample: Threshold for frequency of a word. A word with higher frequency will
be randomly downsampled.

• negative: number of negative samples used in the training process.

• iter: Number of iterations used in the learning process.

• min-count: discard words that are less frequent

• cbow: 1 for using bad of words model. 0 for skip gram

Note: When running pin tool for the programs generated by csmith, as the pin tool

is a dynamic tool, a timeout was set on the execution of the executable. The timeout

was set as 2 mins for repo1, but for repo2 it was relaxed to 1 min as the hitrate for a

program to go beyond this limit remained about the same (∼ 10%) and so it saved a lot

of time to use a smaller timeout than 2 mins.

In terms of metrics to compare similarity between 2 vocabularies, 5 metrics have been

tested:

• Universality: Reciprocal of the standard deviation of the euclidean distance be-
tween vectors of the same word.

• Reciprocal of the coefficient of variation of the Euclidean distances.

• Cosine Sim: Average of the cosine similarity between vectors

• Reciprocal of the standard deviation of the angle between vectors

• Reciprocal of the ratio of variation of angle between the vectors.

Out of the several parameter combinations below are a few sampled results. (pa-

rameter values are in order as listed and default cbow was used)
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Params Univ Ufrac Csim Cstd Cfrac

5,1,1e-5,3,5,1 11.017 0.636 0.681 1.241 0.630

5,1,1e-5,3,5,100 10.990 0.639 0.679 1.238 0.634

5,1,1e-5,3,5,1000 10.963 0.643 0.676 1.235 0.638

10,1,1e-5,3,20,1000 16.772 0.697 0.692 1.386 0.692

10,2,1e-5,5,5,1 16.845 0.689 0.697 1.393 0.684

10,2,1e-5,10,5,100 16.808 0.693 0.695 1.390 0.688

10,3,1e-5,5,20,100 16.808 0.693 0.695 1.390 0.688

25,1,1e-5,5,5,100 25.722 0.699 0.673 1.352 0.699

Some takeaways from the tests,

1. Although with an increase in vector sizes we saw a marked improvement in met-
rics, the total number of instructions (tokens) observed was 120 and so at higher
sizes we would simply be overfitting.

2. In smaller values of the window, for popular instructions like add, the 2 vectors
that were generated from the 2 datatsets were pretty much identical. As even a
single line of code comprises of several instructions, it is expectable that at such
low window values, something of this sort is observable. The influence of larger
window sizes is to be explored.

3. Similarity between different instructions in the same vocabulary would also be an
interesting avenue.

4. Variations between bag-of words and skip-gram models of computation is to be
explored.

2.4.2 Testing variation of window and model types

We focused mainly on the variation of the similarity metrics with the window and the

computation model parameters. For size 10, the following table depicts the same:

Window cbow Univ Ufrac Csim Cstd Cfrac

1 0 16.808 0.693 0.695 1.390 0.688

1 1 16.808 0.693 0.695 1.390 0.688
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3 0 16.808 0.693 0.695 1.390 0.688

3 1 16.808 0.693 0.695 1.390 0.688

5 0 16.808 0.693 0.695 1.390 0.688

5 1 16.808 0.693 0.695 1.390 0.688

What we observe was that for a particular value of size, the obtained vocabulary is

independent of the window and computation model parameters. And comparing the

vocabulary learnt between 2 different datasets, we see that for popular instruction (with

very high frequency), the learnt vectors are identical.

Hence we infer from this experiment that,

• The window parameter doesnt seem to have an effect on the learnt vocabulary.
This suggests that intrinsic semantic relationship between instructions is quite
simple, and the immediate neighbourhood of the instruction is enough to describe
this relationship.

• For very frequent instructions, the vector representation learnt from both datasets
are identical and on average there does seem to be a high degree of similarity
between the 2 learnt vocabularies. Hence we conclude that the algorithm is in
fact able to generate a robust embedding for x86 instruction set.

2.4.3 Testing effect of compiler optimizations

We now test how the vocabulary changes when we compile programs with compiler op-

timizations. This is relevant as robustness to compiler optimization is a very desirable

feature in a code embedding as if it remains relatively invariant to compiler optimiza-

tions, then it implies that the semantics of the instruction set learnt is invariant to the

same, which means any hardware based malware detection system built on this em-

bedding would also be resistant to compiler optimization based morphing of malicious

code.

To test the same, we compile the programs of repo1 with different gcc optimization flags

and use this to build a code embedding using word2vec and the intel pin tool.We then

study its similarity to repo1 (which is essentially the same set of programs but without
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the compiler optimizations) and repo2 (which is an entirely different set of programs).

The results of the same are tabulated below:

Flag Used Comparison with Window Univ Ufrac Csim Cstd Cfrac

-03 repo1 3 9.843 2.049 0.089 1.283 1.851

-03 repo1 5 15.240 2.414 0.126 1.502 2.106

-03 repo1 10 23.989 2.919 0.030 1.895 2.847

-03 repo2 3 9.973 2.109 0.063 1.306 1.922

-03 repo2 5 15.293 2.496 0.076 1.506 2.197

-03 repo2 10 24.597 2.976 0.041 1.931 2.877

-01 repo1 5 14.164 2.231 0.124 1.542 2.140

-01 repo2 5 14.622 2.354 0.087 1.568 2.244

-0s repo1 5 15.527 2.587 0.067 1.649 2.410

-0s repo2 5 16.038 2.695 0.055 1.705 2.522

-0fast repo1 5 15.227 2.410 0.127 1.501 2.105

-0fast repo2 5 15.325 2.486 0.085 1.500 2.174

-0g repo1 5 15.749 2.606 0.083 1.660 2.406

-0g repo2 5 16.187 2.734 0.057 1.705 2.535

We observe that although the cosine similarity metric has deteriorated in value, the other

metrics seem to have not undergone such a massive change. The rigidity in the value of

Cstd seems to suggest that all the vectors have simply been rotated by a certain constant

angle. On visible inspection of the learnt vocabularies, we see that for the instruction

’mov’, the embedding learnt remains intact while there are significant changes for every

other instruction. This suggests that although the current vocabulary is not robust to

compiler optimizations, it might be the case that usage of a larger dataset of programs

would be able to generate more robust embeddings on the instruction set.
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CHAPTER 3

Evaluation and Results

For the experiments attempted in this section, The TreeBasedCNN Database has been

used

3.1 Labelling Code Blocks

There has been work done in identifying several distinct phases during program execu-

tion. Hence we can consider a program as a series of blocks and we investigate whether

we can find similarities between blocks across programs.

By the principle of proximity, we assume that a block will contain instructions that are

close to each other, and so any instruction that causes a jump in the instruction pointer

(like jumps, branches, calls etc), signify the end of the block. This now provides us with

a set of varying length sequences, with each sequence being the instruction mnemonics

of the block. The problem now becomes a unsupervised learning problem, of finding

structure amongst the various block mnemonics.

For each block, we translate the mnemonics to 2-dimensions by transforming each in-

struction to its learned vocabulary vector. Hence now we obtain a set of variable size

2-D vectors each representing a block from the programs.

3.1.1 Preliminary Test

For the first set of tests, we flatten the 2-D vector obtained for each block in order to

obtain a single variable length vector associated with each block. We do this procedure

on the feasible programs from the TreeBasedCNN dataset from the class 78 and 41. In

terms of the frequencies of the sizes of the vector, we see that a vast majority are within

the size of 20 (20 instructions).



Figure 3.1: Histogram of block size (for size<35)

However it was observed in the histogram of blocks above this size, we notice an

interesting group of blocks at around size 300. Although the frequency of these are

very few, their relative frequency in comparison to other large block sizes is indeed

interesting.
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Figure 3.2: Histogram of block size (for size≥35)

In order to tackle the problem, we tried the most straight-forward approach, which

is to use k-means clustering on the given vectors and obtain labels for each vector.

However k-means can only be applied to data which is of the same dimensionality, for

which we pad all the vectors upto size 30 (we remove blocks of size > 30 as these

are rare). We had a total of 15816569 such vectors for the clustering process. (Note:

Sklearns k-means clustering package gave seg fault when trying to run with the vocab

of size =5 , and hence we resorted to use the vocab of size =3 ). k = 2, 3, 5, 10 were the

values of k for which the labels were generated.

In order to qualitatively assess the clustering, some method of being able to represent the

data in lower dimensions was needed. We used t-SNE (t-distributed stochastic neighbor

embedding), to develop an embedding for each vector in 2 dimensions. We then plotted

the same along with the labels on a scatter, in order to see if clusters are qualitatively

sound. The results are shown below for the various k-values. (Note: For the t-SNE

fitting step, only a random sample of 100k vectors from the original input pool was

used, as it was taking too much time to process the complete input).
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Figure 3.3: t-SNE scatter plot for k=2 (Preliminary Test)

Figure 3.4: t-SNE scatter plot for k=3 (Preliminary Test)
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Figure 3.5: t-SNE scatter plot for k=5 (Preliminary Test)

Figure 3.6: t-SNE scatter plot for k=10 (Preliminary Test)

From the t-SNE plots, it clear that there are 2 clusters of similar blocks in the data.

However there does seem to be a lot of blocks that cant be classified accurately. There

could a variety of reasons for the issues in the clustering,
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• k-means clustering might be an inadequate approach for the data provided. The
vectors are all of different sizes, while for k-means generally we expect vectors
of the same dimensions.

• While padding to make all the vectors of the same size, the ordering of the di-
mensions is important as k-means is sensitive to the ordering of the features in
the vector. Hence the padding is influencing the data.

• There might be several repetitions of the same block which is skewing the data.

3.1.2 k-means clustering on large dataset

We looked at now clustering the original dataset of 20 thousand programs, as the current

working data set is quite small. It was noticed in the original preliminary test that a lot

of blocks were duplicates. For eg, the label 0 blocks from the previous experiment (for

k=10), were all exclusively the same sequence. Hence we removed duplicate sequences

for this iteration and worked on clustering the unique blocks encountered. It was noticed

that there were 250k unique blocks identified in our code (of size < 30 instructions) and

k means clustering was attempted on this data for k = 2, 3, 5, 10. The t-SNE plots for

same are as follows:

Figure 3.7: t-SNE scatter plot for k=2 (Large Dataset)
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Figure 3.8: t-SNE scatter plot for k=3 (Large Dataset)

Figure 3.9: t-SNE scatter plot for k=5 (Large Dataset)

19



Figure 3.10: t-SNE scatter plot for k=10 (Large Dataset)

3.1.3 Using DTW for time series clustering

As the instruction sequences are in order of execution and if we assume that our vocab-

ulary is able to retrieve some sort of semantics about each instruction, we can think of

the sequences of vectors in a block as a time series of sort. A primary concern we had

when clustering using k-means was the relevance of order. It could be 2 blocks are sim-

ilar but one is an offset version of another, but both perform the same semantics. After

padding, this could mean that these 2 sequences are labelled differently when they are

semantically similar. Hence to curb this flaw we use the DTW (dynamic time warping)

algorithm as the distance metric between sequences. The plots we obtain using t-SNE

for the same are below:
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Figure 3.11: t-SNE scatter plot for k=2 (DTW Clustering)

Figure 3.12: t-SNE scatter plot for k=3 (DTW Clustering)
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Figure 3.13: t-SNE scatter plot for k=5 (DTW Clustering)

Figure 3.14: t-SNE scatter plot for k=10 (DTW Clustering)

Visually this clustering does seem worse than the previous experiment. But this is

to be expected as t-SNE tries to maintain the relationship of distances between points.

However the time series k-means clustering algorithm takes DTW as its distance metric,
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and so even if the euclidean distance between a point and its centroid is large, it might

have a small distance wrt. DTW.

3.2 Predicting Program Types

In order to evaluate how effective our learnt vocabulary is at representing the semantics

of each instruction, we attempt to use it to solve a classification problem. We use the

TreeBasedCNN database for the same. The dataset has a large number of programs

labelled according to type. We tried to find program types that have large number of

programs that are compilable. From the same we isolate 2 labels, 41 and 78 which

have 59 example programs each which are feasible. We attempt to perform binary

classification on these 2 sets with the input we have as the instruction mnemonic of the

programs. As defined for clustering, we define a block in the program as a sequences of

instruction in the mnemonics of the program that are terminated by any instruction that

can cause a jump in the instruction pointer (due to observations made earlier, we also

enforce that a block has maximum length 30).

3.2.1 Preliminary Tests

Every instruction is represented by a vector in the vocabulary. Hence we represent

a program as a sequence of vectors and we flatten this 2-D object to obtain a single

variable size vector for each program. This is taken as the feature set of input. As this is

a variable length vector, padding is performed to maintain same size. As the ordering of

instructions is relevant. we would want to use a model that is able to take into account

the ordering of the vectors. Hence the hidden layer of our model is an LSTM with 32

nodes followed by an output FCNN (Fully connected Neural Network) layer to predict

the label utilizing the weights learnt in the LSTM layer. An important model parameter

in this case, is the number of instruction that are considered as a single unit of time. If

we assume this parameter is some value ’k’, then the input at each timestamp would be

the flattened vector of the vocabulary representations of k instructions. The table below

records our result of the model’s prediction on the test data (0.2:0.8 test-train split)
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# Instructions Accuracy f1-score precision recall

100 0.5 0.66 0.5 1.0

500 0.545 0.6875 0.524 1.0

1000 0.64 0.6875 0.524 1.0

10000 0.682 0.625 0.476 0.91

From the results tabulated we can see that as the parameter is increased, the model is

able to improve over random guess and is actually able to differentiate between program

type with some (limited) confidence. An issue with this approach is the fact that the

vectors are quite large and so overfitting is inevitable when compounded with the small

dataset.

3.2.2 Proof of Concept

We make the following assumption: The program type is a complex function of the

blocks we encounter during dynamic execution. Hence we first one-hot encode ev-

ery distinct block that we observe in the dataset. Then we represent each program as a

histogram on this one-hot encoding (by inspecting the frequency of each block in the

programs’ instruction mnemonic). We use this transformation as our models input, with

output the model tries to predict being the program type. This is in essence a feature

vector binary-classification problem. We used the xgBoost classifier to model the prob-

lem and found that the model had perfect accuracy in predicting the program type on

the test set. Hence we conclude that our underlying assumption is true. However, the

experiment in this fashion cannot simply be extended to larger datasets. In the large

dataset consisting of 20,000 programs, we had approximately 250,000 unique blocks

which would mean the histograms generated would be have these many bins. This

would make the model computationally expensive and prone to overfitting.
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3.2.3 Using clustering labels for classification

As discussed in the previous section, simply one-hot encoding all the unique blocks

discovered in the data would lead to computational difficulties. To circumvent this, we

label each block according to the clustering processes described in section 3.1. We

then look at the labels of the blocks present in a program and prepare a histogram from

the same. In this fashion we are able to augment the input to a constant size and if the

clustering is able to derive any semantic meaning, we hypothesise that the program type

is a complex function on the histogram of labels in the instruction mnemonic. Tabulated

below are the results on the test data when using different types of classification models

and clustering algorithms.

Clustering type Model Accuracy f1-score precision recall

k-means (k=3) Dense(4)+Dense(2) 0.53 0.7 0.55 1.0

k-means (k=3) xgBoost 0.96 0.96 1.0 0.92

k-means (DTW, k=3) Dense(4)+Dense(2) 0.61 0.66 0.5 1.0

k-means (DTW, k=3) xgBoost 1.0 1.0 1.0 1.0

We observe that the xgBoost classification algorithm is able to perform very well on

the data, and for the DTW based time series clustering, it is completely accurate on the

test data, which seems to suggest that there is a strong possibility that our assumption

is right. However due to the small size of the training set, it is possible that there is

significant bias in the dataset and the classification algorithm is detecting features that

are present due to these inherent biases.
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CHAPTER 4

Conclusions and Future Work

In conclusion, in this work we explored the possibility of developing a vocabulary for

the x86 instruction set by observing the instruction mnemonics of typical C programs.

We test the robustness of the same by comparing the learnt vocabularies between 2 dif-

ferent code corpuses and found that the learnt vocabularies are quite similar by various

metrics and very frequently instructions actually have identical representations in both

vocabularies. We further evaluated the vocabulary learnt by using it for identifying var-

ious blocks within the program instruction mnemonics and using this we attempted to

classify program types.

With the aid of the vocabulary, we can now attempt to find structural differences be-

tween a specific class of malware and benign code. The ultimate goal of the same

would be to generate a metric/function that can be used to differentiate between the

malicious and benign code. We then can implement the same as a dedicated hardware

counter which is able to dynamically detect malicious code running in the system.



APPENDIX A

Terminologies and definitions

A.1 Sequence Learning Terminologies

1. Crawler : A crawler is a script which automatically scowers the World Wide Web
in a methodical fashion.

2. Github: A distributed version-control system.

3. Code Corpus: A large set of structured code.

4. API (Application Program Interface): It is a set of programming codes and rules
that are used for data transmission between a web server and a client.

5. Intel Pin Tool (Luk et al., 2005) : Pin is a dynamic binary instrumentation frame-
work for the IA-32, x86-64 and MIC instruction-set architectures that enables
the creation of dynamic program analysis tools. As a hardware based solution
would be looking at the behaviour of any process dynamically, the tool was used
to monitor program behaviour during execution and particularly for extracting
useful features like instruction mnemonic during execution.

6. asm2vec: As described in Ding et al. (2019), asm2vec is a clone search tool which
circumvents code obfuscation and compiler optimization based augementations
to code. The asm2vec tool takes as input an executable and learns a vocabulary
for each token (any function name, instruction or operand in the executable), and
can be used to check similarity between 2 executables. It also learns a semantic
vocabulary for each token. We will be using this fact to try and achieve a generic
vocabulary for instructions. asm2vec is based on the popular NLP tool word2vec.

7. word2vec: It is an algorithmic technique used in NLP introduced by the seminal
work Mikolov et al. (2013). The system can utilize one of 2 model architectures,
either the skip-gram or the continuous bag-of-words model (CBOW), to generate
a semantic vocabulary for each word encountered in the training text. Both mod-
els predict the current word from a window of surrounding context words, but the
key difference is that the CBOW model is indifferent to the orders of the context
window words, while the skip-gram models weighs nearby context words more
heavily than more distant context words.

8. Csmith (Yang et al., 2011) : Csmith is a tool that can generate random C programs
that statically and dynamically conform to the C99 standard.

9. TreeBasedCNN Dataset (Mou et al., 2015) : The following dataset houses pro-
grams divided according to different types. Hence it is useful for attempting
classification.



A.2 Clustering based Technologies

1. k-means clustering: An unsupervised machine learning algorithm which given a
set of data points in n-dimensional points finds k-centroids and k-clusters such
that similar data points are grouped together into the same cluster.

2. t-SNE: t-distributed stochastic neighbor embedding (t-SNE) is a statistical method
for visualizing high-dimensional data by giving each datapoint a location in a two
or three-dimensional map while trying to maintain the distance relationships be-
tween points.

3. DTW: In time series analysis, dynamic time warping (DTW) is one of the al-
gorithms used for measuring similarity between two temporal sequences, which
may vary in speed.

A.3 Machine Learning Technologies

1. Artificial Neural Network: Is a weighted network of nodes or neurons which aims
to find underlying structure in data we are trying to fit and eventually predict.

2. Recurrent Neural Network (RNN): A class of ANNs that feeds the input of previ-
ous node as well as conventional input to the current node. This helps the network
in being better at understanding time based relationships in data.

3. LSTM: A special class of RNN’s, LSTM has feedback connections. It can not
only process single data points (such as images), but also entire sequences of
data, and solves the dissapearing gradient problem that is sometimes observed
in RNNs, and hence can retain more ’memory’ across a time-based sequence.
It is popularly used in handwriting recognition speech recognition and anomaly
detection in network traffic.
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APPENDIX B

Miscellaneous Experiments

B.1 Visualing DTW cluster centres

As described in subsection 3.1.3, we used DTW to cluster the blocks and obtain la-

bels for each block. As DTW is able to look past temporal shifts in time series, the

cluster centroids obtained by DTW when represented as a sequences should have dif-

ferent forms if the number of clusters used is adequate. However as each point of the

sequences would be 3-dimensional, the plot would have been in 4-dimensions. Hence

to visualize this data, we used t-SNE to reduce the dimensionality of the data. The

following are the results obtained for different values of k.

Figure B.1: Cluster Centroids for k=2



Figure B.2: Cluster Centroids for k=3

Figure B.3: Cluster Centroids for k=5
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Figure B.4: Cluster Centroids for k=10

There does seem to be a number of centroids that are shifted versions of others

until variations in the tail section, especially for higher values of k. Visually from the

same, it does seem that beyond k=5, we are perhaps constructing several clusters for

semantically similar blocks.

B.2 Block Histogram of benign vs malicious code

To see if we can visually observe any difference between benign and malicious code, we

decided to take 2 programs, one a sample program from label 78 of the TreeBasedCNN

Database, and the receiver program of a side channel attack (P+P_L1_Covert_Channel_slow),

extract all the distinct blocks that we see from their instruction mnemonics and one hot

encode the same. Then we represent each program as a histogram on this encoding and

the results are given below.
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Figure B.5: Histogram of blocks (Benign Code)

Figure B.6: Histogram of blocks (Malicious Code)

A significant fraction of the blocks in the side channel attack have size > 30 in-

structions (denoted by the final orange bar in the plot), while it is seen than in benign

programs, the frequency of such blocks are usually minuscule. This is a key difference
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we can visually observe apart from the difference in structure of the 2 histograms.
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